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Abstract This paper presents an efficient and com-
pact Matlab code to solve three-dimensional topology

optimization problems. The 169 lines comprising this
code include finite element analysis, sensitivity analy-
sis, density filter, optimality criterion optimizer, and

display of results. The basic code solves minimum com-
pliance problems. A systematic approach is presented
to easily modify the definition of supports and external
loads. The paper also includes instructions to define

multiple load cases, active and passive elements, con-
tinuation strategy, synthesis of compliant mechanisms,
and heat conduction problems. The code is intended for

students and newcomers in the topology optimization.
The complete code is provided in the Appendix and
it can be downloaded from http://engr.iupui.edu/

~tovara/top3d.

Keywords Topology optimization · Matlab ·
Compliance · Compliant mechanism · Heat conduction

1 Introduction

Topology optimization is a computational material dis-

tribution method for synthesizing structures without
any preconceived shape. This freedom provides topol-
ogy optimization with the ability to find innovative,
high-performance structural layouts, which has attracted
the interest of applied mathematicians and engineering
designers. From the work of Lucien Schmit in the 1960s
(Schmit 1960)—who recognized the potential of com-
bining optimization methods with finite-element anal-
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ysis for structural design—and the seminal paper by
Bendsøe and Kikuchi (1988), there have been more than

eleven thousand journal publications in this area (Com-
pendex list as of September 2013), several reference
books (Hassani and Hinton 1998; Bendsøe and Sigmund

2003; Christensen and Klarbring 2009), and a num-
ber of readily available educational computer tools for
Matlab and other platforms. Some examples of such

tools include the topology optimization program by Liu
et al (2005) for Femlab, the shape optimization program
by Allaire and Pantz (2006) for FreeFem++, the open
source topology optimization program ToPy by Hunter

(2009) for Python, and the 99-line program for Michell-
like truss structures by Sokó l (2011) for Mathematica.

For Matlab, Sigmund (2001) introduced the 99-
line program for two-dimensional topology optimiza-

tion. This program uses stiffness matrix assembly and
filtering via nested loops, which makes the code read-
able and well-organized but also makes it slow when
solving larger problems. Andreassen et al (2011) pre-
sented the 88-line program with improved assembly and
filtering strategies. When compared to the 99-line code
in a benchmark problem with 7500 elements, the 88-line
code is two orders of magnitude faster. From the same
research group, Aage et al (2013) introduced TopOpt,
the first topology optimization App for hand-held de-
vices.

Also for Matlab, Wang et al (2004) introduced the
199-line program TOPLSM making use of the level-set
method. Challis (2010) also used the level-set method
but with discrete variables in a 129-line program. Suresh
(2010) presented a 199-line program ParetoOptimal-

Tracing that traces the Pareto front for different vol-
ume fractions using topological sensitivities. More re-

cently, Talischi et al (2012a,b) introduced PolyMesher

and PolyTop for density-based topology optimization
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using polygonal finite elements. The use of polygonal

elements makes these programs suitable for arbitrary

non-Cartesian design domains in two dimensions.

One of the few contributions to three-dimensional

Matlab programs is presented by Zhou and Wang

(2005). This code, referred to as the 177-line program, is

a successor to the 99-line program by Sigmund (2001)

that inherits and amplifies the same drawbacks. Our

paper presents a 169-line program referred to as top3d

that incorporates efficient strategies for three-dimensional

topology optimization. This program can be effectively

used in personal computers to generate structures of

substantial size. This paper explains the use of top3d in

minimum compliance, compliant mechanism, and heat

conduction topology optimization problems.

The rest of this paper is organized as follows. Sec-

tion 2 briefly reviews the state of the art in topol-

ogy optimization. Section 3 introduces 3D finite ele-

ment analysis and its numerical implementation. Sec-

tion 4 presents the formulation of three typical topol-

ogy optimization problems, namely, minimum compli-

ance, compliant mechanism, and heat conduction. Sec-

tion 5 discusses the optimization method and its im-

plementation in the code. Section 6 shows the numeri-

cal implementation procedures and results of three dif-

ferent topology optimization problems, several exten-

sions of the top3d code, and multiple alternative im-

plementations. Finally, section 7, offers some closing

thoughts. The top3d code is provided in Appendix B

and can also be downloaded for free from the website:

http://engr.iupui.edu/~tovara/top3d.

2 Theoretical background

2.1 Problem definition and ill-posedness

A topology optimization problem can be defined as a

binary programming problem in which the objective is

to find the distribution of material in a prescribed area

or volume referred to as the design domain. A classical

formulation, referred to as the binary compliance prob-

lem, is to find the “black and white” layout (i.e., solids

and voids) that minimizes the work done by external

forces (or compliance) subject to a volume constraint.

The binary compliance problem is known to be ill-

posed (Kohn and Strang 1986a,b,c). In particular, it is

possible to obtain a non-convergent sequence of feasi-

ble black-and-white designs that monotonically reduce

the structure’s compliance. As an illustration, assume

that a design has one single hole. Then, it is possi-

ble to find an improved solution with the same mass

and lower compliance when this hole is replaced by two

smaller holes. Improved solutions can be successively

found by increasing the number of holes and reducing

their size. The design will progress towards a chattering

design within infinite number of holes of infinitesimal

size. That makes the compliance problem unbounded

and, therefore, ill-posed.

One alternative to make the compliance problem

well-posed is to control the perimeter of the structure

(Haber et al 1996; Jog 2002). This method effectively

avoids chattering configurations, but its implementa-

tion is not free of complications. It has been reported

that the addition of a perimeter constraint creates fluc-

tuations during the iterative optimization process so

internal loops need to be incorporated (Duysinx 1997)

Op. cit. (Bendsøe and Sigmund 2003). Also, small vari-

ations in the parameters of the algorithm lead to dra-

matic changes in the final layout (Jog 2002).

2.2 Homogenization method

Another alternative is to relax the binary condition and

include intermediate material densities in the problem

formulation. In this way, the chattering configurations

become part of the problem statement by assuming a

periodically perforated microstructure. The mechani-

cal properties of the material are determined using the

homogenization theory. This method is referred to as

the homogenization method for topology optimization

(Bendsøe 1995; Allaire 2001). The main drawback of

this approach is that the optimal microstructure, which

is required in the derivation of the relaxed problem, is

not always known. This can be alleviated by restricting

the method to a subclass of microstructures, possibly

suboptimal but fully explicit. This approach, referred

to as partial relaxation, has been utilized by many au-

thors including Bendsøe and Kikuchi (1988), Allaire

and Kohn (1993), Allaire et al (2004), and references

therein.

An additional problem with the homogenization meth-

ods is the manufacturability of the optimized structure.

The “gray” areas found in the final designs contain mi-

croscopic length-scale holes that are difficult or impos-

sible to fabricate. However, this problem can be miti-

gated with penalization strategies. One approach is to

post-process the partially relaxed optimum and force

the intermediate densities to take black or white val-

ues (Allaire et al 1996). This a posteriori procedure

results in binary designs, but it is purely numerical and

mesh dependent. Other approach is to impose a pri-

ori restrictions on the microstructure that implicitly

lead to black-and-white designs (Bendsøe 1995). Even

though penalization methods have shown to be effective

in avoiding or mitigating intermediate densities, they

http://engr.iupui.edu/~tovara/top3d
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revert the problem back to the original ill-possedness

with respect to mesh refinement.

2.3 Density-based approach

An alternative that avoids the application of homog-

enization theory is to relax the binary problem using

a continuous density value with no microstructure. In

this method, referred to as the density-based approach,

the material distribution problem is parametrized by

the material density distribution. In a discretized de-

sign domain, the mechanical properties of the material

element, i.e., the stiffness tensor, are determined using

a power-law interpolation function between void and

solid (Bendsøe 1989; Mlejnek 1992). The power law may

implicitly penalize intermediate density values driving

the structure towards a black-and-white configuration.

This penalization procedure is usually referred to as

the Solid Isotropic Material with Penalization (SIMP)

method (Zhou and Rozvany 1991). The SIMP method

does not solve the problem’s ill-possedness, but it is

simpler than other penalization methods.

The SIMP method is based on a heuristic relation

between (relative) element density xi and element Young’s

modulus Ei given by

Ei = Ei(xi) = xpiE0, xi ∈]0, 1], (1)

where E0 is the elastic modulus of the solid material

and p is the penalization power (p > 1). A modified

SIMP approach is given by

Ei = Ei(xi) = Emin + xpi (E0 − Emin), xi ∈ [0, 1], (2)

where Emin is the elastic modulus of the void material,

which is non-zero to avoid singularity of the finite ele-

ment stiffness matrix. The modified SIMP approach, as

Eq. (2), offers a number of advantages over the classical

SIMP formulation, as shown in Eq. (1), including the

indecency between the minimum value of the material’s

elastic modulus and the penalization power (Sigmund

2007).

The density-based approach is also used to address

other problems. However, it is likely to encounter nu-

merical instabilities such as mesh-dependency, checker-

board patterns, and local minima (Christensen and Klar-

bring 2009). In order to mitigate such issues, researchers

have proposed the use of regularization techniques (Sig-

mund and Peterson 1998). One of the most common

approaches is the use of density filters (Bruns and Tor-

torelli 2001). A basic filter density function is defined

as

x̃i =

∑
j∈Ni

Hijvjxj∑
j∈Ni

Hijvj
, (3)

where Ni is the neighborhood of an element xi with

volume vi, andHij is a weight factor. The neighborhood

is defined as

Ni = {j : dist(i, j) 6 R} , (4)

where the operator dist(i, j) is the distance between the

center of element i and the center of element j, and R

is the size of the neighborhood or filter size. The weight

factor Hij may be defined as a function of the distance

between neighboring elements, for example

Hij = R− dist(i, j), (5)

where j ∈ Ni. The filtered density x̃i defines a modified

(physical) density field that is now incorporated in the

topology optimization formulation and the SIMP model

as

Ei(x̃i) = Emin + x̃pi (E0 − Emin), x̃i ∈ [0, 1]. (6)

The regularized SIMP interpolation formula defined by

Eq. (6) is used in the rest of this work.

