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Abstract Intel Xeon Phi accelerators are one of the newest devices used in
the field of parallel computing. However, there are comparatively few studies
concerning their performance when using most of the existing parallelization
techniques. One of them is thread-level speculation, a technique that optimisti-
cally tries to extract parallelism of loops without the need of a compile-time
analysis that guarantees that the loop can be executed in parallel.

In this article we evaluate the performance delivered by an Intel Xeon
Phi coprocessor when using a software, state-of-the-art thread-level specula-
tive parallelization library in the execution of well-known benchmarks. We
describe both the internal characteristics of the Xeon Phi platform and the
particularities of the thread-level speculation library being used as bench-
mark. Our results show that, although the Xeon Phi delivers a relatively good
speedup in comparison with a shared-memory architecture in terms of scal-
ability, the relatively low computing power of its computational units when
specific vectorization and SIMD instructions are not fully exploited makes this
first generation of Xeon Phi architectures not competitive (in terms of absolute
performance) with respect to conventional multicore systems for the execution
of speculatively parallelized code.
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1 Introduction

Currently, physical limitations of single core chips are inducing a quick devel-
opment of multicore architectures. One of the most recent approaches is the
Intel R© Xeon PhiTM [3,11,20], a coprocessor with more than 60 cores able to
execute both offloaded and native codes. Nonetheless, due to its own novelty,
this coprocessor has not yet been extensively tested with non-regular paral-
lel codes. The dissemination of experimental results under these conditions
would be really useful to test the behavior and capabilities of this computing
resource.

In this paper we use a Xeon Phi coprocessor to run irregular applications
that were speculatively parallelized, with the help of a software-only, specula-
tive parallelization library. Thread-Level Speculation (TLS) [8,34,35,42], also
called Speculative Parallelization (SP) [14,18,22,46] or Optimistic Parallelism
[25,26] tries to extract parallelism of loops that can not be considered fully
parallel at compile time. TLS optimistically assumes that dependence viola-
tions will not occur, launching the parallel execution of the loop. A hardware
or software monitor ensures the correctness of that assumption. If a depen-
dence violation is detected, offending threads are stopped and re-started in
order. After solving the issue, the optimistic, parallel execution is allowed to
continue. The target of TLS systems are usually for loops. Other loops can
be considered as well, but as long as their number of iterations can not be
so easily predicted, the applicability of TLS solutions is limited by scheduling
problems.

In order to handle the speculative parallelization of a loop, all variables
have to be classified as private, shared, or “speculative”1. All reads to a spec-
ulative variable are replaced at compile time with a function that recovers the
most up-to-date value for this variable. In a similar way, all writes to a spec-
ulative variable are replaced with a function that not only performs the write
operation, but also ensures that no thread executing a subsequent iteration
has already consumed an outdated value of this variable. TLS is useful when
executing codes that present scarce dependence violations at runtime. Other-
wise, costs associated to check for correctness, stop and retry executions, and
commitments, make this technique inefficient.

The contribution of this paper is to test the performance of a state-of-the-
art TLS runtime library using an Intel Xeon Phi. This coprocessor has a big
number of parallel threads, therefore, it is interesting to measure its behav-
ior with a shared-memory technique such as TLS, when data is permanently
shared among threads. We believe that TLS is also a good problem to test
such hardware architecture, because the Xeon Phi platform allows the differ-
ent threads to follow different execution paths (contrary to GPUs), so the use
of a Xeon Phi platform can be viewed as a natural environment for TLS. Our
experimental results show that the benchmarks considered scale well when

1 This issue can be addressed by the programmer, or by the use of specific compilers such
as [4].
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running them with a Xeon Phi coprocessor. However, our results also confirm
that, due to the irregular nature of the target applications for TLS techniques,
and the modest computing capabilities of each individual core when vector-
ized and SIMD instructions are not fully exploited, execution times are much
higher than those gauged in conventional shared-memory systems. This limit
the usability of the current generation of Xeon Phi platform for irregular,
not-easily-vectorized applications, although we expect that this situation will
change with the new generation of the Xeon Phi platform, that will incorporate
out-of-order, more powerful processors.

