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Abstract

This work aims to reduce the global resource consumption in an industrial evap-
oration network by better tasks management and coordination. The network
works in continuous, processing some products in several evaporation plants, so
optimal load allocation and product-plant assignment problems appear. The
plants have different features (capacity, equipment, etc.) and their performance
is affected by fouling inside the heat exchangers and external factors. Hereby,
the optimizer has to decide when maintenance operations have to be triggered.
Therefore, a mixed production/maintenance scheduling problem arises. The
plant behavior is approximated by surrogate linear models obtained experi-
mentally, allowing thus the use of mixed-integer linear optimization routines to
obtain solutions in acceptable time. Furthermore, uncertainty in the weather
forecast and in the production plan is also considered via a two-stage stochastic
programming approach. Finally, a trade-off analysis between other objectives
of interest is given to support the decision maker.

Keywords: Production scheduling, Stochastic optimization, Integration,
Fouling, Maintenance prediction, Similarity index

1. Introduction

Improved coordination of the operation in industrial sites can lead to enor-
mous savings in the energy and resource consumption, and consequently to the
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reduction of production costs, through the development of better decision sup-
port systems. This is the reason which motivates the development of methods
and software for efficiency monitoring, coordinated process control and optimal
planning and production scheduling of factories, industrial plants and parks
under dynamically changing market conditions (Krämer & Engell, 2017). In
particular, linking the real-time operational layers with the site-wide optimi-
sation through scheduling approaches is receiving increased interest (Engell &
Harjunkoski, 2012; Adamson et al., 2017).

These type of problems are positioned on the upper levels of the control hier-
archy (see Figure 1) and usually involve both real-valued quantities (efficiency
indicators, load assignment, etc.) and choosing between different discrete op-
tions (task execution, path decisions or available equipment). A scheduling
problem has to consider three main points: which tasks have to be performed
and when they will be executed, the equipment that will perform these tasks
and the resources/time that will be required (and then allocated) for each task.
It is noteworthy to say that the problem complexity is usually high and compu-
tational demands increase exponentially with the number of tasks.

Figure 1: Automation pyramid

Scheduling is a complex and “exotic” task in industry, which is still often
based on expert rules. However, these problems can be mathematically formu-
lated, translated to optimization problems which involve both binary/integer
and real decision variables, and solved efficiently using mixed-integer program-
ming (MIP) (Méndez et al., 2006). According to the nature of the involved
mathematical models (hybrid linear or nonlinear), these optimizations are for-
mulated via constraint programming, mixed-integer linear (MILP) or nonlinear
(MINLP) programming (Floudas, 1995). Hence, nowadays the computer-aided
decision support tools are getting more and more significance in order to help
operators to take better decisions (Harjunkoski et al., 2014). Nevertheless, there
still exist many challenges to face with for the successful deployment of inte-
grated scheduling tools in industrial environments(Harjunkoski, 2016).

This paper focuses on the integration between real-time optimization (RTO) and
scheduling in a continuous industrial evaporation network with several plants
and several products to concentrate. RTO is often used in large-scale systems
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to seek online for the “optimal” control set points and design configurations to
best face possible changes (production, weather disturbances, equipment fail-
ures, changeovers, etc.) (Adamson et al., 2017), but it usually bases on the
current plant state and does not consider what can happen in the future. In
the evaporation network, each plant runs in continuous with its own nominal
efficiency, but this efficiency also decreases with time due to fouling effects inside
the heat exchangers. Indeed, long-term effects which reduce performance, such
as fouling or catalyst deactivation, are a common issue in industry. Therefore,
instantaneous decisions may not be the best ones looking some time ahead.
This drawback can be partially addressed by including models for such long-
term effects in each plant RTO, e.g., the previous work from the authors for an
evaporation plant in Pitarch et al. (2017).

Furthermore, these fouling effects force to periodically perform cleaning tasks
in order to recover plant efficiencies, but not all plants can be stopped at the
same time, so a mixed maintenance/production scheduling problem arises. Sev-
eral people have devoted efforts along the last decades to deal with these kind
of problems: Smäıli et al. (1999); Pogiatzis et al. (2012) proposed a MINLP
approach while Lavaja & Bagajewicz (2004) and Casas-Liza et al. (2005) also
proposed a time discretization to recast the problem as a MILP one. Recently,
Biondi et al. (2017) presented a framework for industrial sites to integrate these
two interactive decision processes in a multi-scale scheduling problem. In such
work, the decay in equipment performance is modeled using the concept of
“residual useful life” (RUL), a capacity resource which decreases over time. The
evaporation plants in our case do not present a loss in capacity due to fouling (at
least during the largest time they have been in operation without cleaning), but
an increment in the specific steam consumption to achieve the desired evapora-
tion set point. So the RUL approach is not directly applicable here. We present
a predictive scheduling approach which uses a surrogate model including foul-
ing to represent the plant behavior and we propose an adaptation of the general
precedence approach to efficiently tackle the mixed maintenance/production
problem, where three main types of tasks coexists: normal operation, standby
and cleaning.

Moreover, uncertainty is always present when facing real problems (mismodel-
ing, unplanned changes, disturbances, etc.). Therefore, considering uncertainty
since the design phase in order to search for robust solutions is key. Robust-
ness can be provided by forcing a single schedule to fulfill a bunch of scenarios,
sampled according to expected realizations of the uncertainty (Kouvelis et al.,
2000). However, this is usually a very conservative solution, i.e., normally the
worst scenario does not realize. Thus, a less conservative option is using a multi-
stage stochastic optimization (Grossmann et al., 2016), which benefits from the
assumption that the uncertainty can be more precisely known in the future, so
the schedule can provide different decisions for each scenario beyond the ini-
tial stage. Here we propose a two-stage optimization approach by considering
uncertainty in the outdoor weather and in the production plan.
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In addition, several conflicting optimization criteria such as efficiency, robust-
ness or productivity appear (Yenisey & Yagmahan, 2014; Ruiz-Femenia et al.,
2013). Therefore, based on the above approach and the concept of similarity
between schedules, we propose a multi-criteria scheduling problem. Then, the
offline analysis and visualization of the Pareto front (Reynoso-Meza et al., 2013)
gives the plant engineers a guide about the right trade-offs to accomplish.