The numerical implementation of density filter is

described as follows:

In the program (Appendix B), the weight factor as

in Eq. (5) is represented by matrix H and remains con-

stant through the optimization procedure. The matrix

H is obtained by six nested for loops (lines 37-59) and

stores the distance between all element needed to define

the element neighborhood Ni defined by Eq. (4).

Then the density filter defined by Eq. (3) can be

performed as the following:

60 Hs = sum(H, 2 ) ;
86 xPhys ( : ) = (H∗x ( : ) ) . / Hs ;

The density filer can be applied efficiently by using the

code shown above.

3 Finite element analysis

3.1 Equilibrium equation

Following the regularized SIMP method given by Eq. (6)

and the generalized Hooke’s law, the three-dimensional

constitutive matrix for an isotropic element i is inter-

polated from void to solid as

Ci(x̃i) = Ei(x̃i)C
0
i , x̃i ∈ [0, 1], (7)
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where C0
i is the constitutive matrix with unit Young’s

modulus. The unit constitutive matrix is given by

C0
i =

1

(1 + ν)(1− 2ν)
×

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 (1− 2ν)/2 0 0

0 0 0 0 (1− 2ν)/2 0

0 0 0 0 0 (1− 2ν)/2

 ,
(8)

where ν is the Poisson’s ratio of the isotropic material.

Using the finite element method, the elastic solid ele-

ment’ stiffness matrix is the volume integral of the ele-

ments constitutive matrix Ci(x̃i) and the strain-displacement

matrix B in the form of

ki(x̃i) =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTCi(x̃i)Bdξ1dξ2dξ3, (9)

where ξe (e = 1, . . . , 3) are the natural coordinates as

shown in Fig. 1, and the hexahedron coordinates of the

corners are shown in Table 1. The strain-displacement

matrix B relates the strain ε and the nodal displace-

ment u, ε = Bu. Using the SIMP method, the element

stiffness matrix is interpolated as

ki(x̃i) = Ei(x̃i)k
0
i , (10)

where

k0
i =

∫ +1

−1

∫ +1

−1

∫ +1

−1
BTC0Bdξ1dξ2dξ3. (11)

1 2

34

5 6

78

ξ
1

ξ
2

ξ
3

Fig. 1: The 8-node hexahedron and the natural coordi-

nates ξ1, ξ2, ξ3.

Table 1: The 8-node hexahedron element with node

numbering conventions

Node ξ1 ξ2 ξ3
1 −1 −1 −1

2 +1 −1 −1

3 +1 +1 −1

4 −1 +1 −1

5 −1 −1 +1

6 +1 −1 +1

7 +1 +1 +1

8 −1 +1 +1

For an eight-node hexahedron element, the strain-

displacement matrix B is defined by

B =



∂n1(ξe)
∂ξ1

0 0 · · · ∂nq(ξe)
∂ξ1

0 0

0 ∂n1(ξe)
∂ξ2

0 · · · 0
∂nq(ξe)
∂ξ2

0 0 ∂n1(ξe)
∂ξ3

· · · 0 0
∂nq(ξe)
∂ξ3

∂n1(ξe)
∂ξ2

∂n1(ξe)
∂ξ1

0 · · · ∂nq(ξe)
∂ξ2

∂nq(ξe)
∂ξ1

0

0 ∂n1(ξe)
∂ξ3

∂n1(ξe)
∂ξ2

· · · 0
∂nq(ξe)
∂ξ3

∂nq(ξe)
∂ξ2

∂n1(ξe)
∂ξ3

0 ∂n1(ξe)
∂ξ1

· · · ∂nq(ξe)
∂ξ3

0
∂nq(ξe)
∂ξ1


,

for e = 1, . . . , 3 and q = 1, . . . , 8. The corresponding

shape functions nq in a natural coordinate system ξe
are defined by

nq(ξe) =
1

8



(1− ξ1)(1− ξ2)(1− ξ3)

(1 + ξ1)(1− ξ2)(1− ξ3)

(1 + ξ1)(1 + ξ2)(1− ξ3)

(1− ξ1)(1 + ξ2)(1− ξ3)

(1− ξ1)(1− ξ2)(1 + ξ3)

(1 + ξ1)(1− ξ2)(1 + ξ3)

(1 + ξ1)(1 + ξ2)(1 + ξ3)

(1− ξ1)(1 + ξ2)(1 + ξ3)



.

Replacing values in Eq. (11), the 24× 24 element stiff-

ness matrix k0
i for an eight-node hexahedron element is

k0
i =

1

(ν + 1)(1− 2ν)


k1 k2 k3 k4

kT
2 k5 k6 kT

4

kT
3 k6 kT

5 kT
2

k4 k3 k2 kT
1

 (12)

where km (m = 1, . . . , 6) are 6× 6 symmetric matrices.

These matrices are described in Appendix A. One can

also verify that k0
i is positive definite. The global stiff-

ness matrix K is obtained by the assembly of element-
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level counterparts ki,

K(x̃) = Ani=1ki(x̃i) = Ani=1Ei(x̃i)k
0
i , (13)

where n is the total number of elements. Using the

global versions of the element stiffness matrices Ki and

K0
i , Eq. (13) is expressed as

K(x̃) =

n∑
i=1

Ki(x̃i) =

n∑
i=1

Ei(x̃i)K
0
i . (14)

where K0
i is a constant matrix. Using the interpolation

function defined in Eq. (6), one finally observes that

K(x̃) =

n∑
i=1

[Emin + x̃pi (E0 − Emin)] K0
i . (15)

Finally, the nodal displacements vector U(x̃) is the

solution of the equilibrium equation

K(x̃)U(x̃) = F, (16)

where F is the vector of nodal forces and it is indepen-

dent of the physical densities x̃. For brevity of notation,

we omitted the dependence of physical densities x̃ on

the design variables x, x̃ = x̃(x).

3.2 Numerical implementation

Consider the discretized prismatic structure in Fig. 2

composed of eight eight-noded cubic elements. The nodes

identified with a number (node ID) ordered column-

wise up-to-bottom, left-to-right, and back-to-front. The

position of each node is defined with respect to Carte-

sian coordinate system with origin at the left-bottom-

back corner.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

x

y

z

Fig. 2: Global node IDs in a prismatic structure com-

posed of 8 elements.

Within each element, the eight nodes N1, . . . , N8

are ordered in counter-clockwise direction as shown in

Fig. 3. Note that the “local” node number (Ni) does

not follow the same rule as the “global” node ID (NIDi)

system in Fig. 2. Given the size of the volume (nelx×
nely × nelz) and the global coordinates of node N1

(x1, y1, z1), one can identify the global node coordinates

and node IDs of the other seven nodes in that element

by the mapping the relationships as summarized in Ta-

ble. 2.

Each node in the structure has three degrees of free-

dom (DOFs) corresponding to linear displacements in

x-y-z directions (one element has 24 DOFs). The de-

grees of freedom are organized in the nodal displace-

ment vector U as

U = [U1x, U1y, U1z, . . . , U8×nz]
T
,

where n is the number of elements in the structure.

The location of the DOFs in U, and consequently K

and F, can be determined from the node ID as shown

in Table. 2.

N
1

N
2

N
4

N
3

N
8

N
7

N
5

N
6

x

y

z

Fig. 3: Local node numbers within a cubic element.

The node IDs for each element are organized in a

connectivity matrix edofMat with following Matlab

lines:

20 ne l e = ne lx ∗ ne ly ∗ ne l z ;
26 nodegrd = reshape ( 1 : ( ne ly +1)∗( ne lx +1) ,

ne ly +1, ne lx +1) ;
27 nodeids = reshape ( nodegrd ( 1 : end−1 ,1: end

−1) , ne ly ∗nelx , 1 ) ;
28 nodeidz = 0 : ( ne ly +1)∗( ne lx +1) : ( ne lz −1)∗(

ne ly +1)∗( ne lx +1) ;
29 nodeids = repmat ( nodeids , s i z e ( nodeidz ) )+

repmat ( nodeidz , s i z e ( node ids ) ) ;
30 edofVec = 3∗ nodeids ( : ) +1;
31 edofMat = repmat ( edofVec , 1 , 2 4 )+ . . .
32 repmat ( [ 0 1 2 3∗ ne ly + [ 3 4 5 0 1 2 ]

−3 −2 −1 . . .
33 3∗( ne ly +1)∗( ne lx +1)+[0 1 2 3∗ ne ly +

[ 3 4 5 0 1 2 ] −3 −2 −1] ] , ne le , 1 ) ;

where nele is the total number of elements, nodegrd

contains the node ID of the first grid of nodes in the x-y

plane (for z = 0), the column vector edofVec contains

the node IDs of the first node at each element, and the

connectivity matrix edofMat of size nele× 24 contain-

ing the node IDs for each element. For the volume in
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Table 2: Illustration of relationships between node number, node coordinates, node ID and node DOFs.

Node Number Node coordinates Node ID
Node Degree of Freedoms

x y z

N1 (x1, y1, z1) NID
†
1 3 ∗ NID1 − 2 3 ∗ NID1 − 1 3 ∗ NID1

N2 (x1 + 1, y1, z1) NID2 = NID1 + (nely + 1) 3 ∗ NID2 − 2 3 ∗ NID2 − 1 3 ∗ NID2
N3 (x1 + 1, y1 + 1, z1) NID3 = NID1 + nely 3 ∗ NID3 − 2 3 ∗ NID3 − 1 3 ∗ NID3
N4 (x1, y1 + 1, z1) NID4 = NID1 − 1 3 ∗ NID4 − 2 3 ∗ NID4 − 1 3 ∗ NID4
N5 (x1, y1, z1 + 1) NID5 = NID1 + NID‡z 3 ∗ NID5 − 2 3 ∗ NID5 − 1 3 ∗ NID5
N6 (x1 + 1, y1, z1 + 1) NID6 = NID2 + NIDz 3 ∗ NID6 − 2 3 ∗ NID6 − 1 3 ∗ NID6
N7 (x1 + 1, y1 + 1, z1 + 1) NID7 = NID3 + NIDz 3 ∗ NID7 − 2 3 ∗ NID7 − 1 3 ∗ NID7
N8 (x1, y1 + 1, z1 + 1) NID8 = NID4 + NIDz 3 ∗ NID8 − 2 3 ∗ NID8 − 1 3 ∗ NID8

† NID1 = z1 ∗ (nelx + 1) ∗ (nely + 1) + x1 ∗ (nely + 1) + (nely + 1− y1).
‡ NIDz = (nelx + 1) ∗ (nely + 1).

