
Computer-Aided Design 40 (2008) 381–395
www.elsevier.com/locate/cad
WireWarping: A fast surface flattening approach with length-preserved
feature curves

Charlie C.L. Wang∗

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received 28 April 2007; accepted 25 November 2007

Abstract

This paper presents a novel approach — WireWarping for computing a flattened planar piece with length-preserved feature curves from a 3D
piecewise linear surface patch. The property of length-preservation on feature curves is very important to industrial applications for controlling
the shape and dimension of products fabricated from planar pieces. WireWarping simulates warping a given 3D surface patch onto plane with
the feature curves as tendon wires to preserve the length of their edges. During warping, the surface-angle variations between edges on wires are
minimized so that the shape of a planar piece is similar to its corresponding 3D patch. Two schemes — the progressive warping and the global
warping schemes are developed, where the progressive scheme is flexible for local shape control and the global scheme gives good performance on
highly distorted patches. Experimental results show that WireWarping can successfully flatten surface patches into planar pieces while preserving
the length of edges on feature curves.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Surface flattening; Freeform mesh surfaces; Feature curves; Length preserved; Sheet manufacturing industry
1. Introduction

The work presented in this paper is motivated by the
development of 3D design automation systems for freeform
products in those industries where the products are fabricated
from planar pieces of sheet material (e.g. metal in ship
industry, fabric in apparel industry and toy industry, leather
in shoe industry and furniture industry). How to determine
the shape of 2D pieces from designed 3D surface patches
now becomes the bottleneck in the design and manufacturing
cycle. The cycle is completed only after obtaining the 2D
pieces since the final products are fabricated by warping
and stitching the 2D pieces. Ideally, a flattened 2D piece is
expected to have an isometric mapping to its corresponding
3D patch in the representation of a piecewise linear
surface. However, from differential geometry [14], we know
that only those developable surfaces satisfy this property.
Therefore, the existing approaches in the computer-aided
design area for surface flattening (e.g. [1–4,25,43,39,41,45])
and the computer graphics literature for mesh parameterization
∗ Tel.: +852 26098052; fax: +852 26036002.
E-mail address: cwang@mae.cuhk.edu.hk.

0010-4485/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2007.11.011
(e.g. [13,16,18,20,35,36]) adopt various criteria (including
the length variation criterion) to minimize the difference
between the 3D surface patch and its corresponding 2D region.
Moveover, a fast flattening approach is needed in interactive
design systems where any 3D shape editing should result in its
corresponding 2D pieces instantaneously.

The problem of surface flattening (or parameterization)
is usually formulated under a constrained optimization
framework, the resultant 3D patch generally is not a
developable surface, length variation is always found in the
flattening results. For an engineering application such as the 3D
garment design and manufacturing shown in Fig. 1, the length
variations will lead to many problems. If the length variation
occurs on the boundaries of two pieces that are going to be
sew together, unexpected wrinkles will form on the fabricated
product. If the length variation happens in the interior region
of a patch, it will destroy the designed fit (e.g. if the length of
chest girth varies on the flattened patterns of the shirt shown
in Fig. 1, the products made by these patterns may be too
tight or too loose). A good garment shape and fit (i.e. without
the unexpected wrinkles) are two necessary criteria to evaluate
whether a suit is a high-end garment product. This is also
true for other industrial applications (e.g. the shoe industry

http://www.elsevier.com/locate/cad
mailto:cwang@mae.cuhk.edu.hk
http://dx.doi.org/10.1016/j.cad.2007.11.011

382 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
Fig. 1. Example of surface flattening on 3D shirt (front and back views), where the black curves are the boundaries of 3D surface patches, the blue curves are the
darts that will be cut out (so that become black curves), the red ones are the key feature curves, and the green ones are the accessory feature curves – the definitions
about key feature curves and accessory feature curves will be given in Section 2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
and the furniture industry). Therefore, the designers in these
industries desire a surface flattening tool, which can preserve
the length of boundaries and feature curves (e.g. the black and
green curves in Fig. 1) on a 2D piece according to its 3D
surface patch. In this paper, a method (named as WireWarping)
is exploited to simulate warping a given 3D surface into 2D
with the boundaries and feature curves as tendon wires so that
the length of their edges are preserved. The boundaries and
feature curves are referred to as wires for the rest of this paper.
The surface-angle variation between edges on a feature curve
during the warping needs to be minimized to make the shape of
a pattern in 2D similar to its corresponding 3D patch.

Problem definition. Given a piecewise linear surface patch
in R3, its counterpart pattern in R2 will be computed to
make the length of edges on the boundaries and feature curves
(named as wires) optimally invariant; meanwhile, the angles
between neighbouring edges on the wires in R2 are optimized
to preserve their values on the given 3D surface patch.

1.1. Literature review

Before reviewing the techniques of surface flattening,
we cannot avoid reviewing the theoretical background of
developable surface from differential geometry. In differential
geometry [14], the definition of a developable surface is derived
from ruled surfaces: for a ruled surface X (t, v) = α(t) +
vβ(t), it is developable if β, β̇ and α̇ are coplanar for all
points on X . In general, a differential surface is developable
if and only if it belongs to one of the following surface
types: planes, generalized cylinder, conical surfaces (away from
the apex), or tangent developable surfaces. Based on this,
some researches in literature focused on modelling [19,33,10]
or approximating [9,30,32] a model with developable ruled
surfaces (or ruled surfaces in other representations — e.g. B-
spline or Bézier patches). However, it is difficult to use these
approaches to model freeform surfaces. Another limitation of
these approaches is that they can only model surface patches
with four-sided boundaries as the surfaces are usually defined
on a square parametric domain. Although trimmed surfaces
were considered in [42], the modelling ability for freeform
objects by this category of approaches is still very limited.

In the area of computer-aided design, the surface flattening
for pattern design has been studied in various industries (cf.
[1–4,25,43,39,41,45]). An ideal surface flattening of a given
3D surface patch P to its corresponding 2D piece D preserves
the distances between any two points — mathematically an
isometric mapping is needed. However, this property is only
held on those developable surfaces. Based on this reason,
the surface flattening approaches always evaluate the error of
distance variations between surface points on P and D, and
tries to minimize this error under a non-linear optimization
framework. The computation of non-linear optimization in
terms of vertex position is very time-consuming and can hardly
preserve the invariant length of feature curves. Similarly, the
mesh parameterization approaches in literature (cf. [13,16,18,
20,35,36]) give strength on how to minimize the distortions
between P and D in angles, areas or lengths. The detail review
is given in [15] by Floater and Hormann. Another interesting
category of surface flattening approaches solves the problem
by computing mappings for dimensionality reduction [6,34,22]
or through a multidimensional scaling (MDS) technique [44].
These approaches are all based on computing an optimal
mapping that projects the geodesic distances on surfaces into
Euclidean distances in R2 (i.e. a lower dimension space).
Nevertheless, it is difficult to embed the hard constraints on the
length of feature curves in the mapping computation.