The rest of the paper is structured as follows: next section describes the evap-
oration process and discusses a suitable plant model; Section 3 describes the
evaporation network together with the problem constraints, presents the pro-
posed scheduling model and formulates the overall problem via disjunctive pro-
gramming; then the two-stage stochastic and multiobjective optimizations are
presented in sections 4 and 5 respectively; Section 6 shows some obtained solu-
tions for normal operating conditions and analyzes the obtained Pareto front;
and finally, a last section summarizes the main conclusions.

2. The evaporation process

This work is part of a series of actions to improve resource efficiency in Lenzing
AG, a large industrial site which produces man-made cellulose fibers using wood
as raw material. The main source of energy consumption in this site is located
in the so-called spinning process, where the cellulose pulp extracted is extruded
jointly with a solution of chemicals and water, in order to provide the fibers
with the desired mechanical properties. These chemicals have a sensible eco-
nomic value, so they must be reused. Thus, these aqueous solutions (henceforth
products) are sent to an evaporation system in order to remove the main part
of water. Finally, the output concentrate enters into a crystallization process.

2.1. Process description

Each evaporation plant is formed by a series of heat exchangers, evaporation
chambers, condensers and cooling systems (see Figure 2). The evaporation is
achieved by a multiple-effect process, as follows. The product enters the plant
by the inlet located in the extreme of the evaporation chambers 2. Then it
mixes with some concentrate product and flows through the heat exchangers
in order to reach an adequate temperature (control set point). The first set
of heat exchangers reuse steam coming from evaporation chambers 1, whereas
the last set use fresh steam provided by boilers (the main source of energy
consumption). Afterwards, the heated product enters sequentially into the low
pressure evaporation chambers 1. Finally, a second evaporation is achieved in
chambers 2, where the pressure is decreased using a condenser connected to a
cooling system, typically a cooling tower. Last, part of the concentrate leaves
the system by overflow and the remaining is mixed with the product inlet, being
recirculated to the process (control set point).
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Figure 2: Scheme of a single multi-effect evaporation plant.

2.2. Plant surrogate modeling

The detailed modeling and optimization of a single evaporation plant was al-
ready addressed in previous works from the authors (Palaćın et al., 2015; Pitarch
et al., 2017). In these works, some Resource Efficiency Indicators (REI) were
first defined in order to measure process efficiency in real time. The main REIs
were the specific steam consumption and the normalized cost per time unit of
operation. A nonlinear grey-box model, whose core is based on first principles,
was developed for optimization purposes. Then, the proposed Real-Time Opti-
mization (RTO) showed up some patterns for the optimal operation of a single
plant and these were implemented following the concepts of self-optimizing con-
trol.

In addition, inside the heat exchangers a dirt layer grows during normal op-
eration, caused by the deposition of organic material present in the products.
This fouling effect slowly decreases the heat-transmission coefficient over time.
Hence, a complex model to predict the evolution of these coefficients was identi-
fied experimentally and introduced into an economic optimization. In that way,
an optimal cleaning policy for a single plant operating in isolation was already
proposed in Pitarch et al. (2017). However, when considering several plants and
products in a network, other aspects such as optimal assignment of products
to plants or coordination of the maintenance operations have to be considered.
Formulating such problem via MINLP becomes computationally challenging if
the grey models developed in the above reference are used to represent the
plants.

Therefore, thanks to the advantage that near optimal operation is currently
achieved in each plant by the self-optimizing controller, we can build local sur-
rogate plant models computed in different operating conditions (Bartz-Beielstein
& Zaefferer, 2017), either from simulation with the nonlinear model or di-
rectly from process measurements. So, given a fouling state, these simula-
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tions/measurements allow to record a static map of the cost function (fresh
steam consumption) as a function of the outdoor temperature Tout and the prod-
uct inlet P . This mapping turned out to be quite linear with these variables,
so a linear approximation has been computed by least-squares identification.
In addition, using experimental data recorded from the plant operating several
months1, an average increase of the specific steam consumption around 16% can
be identified between consecutive cleaning operations (see Figure 3). Therefore,
a linear evolution of the fouling effect can also be assumed, mainly depending
on the time the evaporator has been in operation.

Figure 3: Evolution of the percentage increase of specific steam consumption due to fouling
for several operation cycles.

In the end, the surrogate model representing the cost function for an evaporation
plant v, processing a product p at time instant t, reads as follows:

Cost(v, t, p) = (KT (v) · Tout(t) +KE(v)) · P (v, t, p) +KF (v, t) (1)

Where KT (v) depends on the efficiency of each cooling system, KE(v) represents
the nominal efficiency of the evaporation plant v, and KF (v, t) is the increase
of cost due to the current state of fouling. This plant model (1) is supported by
extensive experimental work (as can be seen in Fig.3) and it is the basis for the
proposed scheduling approach in the following sections. As illustrative example,
Figure 4 shows three surfaces corresponding to three different fouling states.
Remark 1. Note that this approach has not only the advantage of sensibly
reducing the computational cost required to solve the optimization, but also
allows an easier maintenance of plant models by the process engineers.

3. The evaporation network

The network consists of several evaporation plants and some products to be
concentrated. On the one hand, each product may be processed in several evap-
oration plants at the same time, but a plant can only process a single product

1In order to isolate the increase of steam consumption due to fouling, the plant is momen-
tarily driven to reference conditions before taking a measurement.
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Figure 4: Surrogate model for the steam consumption in a single plant.

at a time. Therefore, given sets of p products and v evaporation plants, prob-
lems of plant assignment to products and load allocation appear (see Figure 5),
where the operation cost differs from one plant to another due to the particular
equipment efficiencies.

