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Abstract

In many applications it is necessary to define good-fitting 2D flattened patterns for user-defined regions of a larger 3D surface. This paper

describes the major stages involved in pattern flattening and illustrates the process with examples. In generating 2D patterns, some distortion

is inevitably involved if the target 3D surface is not developable. For situations where distortion is required, it can be quantified in terms of

the energy that must be imparted to the 2D flattening in localised areas so that it takes-up the original 3D region of the surface. An orthotropic

strain model is adopted to convert the strain values to energy values. Starting with a bi-parametric definition of a large 3D surface, an

arbitrary defined region is specified by the user in terms of a contiguous series of cubic curves lying on the bi-parametric plane. To extract the

3D region, a polygon list is generated to represent the surface. The triangulation process is based on a ‘marching front’ algorithm. A process

is described which then flattens this polygon list and performs an energy minimisation analysis every time the process attempts to flatten an

over-constrained triangle. Further consideration is made of seam insertion in the 3D surface definition and of adaptively modifying the

triangulation process so that more triangles are used in areas of high-energy concentration. Examples are also presented to illustrate the

sensitivity of the strain profiles to the fabric grain direction when the pattern is applied to the 3D surface.

q 2004 Published by Elsevier Ltd.
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1. Introduction

In many industries, three-dimensional (3D) products or

components are manufactured from raw material that is

initially supplied in two-dimensional (2D) form. Such

industries include garment manufacture, sail making and

ship hull production. Since the 3D surfaces that are

ultimately assumed by the raw material are not usually

developable surfaces [1], inevitably there has to be some

distortion of the material involved in progressing from the

raw 2D state to the final 3D form. However, it is important

to realise that the design process usually proceeds in the

reverse direction to the manufacturing process, i.e. the

starting point is generally the target 3D shape with the 2D

pattern being the variable that has to be determined by

adopting some particular criterion. This paper addresses

this situation by adopting an energy model to simulate
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the process of creating a 2D form to take-up the target 3D

shape. The model assumes an orthotropic material, which is

used where the elastic performance is sensitive to the grain

direction with respect to two orthogonal axes (warp and

weft). In doing so, it provides an objective indication of how

good a particular 2D pattern is and it also quantifies the

energy reductions resulting from applying mechanisms such

as darts and gussets to improve the fit performance. The

actual surface representation used to represent the target 3D

form is a polygon list. The quality of this underlying mesh is

critical to the success of the flattening process. The paper

also outlines how mesh triangulations are generated that are

sympathetic to the 3D target shape and the particular seam

configuration applied.
2. Previous work

There has been considerable interest for many years in

obtaining patterns to cover 3D shapes. In an early paper,
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Manning [2] proposed a method of obtaining a pattern for a

3D surface. Firstly, an isometric tree was defined on the 3D

surface. For the discrete 3D curves defined by the spine and

branches of the tree, a pattern was obtained by plotting their

geodesic curvature versus arc length on a plane whilst

preserving the angles at nodes. Hinds et al. [3] developed

this approach further and obtained patterns for a 3D surface

by first covering the surface with quadrilateral platelets and

rolling out each strip of platelets in turn, starting from a

spine. Similar methods were examined by Azariades and

Asparagathos [4]. They first searched for the best generating

line on the 3D surface from which to initiate the

development process. There was then a piecewise develop-

ment onto the 2D plane of these strips followed by a final

stage to reduce the gaps and overlaps between the strips.

Kim and Kang [5] used a similar method for garment pattern

generation but allowed some shear in the strips being rolled

out in order to coalesce several small darts into a simple

large dart that would be more acceptable in tailoring

practice.

A related problem occurs in texture rendering for

computer images where it is important to reduce mapping

distortions. Shaffer and De Starler [6] first used a technique

called angle based flattening that minimised the angular

distortion of the mapping. This was followed by a further

procedure that reduced length distortions in the mapping.

They raised the issue of the trade-off between angular and

linear distortions.

Whereas texture rendering is concerned with the

geometric distortions in the mapping, in pattern develop-

ment it is appropriate to relate geometric distortion to strain

energy in the material being used and several authors have

followed this approach. Azariadis et al. [7] linked the in-

plane bending of strips in the development plane to an

energy function. Optimisation methods were employed to

find minimum energy patterns.