Fig. 2, nelx = 4, nely = 1, and nelz = 2, which results

in

edofMat =



4 5 6 · · · 31 32 33

10 11 12 · · · 37 38 39

16 17 18 · · · 43 44 45

22 23 24 · · · 49 50 51

34 35 36 · · · 61 62 63

40 41 42 · · · 67 68 69

46 47 48 · · · 73 74 75

52 53 54 · · · 79 80 81



← Element 1

← Element 2

← Element 3

← Element 4

← Element 5

← Element 6

← Element 7

← Element 8 .

The element connectivity matrix edofMat is used to

assemble the global stiffness matrix K as follows:

25 KE = lk H8 (nu) ;
34 iK = kron ( edofMat , ones (24 ,1 ) ) ’ ;
35 jK = kron ( edofMat , ones (1 , 24 ) ) ’ ;
70 sK = KE( : ) ∗(Emin+xPhys ( : ) ’ . ˆ penal ∗(E0−

Emin) ) ;
71 K = spar s e ( iK ( : ) , jK ( : ) , sK ( : ) ) ; K = (K+K

’ ) /2 ;

The element stiffness matrix KE (size 24× 24) is ob-

tained from the lk H8 subroutine (lines 99-146 in Ap-

pendix B). Matrices iK (size 24 nele×24) and jK (size

nele × 242), reshaped as column vectors, contain the

rows and columns identifying the 24× 24× nele DOFs

in the structure. The three-dimensional array (xPhys)

(size nely × nelx × nelz) corresponds to the physical

densities. The matrix sK (size 242 × nele) contains all

element stiffness matrices. The assembly procedure of

the (sparse) symmetric) global stiffness matrix K (line

71) avoids the use of nested for loops.

Finally, the nodal displacement vector U is obtained

from the solution of the equilibrium equation Eq. (16)

by pre-multiplying the inverse of the stiffness matrix K

and the vector of nodal forces F,

72 U( f r e e d o f s , : ) = K( f r e e d o f s , f r e e d o f s ) \F(
f r e e d o f s , : ) ;

where the indices freedofs indicate the unconstrained

DOFs. For the cantilevered structure in Fig. 2, the con-

strained DOFs

16 [ j f , k f ] = meshgrid ( 1 : ne ly +1 ,1: ne l z +1) ;
17 f i x e d n i d = ( kf−1)∗( ne ly +1)∗( ne lx +1)+j f ;
18 f i x e d d o f = [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d ( : )

−1; 3∗ f i x e d n i d ( : ) −2];

where jf, and kf are the coordinate of the fixed nodes,

fixednid are the node IDs, and fixeddof are the lo-

cation of the DOFs. The free DOFs, are then defined

as

21 ndof = 3∗( ne lx +1)∗( ne ly +1)∗( ne l z +1) ;
24 f r e e d o f s = s e t d i f f ( 1 : ndof , f i x e d d o f ) ;

where ndof is the total number of DOFs. By default,

the code constraints the left face of the prismatic struc-

ture and assigns a vertical load to the structure’s free-

lower edge as depicted in Fig. 2. The user can define
different load and support DOFs by changing the cor-

responding node coordinates (lines 12 and 16, Appendix

B). Several examples are presented in Section 6.

4 Optimization problem formulation

Three representative topology optimization problems

are described in this section, namely: minimum com-

pliance, compliant mechanism synthesis, and heat con-

duction.

4.1 Minimum compliance

The objective of the minimum compliance problem is

to find the material density distribution x that mini-

mizes the structure’s deformation under the prescribed

support and loading condition. The structure’s compli-

ance, which provides a global measure of deformation,
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is defined as

c(x̃) = FTU(x̃), (17)

where F is the vector of nodal forces and U(x̃) is the

vector of nodal displacements. Incorporating a volume

constraint, the minimum compliance optimization prob-

lem is

find x = [x1, x2, . . . , xe, . . . , xn]
T

minimize c(x̃) = FTU(x̃)

subject to v(x̃) = x̃Tv − v̄ 6 0

x ∈ X , X = {x ∈ Rn : 0 6 x 6 1},

(18)

where the physical densities x̃ = x̃(x) are defined by

Eq. (3), n is the number of elements used to discretize

the design domain, v = [v1, . . . , vn]
T

is a vector of el-

ement volume, and v̄ is the prescribed volume limit of

the design domain. The nodal force vector F is indepen-

dent of the design variables and the nodal displacement

vector U(x̃) is the solution of K(x̃)U(x̃) = F.

The derivative of the volume constraint v(x̃) in Eq.

(18) with respect to the design variable xe is given

∂v(x̃)

∂xe
=
∑
i∈Ne

∂v(x̃)

∂x̃i

∂x̃i
∂xe

(19)

where

∂v(x̃)

∂x̃i
= vi (20)

and

∂x̃i
∂xe

=
Hieve∑
j∈Ni

Hijvj
. (21)

The code uses a mesh with equally sized cubic elements

of unit volume, then vi = vj = ve = 1.

The derivative of the compliance is

∂c(x̃)

∂xe
=
∑
i∈Ne

∂c(x̃)

∂x̃i

∂x̃i
∂xe

(22)

where ∂x̃i/∂xe is given by Eq. (21) and

∂c(x̃)

∂x̃i
= FT ∂U(x̃)

∂x̃i

= U(x̃)
T
K(x̃)

∂U(x̃)

∂x̃i
. (23)

The derivative of Eq. (16) with respect to x̃i is

∂K(x̃)

∂x̃i
U(x̃) + K(x̃)

∂U(x̃)

∂x̃i
= 0, (24)

which yields

∂U(x̃)

∂x̃i
= −K(x̃)−1

∂K(x̃)

∂x̃i
U(x̃). (25)

Using Eq. (15),

∂K(x̃)

∂x̃i
=

∂

∂x̃i

n∑
i=1

[Emin + x̃pi (E0 − Emin)] K0
i

= px̃p−1i (E0 − Emin) K0
i . (26)

Using Eqs. (25) and (26), Eq. (23) results in

∂c(x̃)

∂x̃i
= −U(x̃)

T
[
px̃p−1i (E0 − Emin)K0

i

]
U(x̃). (27)

Since K0
i is the global version of an element matrix, Eq.

(27) may be transformed from the global level to the

element level, obtaining

∂c(x̃)

∂x̃i
= −ui(x̃)

T
[
px̃p−1i (E0 − Emin)k0

i

]
ui(x̃). (28)

where ui is the element vector of nodal displacements.

Since k0
i is positive definite, ∂c(x̃)/∂x̃i < 0.

The numerical implementation of minimum compli-

ance problem can be done as the following:

74 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗U(
edofMat ) ,2 ) , [ nely , nelx , n e l z ] ) ;

75 c = sum(sum(sum ( ( Emin+xPhys . ˆ penal ∗(E0−
Emin) ) .∗ ce ) ) ) ;

76 dc = −penal ∗(E0−Emin) ∗xPhys . ˆ ( penal−1) .∗
ce ;

77 dv = ones ( nely , nelx , n e l z ) ;
79 dc ( : ) = H∗( dc ( : ) . / Hs) ;
80 dv ( : ) = H∗( dv ( : ) . / Hs) ;

The objective function in Eq. (18) is calculated in Line

75. The sensitivities of the objective function and vol-

ume fraction constraint with respect to the physical

density are given be lines 76-77. Finally, the chain rule

as stated in Eq. (22) is deployed in lines 79-80.

4.2 Compliant mechanism synthesis

A compliant mechanism is a morphing structure that

undergoes elastic deformation to transform force, dis-

placement, or energy (Bruns and Tortorelli 2001). A

typical goal for a compliant mechanism design is to

maximize the output port displacement. The optimiza-

tion problem is

find x = [x1, x2, . . . , xe, . . . , xn]
T

minimize c(x̃) = −uout(x̃) = −LTU(x̃)

subject to v(x̃) = x̃Tv − v̄ 6 0

x ∈ X , X = {x ∈ Rn : 0 6 x 6 1},

(29)
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where L is a unit length vector with zeros at all degrees

of freedom except at the output point where it is one,

and U(x̃) = K(x̃)−1F.

To obtain the sensitivity of the new cost function

c(x̃) in Eq. (29), let us define a global adjoint vector

Ud(x̃) from the solution of the adjoint problem

K(x̃)Ud(x̃) = −L. (30)

Using Eq. (30) in Eq. (29), the objective function can

be expressed as

c(x̃) = Ud(x̃)
T
K(x̃)U(x̃). (31)

The derivative of c(x̃) with respect to the design

variable xe is again obtained by the chain rule,

∂c(x̃)

∂xe
=
∑
i∈Ne

∂c(x̃)

∂x̃i

∂x̃i
∂xe

,

where ∂x̃i/∂xe is described by Eq. (21), and ∂c(x̃)/∂x̃i
can be obtained using direct differentiation. The use of

the interpolation given by Eq. (6) yields an expression

similar to the one obtained in Eq. (28),

∂c(x̃)

∂x̃i
= udi(x̃)T

[
px̃p−1i (E0 − Emin)k0

i

]
ui(x̃). (32)

where udi(x̃) is the part of the adjoint vector associated

with element i. In this case, ∂c(x̃)/∂x̃i may be positive

or negative.