Figure 5: Plant assignment to products and load distribution.

On the other hand, the fouling, which reduces plant efficiencies, forces periodic
stops for cleaning in order to recover the nominal values. There exist several
aspects related to cleaning to be considered: (A) there are different cleaning
types, each one with an associated cost KC of manpower and cleaning products,
and achieving different recoveries; (B) because of limitations on the available
personnel, only one task can be performed at a time. Therefore, a maintenance
scheduling problem appears, where we need to coordinate the plant cleaning
stops (right time and type of task) while keeping the overall production and
the use of resources in an optimal way. Note that, if one evaporator stops for
cleaning, its load must be reassigned to the rest of operative plants.

Conventionally, production scheduling problems have been represented via net-
work structures using tasks (any abstracted process operation) with several
batches to schedule as basic elements. However, as here we are not deciding
at the long-term planning, in this paper the meaning of task is closely linked
to the state in which a plant can be (processing a product p, standby or un-
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der a cleaning operation). Note that the number of equipment that can be
used for operation is known, but the amount of tasks of any type that have
to be performed within a time horizon is not known in advance, because the
process is continuous, the future production may be uncertain and the best mo-
ment for cleaning the plants is not known. Handling common resources (total
evaporation per product in this case) with a continuous-time approach requires
synchronization constraints to be fulfilled at all time t, which makes the prob-
lem computationally very demanding, hence usually not suitable for real-time
implementations.

3.1. Proposed modeling

To efficiently handle the synchronization constraints in the predictive schedul-
ing problem of the evaporation network, the prediction horizon H has been dis-
cretized using one-day length as the shortest task unit. This choice is motivated
by tree facts: 1) one day is the typical duration needed to complete a cleaning
task and the fouling will not change significantly in one day, 2) resource-shared
constraints are naturally handled in discrete time and 3) computational studies
(Sundaramoorthy & Maravelias, 2011) showed that discrete-time formulations
usually perform better in complex problems. Then, the underlying ideas of
general precedence allocation (Méndez et al., 2006) are used here to force
the operation accordingly to the known time evolution of the fouling effects,
which must be followed by a limited number of cleaning alternatives.

Three different classes of stages are defined for the proposed automaton: work-
ing, cleaning and standby. The normal operation workflow for one evaporator is
depicted in Figure 6, where the working stages are displayed as blue chevrons.
These stages are related to the time that an evaporator has been in operation
(v.gr., one evaporator that has started operation today will be in stage s0, and
one evaporator that has been working for two weeks will be in stage s14). Using
these stages, we will be able to indicate the plant performance degradation with
time due to the fouling, i.e., if a plant v is in stage s, it will get an associated
value KF (v, s) for the cost function (1). In this way, the state of an evaporator
will advance with time through the chart stages: it will start working at stage s0
if it is fully clean or from a more advanced one, let’s name it sc, if the cleaning
was less deep (see Fig.6). In addition to this, in Pitarch et al. (2017) it was
found by the authors that stopping a plant for cleaning during the first days of
operation after a previous cleaning is not worthwhile, because in such case the
normalized cost per time is huge (the fixed cost KC associated to a cleaning
task is not amortized yet). Hence, there will be a set of initial stages where no
decision about cleaning needs to be checked.

Then, after leaving this initial set, the subsequent sets of stages sA and sB
include the possibility of either continue operation, go directly to cleaning (to
the small task A from sA and to the big task B from sB) or stop in standby
awaiting for the cleaning resources to be available. Two available types of
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Figure 6: Simplified scheme of the automaton.

cleaning operations are represented in Figure 6 by the green hexagons, whereas
the standby stages are represented by the grey ones. Also, an evaporation plant
can be in standby after cleaning because it is not needed, or because it is not
profitable to start working with this plant.

The option of stopping the plant in the middle of an operation cycle to continue
operating without cleaning afterwards is not considered, as it is clearly subop-
timal. Hence, once a plant has started operation, it must continue in operation
as many days as stages are defined in the set of initial ones. This concept is
analogous to the minimum running time in Velez et al. (2015) required once a
task has started.

3.2. Logic formulation

There exist several alternatives in order to formulate scheduling problems via
mixed-integer and disjunctive programming (Grossmann, 2002), each of them
influencing the model structure, kind of software to be used and efficiency in
obtaining a solution. Therefore, understanding the associated advantages and
drawbacks of each option is key.

In this case, following the automaton proposed in the previous section, five
different sets of entities are established:

� V denotes the set of all the evaporation plants.

� S will be the set of possible stages of an evaporation plant. As subsets it
includes:

– SI as initial stages, defined as the ones where a stop for cleaning is not
worthwhile. In particular, s0 will be the first stage and sc denotes a
predefined stage to return operation after a less deep cleaning, e.g. of
type A (Fig. 6).
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– SA as stages where a decision between “keep working” or “make a clean-
ing task of type A” has to be made.

– SL as cleaning stages, where sLA denotes a cleaning of type A.

– SP as the stages where the evaporation plants are stopped. Here we
distinguish between two subsets: SPC which includes stages where the
plants are in standby waiting for a cleaning, e.g. sPA denotes a standby
before a cleaning of type A, and SPL including stages where plants are
in standby after being already cleaned, e.g. sPLA denotes that the plant
has been cleaned by type A.

� M denotes the set of all sample times in which the prediction horizon H is
discretized. In particular:

– tF is the final time instant in the prediction horizon.

� P denotes the set of all products to be processed.

� Last, E denotes the set of all possible scenarios, i.e., the considered uncertainty
realizations.