McCartney et al. [8] and Wang et al. [9] modelled 3D

surfaces with triangular facets. The flattening process

required length changes to triangle edges that were

combined in an energy function. The best patterns were

those associated with minimum energy. McCartney et al.

also considered the insertion of darts or seam lines, the

introduction of which releases strain energy in the

flattening.

The development of 3D triangular meshes is associated

with tensile distortion of individual edges whereas the main

distortion energy in real fabrics is associated with stretch

and shear of the fabric weave. Ohsaki and Fujiwara [10]

used FE methods to model fabric structures in architectural

applications. In these instances, the 3D fabric structure is

required to be pre-stressed to maintain stability and stiffness

against external loads. Also the curved 3D shape has to be

formed from plane sheets by stretching the boundary of the

sheet. Properties of the fabric sheet are included in the

analysis with orthotropic elastic moduli, shear modulus and

Poisson’s ratio specified. The objective of this work was to
achieve the target stresses in the 3D shape by connecting

and stretching plane sheets.

The present work similarly takes account of the weave

structure of the fabric with strain energy based on tensile

and shear distortions. Unlike methods that assume isotropic

fabric properties, it is shown that pattern distortion energy is

sensitive to the fabric grain direction. This information is

useful if it is necessary to limit one of the strains or if a seam

is being introduced to reduce the deformation energy.

Although not presently implemented, the process can

incorporate defined non-linear fabric properties. The

flattening process described here is made more robust by

incorporation of a triangulation based on marching front

methods. When seams are added, the seam edges are

incorporated into the boundary description and the triangu-

lation process is reworked. Also triangle intensification is

applied in areas of high curvature.
3. Initial panel design and representation

The starting point for the process is the specification of

the target 3D surface to be ultimately assumed by the

material involved. The authors have developed a 3D design

system [11] that is able to generate offset surfaces to

underlying B-Spline surfaces derived from digitised body

data. Typical underlying body surfaces can be the upper

body torso in the case of garments or last forms in the case

of shoe design. A 3D cursor enables a panel boundary area

to be defined. Interior points are then supplied by offsetting

appropriate underlying body surface points. This arrange-

ment also enables final validation by offering a 3D template

by which any pattern assembly can be assessed in terms of

fit. However, this starting point does not detract from the

overall applicability of the process described below since it

is based on a polygon list representation that can be

generated from virtually any 3D CAD system. Fig. 1

illustrates an initial description of a garment panel. Interior

points have been supplied by identifying underlying body

digitised points that are enclosed by the panel boundary for

a given density of intensification in each of the parametric

directions, i and j. Delaunay triangulation has then been

performed (on the parametric plane) on the complete set of

points—boundary points and interior points, in order to

generate a polygon list. This process has been described

elsewhere [12]. Whenever this polygon list was subjected to

further analysis it was discovered that the quality of the

mesh in terms of variation in triangle geometry was not

conducive to good results and flattening algorithm perform-

ance. The use of interior points aligned with parameters of

the underlying body was not desirable at times because it

can produce an unacceptable variation in spacing in 3D

space even though the spacing in parameter space was

uniform. The authors have developed a marching front type

algorithm [13] that generates interior points by repetitively

shrinking the outer boundary while maintaining a constant



Fig. 1. Initial garment panel triangulation.
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offset with respect to the underlying body. This method of

triangulation can be controlled by nominating a specific

spacing value in 3D space for points on interior fronts and

the distance between fronts. Fig. 2 illustrates the progression

of the triangulating algorithm to the same boundary used for

the panel in Fig. 1. Not only does this method generate a

more uniform triangulation, it also produces a triangulation

that is more sympathetic to the flattening process that is

described later. The experience of the authors in developing

and using flattening algorithms is such that they consider it

vital that a good triangulation of the 3D surface to be

flattened is used. If coarse or misaligned triangulations are

adopted then this can lead to excessive strains being

concentrated within a single triangular representation.

Under extreme circumstances, individual triangles produce

a 2D representation that have been flipped and so generate a

corrupt flattened pattern.