The rest of this paper is structured as follows: Section 2 describes the main
characteristics of the Xeon Phi coprocessor. Section 3 describes the software-
based, TLS framework used to test the coprocessor. Section 4 describes both
the experimental environment and the benchmarks used. Section 5 shows some
experimental results in terms of performance measured in a shared-memory
system without coprocessor, and in a Xeon Phi coprocessor. Section 6 summa-
rizes some works that helps to put into perspective our contribution. Finally,
Sect. 7 concludes this paper.

2 Intel Xeon Phi in a nutshell

Intel Xeon Phi [3,11,20] is a coprocessor launched by Intel in 2012. It is called
coprocessor because, although it can run a Linux operating system by itself, it
should be placed aside another processor to work properly. Although first im-
pressions might suggest a number of similarities, it is not an accelerator such
as GPUs. Whereas the Intel Xeon Phi cores are more similar to classical com-
plete CPUs, the GPUs thread scheduling hardware is different. As the reader
may know, GPUs have a hierarchical hardware architecture, so they should
be programmed with a hierarchical thread structure in mind [7], that uses the
concept of threads, blocks, and grids2. Furthermore, Intel Xeon Phi coproces-
sors do not use the grid, and groups of threads in the same way, and also the
memory latency hiding mechanisms are different. This issue hinders easy code
migrations to the latter kind of accelerators, and requires and in-depth under-
standing of special programming models as CUDA [30], or OpenCL [23]. On
the other hand, the Xeon Phi coprocessor is able to use all standard parallel
programming models such as OpenMP [12], POSIX threads, MPI [43], or even
OpenCL. Thus, using this new coprocessor only requires a minimum learning
curve, assuming that the programmer knows at least one of these common
parallel programming models.

2 A thread is the simplest unit of execution, intended to process a specific code. A block
is defined as a group of threads, where threads can be executed concurrently or sequentially
with no order. At this level, a block allow the coordination of its threads with the use of
barriers. A grid is a group of blocks without any possible synchronization among them.
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Fig. 1 Overview of the microarchitecture of an Intel Xeon Phi coprocessor.

2.1 Internal details

Intel Xeon Phi coprocessors have up to 61 cores at 1090 MHz, interconnected
by a high-speed bidirectional ring. Each core is enhanced with four hardware
threads (up to 244 threads per coprocessor), and with a 512-KB L2 cache. L2
cache levels are shared by all cores. Furthermore, in addition to 64-bit x86
instructions, cores offer 512-bit wide SIMD vectors, intended to speed-up the
execution of regular code through vectorization. The coprocessor is generally
connected to the host system via the PCI Express bus, and supports up to 8
GB GDDR5 memory. Figure 1 briefly describes the architecture of the Intel
Xeon Phi.

2.2 Use of the Xeon Phi

There are mainly two ways of executing a parallel program into a Xeon Phi
coprocessor:

Native Execution: The Intel Xeon Phi coprocessor is capable of running a
Linux operating system. It is possible to log into the Xeon Phi from the
host processor using SSH, through a mic0 network interface, added to the
kernel by a module provided by Intel, and use it natively. Thus, it allows
the execution of the typical Linux-based commands as well as our own
programs.

Offload Extensions from the host: Intel defined a set of pragmas and keywords
to be used in parallel codes in order to execute them in coprocessors.
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A programmer only needs to declare the region which should be exe-
cuted in a coprocessor. Inside this region, any kind of function can be
used. For example, in the case of OpenMP, a single pragma defined as
#pragma offload target{mic} should be used, where mic represents the
identifier of the target Xeon Phi coprocessor. In addition, we should point
out the variables that will be used in the coprocessor, declaring their use
with the clauses in(), out(), or inout(). The use of variables with dy-
namic size requires to explicitly declare the size, e.g. in(a:length(n)). These
variables will be copied from the host to the device, and/or vice versa,
depending on their usage.

As can be seen, the Xeon Phi programming methodology is really conve-
nient in order to gain speedup with a relatively low programming effort.