The variables that relate the above introduced sets are now defined:

� Evtse: boolean variables which states that, in scenario e, an evaporation plant
v is in stage s at time t.

� Avtpe: boolean variables which, in scenario e, links a product p to a plant v
at time t.

� Pvtpe: real non-negative variables that assigns, in scenario e, the evaporation
flow of product p in plant v at time t.

� Cvtse: real non-negative variables that assigns, in scenario e, the costs for a
plant v being in stage s at time t.

It must be noted that, even though current software tools can solve a complex
nonlinear problem to global optimality, it is of little use if the solution is not
at hand when a decision needs to be made (Lastusilta, 2011). Although algo-
rithms and computers are improving and getting faster every day, in general
(unless an efficient decomposition technique can be applied (Mart́ı, 2015; Mitra
et al., 2014; Zhang et al., 2016; Grossmann et al., 2016)) still only linear ap-
proaches are able to give reasonable solutions in reasonable time for large-scale
problems (Klanšek, 2015). Therefore, according to linear generalized disjunc-
tive programming (Sawaya & Grossmann, 2005), the feasible transitions within
stages in the proposed automaton are defined by the following positive (i.e.,
True) logic statements2:

2A suitable reformulation will be required to enforce these statements via MILP. Several
ways are available in the literature for this purpose, as discussed for instance in Balas (1985);
Sawaya & Grossmann (2005).
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1. An evaporator must be in one stage and only in one stage for each sample
time. ∨

s∈S

Evtse ∀v ∈ V, ∀t ∈M, ∀e ∈ E (2)

2. An evaporator must be processing a single product, except if being cleaned
or in standby.∨

p∈P

(Avtpe)
∨
s∈SL

(Evtse)
∨
s∈SP

(Evtse) ∀v ∈ V,∀t ∈M,∀e ∈ E (3)

3. Only a single cleaning stage is allowed at any time period.∨
s∈SL,v∈V

Evtse ∀t ∈M, ∀e ∈ E (4)

4. Initial stages of operation (where stopping to clean is not worthwhile) imply
plants being in the next ones (s+ 1) at the following sample time.

Evtse → Ev(t+1)(s+1)e ∀v ∈ V,∀t ∈M\{tF },∀s ∈ SI ,∀e ∈ E (5)

5. Accomplished a reasonable operation time, a choice can be made between
continue operating, perform a suitable cleaning according to the current degree
of fouling, or go to standby until cleaning.

Evtse → Ev(t+1)(s+1)e ∨ Ev(t+1)sLAe ∨ Ev(t+1)sPAe

∀v ∈ V, ∀t ∈M\{tF }, ∀s ∈ SA, ∀e ∈ E (6)

6. A stopped evaporator which has not been already cleaned, must be cleaned
or continue in standby.

EvtsPAe → Ev(t+1)sPAe ∨ Ev(t+1)sLAe ∀v ∈ V,∀t ∈M\{tF }, ∀e ∈ E (7)

7. A clean evaporator in standby can continue in such state or begin to operate.

EvtsPLAe → Ev(t+1)sPLAe ∨ Ev(t+1)sce ∀v ∈ V, ∀t ∈M\{tF }, ∀e ∈ E (8)

8. After a cleaning task, an evaporator can start operation or go to standby.

EvtsLAe → Ev(t+1)sPLAe ∨ Ev(t+1)sce ∀v ∈ V, ∀t ∈M\{tF }, ∀e ∈ E (9)

9. When an evaporation plant is associated to a particular product, it must
continue operating without product changes until it is cleaned.

Avtpe → Av(t+1)pe ∨ Ev(t+1)se

∀v ∈ V, ∀t ∈M\{tF }, ∀s ∈ {SL ∪ SPC},∀p ∈ P, ∀e ∈ E (10)
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10. Solutions which may reach a point of no return in the long term must
be avoided, e.g., infeasibility (constraint violation) may happen in the future if
several plants end up in an advanced fouling state when completing the schedule.
This can be achieved by avoiding the evaporation plants to end up in a standby
stage before cleaning

¬

( ∨
s∈SPC

EvtF se

)
∀v ∈ V, ∀e ∈ E (11)

and by computing a terminal cost TC if the plants end up working in an advanced
fouling state3:

TC =
∑
s∈SA

EvtF se ·KC(v, sLA)/2 ∀v ∈ V, ∀e ∈ E (12)

In addition, each possible stage in which a plant can be gets an associated cost:

[
Evtse

Cvtse = K(v, s)

]
∨
[
¬Evtse
Cvtse = 0

]
∀s ∈ S,∀v ∈ V, ∀t ∈M, ∀e ∈ E (13)

Where, recalling (1), K(v, s) ∈ {KF (v, s0),KF (v, s1), . . . ,KF (v, sn),KS(v, sPL),
KC(v, sLA)} stands for the entry to a lookup table containing the fixed cost val-
ues associated to each plant stage (fouling state, standby stages defined in SP
and the available cleaning operations in SL).

Production constraints must be also accomplished:

� The evaporation rate in each plant must be between minimum and maximum
limits (or zero if the evaporator is stopped), where the upper limit Uv(Tout) gets
a known dependency with the ambient temperature. Avtpe

Lv ≤ Pvtpe
Pvtpe ≤ Uv(Tout)

 ∨ [ ¬Avtpe
Pvtpe = 0

]
∀v ∈ V, ∀t ∈M,
∀p ∈ P, ∀e ∈ E (14)

� A minimum evaporation rate must be accomplished for each product in each
sample time. ∑

v∈V
(Pvtpe) ≥ SPpte ∀t ∈M, ∀p ∈ P, ∀e ∈ E (15)