As with many algorithms that operate on a polygonal

form of a continuous surface, there is a trade-off between

accuracy in representing the continuous surface and the

processing time and memory requirements involved in

performing the algorithm. However, if it is decided to use a

specific number of polygons, then there are various ways in

which the same number of polygons can be generated from

the same continuous surface. Each will exhibit different
levels of accuracy in representing the continuous surface.

For the purposes of this work, the error is defined as the

difference between the actual offset at the centre of area of

the triangle and the constant offset existing at all triangle

vertices (Fig. 3(a)). Experience has shown that an equal

sized mesh is often not the best arrangement for a polygon

mesh. This is because there may be high variability of

curvature displayed by the underlying body form. This

results in variable errors being produced for each triangle in

representing the theoretical continuous offset 3D surface.

The approach adopted here is to initiate the moving front

triangulation process (described above) by specifying a

target size for the triangles. This will generate a set of

triangles with a distribution of error values. An error

threshold is then defined, above which indicates unaccep-

table error. For such cases, an intensification of the

triangulation is effected in the neighbourhood of the triangle

with the unacceptable error (Fig. 3(b) and (c)). As can be

seen, the subdivision process guarantees that the previous

centre of area which produced the unacceptable error (Fig.

3(b)) will be used as approximately the centre of area of a

new smaller triangle and so result in a smaller error. The

new subdivided triangles will each have their own new error

values that should be significantly less than the previous

unacceptable error. When applied to the panel represen-

tation in Fig. 2 and adopting an error threshold value of

0.3 mm, the triangulation of Fig. 4 results. As can be seen,

this will obviously result in greater polygon intensification

in the bust area where potentially problems can result in the

flattening process if coarser densities are used.
4. Seam insertion

Darts and gussets are practical tools for introducing

better interior fitting for 2D patterns. At the outset, darts and

gussets are specified in a similar fashion. The location of a

dart or gusset is determined by the designer who indicates a

seam line that is initiated from a panel boundary and

proceeds into the interior of the 3D surface. Note that for the

flattening process described here, the seam location in 3D

and its geometry in the interior of the panel are completely

arbitrary and are not constrained to align with the original

surface parameterisation.

Where the underlying surface is predominantly elliptical,

the two sides of the seam splay apart—indicating that a dart

should be inserted (Fig. 5). When this occurs, the two sides

of the seam must be subsequently joined on the 2D pattern

to implement the dart. Where the underlying surface is

predominantly hyperbolic, the two sides of the seam will

overlap—indicating that a gusset should be inserted (Fig. 6).

When this occurs, the area of overlap provides an indication

of the gusset geometry. An extra piece of material is then

inserted between the two sides of the seam to implement the

gusset. It is possible to have a combination of both dart and

gusset along the same seam.



Fig. 2. Progression of marching front triangulation.
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Once a seam line has been specified in this way it will

influence the triangulation process described above. This

places an additional constraint on the triangulation process

since the dart line must be represented by a series of edges
and nodes. A re-triangulation process then maintains the

seam representation. Such an effect is depicted in Fig. 7. In

addition, the nodes and edges along the dart, except the

innermost node, have one further feature. Although being



Fig. 3. Triangular mesh intensification.

Fig. 4. Triangulation after intensification.
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viewed in 3D as an intact seam, the seam line nodes and

edges are in fact duplicated for 2D flattening. Thus, during

the flattening process, each side of the seam line has its own

representation. This can lead to different configurations

during the flattening process.
Fig. 5. Dart formation in 2D pattern.
5. Energy model for fabric distortion

During the flattening process, a single triangle at a time is

treated for flattening. The 3D geometry of each triangle is
considered as fixed and it is the 2D geometry of each

triangle that is regarded as variable during the flattening

process. However, the fabric area covered by each 2D

triangle in the flattening process is undistorted—it is the

3D triangle that will embody any distortion necessary.



Fig. 6. Gusset formation in 2D pattern.

Fig. 7. Re-triangulation after seam insertion.
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Thus, the energy model will calculate the strains implicit in

distorting the 2D form of a triangle to its 3D representation.