3 Description of the ATLaS runtime library

The ATLaS framework [4] enhances OpenMP with a new clause to allow the
speculative use of variables inside a program. The use of this tool is simple: A
programmer only needs to include the list of speculative variables in the prede-
fined speculative clause of al parallel for directive. The compilation and runtime
system automatically transforms the code to a version capable of running in
parallel while preserving sequential semantics. To do so, the system augments
all accesses to speculative variables, adapting them to the functions of the
ATLaS runtime library [15], that ensures sequential consistency. In this work,
we have modified the runtime library so as to adapt it to particularities of the
Intel Xeon Phi coprocessor. However, our aim was doing as few modifications
as possible. A more in-depth adaptation would require a deep modification of
the library implementation, that is out of the scope of this paper.

The ATLaS runtime library supports the speculative execution of for loops
with dynamic and pointer-referenced speculative variables, handling dynamic
memory, and managing, on demand, the space needed for speculative variables
in each thread. This TLS runtime library allows the parallelization of loops
with variables of any data type, allowing the programmer to reference these
variables either by name or by address. In this section we will briefly show the
architecture of our library in order to understand the structures and operations
in which the Intel Xeon Phi will be tested.

3.1 ATLaS runtime data structures

Fig. 2 outlines the data structures needed by the speculative runtime library.
In this section we will only briefly describe the main characteristics of this
solution: A detailed explanation can be found in [4,15]. At the top of the
figure, we can see two pointers to the non-spec and the most-spec threads, that
are the threads in charge to the execution of the non-speculative and most-
speculative chunks of iterations. The non-speculative chunk is the one whose
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Fig. 2 Data structures of our speculative library.

execution is not speculative, while the most-speculative one is the one that is
more likely to suffer a dependence violation from a predecessor thread. Below
these pointers there is a matrix with W window slots (four in the figure)
implementing a sliding window that manages the runtime of the library. Each
slot is responsible to handle the speculative execution of a particular set of
iterations. Each slot is composed of two fields, STATE with the state of the
execution being carried out in each slot; and a pointer to maintain the position
of the speculative variables used by each slot in the execution.

It is very important to understand that there is not a fixed association
between threads and slots. Whenever a thread is assigned a new chunk of
iterations, it is also assigned a slot to work in, that is located at the right of
the most-speculative slot. This allows to maintain an order relationship among
the chunks being executed.

In addition to its STATE, each slot points to a data structure that holds the
version copies of the data being speculatively accessed. Fig. 2 represents a loop
with three speculative variables. At a given moment, the thread executing the
non-speculative chunk has speculatively accessed variables a and b. Each row
of the version copy data structure keeps the information needed to manage
the access to a different speculative variable. The first column indicates the
address of the original variable, known as the reference copy. The second one
indicates the data size. The third one indicates the address of the local copy
of this variable associated to this window slot. Finally, the fourth column
indicates the state associated to this local copy. Once accessed by a thread, the
version copies of the speculative data can be in three different states: Exposed
Loaded, indicating that the thread has forwarded its value from a predecessor
or from the main copy; Modified, indicating that the thread has written to
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that variable without having consumed its original value; and Exposed Loaded
and Updated, where a thread has first forwarded the value for a variable and
has later modified it.

Fig. 2 represents a situation where the thread working in Slot 1 has per-
formed a speculative load from variable a (obtaining its value from the refer-
ence copy) and a speculative store to variable b. Regarding a, the figure shows
that the thread working in Slot 3 has forwarded its value. With respect to
variable b, the information in the figure shows that b has been overwritten
both by threads working in Slots 1 and 3 without taking into account its prior
value (since both version are in Modified state). When the commitment of the
data generated by these threads take place, variable b will be first overwritten
by the version copy produced by the non-speculative thread. After finishing
this commit operation, the non-spec pointer advances one position, and when
the thread located in Slot 2 finishes, it will overwritten again the variable b
with the new value.