The idea of preserving the length of feature-curves on a
network relates to the isometric tree described in [23] by
Manning, where he introduced an isometric tree consisting of a
network of curves that are mapped onto the plane isometrically.
However, the network considered in [23] is with the tree
topology and the isometric curves are the branches of the
tree, which are flattened one by one without considering the
relationship between these curves. The relationship between

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 383
feature curves will be fully addressed under a constrained
optimization framework in this paper. Another flattening
algorithm driven by curves is [8], where Bennis et al. mapped
isoparametric curves onto plane followed by a relaxation
process to position the surface between them. They also
employed a progressive algorithm to process complex surfaces;
however, the relationship between these isoparametric curves
was not well addressed. Azariadis and Aspragathos [2]
proposed a method for optimal geodesic curvature preservation
in surface flattening with feature curves. Nevertheless, the
drawback of their method is that: their method was based on an
optimization in terms of vertex positions, which is highly non-
linear and cannot be efficiently solved as the proposed one here
in quadratic form. Besides, the length preserved curve mapping
does also relate to the intrinsic form of curves discussed in [28].

In literature, some approaches directly model developable
(or flattenable) surfaces in R3 instead of computing a surface
flattening mapping. The authors in [12] processed a given mesh
surface by fitting a conical surface locally at every vertex so
that the expected normal vectors can be determined. After that,
a deformation process is applied to adjust the position of surface
vertices to follow the given normal vectors. The resulting
local surface is of a conical form. More generally, Wang
and Tang in [40] adopted the discrete definition of Gaussian
curvature to define the measurement for the developability on
given polygonal mesh surfaces. A constrained optimization
approach was conducted to deform mesh surfaces to increase
their discrete developability. Liu et al. in [21] presented a novel
PQ mesh, which can be used to model developable surface in
strips. Recently, Wang presented a FL mesh modelling scheme
in [37], which models developable mesh surfaces with a more
complicated shape. Of course, if a given mesh surface P is
developable, the length of feature curves will not be changed
during the flattening. However, it is never easy to modify any
of these approaches so that they can process a surface from
non-developable to developable while preserving the length of
feature curves. Besides, the computation in [40,12,21,37] is
much slower than the WireWarping approach introduced in this
paper.

1.2. Contributions and overview

The work presented in this paper has the following technical
contributions:

• A novel method WireWarping is introduced as a fast surface
flattening algorithm which preserves the length of feature
curves.
• Two schemes — the Progressive Warping and the Global

Warping are developed, where the former scheme is more
flexible for local shape control on feature curves and the
latter one gives better performance on those highly curved
surface patches.
• The flattening process is benefited from reformulating

the constrained optimization problem in the angle space.
WireWarping is a fast surface flattening approach — in all
our tests, the computation can be finished in an interactive
speed.
The paper is organized as below. After giving necessary
preliminaries in Section 2, the progressive warping scheme of
WireWarping is presented in Section 3. Section 4 formulates the
warping of wires globally under a framework of constrained
optimization. Experimental results as well as limitations are
discussed in Section 5. Lastly, the paper ends with the
conclusion section.

2. Preliminary

We first give necessary definitions and preliminaries.

Definition 1. Feature curves are the piecewise linear curves
formed by polygonal edges on the given piecewise linear
surface P to be flattened, where every segment on a feature
curve is required to have the same length on P and the flattened
piece D.

Definition 2. For a feature curve, if its planar shape on the
flattened piece D has been predefined, it is named as a key
feature curve; other feature curves are called accessory feature
curves, whose planar shapes are determined by minimizing the
variation between the surface angle and the planar angle at each
endpoint of segments.

Definition 3. Darts are the curves defined on the piecewise
linear surface P , which specify the place to be cut out.

For different products, different sets of feature curves are
defined by industrial designers. Feature curves are adopted in
the 3D design to control the shape of final product, and the
role of these feature curves is like control curves for lofting in
geometrical modelling systems. However, for products that are
fabricated from 2D sheet materials, an important requirement of
the feature curves is that they should be length invariant during
flattening (i.e. work like tendon wires). The red and green
curves shown in Fig. 1 are feature curves. In all examples of this
paper, the key feature curves are coloured in red, the accessory
feature curves are displayed in green and the boundary curves
are shown in black. The boundary curves are classified into
accessory feature curves if no special explanation is given.
Darts are illustrated in blue in all examples, which will be
converted into boundary curves at the beginning of flattening
by iteratively introducing duplicated edges on those belonging
to the dart curve. All feature curves are in general called wires
in the rest of the paper.

Definition 4. Each region circled by feature curves on the given
surface P is defined as a wire-patch.

For a given surface patch P , it can be segmented into several
wire-patches. Fig. 2(a) illustrates the wire-patches on the shirt
with different colours. The boundary of a wire-patch is recorded
by a list of wire-nodes, where each wire-node is coincident with
a vertex on wires of surface patch P . For the vertex v on a
feature curve, it may have more than one wire-nodes attached
(e.g. the vertex circled by blue curves in Fig. 2(b)). The number
of wire-nodes associated with a surface vertex v is determined
by the number of wire-patches adjacent to v.

384 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
Fig. 2. The preliminary construction of wire-patches. (a) left — the wires (note that the darts have been converted into boundary curves), middle — the given
piecewise linear surface, and right — the wire-patches that are visualized in different colors. (b) illustration for the wire-nodes (the wire-nodes belonging to different
wire-patches are shown in different colors). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Definition 5. A wire-node is denoted by q i
j with the superscript

for the index of the wire-patch Pi holding it, and the subscript
represents its index in Pi (ordered anticlockwise); v(q i

j)

represents the vertex holding q i
j that is named as the host vertex

of q i
j .

For three neighbouring wire-nodes q i
j−1, q i

j and q i
j+1 on the

same wire-patch, αi
j is employed to represent the surface angle

on Pi formed by them. The value of αi
j can be evaluated by

summing the angles of polygons fk with fk ∈ Pi at the host
vertex v(q i

j). The 2D angle formed by these three wire-nodes

after flattening is denoted by θ i
j – details about how to compute

θ i
j will be addressed later. A data-structure entity is developed

for wire-nodes so that we can easily find the host vertex v(q i
j) of

a wire-node q i
j in a constant time complexity. The wire-nodes in

other adjacent wire-patches at v(q i
j) is also stored in this entity.

Also, in order to travel among neighboring wire-patches, the
following wire-curve is defined.

Definition 6. A wire-curve is defined by an ordered list of
directional edges on P which separates two neighbouring wire-
patches.

It is obvious that the wire-curves are coincident to feature
curves, and the boundary of a wire-patch consists of several
wire-curves in general. A wire-patch stores a collection of its
wire-curves and a wire-curve entity records its left/right wire-
patches in the data structure.