The numerical implementation of the objective func-

tion Eq. (31) and sensitivity Eq. (32) are

74a Ud = U( : , 2 ) ;
74b U = U( : , 1 ) ;
74 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗Ud(

edofMat ) ,2 ) , [ nely , nelx , n e l z ] ) ;
75 c = U( dout , 1 ) ;
76 dc = penal ∗(E0−Emin) ∗xPhys . ˆ ( penal−1) .∗

ce ;
77 dv = ones ( nely , nelx , n e l z ) ;

Vector Ud (Line 74a) is the dummy load displacement

field and vector U (line 74b) is the input load displace-

ment. The codes for the implementation of chain rule

are not shown above since they are same as lines 79-80.

4.3 Heat conduction

Heat in physics is defined as energy transferred be-

tween a system and its surrounding. The direct micro-

scopic exchange of kinetic energy of particles through

the boundary between two systems is called diffusion

or heat conduction. When a body is at a different tem-

perature from its surrounding, heat flows so that the

body and the surroundings reach the same tempera-

ture. This condition is known as thermal equilibrium.

The equilibrium condition for heat transfer in finite el-

ement formulation is described by

K(x̃)U(x̃) = F,

where U(x̃) now donates the finite element global nodal

temperature vector, F donates the global thermal load

vector, and K(x̃) donates the global thermal conduc-

tivity matrix. For a material with isotropic properties,

conductivity is the same in all directions.

The optimization problem for heat conduction is

find x = [x1, x2, . . . , xe, . . . , xn]
T

minimize c(x̃) = FTU(x̃)

subject to v(x̃) = x̃Tv − v̄ 6 0

x ∈ X , X = {x ∈ Rn : 0 6 x 6 1},

(33)

where U(x̃) = K(x̃)−1F, and K(x̃) is obtained by the

assembly of element thermal conductivity matrices ki(x̃i).

Following the interpolation function in Eq. (6), the el-

ement conductivity matrix is expressed as

ki(x̃i) = [kmin + (k0 − kmin)x̃pi ] k
0
i , (34)

where kmin and k0 represent the limits of the material’s

thermal conductivity coefficient and k0
i donates the el-

ement conductivity matrix. Note that Eq. (34) may be

considered as the distribution of two material phases:

a good thermal conduction (k0) and the other a poor

conductor (kmin).

The sensitivity analysis of the cost function in Eq. (33)

is given by

∂c(x̃)

∂xe
=
∑
i∈Ne

∂c(x̃)

∂x̃i

∂x̃i
∂xe

,

where ∂x̃i/∂xe is described by Eq. (21) and

∂c(x̃)

∂x̃i
= −ui(x̃)T

[
(k0 − kmin)px̃p−1i k0

i

]
ui(x̃). (35)

The numerical implementation only requires an op-

tional change in the material property name:

74 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗U(
edofMat ) ,2 ) , [ nely , nelx , n e l z ] ) ;

75 c = sum(sum(sum ( ( kmin+(k0−kmin ) ∗xPhys . ˆ
penal ) .∗ ce ) ) ) ;

76 dc = −penal ∗( k0−kmin ) ∗xPhys . ˆ ( penal−1) .∗
ce ;

77 dv = ones ( nely , nelx , n e l z ) ;

where k0 and kmin are the limits of the material’s ther-

mal conductivity. The chain rule is applied same as be-

fore.
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5 Optimization algorithm

A classical approach to structural optimization prob-

lems is the optimality criteria (OC) method. The OC

method is historically older than sequential approxi-

mation methods such as sequential linear programming

(SLP) or sequential quadratic programming (SQP). The

OC method is formulated on the grounds that if con-

straint 0 ≤ x ≤ 1 is inactive, then convergence is

achieved when the KKT condition

∂c(x̃)

∂xe
+ λ

∂v(x̃)

∂xe
= 0, (36)

is satisfied for k = 1, . . . , n, where λ is the Lagrange

multiplier associated with the constraint v(x̃). This op-

timality condition can be expressed as Be = 1, where

Be = −∂c(x̃)

∂xe

(
λ
∂v(x̃)

∂xe

)−1
. (37)

The code implements the OC updating scheme pro-

posed by (Bendsøe 1995) to update design variables:

xnewe =


max(0, xe −m), if xeB

η
e 6 max(0, xe −m),

min(1, xe +m), if xeB
η
e > min(1, xe −m),

xeB
η
e , otherwise,

(38)

where m is a positive move-limit, and η is a numerical

damping coefficient. The choice of m = 0.2 and η =

0.5 is recommended for minimum compliance problems

(Bendsøe 1995; Sigmund 2001). For compliant mecha-

nisms, η = 0.3 improves the convergence of the algo-

rithm. The only unknown in Eq. (38) is the value of

the Lagrange multiplier λ, which satisfies that

v(x̃(xnew(λ))) = 0. (39)

Numerically, λ is found by a root-finding algorithm such

as the bisection method. Finally, the termination crite-

ria are satisfied when a maximum number of iterations

is reached or

||xnew − x||∞ ≤ ε, (40)

where the tolerance ε is a relatively small value, for

example ε = 0.01.

The numerical implementation begins with the ini-

tialization of design and physical variables,

62 x = repmat ( v o l f r a c , [ nely , nelx , n e l z ] ) ;
63 xPhys = x ;

where volfrac represents the volume fraction limit. Ini-

tially, the physical densities are assigned equal to the

design variables since the design variables over the de-

sign domain are uniform. The OC update incorporating

the bisection method is

82 l 1 = 0 ; l 2 = 1e9 ; move = 0 . 2 ;
83 whi l e ( l2−l 1 ) /( l 1+l 2 ) > 1e−3
84 lmid = 0 . 5∗ ( l 2+l 1 ) ;
85 xnew = max(0 ,max(x−move , min (1 , min ( x+

move , x .∗ s q r t (−dc . / dv/ lmid ) ) ) ) ) ;
86 xPhys ( : ) = (H∗xnew ( : ) ) . / Hs ;
87 i f sum( xPhys ( : ) ) > v o l f r a c ∗nele , l 1

= lmid ; e l s e l 2 = lmid ; end
88 end

where lmid is the value of the Lagrange multiplier. The

complete optimization algorithm is

64 loop = 0 ;
65 change = 1 ;
66 % START ITERATION
67 whi l e change > t o l x && loop < maxloop
68 loop = loop + 1 ;
69 % FE−ANALYSIS
70−72 ( . . . )
73 % OBJECTIVE FUNCTION AND SENSITIVITY

ANALYSIS
74−77 ( . . . )
78 % FILTERING AND MODIFICATION OF

SENSITIVITIES
79−80 ( . . . )
81 % OPTIMALITY CRITERIA UPDATE
82−88 ( . . . )
89 change = max( abs (xnew ( : )−x ( : ) ) ) ;
90 x = xnew ;
95 end

where the loop counter (loop) is initially zero and the

change in design variables (change) is intially one. The

values for the maximum number of iterations (maxloop)

and tolerance (tolx) and are set by the user in lines 4

and 5, respectively. Visualization of results is in lines

91-94 and 146-169.

6 Numerical examples

The code is executed Matlab with the following com-

mand:

top3d ( nelx , nely , ne lz , v o l f r a c , penal , rmin )

where nelx, nely, and nelz are number of elements

along x, y, and z directions, volfrac is the volume

fraction limit (v̄), penal is the penalization power (p),

and rmin is filter size (R). User-defined variables are

set between lines 3 and 18. These variables determine

the material model, termination parameters, loads, and

supports. The following examples demonstrate the ap-

plication of the code to minimum compliance problems,

and its extension to compliant mechanism synthesis and

heat condition.
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6.1 Minimum compliance

By default, the code solves a minimum compliance prob-

lem for the cantilevered beam in Fig. 4. The prismatic

design domain is fully constrained in one end and a unit

distributed vertical load is applied downwards on the

lower free edge. Figure 4 shows the topology optimiza-

tion results for solving minimum compliance problem

with the following Matlab input lines:

top3d ( 6 0 , 2 0 , 4 , 0 . 3 , 3 , 1 . 5 )

x

y

z

Fig. 4: Topology optimization of 3D cantilever beam.

Top: Initial design domain, bottom: topology optimized

beam.

6.1.1 Boundary conditions

The boundary conditions and loading conditions are

defined in lines 12-18. Since the node coordinates and

node numbers are automatically mapped by the pro-

gram, defining different boundary conditions is very

simple. To solve a 3D wheel problem as shown in Fig. 5,

which is constrained by planar joint on the corners with

a downward point load in the center of the bottom, the

following changes need to be made:

Firstly, changing loading conditions

12 i l = ne lx /2 ; j l = 0 ; k l = ne l z /2 ;
13 loadn id = k l ∗( ne lx +1)∗( ne ly +1)+i l ∗( ne ly

+1)+(ne ly+1− j l ) ;
14 loaddo f = 3∗ l oadn id ( : ) − 1 ;

Secondly, defining the corresponding boundary condi-

tions

x

y

z

Fig. 5: Topology optimization of 3D wheel. Top: Initial

design domain, bottom: topology optimized result.

16 i i f = [ 0 0 ne lx ne lx ] ; j f = [ 0 0 0 0 ] ;
k f = [ 0 ne l z 0 ne l z ] ;

17 f i x e d n i d = kf ∗( ne lx +1)∗( ne ly +1)+ i i f ∗(
ne ly +1)+(ne ly+1− j f ) ;

18 f i x e d d o f = [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d ( : )
−1; 3∗ f i x e d n i d ( : ) −2];

then the problem can be promoted by line:

top3d ( 4 0 , 2 0 , 4 0 , 0 . 2 , 3 . 0 , 1 . 5 )

6.1.2 Multiple load cases

In order to solve a multiple load cases problem, as

shown in Fig. 6, a few changes need to be made. First,

the loading conditions (line 12) are changed correspond-

ingly:

12 i l = [ ne lx ne lx ] ; j l = [ 0 ne ly ] ; k l = [
ne l z /2 ne l z / 2 ] ;

Also the force vector (line 22) and displacement vector

(line 23) become more than one column:

22 F = spar s e ( loaddof , [ 1 2 ] , [−1 1 ] , ndof , 2 ) ;
23 U = ze ro s ( ndof , 2 ) ;

The objective function is now the sum of different load

cases

c(x̃) =

M∑
l=1

cl(x̃) =

M∑
l=1

FT
l Ul(x̃) (41)

where M is the number of load cases.