Straining may vary over the 3D surface in that some

triangles may have little or no in-plane strain while others

may have significant amounts. In order to evaluate the

energy required to apply this strain, the woven composition

of a typical fabric is considered. Such fabrics commonly

display different tensile behaviour in the warp and weft

directions. For the purposes of this paper, linear tensile

behaviour is assumed although more complicated non-linear

models can easily be adopted. Hence, strain energy is

assumed to originate from the fabric characteristics as

expressed by Ksu and Ksv, strain constants in the weft and

warp directions, respectively (Fig. 8). Shear energy is

similarly modelled by a shear strain constant Kr.

To analyse the distortion of the fabric, it is useful to

concentrate on a single woven element. For such an

element, the distortion that it undergoes when forcing the

2D pattern to take the 3D shape is assumed to be described

by an affine transformation [14]. Fig. 9 details the three

types of individual strains that contribute to the total

distortion where u is the weft direction and v is the warp

direction. It will be assumed that individual triangles will

each have their own affine transformation to describe the

distortion that the 2D triangle must undergo to take-up the

equivalent 3D shape for the triangle. The flattening process

will try different 2D geometric shapes for triangles in the 2D

pattern. As a consequence, an energy value can be

determined that is required to be applied to the 2D form

in order for it to assume the 3D form. To calculate this

associated energy for the triangle, it is necessary to

superimpose the 2D and 3D shapes for the same triangle

on a unifying warp and weft axes system. This requires that

the warp and weft co-ordinate system must be superimposed

on the 2D flattened (x, y) plane (Fig. 10). This structure is

specified by the following parameters:
weft increment, wfinc
warp increment, wpinc
grain direction, wa.
Fig. 8. Fabric strain constants.



Fig. 9. Affine transformations of woven element.
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In effect, these parameters constitute a weft and warp

axes system (wf, wp) for the pattern. Assuming that the (wf,

wp) origin is located at the same position as the (x, y) origin,

then a transformation can be used to provide (wf, wp) co-

ordinates from (x, y) co-ordinates. Let the weft and warp

increments in each of the directions wf and wp be

represented by the vectors wf and wp, respectively. These

vectors will have magnitudes given by the wfinc and wpinc

values. Let wa represent the grain direction defined as the

angle that the weft direction makes with the x direction.

Then these vectors can be defined as

wf Z
wfinc cosðwaÞ

wfinc sinðwaÞ

 !
(1)

wp Z
Kwpinc sinðwaÞ

wpinc cosðwaÞ

 !
(2)

If a particular point on the (x, y) axes has co-ordinates

(x1, y1), then these will be mapped to (wf1, wp1) on the weft
Fig. 10. Determination of warp and weft co-o
and warp axes as follows:

wf1 ¼ wf,
x1

y1

� �
(3)

wp1 ¼ wp,
x1

y1

� �
(4)

Applying these formulae to each vertex of the triangle on

the 2D (x, y) plane enables warp and weft co-ordinates to be

calculated. This therefore enables both the 3D (A 0, B 0 and

C 0) and 2D (A, B and C) geometries for the same triangle to

be unified on a (u, v) plane to provide the undistorted

triangle shape and the strained 3D geometry for the triangle

(Fig. 11). The convention adopted here is to locate one of

the vertices (A and A 0) at the origin for both 2D and 3D

shapes. The 2D shape is then placed on (u, v) plane with the

same orientation as for the 2D (x, y) flattening plane. The 3D

triangle is then analysed to determine its orientation.

However, by knowing the warp and weft co-ordinates for

each vertex, it is possible to determine the particular

orientation that has the weft direction aligned with the u

axes. By superimposing these two triangles in this
rdinates from (x, y) plane co-ordinates.



Fig. 11. Unified (u,v) plane for determining affine transformation for mapping 2D triangle shape to 3D triangle shape.
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alignment, an affine transformation is in effect specified.

Earlier work by the authors [15] has analysed the affine

nature of this transformation and has derived equations to

obtain the three strains Su, Sv and 4v from the locations for

triangle vertices B, B 0, C and C 0.

These equations are

Su Z
ðvCuB0 KvBuC0 Þ

ðuBvC KuCvBÞ
(5)

4v Z tanK1 ðuBuC0 KuCuB0 Þ

ðuBvC0 KuCvB0 Þ
(6)

Sv Z
OððuBuC0 KuCuB0 Þ2 C ðuBvC0 KuCvB0 Þ2Þ

ðuBvC KuCvBÞ
(7)

Appendix A details the derivation of these equations.
Postle and Norton [16] have identified four modes to

characterise fabric deformation of this type. These are fabric

strain, fabric bending, in-plane yarn bending or shear and

yarn twist. For this model, only the variation associated with

strain and shear is considered. It is assumed that the energy

associated with bending between triangles is a constant and

is largely invariant when comparing different 2D patterns.