Before discussing details of the WireWarping approach, we
still need to figure out one more problem — how to specify
the shape of key feature curves in R2. As will be described
later, the shape of wires in R2 are determined by the computed
planar angles associated with wire-nodes (i.e. the value of θ i

j

at q i
j). Therefore, users can specify the shape of a key feature

curve in R2 by assigning θ i
j of wire-nodes on the key feature

curve. Users sometime do not explicitly give the shape of a
key feature curve, but just wish that it remains the shape on the
given surface P . To reflect the intention of this, we assign the
2D angle of a wire-node q on key feature curves as θ(q) ≡ α(q)

if v(q) is a boundary vertex. If v(q) is an interior vertex on P ,
the value of θ(q) is given as

θ(q) ≡
2π · α(q)∑

qk∈v(q)

α(qk)
, (1)

where qks are the wire-nodes associated with v(q). By Eq. (1)),
the 2D angles of wire-nodes associated with an interior vertex
are proportional to their values in 3D, and the sum of these 2D
angles is restricted to 2π — to be locally flattenable (cf. [37]).
Based on the above definitions and preliminaries, two schemes
of WireWarping will be presented in the following sections.

3. Progressive warping scheme

The progressive warping scheme of WireWarping will be
presented in this section, which simulates the warping of wire-
patches from R3 into R2 one by one. After addressing the
warping problem of a single wire-patch, we consecutively
present the progressive warping algorithm, the method for
placing feature curves in R2, and the method to compute
interior meshes of wire-patches.

3.1. Computing length-preserved optimal boundary of a wire-
patch

A single wire-patch Pi is in fact a piecewise linear surface
patch with the disk-like topology. The method of flattening it

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 385
Fig. 3. The computation of length-preserved optimal boundary (from [38]).

into a planar patch retains the length of edges on its boundary
(i.e. on the feature curves of P) will be given below. More
specifically, we introduce an algorithm that simulates the edges
on boundary of wire-patches as tendon wires and flattens the
wires onto plane by warping them. During the flattening, we
retain the lengths of edges on wires and also minimize the
surface-angle variation between edges on wires. Therefore, the
shape of a warped wire-patch in 2D is similar to its shape on
the given surface patch P .

Based on the above requirements, we can compute the
optimal planar boundary of a wire-patch under a constrained
optimization framework. The angle variation term is set as the
soft constraint in the objective function, and the length invariant
term is assigned as the hard constraint. Study in [38] shows
that formulating this problem in the angle space as follows can
greatly simplify the computation.

min
θi

n∑
i=1

1
2
(θi − αi)

2 s.t. nπ −

n∑
i=1

θi ≡ 2π,

n∑
i=1

li cos φi ≡ 0,

n∑
i=1

li sin φi ≡ 0 (2)

where θi is the 2D angle associated with the wire-node qi , αi
represents its 3D surface angle, li denotes the length of an edge
on the boundary, and n is the number of wire-nodes on the
boundary. Since all variables are for the same wire-patch, to
be simple the superscript index is neglected. From the closed-
path theorem (Ref. [26]), we know that: for a simple non-self-
intersection planar closed path, if its path is anti-clockwise,
the total turning must be 2π . As shown in Fig. 3, the total
turning by accumulating vertex turning angles can be computed
by
∑n

i=1(π − θi), which leads to the first constrain in Eq. (2)
that nπ −

∑
i θi ≡ 2π . The later two constraints in Eq. (2) are

derived from the position coincidence requirement. By giving
the inner turning angles θi s and placing the wire-node q1 at the
origin, the planar coordinate (xi , yi) of a wire-node qi becomes
xi =

∑i−1
k=1 lk cos φk and yi =

∑i−1
k=1 lk sin φk . As illustrated in

Fig. 3, we have θi = 2π − (φi − β) at the wire-node qi and
β = φi−1 − π at the wire-node qi−1, which yields

φi = π − θi + φi−1. (3)

Together with φ1 = π − θ1, the general formula for φi
can be derived as φi = iπ −

∑i
b=1 θb. In order to ensure
the boundary of a wire-patch being closed, we must let
(xn+1, yn+1) be coincident with the origin, which leads to the
last two constraints in Eq. (2).

Algorithm 1 Newton’s Method

1: while ‖δθ‖
2/n > 10−8 do

2: Solve ∇2 J (X)δ = −∇ J (X);
3: X ← X + δ;
4: end while

With the Lagrange multiplier λ = (λθ , λx , λy), the
constrained optimization problem defined in Eq. (2) can be
converted into an augmented objective function

J (X) =

n∑
i=1

1
2
(θi − αi)

2
+ λθ

(
(n − 2)π −

n∑
i=1

θi

)

+ λx

n∑
i=1

li cos φi + λy

n∑
i=1

li sin φi , (4)

which can be minimized using Newton’s method [29] as shown
in Algorithm 1 with δ = [δθ δλ]

T . The size of Hessian
matrix ∇2 J (X) is n + 3. To speed up step 2 in the Newton’s
routine, the sequential linearly constrained programming is
used to minimize J (X) by neglecting the terms coming from
the second derivatives of the constraints in the Hessian matrix
∇

2 J (X). The equation

∇
2 J (X)δ = −∇ J (X)

solved at each iteration is simplified into[
I ΛT

Λ 0

] [
δθ

δλ

]
=

[
Bθ

Bλ

]
(5)

with X = (θ1, . . . , θn, λθ , λx , λy). In this equation, Λ, Bθ and
Bλ can all be efficiently evaluated in recursive forms (see [38]).
Eq. (5) can then be solved by

ΛΛT δλ = ΛBθ − Bλ (6)

δθ = Bθ − ΛT δλ (7)

where ΛΛT is 3×3 (as Λ is 3×n). After computing the optimal
values of θi , the values of φi can be determined by Eq. (3).
Therefore, the optimal position of every wire-node is given by

qi+1 = qi + (li cos φi , li sin φi)
T . (8)

In all our tests, Newton’s routine reaches the terminal condition
in less than 10 iteration steps.

Computation with locked 2D angles. Different from the
surface warping in [38], here the computation of the optimal
planar boundary for a wire-patch may need to lock the values
of 2D angles at some wire-nodes. For example, if the wire-node
qi is located on a key feature curve with its 2D shape specified
by designers – an optimal value θ̂i at qi is given. We embed this
constraint into the above numerical computation by modifying
the linear equation system in Eq. (5). For a wire-node qi with
the specified optimal 2D angle θ̂i , we firstly let θi = θ̂i before
starting the Newton’s algorithm. The i th column in Λ and the

386 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
Fig. 4. Illustration for the warping order of wire-patches determined by Algorithm 2. Note that wire-nodes on the key feature curves have been fixed at the beginning
of the algorithm.
i th row in ΛT are then replaced by zeros. Lastly, the i th element
in Bθ are assigned to zero. When modifying the linear equation
system by this way, ΛΛT in Eq. (6) may become singular if too
many 2D angles are locked. Therefore, to be numerically stable,
we conduct the Singular Value Decomposition (SVD) [31] to
solve Eq. (6).

Besides the wire-nodes on key feature curves, there is also
another reason that the 2D angle on wire-node q needs to be
locked. Let Q̂(q) = {qk ∈ v(q)} \ {q} represents the set of
other wire-nodes associated with the host vertex v(q) except
q , and Γ is defined as the set of all wire-patches holding the
wire-nodes in Q̂(q). If the host vertex v(q) of q is an interior
vertex on the given surface patch, when all wire-patches in Γ
have been warped into plane (i.e. all nodes in Q̂(q) have their
2D angles determined), we need to lock the 2D angle of q as

θ(q) = 2π −
∑

qk∈Q̂(q)

θ(qk). (9)

Otherwise, the flattened wire-patches around v(q) will not be
compatible to each other.