3A reasonable choice for this cost could be half of the cleaning cost, accounting that a
cleaning task will become necessary in the next prediction period if a plant remains dirty at
the current one.
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The model is also constrained to the available physical connections between
product circuits and evaporation plants A and to the initial (current) state of
the plants S0. Then, once the scheduling model is complete, an optimization
problem can be stated, for instance considering the usual risk-neutral economic
objective4 (Zhang et al., 2016) of minimizing the normalized cost of operation
for the overall evaporation network during a time horizon H:

min J1 :=
∑
e∈E

∑
t∈M

∑
v∈V

∑
s∈S Cvtse +

∑
p∈P

(
KT (v)Tout(t) +KE(v)

)
Pvtpe

2ρ+1 ·H
+ TC

s.t.: (2)− (15);Avtpe ∈ A ∀t ∈M,∀e ∈ E ; Ev0se ∈ S0 ∀e ∈ E
Cvtse, Pvtpe ∈ R+; Evtse, Avtpe ∈ {True,False}

(16)

The risk-neutral approach will suggest selecting scheduling policies where plants
with higher production capacities are available to accommodate high-demand
scenarios. Note that an aggregation based on currency is used here to form
J1, in order to lump together resources of different nature (steam, manpower,
cleaning products, etc.) in a single efficiency indicator. Note also that, if only a
nominal scenario is considered in E , the above optimization (16) reduces to the
deterministic scheduling approach.

4. Two-stage stochastic schedule

The performance of the evaporation plants depends on two external factors:
their load and the outdoor temperature, see (1). Consequently, if only the
nominal scenario is considered in (16), any unplanned variation of the external
factors during the prediction horizon may lead to a very degraded (or even
infeasible) solution in practice. Therefore, production demand and weather
forecasts are considered as stochastic variables supposed to take values within
a certain convex region of uncertainty.

The multi-stage stochastic framework (Ruiz-Femenia et al., 2013; Grossmann
et al., 2016) is adopted here to deal with such uncertainty considering that, even
if at the current day there is no accurate information about the future realiza-
tions of the weather and evaporation loads, they will be known/measured at

4Of course risk-averse objectives weighting J1 in (16) with the worst-case scenario or the
CVaR can be considered too. However we do not expect further benefits with this approach,
because more weight would be assigned to high-demand scenarios where evaporators are forced
to run close to maximum total capacity, so no margin for a better coordination exists. Results
in Section 6.3 are presented to support this insight. Note also that we did not approach the
problem of scenario sampling from an uncertainty probability distribution, which is out of
the scope of this paper. If a probability weight is assigned for each scenario in E, it can be
trivially included in J1 to get a more realistic solution. Evidently, the more weight is assigned
to low-demand scenarios, the greater is the benefit gained from the stochastic optimization.

13



some future days. Hence, it is possible to compute a bunch of recourse schedul-
ing actions which fit each considered uncertainty realization. In particular, a
two-stage approach is chosen because it is computationally less demanding, pro-
viding thus the possibility of recomputing the schedule in real time if needed.
In this way, the prediction horizon H is split in two: a first “robust horizon”
HR computes a non-anticipative solution for all scenarios in E , whereas the un-
certainty does not grow in the remaining horizon, where individual decisions
(recourse variables) are provided for each scenario. For example, a possible
uncertainty tree is depicted in Figure 7a, where two max/min realizations for
the outdoor temperature (extreme values T out and T out around the nominal
prediction) are considered since the first day. Then, the evaporation demand
for product P1 may become uncertain at the fourth day, so it gets other two ex-
pected max/min values, and the demand for product P2 might also be uncertain
after day 7.

(a) Example of a possible scenario tree.

(b) Robust schedule with HR set to 8.

Figure 7: Two-stage approach considering uncertainty in the weather and two products.

Note that, for instance, creating scenarios for the production of P1 at day 4
does not necessarily imply that the evaporation demand is expected to change
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at such day, but only that the master production plan is already fixed for the
first 4 days. In fact, this scenario description mainly covers against production
variations for P1 until day 8, as we cannot certainly know the actual demand
for day 8 until we reach day 4.

In the end, these considered uncertainty realizations make a 8 scenario tree. So,
following the two-stage approach, decisions taken within the days belonging to
a the robust horizon HR must be unique, i.e., they must fulfil all the scenar-
ios. See for instance the Figure 7b, where the scheduling decision variables u
do not depend on scenario e until day 8. Then, from day 8 onwards, different
decisions can be made for different scenarios. In a general case, a bunch of sce-
narios appear defined by all combinations between the considered values for each
stochastic input. In particular for this case study, considering the two expected
largest deviations for outdoor temperature times 2ρ variations of evaporation
demands (assuming ρ products) make a 2ρ+1 scenario tree in E .
Remark 2. The robust horizon HR is usually chosen as the future time window
along which getting reasonable information of the actual uncertainty realization
is not possible, e.g., typically a batch process where concentrations cannot be
measured until the batch is finished. However, in continuous processes, HR can
be seen as a user-defined parameter to balance the approach. Indeed, note that
if HR = H, the linear formulation presented in the above section provides full
guarantee of covering the entire region of uncertainty by just considering the
reduced set of vertex realizations in the scenario tree. Thus, the high compu-
tational demands of probabilistic sampling approaches (Monte-Carlo based or
similar) are avoided.

Now, denote byMU the subset ofM whose elements (days) do not belong to the
robust horizon HR. Thus, based in the above discussion, the nonanticipativity
requirement must be enforced in HR:

Evtse ≡ Evts, Avtpe ≡ Avtp, Pvtpe ≡ Pvtp
∀t ∈M\MU , ∀v ∈ V, ∀e ∈ E , ∀p ∈ P (17)

In the end, the two-stage optimization problem reads as follows:

minimize J1 ∈ R subject to: (2)− (15); (17);

Avtpe ∈ A ∀t ∈M,∀e ∈ E ; Ev0se ∈ S0 ∀e ∈ E
Cvtse, Pvtpe ∈ R+; Evtse, Avtpe ∈ {True,False}

(18)

Remark 3. Note that, for any particular future day, uncertainty in the weather
forecast and in the production demands reduces as time advances (predictions
become more reliable). Hence, the two-stage scheduling provides less conser-
vative solutions through the recourse variables obtained within MU , which fa-
cilitates the possibility of measuring the current uncertainty realization in real
time and adapting the schedule accordingly.
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5. Multi-criteria decision making

In the above section, only an economic optimization is considered as an aim.
However, an eventual decision maker must also consider additional aspects than
economic ones in practice. Hence, other goals such as productivity or robustness,
possibly conflicting with J1 in (16), may be of interest for optimization too.