For the strain energy Es associated with a single triangle

Es Z

ðð
ð0:5 KsuðSu K1Þ2du dv C

ðð
ð0:5KsvðSv K1Þ2du dv

Z 0:5AfKsuðSu K1Þ2 CKsvðSv K1Þ2g ð8Þ

where A is the area of the 2D triangle and Ksu and Ksv are the

strain constants for the weft and warp directions,

respectively.
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The shear energy Er, is given as

Er Z

ðð
ð0:5Kr4

2
vÞdu dv Z 0:5AKr4

2
v (9)

where Kr is the shear modulus.

Hence, given the point mappings described by Eqs. (5)–

(7) above, the strain constants Ksu and Ksv and the shear

modulus Kr, the total strain energy (EsCEr) required to

deform the triangle can be calculated.

To summarise, the current energy of a partial or complete

flattening is evaluated by following the procedure below for

each triangle that has been flattened.
(i)
 provide co-ordinates for each vertex in 3D (fixed)
(ii)
 provide co-ordinates for each vertex in 2D (variable)
(iii)
 unify both triangular forms on the the (u,v) axes (Fig. 9)

and so provide mappings for two vertices (Eq. (A.3))
(iv)
 determine strains Su, Sv and 4v from point mappings by

applying Eqs. (5)–(7)
(v)
 use strain values and area of the 2D triangular form to

determine the strain energy Es and shear energy Er

using Eqs. (8) and (9).
6. Flattening process

The flattening process begins by attaching a medial

distance to each triangle in the polygon list. This represents

the shortest distance from the centre of area of each 3D

triangle to the boundary of the panel. For the purposes of

this calculation, a 3D seam line is treated as part of the

boundary. This medial distance is then used to rank the

polygons in a polygon list in the order of decreasing values

of medial distance. Thus, the starting point for the flattening

in 2D is to take the triangle that is furthest from the

boundary (referred to here as a seed triangle) and to lay that
Fig. 12. Unconstrained t
triangle arbitrarily down in 2D in a completely undistorted

manner. This method is adopted because distortion tends to

be cumulative when developing a 2D flattened pattern and

forcing it to assume a 3D shape. Thus, if a flattening begins

at some triangle on one side of the pattern, energy tends to

build-up dramatically by the time the flattening reaches

edges on the other side. The situation is obviously more

complicated than this since the energy build-up is dependent

on the curvature of the 3D surface. Once the first triangle has

been laid down in 2D, the three neighbouring triangles can

be flattened and so on. During this iterative process, if the

3D surface is not developable, it will soon emerge that a

triangle must deform if it is to be flattened. The precise

nature of the flattening algorithm is described elsewhere [8]

which details how triangles can be flattened by either

unconstrained or constrained flattening. Now follows a brief

description of this algorithm.

Consider the flattening of a triangle T (Fig. 12). For

unconstrained flattening, one edge P1P2, of the triangle T has

already been flattened while the third node P3 has yet to be

located on the flattening. The position of P3 on the 2D

flattening P 0
3, is found by finding the intersection of two

circles that does not lie within the boundary of the existing

flattening to date. These circles are centred at P 0
1 and P 0

2 and

have radii r13 and r23, respectively, where r13 is the length of

P1P3 and r23 is the length of P2P3 on the original 3D surface.

For constrained triangle flattening (Fig. 13), all three

nodes (P 0
1, P 0

2 and P 0
3) of a given triangle T 0 have been

previously flattened although triangle T 0 itself has not yet

been flattened. Assume now that triangle T 0 has a neighbour

T2 that has been previously flattened and provided an initial

2D position P 0
3 for the 3D position P3. However, when

flattening T, P3 is also the third node of T, which will

possibly provide another location P 0
3 on the 2D plane. This

gives two 2D positions for point P3. The conflict is resolved

by analysing the energy states of the affected triangles
riangle flattening.