3.2. Progressive warping algorithm

The basic idea of the progressive warping algorithm is
to warp the wire-patches into plane progressively by using
the angle-based method presented above. The strategy of
our progressive warping is somewhat similar to [8]. After
computing the optimal 2D angles of wire-nodes on all wire-
patches, we can iteratively determine the position of feature
curves (i.e. the host vertices of wire-nodes) in R2 followed
by placing the interior mesh of each wire-patch. To flatten
wire-patches progressively, we need to determine the warping
order. Starting from positioning the wire-patches adjacent to
key feature curves, we wish the first warp is always the wire-
patch having more 2D angles locked wire-nodes. Therefore, we
defined the shape-evidence factor on each wire-patch Pi as

%(Pi) = n′/n (10)
where n′ is the number of wire-nodes with their 2D angles
known and n is the number of all wire-nodes on Pi . We
employ a maximum heap keyed by the shape-evidence factor
to determine the warping order of wire-patches. Pseudo-code
of the progressive warping algorithm is shown in Algorithm 2.
Fig. 4 shows an illustration for the warping order of wire-
patches determined by this algorithm.

Algorithm 2 Progressive Warping
1: Construct wire-patches by the feature curves on a given

surface patch P;
2: Initialize the shape-evidence factors of all wire-patches;
3: Insert all wire-patches into a maximum heap Υ keyed by

the shape-evidence factors;
4: while Υ is not empty do
5: Remove the top wire-patch Pt from Υ ;
6: Warp the boundary wires of Pt into <2 (by the method

in Section 3.1);
7: for the host vertex v(qb) of every wire-node qb ∈ Pt do
8: if v(qb) is an interior vertex AND all wire-nodes in

v(qb) but q (q 6= qb) have their 2D angle determined
then

9: Assign the value of θ(q) by the method of Eq. (9);
10: end if
11: end for
12: Update %(...) of all wire-patches neighbouring to Pt (by

Eq. (10)) and thus their positions in Υ ;
13: end while
14: Lay out the feature curves in <2;
15: Computing interior meshes of each wire-patch.

3.3. Laying out feature curves and interior mesh vertices of
wire-patches

After computing the optimal 2D angles on all wire-nodes,
we need to lay out the wire-patches and their interior mesh
vertices in R2. The feature curves are placed first, and the

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 387
Fig. 5. Laying out feature curves and computing interior meshes of wire-patches: (a) a failure example for placing wire-patches in R2 with an incorrect order, (b) a
successful positioning with the new order of wire-patches, (c) the interior mesh nodes of every wire-patch are first placed at its centre, and (d) the final mesh.
positions of interior mesh vertices are computed with the fixed
boundary of wire-patches.

For placing feature curves, we need to reorder wire-patches
by propagation and to store them in a list Ψ . Starting from
a seed wire-patch Ps , after inserting Ps into Ψ we check all
neighbouring wire-patches of Ps . If any neighbor Pr not in
Ψ is found, we insert Pr into Ψ and check the neighbours of
Pr recursively. With the wire-patches ordered in Ψ , we can
place the host vertices of wire-nodes patch by patch. The wire-
nodes in a wire-patch are classified into two types: fixed nodes
— those with their host vertices’ 2D positions known, and
free nodes — those whose host vertices have not been placed
yet. For the wire-nodes in a wire-patch Pi , we search them
anticlockwise and find the first free node qe which is next to
a fixed node q f . The position of qe’s host vertex v(qe) can
be determined by Eq. (8) with the positions of v(q f) and its
previous fixed node v(q f−), the edge length of v(q f)v(qe) in
R3, and the optimal 2D angle θ(q f) at q f . Similarly, the latter
free nodes on this wire-patch Pi can be placed consecutively.
No fixed wire-node can be found on the first wire-patch in Ψ .
We thus randomly choose two neighbouring wire-nodes and fix
them in R2 by reserving the distance between them. In this way,
we can lay out all feature curves (i.e. the boundaries of all wire-
patches).

The reason, why we do not employ the order of wire-patches
determined in Algorithm 2, is because this could lead to a wire-
patch being placed incorrectly. For instance in Fig. 4, after
placing the second wire-patch, the third wire-patch has only one
fixed wire-node that leads to an unsuccessful placement of the
next free wire-node. Fig. 5(a) shows an example of such failure.

The mesh vertices not associated with any wire-node
(i.e. the interior mesh vertices of wire-patches) finally need
to be positioned in R2 to generate a correct mesh surface
representation. Every vertex vi is first placed at the average
position of the boundary vertices of the wire-patch holding it
(e.g. Fig. 5(c)). Next, the positions of vi are moved iteratively
by the operator

vnew
i ←

1
w(vi)

∑
j∈N (vi)

‖viv j‖
−1v j , (11)
where ‖ · · · ‖ denotes the distance of two vertices on the given
surface, N (vi) represents the 1-ring neighbours of the vertex vi ,
and w(vi) is the summed weights as

w(vi) =
∑

j∈N (vi)

‖viv j‖
−1.

This is in fact the iterative version to solve a Laplacian-like
system [27], which has been proved to be very stable. The
iteration stops when the movement of all vertices are less than
10−5, and the number of iterations is in the range between 10
to 100. To further speed up the computation, we introduce a
relaxing factor τ = 1.5 (like the improvement of convergency
using relaxation for the Gauss-Seidel solver in [7]) to let

vnew
i ← vi + τ

((
1

w(vi)

∑
j∈N (vi)

‖viv j‖
−1v j

)
− vi

)
, (12)

so that the number of iteration steps can be reduced by about
two-thirds in most examples. An example result has been shown
in Fig. 5(d).

4. Global warping scheme

The progressive warping scheme works well on those
surface patches that are nearly developable; however, the
industrial application sometimes wishes to flatten highly curved
surfaces that are far from developable (e.g. the wetsuit shown
in Figs. 9 and 10) where the progressive warping scheme meets
great difficulty in giving a satisfactory result. The major reason
is that great distortion will occur on a given warped wire-
patch if the surface is far from developable. The progressive
warping scheme will accumulate the distortions on the warped
wire-patches from the very beginning to the last warped one
(i.e. the wire-patch that is lastly popped from the heap Υ).
Therefore, the last one has the greatest distortion. The order
of warping wire-patches can be adjusted by defining different
sets of key feature curves. However, the accumulated distortion
error of all wire-patches has never been optimized in this way.
Therefore, the global warping scheme is developed for highly
curved surfaces.

388 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
4.1. Formulation

To compute a flattening of wire-patches by the means of
global warping, we integrated the subsystems of constrained
optimization (i.e. the ones presented in Eq. (2)) into a consistent
system to warp all wire-patches together. In addition to the
closed path constraint and the position coincident constraints,
the compatibility constraint is introduced so that the sum of 2D
angles of the wire-nodes associated with an interior host vertex
v is 2π .