Then lines 74-76 are substituted with lines

74a c = 0 . ;
74b dc = ze ro s ( nely , nelx , n e l z ) ;
74 c f o r i = 1 : s i z e (F , 2 )
74d Ue = U( : , i ) ;
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1

2

x

y

z

Fig. 6: Topology optimization of cantilever beam with multiple load cases. Left: Initial design domain, middle:

topology optimized beam with one load case, and right: topology optimized beam with two load cases.

74 ce = reshape (sum ( ( Ue( edofMat ) ∗KE) .∗
Ue( edofMat ) ,2 ) , [ nely , nelx , n e l z ] ) ;

75 c = c + sum(sum(sum ( ( Emin+xPhys . ˆ
penal ∗(E0−Emin) ) .∗ ce ) ) ) ;

76 dc = dc − penal ∗(E0−Emin) ∗xPhys . ˆ (
penal−1) .∗ ce ;

76a end

This example is promoted by the line

top3d ( 6 0 , 6 0 , 4 , 0 . 4 , 3 . 0 , 1 . 5 )

6.1.3 Active and passive elements

In some designs, some elements may be desired to be

solid or void. A nely×nelx×nelz matrix with ones at

elements desired to be solid, and a nely× nelx× nelz

matrix with zeros at elements desired to be void can be

added to the program. To solve the problem as shown

in Fig. 7, the passive elements need to be defined first

by adding the following lines after line 62:

62a f o r e l y = 1 : ne ly
62b f o r e l x = 1 : ne lx
62 c i f s q r t ( ( e ly−ne ly / 2 . ) ˆ2+( elx−

ne lx / 3 . ) ˆ2) < ne ly /3 .
62d pa s s i v e ( e ly , e l x ) = 1 ;
62 e e l s e
62 f pa s s i v e ( e ly , e l x ) = 0 ;
62g end
62h end
62 i end
62 j pa s s i v e = repmat ( pass ive , [ 1 , 1 , n e l z ] ) ;
62k x ( f i n d ( pa s s i v e ) ) = 0 ;

In addition, one line is added in the OC subroutine

under line 85:

85a xnew( f i n d ( pa s s i v e ) ) = 0 ;

The optimized beam shown in Fig. 7 is promoted by

the line

top3d ( 6 0 , 2 0 , 4 , 0 . 3 , 3 . 0 , 1 . 5 )

x

y

z

Fig. 7: Topology optimization of cantilever beam with

passive design domain. Top: Initial design domain, bot-

tom: topology optimized beam.

6.1.4 Alternative filters

In the topology optimization, filters are introduced to

avoid numerical instabilities. Different filtering tech-

niques may result different discreteness of the final solu-

tions, and sometimes may even contribute to different

topologies. In addition to density filter, in the litera-

tures there are bunch of different filtering schemes. For

example, sensitivity filter (Sigmund 1994, 1997), mor-

phology based black and white filters (Sigmund 2007),

filtering technique using Matlab built-in function conv2

(Andreassen et al 2011), filtering based on Helmholtz

type differential equations (Andreassen et al 2011), Heav-

iside filter (Guest et al 2004, 2011), and gray scale filter

(Groenwold and Etman 2009). All the filters pursue a

simple goal to achieve black-and-white structures. Two

of them are chosen, which stand for classic and better

performance, as well as easy implementation.
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Sensitivity filter: Sigmund (1994, 1997) introduced

the sensitivity filter. The working principle is to replace

the real sensitivities by the filtered sensitivities. In addi-

tion, the sensitivity filter is implemented in the 99-line

code as the default filtering scheme. It modifies the ele-

ment sensitivity during every iteration by the following

∂̂c(x)

∂xi
=

1

max(γ, xi)
∑
j∈Ni

Hij

∑
j∈Ni

Hij xj
∂c(x)

∂xj
.

where γ (= 10−3) is a small number in order to avoid

division by zero.

The implementation of the sensitivity filter can be

achieved by adding and changing a few lines.

Change line 2 by adding one input variable ft (ft = 1

for density filter, ft = 2 for sensitivity filter)

2 func t i on top3d f t ( nelx , nely , ne lz , v o l f r a c ,
penal , rmin , f t )

Adding the sensitivity filter to the program, by chang-

ing lines 79-80

79a i f f t == 1
79b dc ( : ) = H∗( dc ( : ) . / Hs) ;
79 c dv ( : ) = H∗( dv ( : ) . / Hs) ;
80a e l s e i f f t == 2
80b dc ( : ) = H∗( x ( : ) .∗ dc ( : ) ) . / Hs . /max(1 e

−3,x ( : ) ) ;
80 c end

Changing the design variable update strategy (line 86)

in the optimal search procedure

86a i f f t == 1
86b xPhys ( : ) = (H∗xnew ( : ) ) . / Hs ;
86 c e l s e i f f t == 2
86d xPhys = xnew ;
86 e end

Gray scale filter: A simple non-linear gray-scale

filter or intermediate density filter has been proposed by

Groenwold and Etman (2009) to further achieve black-

and-white topologies. The implementation of the gray

scale filter is by changing the OC update scheme as the

following

xnewi =


max(0, xi −m), if xiB

η
i 6 max(0, xi −m)

min(1, xi +m), if xiB
η
i > min(1, xi −m)

(xiB
η
i )q, otherwise

(42)

The standard OC updating method is a special case

of Eq. (42) with q = 1. A typical value of q for the

SIMP-based topology optimization is q = 2.

The implementation of the gray scale filter to the

code can be done as follows:

Adding one input variable q to the program (line 2)

2 func t i on top3dgs f ( nelx , nely , ne lz , v o l f r a c ,
penal , q , rmin )

Change the OC updating method (line 85) to

85 xnew = max(0 ,max(x−move , min (1 , min ( x+move
, ( x .∗ s q r t (−dc . / dv/ lmid ) ) . ˆ q ) ) ) ) ;

The factor q should be increased gradually by adding

one line after line 68

68a i f loop <= 15 , q = 1 ; e l s e q = min (qmax
, 1 . 0 1∗ q ) ; end

Figure 8 demonstrates the optimized beams apply-

ing different filtering techniques. As can be seen from

final results, both sensitivity filter, density filter and

gray scale filter suppress checkerboard patterns. The

gray scale filter combines with the sensitivity filter pro-

vides the most black-and-white solution.

6.1.5 Iterative solver

If the finite element mesh size becomes large, the tradi-

tional direct solver (line 72) used to address the finite

element analysis is suffered by longer solving time and

some other issues. However, iterative solver (Hestenes

and Stiefel 1952; Augarde et al 2006) can solve large-

scale problems efficiently. To this end, line 72 is replaced

by a built-in Matlab function pcg, called precondi-

tioned conjugate gradients method, as shown in the fol-

lowing

72a t o l i t = 1e−8;
72b maxit = 8000 ;
72 c M = diag ( diag (K( f r e e d o f s , f r e e d o f s ) ) ) ;
72 U( f r e e d o f s , : ) = pcg (K( f r e e d o f s , f r e e d o f s

) ,F( f r e e d o f s , : ) , t o l i t , maxit ,M) ;

Direct solver is a special case by setting the precon-

ditioner (line 72c) to M = inv(K);.

Table 3 gives the comparison of two different finite

element analysis solvers. As shown in the table, a speed

up factor of 30.81 has been measured when solving large

scale problem. Hence, the iterative solver is more suit-

able for large-scale problems, and vice versa.

Some examples include a cantilever beam, the Messerchimitt-

Bölkow-Blohm (MBB) beam and L-shape problems (Ta-

ble. 4) are solved by using iterative solver and applying

gray scale filter. The underlined triangle represents a

three-dimensional planar joint.

6.1.6 Continuation strategy

Convexity is a very preferable property since every lo-

cal minima is also the global minima, and what the

program is solving for is the global minima. Unfortu-

nately, the use of SIMP method to achieve binary so-

lution will destroy the convexity of the optimization
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Fig. 8: Topology optimized design used a mesh with 30 × 10 × 2 elements. Left: optimized design using density

filter, middle ledt: optimized design using density filter, middle right: optimized design using density filter and

gray scale filter, and right: optimized design using sensitivity filter and gray scale filter.

Table 3: Time usage of finite element analysis time for

different solvers.

Mesh size Direct solver Iterative solver

30× 10× 2 0.018 sec 0.129 sec

60× 20× 4 0.325 sec 0.751 sec

150× 50× 10 74.474 sec 22.445 sec

problem. For such problems, it is possible that for dif-

ferent starting points the program converges to totally

different local minima. In order to penalize intermedi-

ate densities and mitigate the premature convergence

to one of the multiple local minima when solving the

non-convex problem, one could perform a continuation

step. As previously presented by Groenwold and Etman

(2010), the continuation step is given as

pk =

{
1 k 6 20,

min{pmax, 1.02pk−1} k > 20,
(43)

where k is the iteration number, and pmax is the maxi-

mum penalization power.

Though this methodology is not proven to converge

to the global optimum, it regularizes the algorithm and

allows the comparison of different optimization strate-

gies.

Implementing the continuation strategy is done by

adding a single line after line 68:

68a i f loop <= 20 , penal = 1 ; e l s e penal =
min (pmax , 1 . 0 2∗ penal ) ; end

6.2 Compliant mechanism synthesis

A compliant mechanism problem involves loading cases:

input loading case and dummy loading case. The code

also needs to implement a new objective function and

its corresponding sensitivity analysis. To demonstrate

this implementation (based on the code in Appendix

B), let us consider a three-dimensional force inverter

problem as shown in Fig. 9. With an input load defined

in the positive direction, the design goal is to maximize

the negative horizontal output displacement. Both the

top face and the side force are imposed with symmetric

constraints; i.e., nodes can only move within the plane.

x

y
z

In

Out
Top face 
constrained 
for symmetric

Side face
constrained
for symmetric

Fig. 9: Design domain of 3D force inverter problem.