The two-stage stochastic approach already provides a tradeoff between robust-
ness against the disturbances considered in the scenario tree and economic per-
formance. However, there is always a small possibility that the suggested op-
timal schedule cannot be fully applied when the uncertainty realization is not
explicitly considered in the scenario tree, even if the formulation is linear and
the realization belongs to the convex region discussed in the previous section5.

This drawback is inherent to problems involving discrete decisions. Theoreti-
cally, with a linear formulation, the optimal schedule which covers a realization
belonging to the considered uncertainty set is a convex combination between the
solutions corresponding to the vertex scenarios. However this optimal schedule
cannot be computed except in, perhaps, a very few cases by sheer luck, because
a convex combination of discrete values does not usually return another discrete
value. Therefore, some values must be “rounded” to the nearest or the most
probable discrete one in order to apply a schedule in practice. This runs the
risk of being in the actual performance far from the predicted one or, in the
worst case, it may lead to infeasibility.

A straightforward way to minimize such risk is either considering more scenar-
ios or enlarging HR (Remark 2). The first option is discarded for practical
implementations (it increases the computational burden considerably). Thus,
how to choose the length of HR to achieve a desired risk reduction without
being too conservative would be the question to answer. In this last case, an
index to measure robustness could be defined as J2 := HR/H. However, this
way may become conservative, as the worst-case combination of uncertainty re-
alizations may happen at the beginning of the prediction horizon H so, when
HR includes such day, the conservatism-reduction advantages of the two-stage
approach vanish.

To overcome this drawback and to force a desired robustness level without ex-
plicitly varying HR, we introduce the concept of similarity between schedules
(Palaćın et al., 2017). A similarity index (SI) will be defined in order to indicate
whether a suggested schedule is closer to the more risky one obtained by the
standard two-stage approach (Section 4), or to the risk averse single schedule
(HR = H). The idea is inspired in the concept of minimum agreement index

5If the formulation is nonlinear in decision variables or the the actual realization does not
belong to the convex hull formed by the considered region of uncertainty, no guarantees can be
ensured. The only option in such cases is reschedule including that realization as an additional
scenario in the tree, although no feasibility guarantees can be provided either.
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for fuzzy duedate or fuzzy completion time (Sakawa & Kubota, 2000) and is as
follows. First, discrete binary decisions taken each day for a particular evap-
orator and scenario are fuzzified along the surrounding days, e.g., a decision
takes a value of 100 at the suggested day but it also influences the before and
following days with a decreasing value, proportional to the distance from the
current day. Then, the SI is defined as the intersection between the fuzzified
schedules computed for all the scenarios, see Figure 8.

(a) Fuzzification of a discrete decision. (b) SI values per day for one plant.

Figure 8: Illustrative SI calculation.

Then, the values computed for all days, stages and plants must be aggregated
together in a single SI indicator. Thus, using just the two closest days to the
current one (t− 1, t+ 1) for fuzzification, and abusing notation setting True=1
and False=0 for Evtse, the SI index reads

SI :=
∑
v∈V

∑
s∈S

∑
t∈MU\tF

min
(
100Evtse, 50Ev(t+1)se, 50Ev(t−1)se

)
nv(200(nu − 1) + 150)

(19)

where nv is the number of evaporation plants and nu is the number of days in
MU . Hence, a SI = 100% means that the schedules coincide for all scenarios,
so there is just a single schedule: the risk-averse solution.

The reader may realize that the SI as defined in (19) is nonlinear in decision
variables. However, a lower bound for it can be set introducing slack variables
Svtp ∈ R+ jointly with the following additional linear disjunctions:[

Evtse
Svts ≤ 100

]
∨
[
Ev(t+1)se

Svts ≤ 50

]
∨
[
Ev(t−1)se
Svts ≤ 50

]
∨[

¬(Evtse ∨ Ev(t+1)se ∨ Ev(t−1)tse)
Svts = 0

]
∀t ∈MU\tF ,
∀v ∈ V,∀s ∈ S (20)

In this way, the SI can be bounded by:

J3 :=
∑
v∈V

∑
s∈S

∑
t∈MU\tF

Svts
nv(200(nu − 1) + 150)

≤ SI (21)

Last, the plant manager might eventually be interested in analyzing how varying
the overall productivity affects the other objectives, e.g., to fit market conditions,
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to maximize the profit (i.e., minimize the cost per ton of produced fibre) or to
decide over future equipment investments. In order to approach this, note that
the evaporation demands for each product are set by parameters SPpte in (15).
So, the lowest demand δ for all scenarios, products and days is:

J4 := δ = min
(
SPpte

)
∀e ∈ E , ∀t ∈M, ∀p ∈ P (22)

Hence, the gaps ∆Ppte := SPpte − δ can be computed too. Now, if δ becomes
decision variable, a way to uniformly decide over the evaporation demands via
(15) is varying δ, adding constraints (23) to compute new set points with the
already fixed ∆Ppte.