Without loss of generality, if there are total m wire-patches
constructed on the given surface P , we have

∑m
p=1 n p wire-

nodes where n p represents the number of wire-nodes for
the wire-patch Pp whose index is p. As all wire-patches
will be warped together, every wire-node will have one local
index in the wire-patch and another global index. To simplify
the expression, we define a permutation function Γp(b) for
returning the global index of a wire-node on the wire patch
Pp with the local index b, and its inverse function Γ−1

p (j) that
gives the local index of a wire-node q j on the wire-patch Pp.
The goal of global warping is to find constrained optimal 2D
angles for wire-nodes so that the global distortion of flattening
is minimized, which can be formulated as follows:

min
θi

∑
i

1
2
(θi − αi)

2

s.t. n pπ −

n p∑
b=1

θΓp(b) ≡ 2π (∀p = 1, . . . , m)

n p∑
b=1

lb cos φb ≡ 0,

n p∑
b=1

lb sin φb ≡ 0 (∀p = 1, . . . , m)∑
qk∈v

θk ≡ 2π (∀v ∈ Φ)

(13)

where Φ represents the collection of interior vertices on
accessory feature curves, θi is the 2D angle associated with the
wire-node qi , αi represents its 3D surface angle, and lb denotes
the length of an edge on wires. In summary, if there are l wire-
nodes with their 2D angles locked by the key feature curves, the
number of variables for the above problem is

nvar =

(
m∑

p=1

n p

)
− l,

and the set of free wire-nodes is defined as Qact. If there are
r interior vertices on the accessory feature curves, the total
number of constraints is

ncon = 3m + r.

Using the Lagrange multipliers [29], the constrained
optimization in Eq. (13) can be converted into an augmented
objective function that

J =
∑

i∈Qact

1
2
(θi − αi)

2

+

∑
p

[
λθp

(
(n p − 2)π −

n p∑
b=1

θΓp(b)

)

+λx p

(n p∑
b=1

lb cos φb

)
+ λyp

(n p∑
b=1

lb sin φb

)]

+

∑
v∈Φ

λv

(
2π −

∑
qk∈v

θk

)
. (14)

The objective function is again minimized by Newton’s method
(i.e. Algorithm 1) with the sequential linearly constrained
programming, where in each iteration the following linear
equation system (derived from ∇2 Jδ = −∇ J) is solved. I ΛT DT

Λ
D

δθ

δλ

δv

 =
Bθ

Bλ

Bv

 . (15)

The dimensions of Λ and D are 3m × nvar and r × nvar
respectively, where

D = {dv, j } =

{
∂2 J

∂λv∂θ j

}
=

{
∂

∂θ j

(
2π −

∑
qk∈v

θk

)}

=

{
−1 (q j ∈ v)

0 (otherwise),
(16)

and

Λ = {Λp, j } =

{
∂2 J

∂λθxy∂θ j

}

=



∂

∂θ j

(
(n p − 2)π −

n p∑
b=1

θΓp(b)

)
∂

∂θ j

n p∑
b=1

lb cos φb

∂

∂θ j

n p∑
b=1

lb sin φb


. (17)

Λp, j = 0 if the wire-node q j with θ j is not on the wire-patch
Pp, and

Λp, j =

−1,

n p∑
b=Γ−1

p (j)

sin φb,−

n p∑
b=Γ−1

p (j)

cos φb

T

when q j ∈ Pp. In order to evaluate Λp, j efficiently, we can
conduct the following recursive formulas.

Λp,Γp(n p) = (−1, ln p sin φn p ,−ln p cos φn p)
T (18)

Λp,Γp(j) = Λp,Γp(j+1) + (0, l j sin φ j ,−l j cos φ j)
T . (19)

For the right-hand side vector, since ∂φk
∂θb
=

{
0 (k < b)

−1 (k ≥ b)
, we

have

Bθ =

{
−

∂ J

∂θi

}
= (αi − θi)+ λθp

−

n p∑
b=Γ−1

p (i)

lb(λx p sin φb − λyp cos φb)+Π (i) (20)

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 389
Fig. 6. Patterns of the linear equation system in Eq. (15): (a) the pattern without optimization, and (b) the envelope minimized pattern by the Cuthill-McKee
Algorithm [11].
with Π (i) =
{

λv (v(qi) ∈ Φ)

0 (otherwise),

Bλ =

{
−

∂ J

∂λθxyp

}
=



(n p∑
b=1

θΓp(b)

)
− (n p − 2)π

−

n p∑
b=1

lb cos φb

−

n p∑
b=1

lb sin φb


, (21)

and

Bv =

{
−

∂ J

∂λv

}
=

{(∑
qk∈v

θk

)
− 2π

}
. (22)

All of these can be evaluated very efficiently.
We start the computation by letting θi = αi , and the

Newton’s algorithm always stops in less than 10 iterations.
After determining the optimal θi s, the planar coordinates of
vertices on feature curves can be computed by the method
presented in Section 3.3. Then, the interior mesh vertices can
be placed in R2 in the same way. Note that when using Eq. (3)
to compute the value of φi from θi s, the 2D angles of locked
wire-nodes should be included since they also contribute to
the shape of every wire-patch. Nevertheless, they do not show
up in the linear system of Eq. (15) since it only depends on
the differentiation with variables (i.e. the angles on free wire-
nodes).

4.2. Analysis of numerical computations

The linear equation system above can be solved only if
ncon ≤ nvar; otherwise, it becomes singular. However, we
never met the case with ncon > nvar in practice. Even if this
occurs, we can still employ the Singular Value Decomposition
(SVD) [31] to find a reasonable approximation of its solution.
In the following discussion, we only concentrate on the cases
that ncon ≤ nvar. Letting

H =

[
Λ
D

]
, δh =

[
δλ

δv

]
, Bh =

[
Bλ

Bv

]
,

we have (from Eq. (15))[
I H T

H 0

] [
δθ

δh

]
=

[
Bθ

Bh

]
,

which leads to a linear equation system with smaller size and a
followed substitution as

H H T δh = H Bθ − Bh, (23)

δθ = Bθ − H T δh . (24)

The dimension of H H T is (3m + r) × (3m + r). Eq. (23) can
only be efficiently solved by Gaussian Elimination [31] when
(3m + r) < 100, which cannot always be satisfied.

After studying the pattern of the linear equation system
in Eq. (15), we find that it is in general sparse (e.g. the
one shown in Fig. 6(a)) and symmetric (see Eq. (15)). When
using the famous Cuthill-McKee Algorithm [11] to reorder
the elements, it can be converted into a matrix with narrower
band (see Fig. 6(b)). In our tests, the semi-band-width falls
in the range between 10 to more than 100 – in other words,
using the optimized narrow-band matrix [31] can speed up the
computation somewhat but not too much. We then move to the
sparse direct solver – SuperLU (cf. [17]) based on a sparse LU
factorization, by which all examples shown in this paper can
be finished in less than 100 microseconds per iteration on a PC
with standard configuration. The computational complexity is
approximately linear to 3m + r + nvar.