3.2 Speculative operations

In order to manage versioning and detect dependence violations on speculative
variables, all accesses to speculative variables are replaced at compile time with
a function that manages the structures described above. Reading a speculative
variable implies to obtain the most updated value of this variable, in order to
avoid, as much as possible, dependence violations. For the same reason, write
operations are also replaced with a function that, in addition to storing the
value in an intermediate place, checks if any successor thread (a thread which
executes a chunk of subsequent iterations) has used an outdated version of
this variable. In this case, the thread should discard the data calculated so far
during the execution of the current chunk of iterations and restart it. When
doing so, the thread will forward the correct value of the variable. As can
be inferred, while a load or store operation of a scalar datum only requires
to perform a single memory access, the transformation of this operation in
a speculative load or store requires to replace the single memory access to a
function call that performs all the required actions. This implies that the time
consumed by the speculative load or store operation can be easily two or three
orders of magnitude higher than the original one.

The partial commit operation is exclusively carried out by the non-speculative
thread. Every time a thread should check if its data have to be committed or
discarded, it first checks if it has not been squashed and if is the non-speculative
thread. If the thread is speculative, the slot is left, since it will be committed
later by the non-spec thread.

It is interesting to point out that each thread only writes on its local version
copy data structure, so no critical sections are needed to protect them. The
only critical section used protects the sliding window data structure, because,
without it, a thread could overwrite another thread’s state.
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4 Experimental setup

The goal of this work is to test the Xeon Phi coprocessor in off-loading mode
to speculatively execute in parallel different, well-known benchmarks. In this
way, the ATLaS runtime library was adjusted to offload the execution of the
parallel loop to the Xeon Phi coprocessor, without further optimizations such
as vectorization, one of the most important features of the Xeon Phi. In any
case, this feature is not very useful for our benchmarks, mainly composed of
irregular code.

To test the performance of the ATLaS TLS runtime, we have used three
different real-world benchmarks, together with a synthetic one. The real-world
applications include the 2-dimensional Convex Hull problem (2D-Hull) [10],
the Delaunay Triangulation problem [29,13], and a C implementation of the
TREE benchmark [5]. The synthetic benchmark is the Fast [4].

The 2D-Hull problem solves the computation of the convex hull (smallest
enclosing polygon) of a set of points in the plane. We have parallelized Clarkson
et al. [10]’s implementation. The algorithm starts with the triangle composed
by the first three points and adds points in an incremental way. If the point
lies inside the current solution, it will be discarded. Otherwise, the new convex
hull is computed. Note that any change to the solution found so far generates
a dependence violation, because other successor threads may have used the
old enclosing polygon to process the points assigned to them. The probability
of a dependence violation in the 2D-Hull algorithm depends on the shape
of the input set. Therefore, we have used three different, ten-million-point
input sets to run this benchmark. The Kuzmin input set follows a Gauss-
Kuzmin distribution, with a higher density of points around the center of
the distribution space, which leads to very few dependence violations, since
points far from the center are very scarce. The two other input sets, Square
and Disc, cause more dependence violations than Kuzmin, with their points
uniformly distributed inside a square and a disc, respectively. The Square input
set leads to an enclosing polygon with fewer edges than the Disc input set,
thus generating fewer dependence violations.

The second real-world application is the randomized incremental construc-
tion of the Delaunay Triangulation using the Jump-and-Walk strategy, which
was introduced by Mücke et al. [29,13]. This incremental strategy starts with
a number of points, called anchors, whose containing triangles are known. The
algorithm finds the closest anchor to the point to be inserted (the jump phase),
and then traverses the current triangulation until the triangle that contains
the point to be inserted is found (the walk phase). The goal of the algorithm
is to find the network of triangles in which all the circumcircles of all triangles
in the network are empty, i.e., the circumcircle of each triangle contains no
other vertices than those three that define the triangle. We have used an input
set of 5000 anchors, and one million points to be inserted.

The TREE problem [5], unlike the previous two applications, does not suf-
fer from dependence violations, but it is still not parallelizable at compile time
because the compiler is not able to ensure that there are no data dependencies.
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Fig. 3 Speedups by number of processors for each tested benchmark, comparing the per-
formance obtained by using Intel Xeon Phi coprocessor, and a conventional shared-memory
system.

Compilers also find hurdles in several sum and maximum reductions contained
in the code. We have run this benchmark with a 4096-point input set.