The new loading conditions as well as input and

output points are defined as follows:

11 % USER−DEFINED LOAD DOFs
11a % [ Input Dummy]
12 i l = [ 0 ne lx ] ; j l = [ ne ly ne ly ] ; k l = [ 0

0 ] ;
13 loadn id = k l ∗( ne lx +1)∗( ne ly +1)+i l ∗( ne ly

+1)+(ne ly+1− j l ) ;
14 loaddo f = 3∗ l oadn id ( : ) − 2 ;
14a din = loaddo f (1 ) ; dout = loaddo f (2 ) ;
22 F = spar s e ( loaddof , [ 1 2 ] , [ 1 −1] , ndof , 2 ) ;

and the boundary conditions are defined as below:

15 % USER−DEFINED SUPPORT FIXED DOFs
15a % Top f a c e
15b [ i i f , k f ] = meshgrid ( 0 : nelx , 0 : n e l z ) ;
15 c f i x e d n i d = kf ∗( ne lx +1)∗( ne ly +1)+ i i f ∗(

ne ly +1)+1;
15d f i x e d d o f t = 3∗ f i x e d n i d ( : ) −1;
16 % Side f a c e
16a [ i i f , j f ] = meshgrid ( 0 : nelx , 0 : ne ly ) ;
16b f i x e d n i d = i i f ∗( ne ly +1)+(ne ly+1− j f ) ;
16 c f i x e d d o f s = 3∗ f i x e d n i d ( : ) ;
17 % Two pins
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Table 4: Three-dimensional examples: Cantilever, MBB, and L-shape problem. Left: Initial design domains, right:

topology optimized results..

x
y

z

12L× 4L× 3L

mesh 120× 40× 30

v̄ = 0.15, p = 3, R = 1.5

x

y

z

6L× L× L
mesh 120× 20× 20

v̄ = 0.2, p = 3, R = 1.5

x

y

z

3L× L× L
mesh 60× 20× 20 and 40× 40× 20

v̄ = 0.15, p = 3, R = 1.2

17a i i f = [ 0 0 ] ; j f = [ 0 1 ] ; k f = [ ne l z ne l z
] ;

17b f i x e d n i d = kf ∗( ne lx +1)∗( ne ly +1)+ i i f ∗(
ne ly +1)+(ne ly+1− j f ) ;

17 c f i x e d d o f p = [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d
( : ) −1; 3∗ f i x e d n i d ( : ) −2];

18 % Fixed DOFs
18a f i x e d d o f = union ( f i x e d d o f t , f i x e d d o f s ) ;
18b f i x e d d o f = union ( f i x eddo f , f i x e d d o f p ) ;
18 c f i x e d d o f = s o r t ( f i x e d d o f ) ;
23a % Displacement vec to r

23 U = ze ro s ( ndof , 2 ) ;
24 f r e e d o f s = s e t d i f f ( 1 : ndof , f i x e d d o f ) ;

The external springs with stiffness 0.1 are added at in-

put and output points after line 71.

71a K( din , din ) = K( din , din ) + 0 . 1 ;
71b K( dout , dout ) = K( dout , dout ) + 0 . 1 ;

The expressions of the objective function Eq. (31) and

sensitivity Eq. (32) are modified in lines 74-76.



An efficient 3D topology optimization code written in Matlab 15

74a Ud = U( : , 2 ) ;
74b U = U( : , 1 ) ;
74 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗Ud(

edofMat ) ,2 ) , [ nely , nelx , n e l z ] ) ;
75 c = U( dout , 1 ) ;
76 dc = penal ∗(E0−Emin) ∗xPhys . ˆ ( penal−1) .∗

ce ;

The convergence criteria for the bi-sectioning algorithm

(lines 82-83) is improved by the following lines:

82 l 1 = 0 ; l 2 = 1e9 ; move = 0 . 1 ;
83 whi l e ( l2−l 1 ) /( l 1+l 2 ) > 1e−4 && l 2 > 1e

−40

To improve the convergence stability, the damping fac-

tor of OC-method changes from 0.5 to 0.3 and also takes

the positive sensitivities into account, then line 85 is

changed to:

85 xnew = max(0 ,max(x−move , min (1 , min ( x+move
, x . ∗ ( max(1 e−10,−dc . / dv/ lmid ) ) . ˆ 0 . 3 ) ) ) ) ;

The final design shown in Fig. 10 is promoted by the

line in the Matlab:

top3d ( 4 0 , 2 0 , 5 , 0 . 3 0 , 3 . 0 , 1 . 5 )

Fig. 10: Topology optimized force inverter.

6.3 Heat conduction

The implementation of heat conduction problems is not

more complex than the one for compliant mechanism

synthesis since the number of DOF per node is one

rather than three. Following the implementation of heat

conduction problems in two dimensions Bendsøe and

Sigmund (2003), the implementation for three dimen-

sion problems is suggested in the following steps.

First, the elastic material properties (lines 8-10) are

changed to the thermal conductivities of materials

8 k0 = 1 ; % Good thermal conduc t i v i t y
9 kmin = 1e−3; % Poor thermal conduc t i v i ty

Furthermore, the boundary conditions for the heat con-

dition problem, i.e., a rectangular plate with a heat sink

Sink

x

y

z

Fig. 11: Initial design domain of heat conduction prob-

lem.

on the middle of top face and all nodes are given a ther-

mal load as shown in Fig. 11, are changed corresponding

(lines 10-18).

10 % USER−DEFINED SUPPORT FIXED DOFs
11 i l = ne lx/2−ne lx /20 : ne lx/2+nelx /20 ; j l =

ne ly ; k l = 0 : ne l z ;
12 f i xedxy = i l ∗( ne ly +1)+(ne ly+1− j l ) ;
13 f i x e d n i d = repmat ( f ixedxy ’ , s i z e ( k l ) ) +

. . .
14 repmat ( k l ∗( ne lx +1)∗( ne ly +1) , s i z e (

f ixedxy , 2 ) ,1 ) ;
15 f i x e d d o f = reshape ( f i xedn id , [ ] , 1 ) ;

Also, since there is only one DOF per node in heat

condition problems, some variables need to change cor-

respondingly, such as ndof, edofMat.

Change the total number of DOFs and the force

vector in lines 21-22

21 ndof = ( ne lx +1)∗( ne ly +1)∗( ne l z +1) ;
22 F = spar s e ( 1 : ndof ,1 ,−0 .01 , ndof , 1 ) ;

The element conductivity matrix is called in line 25 by

25 KE = lk H8 ( k0 ) ;

and it is defined in lines 99-145

99 func t i on [KE] = lk H8 ( k )
100 A1 = 4∗ eye (2 ) ; A2 = −eye (2 ) ;
101 A3 = f l i p l r (A2) ; A4 = −ones (2 ) ;
102 KE1 = [ A1 A2 ; A2 A1 ] ;
103 KE2 = [ A3 A4 ; A4 A3 ] ;
104 KE = 1/12 ∗ k ∗ [KE1 KE2; KE2 KE1 ] ;
105 end

The finite element connectivity matrix edofMat is changed

in lines 30-35

30 edofVec = nodeids ( : ) +1;
31 edofMat = repmat ( edofVec , 1 , 8 )+ . . .
32 repmat ( [ 0 ne ly + [ 1 0 ] −1 . . .
33 ( ne ly +1)∗( ne lx +1)+[0 ne ly + [ 1 0 ]

−1] ] , ne le , 1 ) ;
34 iK = reshape ( kron ( edofMat , ones (8 , 1 ) )

’ ,8∗8∗ nele , 1 ) ;
35 jK = reshape ( kron ( edofMat , ones (1 , 8 ) )

’ ,8∗8∗ nele , 1 ) ;
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The global conductivity matrix is assembled in a differ-

ent way, hence line 70 need to change as

70 sK = reshape (KE( : ) ∗( kmin+(1−kmin ) ∗xPhys
( : ) ’ . ˆ penal ) ,8∗8∗ nele , 1 ) ;

The evulation of the objective function and analysis of

the sensitivity are given in lines 75-76

75 c = sum(sum(sum ( ( kmin+(1−kmin ) ∗xPhys . ˆ
penal ) .∗ ce ) ) ) ;

76 dc = −penal ∗(1−kmin ) ∗xPhys . ˆ ( penal−1) .∗
ce ;

The optimized topology is derived as shown in Fig. 12

by promoting the following line in the Matlab:

top3d ( 4 0 , 4 0 , 5 , 0 . 3 0 , 3 . 0 , 1 . 4 )

Fig. 12: Resulting topology of heat conduction problem.

7 Conclusions

This paper presents a 169-line MATLAB topology op-

timization code in three dimensions, called top3d. It is

published for the same purpose as others: to give stu-

dents and beginners in the field of topology optimiza-

tion an easy-to-use introductory tool. The implementa-

tion of the code is very simple. The code is provided in

Appendix B and can be downloaded from http://engr.

iupui.edu/~tovara/top3d.

The difference between the original 177-line code

(Zhou and Wang 2005) and this top3d code is the com-

putational cost. As listed in Table 3, the top3d code is

faster by a factor of 30.81. This speed up was mainly

achieved by avoiding nested for loops, and providing a

symbolic expression of the element stiffness matrix.

Additionally, the code can be extended to different

filter techniques (e.g., sensitivity filter, gray scale filter)

or an iterative solver in order to solve large-scale prob-

lems. Moreover, a continuation strategy can be applied

to the code to ensure the global minima.

To solve different optimization problems, users must

provide the corresponding force and support DOFs. In

both the 177-line code and the 88-line code, finding

the DOFs corresponding to the boundary conditions

is a difficult process. In this presented top3d code the

boundary conditions are defined in an evolutionary way.

Thanks to mapping relationships between the node co-

ordinates and the node numbers, users only need to

know the node coordinates of the boundary conditions.

Once the node coordinates are provided, its correspond-

ing node numbers and DOFs are generated automat-

ically. Hence, changing boundary conditions becomes

an effortless process. Therefore, the code can be easily

and quickly adopted for other boundary conditions, and

multiple load cases. Moreover, without an heavy invest-

ment in programming, this program is capable of solv-

ing problems with required active/passive elements, or

even solving different topology optimization problems.