5. Experimental results and discussion

Several examples are tested in this section to demonstrate the
performance of our WireWarping approach. Our first example
is a 3D shirt which is generated from the design automation
system of 3D garment. Fig. 1 shows the given 3D surfaces
with darts, key feature curves and accessory feature curves.
The flattened 2D pieces shown in Fig. 1 are generated by
the global warping scheme of WireWarping — the lengths
of edges on feature curves are strongly preserved during the
flattening. Fig. 7(a) shows the colour map for illustrating the
developability on the main-body surfaces of the 3D shirt, where

390 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
Fig. 7. Examples for flattening the main-body of 3D shirt: (a) the colour map shows the local developability on the given surface, (b) the flattening results from
the progressive warping scheme of WireWarping, and (c) the results from the Least Squares Conformal Map (LSCM) [20]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
the local developability at an iterative vertex v is measured by

Edev(v) = |ϕ(v)− 2π | (25)

with ϕ(v) denoting the sum of angles at v for the polygons
adjacent to v. When Edev(v) ≡ 0, v is locally developable;
otherwise, the greater value of Edev(v), the higher stretching
is given at the surface around v during flattening. It is easy
to find that there are many non-developable regions on the
3D shirt, therefore flattening results of the 3D shirt should
contain distortion in some sense. Fig. 7(b) gives the results from
the progressive warping scheme. For comparing our results
with the state-of-the-art approach existing in the literature,
we choose the Least Squares Conformal Map (LSCM) [20]
which is the core algorithm of the texture mapping function in
Maya [24]. Note that as the method of LSCM does not preserve
the scale of a flattening, we add a post-processing step to scale
the flattening result so that it has the same perimeter as the given
surface in R3. The results from LSCM are shown in Fig. 7(c).
It is obvious that the boundaries at two-sides of the dart on the
back piece in Fig. 7(c) have different lengths, which will yield
annoying wrinkles when sewing a shirt from this 2D pattern.
The following two error terms are computed in our tests for
measuring the results of flattening.

Edge-length error. The length variation of edges on the feature
curves (wires) is measured by

Elen =
1

N (Ωe)

∑
e∈Ωe

|l0
e − le|

l0
e

, (26)

where Ωe is the set of edges on all feature curves, N (. . .) defines
the number of elements in a set, l0

e is the length of the edge e in
R3, and le is its length in R2.

Angle error. The angle variation of all polygons on the given
piecewise linear surface is measured as

Eang =
1

N (Ωa)

∑
a∈Ωa

|ϑ0
a − ϑa |

ϑ0
a

(27)
with Ωa as the collection of all polygonal angles on the given
mesh surface P , and ϑ0

a and ϑa are the values of the polygonal
angle a in R3 and R2 respectively.

For an ideal flattening result, it should let both Elen and
Eang be zero. However, these two error terms in general are
not compatible to each other on a non-developable surface. The
results from our WireWarping preserve Elen ≡ 0 and try to
minimize the value of Eang.

Homogeneity of distortion and aspect ratio. The global
homogeneity of distortion Eh and the global aspect ratio Er ,
which were proposed by Azariadis and Sapidis in [5], are also
measured in our tests. The ideal values of both Eh and Er are
one, which is only shown on an isometric mapping. Details of
their calculation can be found in [5] and are neglected here. The
colour maps for displaying the homogeneity of distortion and
the aspect ratio on faces are also shown in some results below.

Our second test is to flatten a pair of 3D pants by using
different sets of key-feature curves (see Fig. 8). Obviously,
when giving different sets of key feature curves, we can get
different flattening results. The progressive warping scheme is
easier to be affected by setting different key feature curves.
In other words, it is more flexible so that we can have the
ability to control the local shape of flattened pieces. The third
and fourth examples are a piece of wetsuit with highly curved
non-developable surfaces (see Figs. 9 and 10). Computational
statistics of all the examples are listed in Table 1. From the
statistics, we can conclude that: both the progressive warping
scheme and the global warping scheme of WireWarping can
compute a flattened patch while strongly preserving the length
of edges on feature curves. The global warping scheme gives
less angle distortion since it actually distributes the distortion
error to all wire-patches but the progressive warping scheme
accumulates the error. Also, both schemes of WireWarping can
be finished in an interactive speed. The results from LSCM
always give great variation of lengths on the boundaries to
be sewed and the feature curves, which can be found from
both the resultant shape and the computational statistics. The

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 391
Fig. 8. Example for flattening 3D pants: (a) the given 3D surface of pants and the colour map for showing the developability — the front and back grainlines are
defined as key feature curves, (b) the results from the progressive warping scheme, (c) the results from the global warping scheme, (d) the results from LSCM [20],
(e) setting mid-thigh and the grainlines below as key feature curves, (f) the results from the progressive warping scheme, and (g) the results from the global warping
scheme.

Fig. 9. Example for flattening wetsuit — the upper body: (a) given surface with darts and feature curves, (b) the results from the progressive warping scheme, (c)
the results from the global warping scheme, (d) the results of LSCM [20] that the boundaries to be sewed are with different lengths, and the colour map for showing
the Homogeneity of Distortion and the Aspect Ratio [5] on the results from (e) the global warping scheme versus (f) LSCM [20]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

392 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
Table 1
Computational statistics

Example Piece Method Fig. Elen (×10−3) Eang (×10−3) Eh Er Topt Tall

Shirt

Front (1414)
Progressive 7(b) 0.00 7.72 0.725 0.721 31 47
Global 1 0.00 6.71 0.727 0.731 109 110
LSCM 7(c) 5.36 0.486 0.952 0.970 Nil 46

Back (1234)
Progressive 7(b) 0.00 10.4 0.922 0.921 46 47
Global 1 0.00 4.64 0.922 0.931 125 125
LSCM 7(c) 8.85 0.392 0.913 0.955 Nil 63

Shoulder (182)
Progressive 7(b) 0.00 21.5 0.821 0.830 ∼0 ∼0
Global 1 0.00 21.5 0.821 0.830 ∼0 ∼0
LSCM 7(c) 4.29 1.41 0.938 0.965 Nil 16

Pants (with set 1)

Front (1729)
Progressive 8(b) 0.00 41.8 0.775 0.717 31 78
Global 8(c) 0.00 23.1 0.832 0.703 93 140
LSCM 8(d) 8.71 0.737 0.852 0.911 Nil 125

Back (1729)
Progressive 8(b) 0.00 72.4 0.716 0.649 47 63
Global 8(c) 0.00 30.4 0.671 0.626 94 125
LSCM 8(d) 42.5 1.56 0.701 0.835 Nil 125

Pants (with set 2)
Front (1729)

Progressive 8(f) 0.00 15.2 0.796 0.745 31 63
Global 8(g) 0.00 13.8 0.801 0.730 109 156

Back (1729)
Progressive 8(f) 0.00 38.1 0.794 0.746 31 63
Global 8(g) 0.00 36.3 0.786 0.711 110 125

Wetsuit upper body

Front (658)
Progressive 9(b) 0.00 41.1 0.912 0.951 16 32
Global 9(c) 0.00 35.2 0.915 0.948 63 94
LSCM 9(d) 113. 2.82 0.985 0.992 Nil 31