We have also used a synthetic benchmark called Fast [4], which presents
almost no dependences between iterations, and which was designed to test the
efficiency of the speculative scheduling mechanism, with few iterations

We have used two different platforms to compare the scalability of the spec-
ulative execution of our benchmarks. The first one is Heracles, a 64-processor
server, equipped with four 16-core AMD Opteron 6376 processors at 2.3GHz
and 256GB of RAM, which runs CentOS 7 Linux. The second one is Chimera,
a server equipped with two Intel Xeon E5-2620 V2 processors with six cores
each, 32 Gb of RAM, and a Xeon Phi 3120A coprocessor with 6 Gb of RAM
running at 1.1 GHz. The system also runs CentOS 7 Linux.

All threads had exclusive access to the processors during the execution of
the experiments, and we used wall-clock times in our measurements without
taking into account times spent in data transfer. We have used icc (ICC) 15.0.2
for all applications in both platforms. Although we know that ICC may be not
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the most appropriate compiler for an AMD platform, Xeon Phi offloaded codes
can only be compiled with ICC, and we preferred to use the same compiler
in all the experiments. Times shown in the following sections represent the
time spent in the execution of the parallelized loop for each application. To
better assess the scalability offered by the Xeon Phi, the time required for data
offloading has not been taken into account in the measurements.

The execution time used as the baseline for comparing speedups was the
sequential execution of each benchmark in both platforms, with the same
compiler and compilation flags.

5 Experimental results

5.1 Scalability

Figure 3 compares the speedup obtained with the same parameters in both the
shared-memory processor, and the Xeon Phi coprocessor. Results show that,
regarding the speedup, the Xeon Phi coprocessor delivers a better scalability
than a conventional, shared-memory system. This scalability improvement is
related to the Xeon Phi memory architecture. All TLS runtime libraries re-
quire many accesses to shared data, so the faster and higher bandwidth, the
better performance. In our case, while the AMD Opteron 6376 achieves up to
51.2 GB/s memory bandwidth per socket, [1], the Intel Xeon Phi coprocessor
achieves a peak of 240 GB/s [2]. In our experiments, the benchmark with the
highest number of variables involved in the speculative execution is the Delau-
nay triangulation, with more than 12 million, different scalar variables, while
the one with the smallest shared data set is FAST, with just two variables.
Whilst in the latter benchmark the speedup is similar in both architectures,
in the Delaunay triangulation the speedup achieved by the Intel Xeon Phi is
up to 2.38× higher with respect to the AMD Opteron 6376.

5.2 Oversubscription

Figure 4 shows the experimental results produced with the execution of the
benchmarks using the whole threads of the Xeon Phi coprocessor. The par-
ticular nature of the threads per core in this platform, being not independent
of each other, severely limits the scalability when more than 60 or 70 threads
are launched, depending on the application. In some cases, performing such
an oversubscription with respect to the number of cores leads to slightly bet-
ter results, but the performance decays when we tried to use more cores. We
attribute this fact mainly to memory issues, since the benchmarks considered
mainly use integer arithmetic and therefore do not make noticeable use of
FP ALU sharing among contexts. As we have exposed in Sect. 2.1, Xeon Phi
coprocessors can manage up to 244 threads. However, due to the fact that
threads of each core are not independent, from 61 threads on (there are in
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Fig. 4 Speedups by number of processors for each benchmark tested on the Intel Xeon Phi
coprocessor.

total 61 cores) most of these cores are of no use to execute speculative threads
that follow their own execution path.

In conclusion, we have found that the particular architecture of the Xeon
Phi, with threads working synchronously in each core, is not particularly suit-
able for software-based speculative execution.