Fig. 13. Constrained triangle flattening.
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(T and T2). To visualise the local energy minimisation

process that is applied, it is useful to consider superimposed

energy contours as being present on the 2D plane when

determining the best unique position for P3 that yields

minimum energy. A numerical gradient optimisation

technique based on the Broyden–Fletcher–Goldfarb–

Shanno method [17] has been incorporated into the

algorithm whereby the 2D co-ordinates of P3 are treated

as variables. This search technique converges on the optimal

2D position for the node P3.

Thus, the flattening process will also be able to provide a

detailed energy map in terms of the three elemental strains. It

will also be able to provide different flattenings depending on

the orientation of the initial triangle with respect to the

weave. Fig. 14 illustrates the progress of the flattening

process as applied to the panel triangulation in Fig. 7. For this

flattening the particular values of strain constants obtained by

testing a sample fabric from industrial collaborators were:

Ksu Z 0:946 N=mm; Ksv Z 0:548 N=mm;

Kr Z 0:159 N=mm rad:
Fig. 14. Panel flatteni
7. Optimal seam siting

The flattening process described above provides a test

platform for deciding the optimal configuration of a single

seam in a particular garment panel. Seams that develop into

darts or gussets should be considered as energy releasing

mechanisms and if inserted into a panel can be expected to

reduce the overall energy value for a particular 2D

flattening. However, the positioning of seams should

obviously be made in areas of large initial energy build-up

so that their energy reducing capabilities are maximised. To

illustrate this, consider the 14 possible sites for a seam in

Fig. 15 for the same garment panel. When flattened with

each of these seams, the energy levels of the 14 different

flattenings will vary greatly. Considering Figs. 16 and 17, it

can be seen that inserting a dart at seam s2 has little effect

whereas inserting a dart at seam s8 results in the greatest

energy reduction. Also, note the different flattenings

produced by inserting seams at locations s8 compared to

s11. Position s8 results in a dart construction whereas

location s11 will require a gusset to be inserted at this
ng progression.



Fig. 15. Location of test seams (s1–s14) on garment panel.
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location. This is due to the fundamentally different types of

curvature of the surface in the neighbourhood of each seam.
8. Sensitivity of flattening strains to fabric grain

Since the fabric model adopted is based on a woven

structure, the strains that are inherent in the flattening are
Fig. 16. Sample flattenings of garment p
sensitive to the orientation of the pattern on the 2D plane. As

indicated in Fig. 10, the grain direction sets the angle that

the weft axis makes with the x axis on the 2D flattening

plane. For garment manufacture where woven or knitted

fabrics are used, the specification of a 2D pattern should in

fact be relative to the grain direction. This will then

unambiguously position the pattern on the fabric. Section 5

above, describes how the flattening process begins by

arbitrarily locating a seed triangle on the 2D flattening

plane. To be more precise, the angular orientation of this

seed triangle on the 2D plane does influence the strain and

energy distributions that ultimately result. It is thus

necessary to indicate on the 3D triangulation in the area

of the seed triangle, a preferred grain direction for the fabric.

This angular relationship between the warp and weft

directions and the 3D form of the seed triangle is then

maintained during the initial positioning of the seed triangle

on the 2D plane. Fig. 18 shows the three strain distributions

that result by flattening the panel in Fig. 4 with no seam

lines. As can be seen, the grain direction greatly influences

the strain distributions in terms of the configuration and

intensity. It is proposed that this kind of insight into how a

particular pattern has to strain in order to take-up a 3D shape

can assist in locating optimum grain direction. For instance,

woven fabrics in general can strain more easily in shear. It

would therefore be more advantageous to orientate the 2D

pattern so that the direction of intense strain due to the

underlying surface curvature is aligned with the shear

direction. Conversely, the appearance of shear can be

unsightly in some more noticeable areas of the garment

concerned.
9. Discussion and conclusions

The work described here provides a means of flattening a

3D surface represented by a polygon mesh. It describes how

a marching front technique has been used to provide
anel with different seam locations.