SPpte = ∆Ppte + δ ∀e ∈ E , ∀t ∈M, ∀p ∈ P (23)

In order to simultaneously analyze the interactions between these opposite ob-
jectives (cost, robustness and productivity) and to provide the manager with
the significant information at a glance, we come up with a multi-objective opti-
mization problem (MOOP) formulated as follows:

minimize J = [J1,−J3,−J4] ∈ R3 subject to: (2)− (17); (20); (23);

Avtpe ∈ A ∀t ∈M,∀e ∈ E ; Ev0se ∈ S0 ∀e ∈ E
Cvtse, Pvtpe, Svts, δ ∈ R+; Evtse, Avtpe ∈ {True,False}

(24)

In order to solve (24) using efficient MILP software, we set additional constraints
with bounds in J3 and J4, denoted by J3 and J4, defining a grid within the
pertinency region6 (Reynoso-Meza et al., 2014) so that only J1 is in the objective
function. In this way, the original MOOP is cast as a set of single-objective
optimizations:

minimize J1 ∈ R subject to: (2)− (17); (20); (23); J3 ≥ J3; δ ≥ J4;

Avtpe ∈ A ∀t ∈M,∀e ∈ E ; Ev0se ∈ S0 ∀e ∈ E
Cvtse, Pvtpe, Svts, δ ∈ R+; Evtse, Avtpe ∈ {True,False}

(25)

Finally, a Pareto Front can be computed offline and its analysis will result in
valuable information for the decision maker to choose which level of risk to
assume depending on the permissible slack to vary production demands.

6. Illustrative results

In order to check the effectiveness of the proposed approach, several schedules
have been computed from simulated data. As a first trial, we do not consider
uncertainty, so we look for an efficient deterministic solution for the actual
network. Then, uncertainty is introduced in two smaller instances of the problem
and the obtained stochastic solutions are discussed.

6Range where productivity and robustness is considered acceptable.
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6.1. Deterministic solution

In this case, the whole network of 23 plants to process 5 products (A,B,C,D,E)
is considered. The allowed physical connections between products and plants
as well as nominal efficiencies7 are listed in Table 1.

p1 p2 p3 p4 p5 KE

v1 3 7 7 3 3 0.6
v2 3 3 7 3 3 0.7
v3 3 7 7 3 3 0.8
v4 3 7 7 3 3 0.9
v5 3 3 7 3 7 1
v6 3 3 7 3 3 1.1
v7 3 7 7 3 7 1.2
v8 3 7 7 3 7 1.3
v9 3 7 7 3 3 1.4
v10 3 3 3 3 7 1.1
v11 3 3 7 3 3 1.11
v12 3 7 3 3 7 1.12
v13 7 7 7 3 3 1.13
v14 7 3 7 3 7 1.14
v15 3 3 3 3 3 1.15
v16 7 3 3 3 3 0.9
v17 3 3 3 7 3 1
v18 7 3 3 7 3 1.1
v19 7 3 3 3 3 1.2
v20 3 3 3 3 3 1.3
v21 7 3 7 3 3 1.4
v22 3 3 7 7 3 0.7
v23 3 3 3 3 3 0.8

Table 1: Connections product-plant and nominal efficiencies.

Each plant cannot operate under a load of Lv = 15 T/h, but their maximum
capacity varies with the weather condition, i.e. Uv = 30 + f(Tout), where f(·)
is such that Uv ≤ 35 T/h. Two types of cleaning tasks have been considered,
small (A) and big (B), with their corresponding associated costs KC(v, sLA) and
KC(v, sLB) of manpower and chemical products. Marginal costsKS(v, sPA) and
KS(v, sPB) have been assigned to the waiting stages before cleaning to avoid
persistent situations in time where evaporators are not used but remain dirty,
which may lead to an overall loss of efficiency when they will be needed (for
instance against unexpected production increments). Also, analyzing the plant
historian, it has been observed that an evaporator cannot operate during more
than 40 days without cleaning because it is clearly suboptimal. So, the set S is
formed by {s0, s1, . . . , s40, sLA, sLB , sPA, sPB , sPLA

, sPLB
}.

For this test, the desired set points of evaporated water per product are set to
SP1 = 120, SP2 = 76, SP3 = 64, SP4 = 146 and SP5 = 68 T/h. Hence, given a
randomly fixed initial state of the network together with the above constraints,
we run the economic optimization (16) to provide the optimal load allocation
as well as the task schedule within a prediction horizon of H = 30 days.

7Scaled values. Real ones are not included due to confidentiality agreements with Lenzing
AG.
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An optimal solution with relative gap less than 1% has been found for this prob-
lem (35150 binary variables, 3452 real ones and 42613 constraints) in about 11
min using up to 4 threads for concurrent optimization in GAMS with GUROBI
7.0.2 over an Intel® i7-4510U CPU machine with 16 Gb of RAM memory8. This
solution is depicted in the Gantt diagram of Figure 9, where the state evolution
for each evaporator is shown over the horizontal axis. Columns represent the
days, and each cell shows the product load which has to be processed in each
plant, i.e., the value of Petp. The product type is represented by the background
color, whereas darkness indicates the plant fouling state.

Figure 9: Optimal deterministic schedule.

The computed schedule shows how the optimizer tries to avoid using the less
efficient plants when possible, either because they get higher KE or they are
dirtier than others. The cleaning tasks are scheduled in the better way, involving
switching to a different product as long as overall efficiency is achieved. Finally,
only 4 plants are in a relatively dirty state at the end of the prediction horizon,
so the final network state guarantees feasibility in future runs.

6.2. Two-stage stochastic solution

Now we introduce uncertainty as explained in Section 4. First, a handy example
with 3 plants and 2 products is provided for a better understanding of the further
results. In this example, plant v1 can work with both products whereas plant
v2 is assigned to p1 and v3 to p2. Plant efficiencies are set to KEv1 = 0.6,
KEv2 = 0.7 and KEv3 = 0.8. The set points of evaporated water are initially
set to SP1 = 32 and SP2 = 25 T/h.