5.3 Absolute performance

Although the Xeon Phi presents a better scalability when comparing with
a conventional, shared-memory system, when considering absolute times, the
picture is very different. Figure 5 shows the absolute times required to run
each benchmark in Heracles and in the Xeon Phi installed in Chimera. The
analysis of this figure leads to two conclusions. First, the use of the Xeon Phi
to execute these benchmarks in parallel reduces the execution time needed by
a single, high-end processor for the Fast, Tree, and 2D-Hull benchmarks, using
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32 processors 64 processors
Application (A) Xeon Phi (B) Heracles (A)/(B) (A) Xeon Phi (B) Heracles (A)/(B)
FAST 154.45 19.28 8.01 87.68 9.03 9.71
2D-Hull, Disc 11.71 2.22 5.27 13.81 2.39 5.77
2D-Hull, Square 4.93 0.99 4.98 4.58 0.80 5.75
2D-Hull, Kuzmin 3.01 0.54 5.62 2.36 0.40 5.90
Delaunay 114.08 22.04 5.18 139.50 23.24 6.00
TREE 87.30 23.18 3.77 99.33 47.49 2.09

Table 1 Comparison of the time in seconds required to execute the benchmarks tested in
both the Heracles, the shared memory system, and in the Xeon Phi coprocessor of Chimera.

the Square and the Kuzmin input sets. On the contrary, Delaunay and 2D-Hull
using the Circle input set does not benefit at all from this architecture.

The second conclusion is that when comparing the absolute times obtained
with the same number of threads in both architectures, we can see that the
shared-memory architecture of Heracles allows to obtain execution times that
are roughly an order of magnitude better than those produced by the Xeon
Phi. The reasons are not only the higher clock speed of AMD processors, but
their more advanced architecture, with out-of-order execution and branch pre-
diction, compared with the in-order execution of the Pentium-based Xeon Phi
computing units, that stalls the execution in the case of a cache miss. The
much more powerful architecture of AMD processors compensates the per-
formance losses derived from the memory organization in the shared-memory
system with respect with the one offered by the Xeon Phi, that leads to a
better scalability as we saw in previous sections. Regarding the influence of
the compiler chosen, in theory the choice of the Intel compiler might help the
Xeon Phi platform to obtain better results. However, as long as the bench-
marks are irregular, integer-based applications, the vectorization capabilities
of the Intel compiler are of limited use in this case.

Table 1 summarizes the execution times for 32 and 64 threads in both
architectures, with the corresponding relationship. As can be seen, relative
speedups obtained by Heracles range from 2.09× for TREE with 64 processors,
to 9.71× for FAST with 64 processors.

Despite the poor performance delivered, we consider that the Xeon Phi
coprocessor may still help in the speculative execution of loops thanks to their
comparatively big number of threads. Our future work include the combi-
nation of software-based TLS techniques with other solutions, such as value
prediction, or the use of helper threads.

6 Related work

To the best of our knowledge, this is the first research that tests TLS with
Xeon Phi coprocessors. We will briefly review some related TLS approaches,
and other studies that measure Xeon Phi capabilities.
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Fig. 5 Execution time in seconds with respect to the number of threads for each benchmark.
The sequential time obtained with a single Xeon processor in Heracles is also shown.

6.1 TLS approaches

Several researches have been centered on the parallelization of loops with cross-
iteration dependences through thread-level speculation (TLS) techniques. Some
of them have been implemented in hardware (e.g. [40,24,28], through the de-
sign of specific chips, or the addition of some functionalities. But there are
also several software approaches that support the mentioned parallelism with
no architectural changes [8,22,25,42]. In this work, we will describe some of
the software approaches, and propose a number of possible hardware addi-
tions which might improve the performance of TLS on the Intel Xeon Phi
coprocessors.

6.1.1 Software branch

One of these software approaches is the work of Tian, Feng, Nagarajan and
Gupta in [42], where they proposed the Copy-or-Discard (CorD) execution
model, in which the execution of parallel threads are separately managed by
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the non-speculative one. Speculative threads read values of the non-speculative
thread and perform their computation, after that, speculative threads are com-
mitted in order. After that results are checked by non-speculative thread in
order to preserve semantics of sequential order. Commit operation is performed
by non-speculative thread through the Copy or Discard mechanism that checks
whether results are correct to be copied to the non-speculative data, or dis-
carded with no cost otherwise. However, CorD approach did not support those
applications whose speculative variables were dynamically allocated, so in [41]
Tian, Feng and Gupta developed mechanisms that enable their solution to do
it.