Back (928)
Progressive 9(b) 0.00 22.1 0.792 0.892 15 31
Global 9(c) 0.00 19.9 0.799 0.875 31 78
LSCM 9(d) 39.4 1.77 0.960 0.980 Nil 31

Wetsuit pants

Front (1729)
Progressive 10(b) 0.00 65.4 0.446 0.443 32 94
Global 10(c) 0.00 40.0 0.464 0.452 140 187
LSCM 10(d) 47.9 4.44 0.587 0.736 Nil 109

Back (1729)
Progressive 10(b) 0.00 69.8 0.398 0.377 31 62
Global 10(c) 0.00 65.7 0.343 0.335 125 156
LSCM 10(d) 81.7 5.17 0.456 0.664 Nil 109

Quarter-sphere (56)
Progressive 11(b) 0.00 159.1 0.394 0.511 ∼0 ∼0
Global 11(c) 0.00 148.8 0.404 0.518 ∼0 ∼0
LSCM 11(d) 64.3 42.1 0.582 0.672 Nil ∼0

The numbers listed in the brackets are the number of polygons on the piece. All the examples are tested with our implementation on a PC with PIV 3.0 GHz
CPU+ 1GB RAM. The time is measured in microseconds. The numbers in the Topt column are the time for WireWarping without placing the interior vertices, and
the numbers in the Tall column are the overall time for computation (i.e. including the time to place interior mesh vertices).
measurements on the global homogeneity of distortion Eh
and the global aspect ratio Er (from [5]) are also listed and
compared in Table 1. On these two measurements, the results
from our WireWarping approach do not show more advantages
than LSCM (see Table 1). This is because Eh and Er relate to
the shape of all triangles after flattening. However, our approach
does not optimize the shape of each element.

The last test is given on a symmetrical non-developable
surface — a quarter-sphere patch (see Fig. 11. The results
from both the progressive warping scheme (Fig. 11(b)) and
the global warping scheme (Fig. 11(c)) of WireWarping are
symmetrical horizontally. The result from global warping is
also symmetrical in the vertical direction but the progressive
warping is not. The 2D piece generated by LSCM is neither
horizontally nor vertically symmetrical (see Fig. 11(d)).

Fig. 12 shows an application of our WireWarping approach
in the shoe industry. After designing the cover of a shoe based
on the shape of shoe last, the industry looks for a tool that can
automatically compute the shape of leather pieces so that the
shoe can be fabricated from them. In Fig. 12, the 2D pieces
in Fig. 12(b) are generated from the 3D surface patches given
in Fig. 12(a) by the global warping scheme of WireWarping.
Lengths of feature curves are retained and the surface-angle
distortions along the feature curves are optimized.

5.1. Limitations

By our experience of applying the technique presented in
this paper to the garment industry, the most difficult part of
using WireWarping is how to choose appropriate key feature
curves. As demonstrated in Fig. 8, Fig. 8(b)–(g) show that
significantly different flattening results can be obtained when
choosing different key feature curves. The selection of key
feature curves does very much depend on the experience of
users. Therefore, for the given model with new set of feature
curves or new topology, we usually start the study by applying

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 393
Fig. 10. Example for flattening wetsuit — the pants: (a) given surface with darts and feature curves, (b) the results from the progressive warping scheme, (c) the
results from the global warping scheme, (d) the results of LSCM [20] that the boundaries to be sewed are with different lengths, and the colour map for showing the
Homogeneity of Distortion and the Aspect Ratio [5] on the results from (e) the global warping scheme versus (f) LSCM [20]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Example for flattening a quarter-sphere: (a) the given surface, (b) the result from the progressive warping scheme, (c) the result from the global warping
scheme, and (d) the result of LSCM [20].
the global warping scheme with all feature curves as accessory
feature curves only. After getting a first flattening result, we
can then change some accessory feature curves to key feature
curves by setting their planar shapes.

Key feature curves on a given surface may not always be
compatible to each other. For example, the 3D pants which
were previously shown in Fig. 8, if both the curves at the mid-
thigh and at the mid-calf are set to be key feature curves, they
will distort other feature curves between them (see Fig. 13).
Therefore, in order to get satisfactory results, we need to release
some key feature curves into accessory feature curves as the
setup shown in Fig. 8(e). One of our future work is to study the
conditions for setting compatible key feature curves.

There are also some extreme cases that the given surface
patch cannot be effectively flattened into a planar piece by
preserving the lengths of all feature curves — even if all of

394 C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395
Fig. 12. The application of WireWarping in the shoe industry: (a) the colour map for the developability of surfaces on a designed shoe (top) and the designed model,
and (b) the flattened 2D patterns that can be used to fabricate the shoe by leather (the lengths of feature curves are preserved). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Too many key feature curves may be incompatible to each other such that unexpected distortions are given on the flattening results: (a) the given 3D pants
with key feature curves at the mid-thigh, the mid-calf and the lower part of grainline, (b) results of the progressive warping scheme, and (c) results of the global
warping scheme which gives more distorted feature curves.

Fig. 14. Too many feature curves (even if only serve as accessory feature curves) on a surface far from developable can make the WireWarping approach fail: (a) the
quarter-sphere with two accessory feature curves, (b) the result from the progressive warping scheme, and (c) the result from the global warping scheme.
them are defined as accessory feature curves only (e.g. the
quarter-sphere in Fig. 14 with two feature curves). For these
cases, we may release some of the feature curves (e.g. as shown
in Fig. 11) so that the patch can be flattened. We could also
conduct the method presented in [37] to deform a given surface
into the shape that is more developable.
6. Conclusion

A novel approach, WireWarping, for computing the flattened
planar surface patch from a given piecewise linear surface has
been presented in this paper, which can fully preserve the length
of edges on feature curves — this is very important for many

C.C.L. Wang / Computer-Aided Design 40 (2008) 381–395 395
industrial applications. WireWarping simulates warping a given
3D surface patch into 2D with the boundaries and feature curves
as tendon wires to preserve the lengths of edges on them.
During warping, the surface-angle variation between edges on
wires are minimized so that the shape of a piece in 2D is similar
to its corresponding 3D patch. Two schemes — the progressive
warping and the global warping schemes are developed, where
the former one is more flexible for local shape control and the
latter one gives better performance on highly curved patches.
Experimental results in this paper show that WireWarping can
successfully flatten given piecewise linear surface patches into
2D pieces while preserving the lengths of edges on feature
curves.

Acknowledgments

The author would like to thank TPC (HK) Ltd for providing
the 3D surface patches of garment suits, and thank Dr Penelope
Watkins for proofreading the manuscript.

References

[1] Azariadis PN, Aspragathos NA. Design of plane development of doubly
curved surface. Computer-Aided Design 1997;29:675–85.

[2] Azariadis PN, Aspragathos NA. Geodesic curvature preservation in
surface flattening through constrained global optimization. Computer-
Aided Design 2001;33(8):581–91.

[3] Aono M, Breen DE, Wozny MJ. Modeling methods for the design of 3D
broadcloth composite parts. Computer-Aided Design 2001;33:989–1007.

[4] Aono M, Breen DE, Wozny MJ. Fitting a woven-cloth model to a curved
surface: Mapping algorithms. Computer-Aided Design 1994;26:278–92.