The code was intended to be as compact as possi-

ble. If users of the code can find ways to further sim-

plify or accelerate the code, the authors would welcome

suggestion for modifications that can be incorporated

into the public code. The authors can be reached at

kailiu@iupui.edu, tovara@iupui.edu.
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Recall that, for an eight-node hexahedron element,

the strain-displacement matrix B is defined by

B =



∂n1(ξe)
∂ξ1

0 0 · · · ∂nq(ξe)
∂ξ1

0 0

0 ∂n1(ξe)
∂ξ2

0 · · · 0
∂nq(ξe)
∂ξ2

0 0 ∂n1(ξe)
∂ξ3

· · · 0 0
∂nq(ξe)
∂ξ3

∂n1(ξe)
∂ξ2

∂n1(ξe)
∂ξ1

0 · · · ∂nq(ξe)
∂ξ2

∂nq(ξe)
∂ξ1

0

0 ∂n1(ξe)
∂ξ3

∂n1(ξe)
∂ξ2

· · · 0
∂nq(ξe)
∂ξ3

∂nq(ξe)
∂ξ2

∂n1(ξe)
∂ξ3

0 ∂n1(ξe)
∂ξ1

· · · ∂nq(ξe)
∂ξ3

0
∂nq(ξe)
∂ξ1


,

for e = 1, . . . , 3 and q = 1, . . . , 8. The corresponding

shape functions nq in a natural coordinate systems ξe
are defined by

nq(ξe) =
1

8



(1− ξ1)(1− ξ2)(1− ξ3)

(1 + ξ1)(1− ξ2)(1− ξ3)

(1 + ξ1)(1 + ξ2)(1− ξ3)

(1− ξ1)(1 + ξ2)(1− ξ3)

(1− ξ1)(1− ξ2)(1 + ξ3)

(1 + ξ1)(1− ξ2)(1 + ξ3)

(1 + ξ1)(1 + ξ2)(1 + ξ3)

(1− ξ1)(1 + ξ2)(1 + ξ3)



.

Substituting values to Eq. (11), the 64 × 64 element

stiffness matrix k0
i for an eight-node hexahedron ele-

ment can be expressed as

k0
i =

1

(ν + 1)(1− 2ν)


k1 k2 k3 k4

kT
2 k5 k6 kT

4

kT
3 k6 kT

5 kT
2

k4 k3 k2 kT
1

 ,
where

k1 =



k1 k2 k2 k3 k5 k5
k2 k1 k2 k4 k6 k7
k2 k2 k1 k4 k7 k6
k3 k4 k4 k1 k8 k8
k5 k6 k7 k8 k1 k2
k5 k7 k6 k8 k2 k1

 ,

k2 =



k9 k8 k12 k6 k4 k7
k8 k9 k12 k5 k3 k5
k10 k10 k13 k7 k4 k6
k6 k5 k11 k9 k2 k10
k4 k3 k5 k2 k9 k12
k11 k4 k6 k12 k10 k13

 ,

k3 =



k6 k7 k4 k9 k12 k8
k7 k6 k4 k10 k13 k10
k5 k5 k3 k8 k12 k9
k9 k10 k2 k6 k11 k5
k12 k13 k10 k11 k6 k4
k2 k12 k9 k4 k5 k3

 ,

k4 =



k14 k11 k11 k13 k10 k10
k11 k14 k11 k12 k9 k8
k11 k11 k14 k12 k8 k9
k13 k12 k12 k14 k7 k7
k10 k9 k8 k7 k14 k11
k10 k8 k9 k7 k11 k14

 ,

k5 =



k1 k2 k8 k3 k5 k4
k2 k1 k8 k4 k6 k11
k8 k8 k1 k5 k11 k6
k3 k4 k5 k1 k8 k2
k5 k6 k11 k8 k1 k8
k4 k11 k6 k2 k8 k1

 ,

k6 =



k14 k11 k7 k13 k10 k12
k11 k14 k7 k12 k9 k2
k7 k7 k14 k10 k2 k9
k13 k12 k10 k14 k7 k11
k10 k9 k2 k7 k14 k7
k12 k2 k9 k11 k7 k14

 ,

and

k1 = −(6ν − 4)/9,

k2 = 1/12,

k3 = −1/9,

k4 = −(4ν − 1)/12,

k5 = (4ν − 1)/12,

k6 = 1/18,

k7 = 1/24,

k8 = −1/12,

k9 = (6ν − 5)/36,

k10 = −(4ν − 1)/24,

k11 = −1/24,

k12 = (4ν − 1)/24,

k13 = (3ν − 1)/18,

k14 = (3ν − 2)/18.

As can be seen from above, the 64×64 entries in the

element stiffness matrix can be represented by fourteen

components (but not independent!).
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Appendix B: MATLAB Program top3d

1 % A 169 LINE 3D TOPOLOGY OPITMIZATION CODE BY LIU AND TOVAR (JUL 2013)
2 func t i on top3d ( nelx , nely , ne lz , v o l f r a c , penal , rmin )
3 % USER−DEFINED LOOP PARAMETERS
4 maxloop = 200 ; % Maximum number o f i t e r a t i o n s
5 t o l x = 0 . 0 1 ; % Termination c r i t e r i o n
6 d i s p l a y f l a g = 1 ; % Display s t r u c t u r e f l a g
7 % USER−DEFINED MATERIAL PROPERTIES
8 E0 = 1 ; % Young ’ s modulus o f s o l i d mate r i a l
9 Emin = 1e−9; % Young ’ s modulus o f void− l i k e mate r i a l

10 nu = 0 . 3 ; % Poisson ’ s r a t i o
11 % USER−DEFINED LOAD DOFs
12 i l = ne lx ; j l = 0 ; k l = 0 : ne l z ; % Coordinates
13 loadn id = k l ∗( ne lx +1)∗( ne ly +1)+i l ∗( ne ly +1)+(ne ly+1− j l ) ; % Node IDs
14 loaddo f = 3∗ l oadn id ( : ) − 1 ; % DOFs
15 % USER−DEFINED SUPPORT FIXED DOFs
16 [ j f , k f ] = meshgrid ( 1 : ne ly +1 ,1: ne l z +1) ; % Coordinates
17 f i x e d n i d = ( kf−1)∗( ne ly +1)∗( ne lx +1)+j f ; % Node IDs
18 f i x e d d o f = [3∗ f i x e d n i d ( : ) ; 3∗ f i x e d n i d ( : ) −1; 3∗ f i x e d n i d ( : ) −2]; % DOFs
19 % PREPARE FINITE ELEMENT ANALYSIS
20 ne l e = ne lx ∗ ne ly ∗ ne l z ;
21 ndof = 3∗( ne lx +1)∗( ne ly +1)∗( ne l z +1) ;
22 F = spar s e ( loaddof ,1 ,−1 , ndof , 1 ) ;
23 U = ze ro s ( ndof , 1 ) ;
24 f r e e d o f s = s e t d i f f ( 1 : ndof , f i x e d d o f ) ;
25 KE = lk H8 (nu) ;
26 nodegrd = reshape ( 1 : ( ne ly +1)∗( ne lx +1) , ne ly +1, ne lx +1) ;
27 node ids = reshape ( nodegrd ( 1 : end−1 ,1: end−1) , ne ly ∗nelx , 1 ) ;
28 nodeidz = 0 : ( ne ly +1)∗( ne lx +1) : ( ne lz −1)∗( ne ly +1)∗( ne lx +1) ;
29 node ids = repmat ( nodeids , s i z e ( nodeidz ) )+repmat ( nodeidz , s i z e ( nodeids ) ) ;
30 edofVec = 3∗ nodeids ( : ) +1;
31 edofMat = repmat ( edofVec , 1 , 2 4 )+ . . .
32 repmat ( [ 0 1 2 3∗ ne ly + [ 3 4 5 0 1 2 ] −3 −2 −1 . . .
33 3∗( ne ly +1)∗( ne lx +1)+[0 1 2 3∗ ne ly + [ 3 4 5 0 1 2 ] −3 −2 −1] ] , ne le , 1 ) ;
34 iK = kron ( edofMat , ones (24 ,1 ) ) ’ ;
35 jK = kron ( edofMat , ones (1 , 24 ) ) ’ ;
36 % PREPARE FILTER
37 iH = ones ( ne l e ∗ (2∗ ( c e i l ( rmin )−1)+1) ˆ2 ,1) ;
38 jH = ones ( s i z e ( iH ) ) ;
39 sH = ze ro s ( s i z e ( iH ) ) ;
40 k = 0 ;
41 f o r k1 = 1 : ne l z
42 f o r i 1 = 1 : ne lx
43 f o r j 1 = 1 : ne ly
44 e1 = ( k1−1)∗ ne lx ∗ ne ly + ( i1 −1)∗ ne ly+j1 ;
45 f o r k2 = max( k1−( c e i l ( rmin )−1) ,1 ) : min ( k1+( c e i l ( rmin )−1) , n e l z )
46 f o r i 2 = max( i1−( c e i l ( rmin )−1) ,1 ) : min ( i 1 +( c e i l ( rmin )−1) , ne lx )
47 f o r j 2 = max( j1−( c e i l ( rmin )−1) ,1 ) : min ( j1 +( c e i l ( rmin )−1) , ne ly )
48 e2 = ( k2−1)∗ ne lx ∗ ne ly + ( i2 −1)∗ ne ly+j2 ;
49 k = k+1;
50 iH ( k ) = e1 ;
51 jH ( k ) = e2 ;
52 sH( k ) = max(0 , rmin−s q r t ( ( i1−i 2 ) ˆ2+( j1−j 2 ) ˆ2+(k1−k2 ) ˆ2) ) ;
53 end
54 end
55 end
56 end
57 end
58 end
59 H = spar s e ( iH , jH , sH) ;
60 Hs = sum(H, 2 ) ;
61 % INITIALIZE ITERATION
62 x = repmat ( v o l f r a c , [ nely , nelx , n e l z ] ) ;
63 xPhys = x ;
64 loop = 0 ;
65 change = 1 ;
66 % START ITERATION
67 whi le change > t o l x && loop < maxloop
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68 loop = loop +1;
69 % FE−ANALYSIS
70 sK = KE( : ) ∗(Emin+xPhys ( : ) ’ . ˆ penal ∗(E0−Emin) ) ;
71 K = spar s e ( iK ( : ) , jK ( : ) , sK ( : ) ) ; K = (K+K’ ) /2 ;
72 U( f r e e d o f s , : ) = K( f r e e d o f s , f r e e d o f s ) \F( f r e e d o f s , : ) ;
73 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
74 ce = reshape (sum ( (U( edofMat ) ∗KE) .∗U( edofMat ) ,2 ) , [ nely , nelx , n e l z ] ) ;
75 c = sum(sum(sum ( ( Emin+xPhys . ˆ penal ∗(E0−Emin) ) .∗ ce ) ) ) ;
76 dc = −penal ∗(E0−Emin) ∗xPhys . ˆ ( penal−1) .∗ ce ;
77 dv = ones ( nely , nelx , n e l z ) ;
78 % FILTERING AND MODIFICATION OF SENSITIVITIES
79 dc ( : ) = H∗( dc ( : ) . / Hs) ;
80 dv ( : ) = H∗( dv ( : ) . / Hs) ;
81 % OPTIMALITY CRITERIA UPDATE
82 l 1 = 0 ; l 2 = 1e9 ; move = 0 . 2 ;
83 whi l e ( l2−l 1 ) /( l 1+l 2 ) > 1e−3
84 lmid = 0 . 5∗ ( l 2+l 1 ) ;
85 xnew = max(0 ,max(x−move , min (1 , min ( x+move , x .∗ s q r t (−dc . / dv/ lmid ) ) ) ) ) ;
86 xPhys ( : ) = (H∗xnew ( : ) ) . / Hs ;
87 i f sum( xPhys ( : ) ) > v o l f r a c ∗nele , l 1 = lmid ; e l s e l 2 = lmid ; end
88 end
89 change = max( abs (xnew ( : )−x ( : ) ) ) ;
90 x = xnew ;
91 % PRINT RESULTS
92 f p r i n t f ( ’ I t . :%5 i Obj . :%11 .4 f Vol . :%7 .3 f ch . :%7 .3 f \n ’ , loop , c , mean( xPhys ( : ) ) , change ) ;
93 % PLOT DENSITIES
94 i f d i s p l a y f l a g , c l f ; d i sp lay 3D ( xPhys ) ; end
95 end
96 c l f ; d i sp lay 3D ( xPhys ) ;
97 end
98 % ===================== AUXILIARY FUNCTIONS ===============================
99 % GENERATE ELEMENT STIFFNESS MATRIX