8Reducing the gap to 0.5% elapses 20 min and the proven optimal solution (zero gap) is
got in about one hour, but this extra computational effort is not worthwhile in practice.
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Then, for simplicity only uncertainty in the production is introduced, setting
HR = 7. The considered largest deviations from the set points are σp1 =
6 and σp2 = 4 T/h. Hence, just considering the max/min vertex values for
the uncertainty realizations, a 4-scenario tree arises. The obtained two-stage
stochastic schedule computed by solving (18) with a given initial plant states is
depicted in Figure (10).

Figure 10: Two-stage stochastic schedule for 3 plants and 2 products.

Now, a more complex network subset considering 3 products and 9 plants is
set up. The set point of evaporated water is set to 40 T/h per product and
the physical connections between products and plants for this case are shown
in Table 2.

V1 V2 V3 V4 V5 V6 V7 V8 V9

P1 7 3 3 3 3 7 3 3 7
P2 3 3 7 7 3 3 3 3 3
P3 3 3 3 3 3 3 3 7 7
KE 1 0.88 1.1 1.01 0.77 0.95 1.2 1 1.05

Table 2: Connections product-plant and nominal efficiencies.

Here we introduce uncertainty in both the weather and in the production plan
for each product. The expected largest deviations for these sources of uncer-
tainty are σTout

= 7°C and σp = 6 T/h respectively. Hence, with 3 products,
a 16-scenario tree arises. In this case, in order to get proven optimal solutions
in acceptable times, the prediction horizon has been reduced to H = 25 days.
Problem size is 130536 binary variables, 7994 real ones and 152863 constraints.
Solving (18) with CPLEX 24.8.5 in the same machine returns the 1%-gap opti-
mal solution in 5 minutes. Figure (11) depicts the computed two-stage stochastic
schedule for plants 2 and 8 (the rest are omitted due to space constraints).

For completeness, if (4) is relaxed to allow cleaning several plants at the same
day, only a relative cost improvement around 0.02% is achieved. So, the option
of hiring more personnel for cleaning does not seem potentially worthwhile.
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Figure 11: Two-stage stochastic schedule.

6.3. Multi-objective analysis

Now, defining a well distributed grid of points within the pertinency range for
J3 and J4, optimal solutions in the Pareto sense can be computed by solving
(25) offline. A set of points approximating the Pareto front is depicted in Figure
12. Some interesting conclusions can be extracted from its shape:

� Evidently, the absolute cost increases with the production. However, the
sensitivity is higher for low productions, see Figure 12b.

� Sensitivity from cost to robustness is also higher at low productions. In-
deed, the amount of different solutions reduces as production increases
(see again Fig.12), tending to the single one with SI=100%, which sug-
gests that the two-stage stochastic approach is a waste of computational
resources when production is constrained to be high.

� Finally, if we look at the specific cost per amount of production (repre-
sented by the colormap) instead of the absolute cost, the lowest overall
efficiency is achieved for low productions. However, this result is due to
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the fact that all plants in operation must be cleaned after some time, de-
spite of whether they are working at low load, so the fixed costs of cleaning
tasks make the overall specific cost increase.

(a) 3D view. Color indicates specific cost. (b) 2D view from objectives J1 and J3.

Figure 12: Approximation of the Pareto front.

7. Conclusion

This paper addresses a scheduling problem for an industrial evaporation net-
work affected by long-term fouling effects and uncertainty in external factors.
Consequently, the equipment cannot operate forever without stopping to per-
form maintenance tasks in order to recover efficiency. The main feature which
makes the problem singular from the formulation side is that the RTO needs
to be extended to the network scheduling in a computationally tractable way,
also considering uncertainty. A discretization in days and a modification of the
general precedence allocation method have been proposed to efficiently tackle
this problem.

Uncertainty has been introduced in the weather prediction and in the produc-
tion plan via a two-stage stochastic optimization approach. In this way, less
conservative robust solutions are obtained by computing different schedules for
some expected uncertainty realizations in the future. Moreover, the proposed
approach gives solutions in acceptable time, so we could also take advantage of
periodically measuring the actual external factors and reschedule accordingly if
needed.

Furthermore, a multi-criteria optimization is proposed by adding other objec-
tives of interest to the economic one, in order to provide plant managers with
significant information about the possibility varying the production or the as-
sumed risk against unconsidered scenarios. A similarity index between scenario-
based solutions has been proposed as a measure of robustness in order to give the
scheduler the possibility of reducing such risk at the price of increased conser-
vatism. The shape analysis of the obtained Pareto front, although dependent on
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the current state of the network, provides interesting conclusions which provide
plant engineers with valuable information to design decision-support systems.

Finally, the approach is tested in simulation with several instances of the evap-
oration network. The results were promising so that the two-stage stochastic
approach can be progressively extended to the whole network. Nevertheless,
eventually we will face larger problems when including more facilities so, in
order to keep the resolution times within feasible ranges, our future work will
explore decomposition methods for the overall problem.
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Appendix A. MILP reformulation

Next, an example of a possible way to reformulate the model from GLDP con-
straints to MILP is given. For instance, (10) is equivalent to

(1−Avtpe) +Av(t+1)pe + Ev(t+1)(sLA)e + Ev(t+1)(sLB)e + Ev(t+1)(sPA)e

+ Ev(t+1)(sPB)e ≥ 1 ∀v ∈ V, ∀t ∈M\{tF },∀p ∈ P, ∀e ∈ E (A.1)

and (14) is enforced by the following two MILP constraints:

Pvtpe ≤ Uv(Tout) ·Avtpe ∀v ∈ V,∀t ∈M,∀p ∈ P,∀e ∈ E (A.2)

Pvtpe ≥ Lv ·Avtpe ∀v ∈ V,∀t ∈M,∀p ∈ P,∀e ∈ E (A.3)

Here True=1 and False=0 are assumed to convert boolean variables (Avtpe, Evtse)
into binary ones.
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