[5] Azariadis PN, Sapidis NS. Planar development of free-form surfaces:
quality evaluation and visual inspection. Computing 2004;72(1–2):13–27.

[6] Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction
and data representation. Neural Computation 2003;15:1373–96.

[7] Chapra SC, Canale RP. Numerical methods for engineers: With software
and programming applications. 4th ed. 2003. p. 289–95.

[8] Bennis C, Vezjen J-M, Iglesias G. Piecewise surface flattening for non-
distorted texture mapping. Computer Graphics 1991;24(4):237–46.

[9] Chen H-Y, Lee I-K, Leopoldseder S, Pottmann H, Randrup T, Wallner J.
On surface approximation using developable surfaces. Graphical Models
and Image Processing 1999;61:110–24.

[10] Chu CH, Séquin CH. Developable Bézier patches: Properties and design.
Computer-Aided Design 2002;34(7):511–27.

[11] Duff IS, Erisman AM, Reid JK. Direct methods for sparse matrices.
Oxford: Clarendon Press; 1989.

[12] Decaudin P, Julius D, Wither J, Boissieux L, Sheffer A, Cani M-P. Virtual
garments: A fully geometric approach for clothing design. Computer
Graphics Forum 2006;25(3):625–34.

[13] Desbrun M, Meyer M, Alliez P. Intrinsic parameterizations of surface
meshes. Computer Graphics Forum 2002;21(3):209–18.

[14] do Carmo MP. Differential geometry of curves and surfaces. Englewood
Cliffs (NJ): Prentice-Hall.

[15] Floater MS, Hormann K. Surface parameterization: A tutorial and
survey. In: Dodgson NA, Floater MS, Sabin MA, editors. Advances in
multiresolution for geometric modelling. Heidelberg: Springer-Verlag;
2005. p. 157–86.

[16] Karni Z, Gotsman C, Gortler SJ. Free-boundary linear parameterization
of 3D meshes in the presence of constraints. In: Proceedings of shape
modeling international. 2005. p. 266–75.

[17] Li S, Demmel J, Gilbert J. SuperLU, http://crd.lbl.gov/xiaoye/SuperLU/,
February 2006.
[18] Lee Y, Kim H-S, Lee S. Mesh parameterization with a virtual boundary.
Computers & Graphics 2002;26:677–86.

[19] Leopoldseder S, Pottmann H. Approximation of developable surfaces
with cone spline surfaces. Computer-Aided Design 1998;30:571–82.

[20] Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for
automatic texture atlas generation. ACM Transactions on Graphics 2002;
21:362–71.

[21] Liu Y, Pottmann H, Wallner J, Yang Y-L, Wang W. Geometric modeling
with conical meshes and developable surfaces. ACM Transactions on
Graphics 2006;25(3):681–9.

[22] Liu YS, Yu PQ, Du MC, Yong JH, Zhang H, Paul JC. Mesh
parameterization for an open connected surface without partition. In:
Proceedings of the ninth international conference on computer aided
design and computer graphics. 2005. p. 306–10.

[23] Manning JR. Computerized pattern cutting: Methods based on an
isometric tree. Computer-Aided Design 1980;12(1):43–7.

[24] Autodesk Maya, http://www.autodesk.com/maya.
[25] McCartney J, Hinds BK, Seow BL. The flattening of triangulated

surfaces incorporating darts and gussets. Computer-Aided Design 1999;
31:249–60.

[26] Mortenson ME. Geometric modeling. 2nd ed. New York: Wiley; 1997.
[27] Meyer M, Desbrun M, Schröder P, Barr AH. Discrete differential-

geometry operators for triangulated 2-manifolds. In: Visualization and
mathematics III. Springer; 2003. p. 35–58.

[28] Nutbourne AW, McLellan PM, Kensit RML. Curvature profiles for plane
curves. Computer-Aided Design 1972;4(4):176–84.

[29] Nocedal J, Wright SJ. Numerical optimization. Springer-Verlag; 1999.
[30] Peternell M. Recognition and reconstruction of developable surfaces from

point clouds. In: Proceedings of geometric modeling and processing.
2004. p. 301–10.

[31] Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical recipes
in C: The art of scientific computing. 2nd ed. Cambridge: Cambridge
University Press; 1995.

[32] Peternell M, Steiner T. Reconstruction of piecewise planar objects from
point clouds. Computer-Aided Design 2004;36:333–42.

[33] Pottmann H, Wallner J. Approximation algorithms for developable
surfaces. Computer Aided Geometric Design 1999;16:539–56.

[34] Sun X, Hancock ER. Fast isometric parametrization of 3D triangular
mesh. In: Proceedings of british machine vision conference. 2005.

[35] Sheffer A, Lévy B, Mogilnitsky M, Bogomjakov A. ABF++: fast and
robust angle based flattening. ACM Transactions on Graphics 2005;24(2):
311–30.

[36] Sheffer A, de Sturler E. Parameterization of faceted surfaces for meshing
using angle based flattening. Engineering with Computers 2001;17(3):
326–37.

[37] Wang CCL. Towards flattenable mesh surfaces. Computer-Aided Design
2007; doi:10.1016/j.cad.2007.06.001.

[38] Wang CCL. Computing length-preserved free boundary for quasi-
developable mesh segmentation. IEEE Transactions on Visualization and
Computer Graphics 2008;14(1):25–36.

[39] Wang CCL, Smith SSF, Yuen MMF. Surface flattening based on energy
model. Computer-Aided Design 2002;34(11):823–33.

[40] Wang CCL, Tang K. Achieving developability of a polygonal surface
by minimum deformation: A study of global and local optimization
approaches. The Visual Computer 2004;20(8–9):521–39.

[41] Wang CCL, Tang K, Yeung BML. Freeform surface flattening by fitting a
woven mesh model. Computer-Aided Design 2005;37:799–814.

[42] Wang CCL, Wang Y, Yuen MMF. On increasing the developability of
a trimmed NURBS surface. Engineering with Computers 2004;20(1):
54–64.

[43] McCartney J, Hinds BK, Chong KW. Pattern flattening for orthotropic
materials. Computer-Aided Design 2005;37:631–44.

[44] Zigelman G, Kimmel R, Kiryati N. Texture mapping using surface flat-
tening via multi-dimensional scaling. IEEE Transactions on Visualization
and Computer Graphics 2002;8:198–207.

[45] Zhong Y, Xu B. A physically based method for triangulated surface
flattening. Computer-Aided Design 2006;38:1062–73.

http://crd.lbl.gov/xiaoye/SuperLU/
http://www.autodesk.com/maya
http://dx.doi.org/doi:10.1016/j.cad.2007.06.001

	WireWarping: A fast surface flattening approach with length-preserved feature curves
	Introduction
	Literature review
	Contributions and overview

	Preliminary
	Progressive warping scheme
	Computing length-preserved optimal boundary of a wire-patch
	Progressive warping algorithm
	Laying out feature curves and interior mesh vertices of wire-patches

	Global warping scheme
	Formulation
	Analysis of numerical computations

	Experimental results and discussion
	Limitations

	Conclusion
	Acknowledgments
	References