100 func t i on [KE] = lk H8 (nu)
101 A = [32 6 −8 6 −6 4 3 −6 −10 3 −3 −3 −4 −8;
102 −48 0 0 −24 24 0 0 0 12 −12 0 12 12 1 2 ] ;
103 k = 1/72∗A’ ∗ [ 1 ; nu ] ;
104 % GENERATE SIX SUB−MATRICES AND THEN GET KE MATRIX
105 K1 = [ k (1 ) k (2 ) k (2 ) k (3 ) k (5 ) k (5 ) ;
106 k (2 ) k (1 ) k (2 ) k (4 ) k (6 ) k (7 ) ;
107 k (2 ) k (2 ) k (1 ) k (4 ) k (7 ) k (6 ) ;
108 k (3 ) k (4 ) k (4 ) k (1 ) k (8 ) k (8 ) ;
109 k (5 ) k (6 ) k (7 ) k (8 ) k (1 ) k (2 ) ;
110 k (5 ) k (7 ) k (6 ) k (8 ) k (2 ) k (1 ) ] ;
111 K2 = [ k (9 ) k (8 ) k (12) k (6 ) k (4 ) k (7 ) ;
112 k (8 ) k (9 ) k (12) k (5 ) k (3 ) k (5 ) ;
113 k (10) k (10) k (13) k (7 ) k (4 ) k (6 ) ;
114 k (6 ) k (5 ) k (11) k (9 ) k (2 ) k (10) ;
115 k (4 ) k (3 ) k (5 ) k (2 ) k (9 ) k (12)
116 k (11) k (4 ) k (6 ) k (12) k (10) k (13) ] ;
117 K3 = [ k (6 ) k (7 ) k (4 ) k (9 ) k (12) k (8 ) ;
118 k (7 ) k (6 ) k (4 ) k (10) k (13) k (10) ;
119 k (5 ) k (5 ) k (3 ) k (8 ) k (12) k (9 ) ;
120 k (9 ) k (10) k (2 ) k (6 ) k (11) k (5 ) ;
121 k (12) k (13) k (10) k (11) k (6 ) k (4 ) ;
122 k (2 ) k (12) k (9 ) k (4 ) k (5 ) k (3 ) ] ;
123 K4 = [ k (14) k (11) k (11) k (13) k (10) k (10) ;
124 k (11) k (14) k (11) k (12) k (9 ) k (8 ) ;
125 k (11) k (11) k (14) k (12) k (8 ) k (9 ) ;
126 k (13) k (12) k (12) k (14) k (7 ) k (7 ) ;
127 k (10) k (9 ) k (8 ) k (7 ) k (14) k (11) ;
128 k (10) k (8 ) k (9 ) k (7 ) k (11) k (14) ] ;
129 K5 = [ k (1 ) k (2 ) k (8 ) k (3 ) k (5 ) k (4 ) ;
130 k (2 ) k (1 ) k (8 ) k (4 ) k (6 ) k (11) ;
131 k (8 ) k (8 ) k (1 ) k (5 ) k (11) k (6 ) ;
132 k (3 ) k (4 ) k (5 ) k (1 ) k (8 ) k (2 ) ;
133 k (5 ) k (6 ) k (11) k (8 ) k (1 ) k (8 ) ;
134 k (4 ) k (11) k (6 ) k (2 ) k (8 ) k (1 ) ] ;
135 K6 = [ k (14) k (11) k (7 ) k (13) k (10) k (12) ;
136 k (11) k (14) k (7 ) k (12) k (9 ) k (2 ) ;
137 k (7 ) k (7 ) k (14) k (10) k (2 ) k (9 ) ;
138 k (13) k (12) k (10) k (14) k (7 ) k (11) ;
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139 k (10) k (9 ) k (2 ) k (7 ) k (14) k (7 ) ;
140 k (12) k (2 ) k (9 ) k (11) k (7 ) k (14) ] ;
141 KE = 1/(( nu+1)∗(1−2∗nu) ) ∗ . . .
142 [ K1 K2 K3 K4 ;
143 K2’ K5 K6 K3 ’ ;
144 K3’ K6 K5’ K2 ’ ;
145 K4 K3 K2 K1 ’ ] ;
146 end
147 % DISPLAY 3D TOPOLOGY (ISO−VIEW)
148 func t i on disp lay 3D ( rho )
149 [ nely , nelx , n e l z ] = s i z e ( rho ) ;
150 hx = 1 ; hy = 1 ; hz = 1 ; % User−de f ined un i t element s i z e
151 f a c e = [ 1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8 ] ;
152 s e t ( gcf , ’Name ’ , ’ ISO d i s p l a y ’ , ’ NumberTitle ’ , ’ o f f ’ ) ;
153 f o r k = 1 : ne l z
154 z = (k−1)∗hz ;
155 f o r i = 1 : ne lx
156 x = ( i −1)∗hx ;
157 f o r j = 1 : ne ly
158 y = nely ∗hy − ( j−1)∗hy ;
159 i f ( rho ( j , i , k ) > 0 . 5 ) % User−de f ined d i sp l ay dens i ty th r e sho ld
160 ver t = [ x y z ; x y−hx z ; x+hx y−hx z ; x+hx y z ; x y z+hx ; x y−hx z+hx ; x+hx y−hx z

+hx ; x+hx y z+hx ] ;
161 ve r t ( : , [ 2 3 ] ) = ver t ( : , [ 3 2 ] ) ; ve r t ( : , 2 , : ) = −ver t ( : , 2 , : ) ;
162 patch ( ’ Faces ’ , face , ’ V e r t i c e s ’ , vert , ’ FaceColor ’ , [0 .2+0.8∗(1− rho ( j , i , k ) )

,0.2+0.8∗(1− rho ( j , i , k ) ) ,0.2+0.8∗(1− rho ( j , i , k ) ) ] ) ;
163 hold on ;
164 end
165 end
166 end
167 end
168 a x i s equal ; a x i s t i g h t ; a x i s o f f ; box on ; view ( [ 3 0 , 3 0 ] ) ; pause (1 e−6) ;
169 end
170 % =========================================================================
171 % === This code was wr i t t en by K Liu and A Tovar , Dept . o f Mechanical ===
172 % === Engineer ing , Indiana Univers i ty−Purdue Un ive r s i ty Ind i anapo l i s , ===
173 % === Indiana , United Sta t e s o f America ===
174 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
175 % === Please send your s u g g e s t i o n s and comments to : ka i l i u@ iupu i . edu ===
176 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
177 % === The code i s intended f o r educa t i ona l purposes , and the d e t a i l s ===
178 % === and ex t en s i on s can be found in the paper : ===
179 % === ’ ’ ’ ’ ===
180 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
181 % === The code as we l l as an uncorrected v e r s i on o f the paper can be ===
182 % === downloaded from the webs i te : http :// engr . iupu i . edu/˜ tovara / top3d ===
183 % === −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ===
184 % === Disc la imer : ===
185 % === The authors r e s e r v e s a l l r i g h t s f o r the program . ===
186 % === The code may be d i s t r i b u t e d and used f o r educa t i ona l purposes . ===
187 % === The authors do not guarantee that the code i s f r e e from er ro r s , and =
188 % === they s h a l l not be l i a b l e in any event caused by the use o f the code .=
189 % =========================================================================
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