Fig. 17. Energy variation due to different test seam locations.
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triangulation that is sympathetic to the progress of the

flattening algorithm. An energy model is proposed for

quantifying the performance of a particular pattern when it

is forced to assume a given 3D geometry. Also outlined is a

process that reorganises the initial triangulation of the mesh

if seams are to be used to improve the fitting process. The

efficiency of a seam is quantified in terms of the reduction in

the energy content implicit in the initial pattern. Although

only single seams are illustrated, there is no reason why

multiple seams cannot be used to greatly reduce the energy

content of a given pattern. Although applied to a relatively

simple panel here, the process described can be applied to

any problem of this type with more complicated underlying

body curvature. It is proposed that this method represents an

objective method for both generating patterns with arbitrary

seam configurations and evaluating the fitting performance

in terms of an energy profile for a 2D pattern.

Work is continuing on this project and is currently

concentrating on adaptive meshing whereby triangle

intensification is automatically implemented for polygons

found to contain comparatively large energy values during

the flattening process.
Appendix A. Derivation of strain values from triangle

distortion

The unified axes system outlined in Fig. 11 provides a

means for comparing the change in shape of each triangle as

it distorts from the zero energy 2D shape (ABC) to the 3D

shape (A 0B 0C 0). Since each triangle has a common position

for the A and A 0 vertex, the change in geometry resulting

from the strains (Sv—1.0), (Su—1.0) and 4v is implicit in
the change of locations from B to B 0 and C to C 0. Note that

Su and Sv are interpreted as scaling factors. The distortion

of the triangle can be represented by an affine transform-

ation [13]. The general representation of an affine

transformation is

½ u0 v0 1 � Z ½ u v 1 �

a11 a12 0

a21 a22 0

a31 a32 1

0
B@

1
CA (A.1)

For a particular affine transformation, the affine trans-

formation matrix will now be referred to as Mcomp where

this matrix is comprised as follows

½ u0 v0 1 � Z ½ u v 1 �Mcomp

and where

Mcomp Z

Su 0 0

0 Sv 0

0 0 1

0
B@

1
CA

1 0 0

sin 4v cos 4v 0

0 0 1

0
B@

1
CA

Z

Su 0 0

Sv sin 4v Sv cos 4v 0

0 0 1

0
B@

1
CA (A.2)

Note that this transformation represents collapsing shear

as opposed to pure shear. For this type of shear, assuming Su

and Sv are both set to 1.0

u0 Z u Cv sin 4v and v0 Z v cos 4v

The matrix in Eq. (A.2) is of affine form as described in

Eq. (A.1).
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A particular affine transformation will be specified by the

mapping of vertices B and C, i.e.

ðuB; vBÞ/ ðuB0 ; vB0 Þ

ðuC; vCÞ/ ðuC0 ; vC0 Þ
(A.3)

Eq. (A.1) can now be rewritten to include these two

mappings and provide a means for solving for Su, Sv and 4v

0 0 1

uB0 vB0 1

uC0 vC0 1

0
B@

1
CAZ

0 0 1

uB vC 1

uC vC 1

0
B@

1
CA

a11 a12 0

a21 a22 0

a31 a32 1

0
B@

1
CA

or

U0 Z U A

Hence

A Z UK1U0
where

UK1 Z
1

detðUÞ

ðvB KvCÞ vC KvB

ðuC KuBÞ KuC uB

ðuBvC KuCvBÞ 0 0

0
B@

1
CA

and

detðUÞ Z ðuBvC KuCvBÞ

This results in

A Z
1

detðUÞ

!

ðvCuB0 KvBuC0 Þ ðvCvB0 KvBvC0 Þ 0

ðuBuC0 KuCuB0 Þ ðuCvB0 KuCvB0 Þ 0

0 0 ðuBvC KuCvBÞ

0
B@

1
CA

(A.4)
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By comparing Eqs. (A.2) and (A.4)

Su Za11 Z ðvCuB0 KvBuC0 Þ=ðuBvC KuCvBÞ (A.5)

4v Z tanK1ða21=a22Þ

Z tanK1ððuBuC0 KuCuB0 Þ=ðuBvC0 KuCvB0 Þ (A.6)

Sv ZOða2
21 Ca2

22Þ

Z ððuBuC0 KuCuB0 Þ2 CðuBvC0 KuCvB0 Þ2Þ=ðuBvC KuCvBÞ

(A.7)
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