Cintra and Llanos [8,9] developed another scheme mainly based on an ag-
gressive sliding window, with checks for data dependence violations on spec-
ulative stores that reduced synchronization constraints, and with fine-tuned
data structures.

Kulkarni et al. [25,26], introduced Galois, a system to support complex
pointer-based sets of elements in optimistic parallelism. They were centered on
parallelize applications with complex structures as linked lists, graphs, trees,
etc.

Oancea et al. [31] described their own TLS approach called SpLIP, cen-
tered on decreasing overheads of speculative operations of previous approaches.
They implemented non-locking operations where was possible, and used a hash
function to improve location of version copies. Their hash is based on mapping
adjacent zones of the array that stored speculative values in a single place. A
similar approach to SpLIP [31], called MiniTLS, was developed by Yiapanis
et al. [45].

Jimborean et al. [21] introduced a TLS framework specially designed to
speculatively execute nested loops. To do so, authors used features of polyhe-
dral model to dynamically transform code in a more optimized version that led
to higher speedups. Framework consisted on dividing execution in two parts,
one to generate some skeletons, and other one that selected the optimized code
at runtime.

Most of the reviewed approaches might be useful to test the performance
of the Xeon Phi. As we saw in previous section, we have used the ATLaS
framework [4,15]. Our results suggest that the use of other software-only TLS
solutions may lead to similar conclusions.

6.1.2 Hardware improvements to benefit software TLS

We will now explore some enhancements which might possibly improve the
performance of TLS on Intel Xeon Phi coprocessors. We will center our dis-
cussion on applying ideas belonging to the classical hardware approaches to
manage speculation in multicore processors. Therefore, the implementation of
these ideas would need changes in the Xeon Phi architecture.

Sohi et al. [40] developed the Multiscalar processor, where cores were inter-
connected through a ring, an approach also followed in the Speculative mul-
tithreaded processor [28]. For these systems, hardware modules developed to
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store intermediate versions of variables were also proposed, such as ARB [17]
or SVC [19]. As long as the ring interconnection mechanism is also present
in the Xeon Phi coprocessors’, the application of their mechanisms to handle
dependences in hardware might decrease software overheads.

Another possible improvement might be the addition of a new cache, based
on the Trace cache [37]. This proposal stored traces (dynamic sequences of
instructions stored in the hardware) at runtime, and instructions were executed
in parallel, while dependences were speculated with the use of predictors.

A different approach like the used in the I-ACOMA architecture [24] may
work as well. They used a binary annotator that added some notes into ex-
ecutable files to detect possible dependences, that were managed at runtime
with a special module called Memory Disambiguation Table. Another source of
ideas for improvements is the Threaded Multi-Path Execution [44] approach,
that was focused on prediction techniques. This proposal executed all possi-
ble branches of a loop, whilst there were enough resources, a situation that is
likely to occur in Xeon Phi coprocessors.

6.2 Studies related to the Xeon Phi coprocessor

The Xeon Phi coprocessor is being extensively studied. Some papers have
developed extensions to offloaded regions. For example, COSMIC [6] is a mid-
dleware integrated in the subjacent software that tried to ease and improve
the performance of multiprocessing in Xeon Phi coprocessors. This work aimed
to reduce imbalance and overheads through the management of resources. It
handled offload regions and takes care of the request of coprocessors, cores and
memory. Snapify [36] tried to reduce failure rates of Xeon Phi coprocessors.
The underlying idea was taking snapshots during execution (saving the state
of applications) and if an error was produced, the execution was restored to a
correct, saved state, instead of being restarted.

Some essays are focused in the implementation of existing algorithms into
coprocessors. For example, [33] developed a multi-node 1D FFT implementa-
tion on coprocessors; [27] implemented a sparse matrix-vector multiplication;
and [32] developed a SQL engine that benefited from the inherent parallelism
related to Xeon Phi coprocessors.

Furthermore, as it is the case, there are many other papers centered on
the measurement of the performance obtained from a Xeon Phi. [38] was one
of the first papers that used Intel Xeon Phi coprocessor (that was called Intel
Knights Ferry) to evaluate the performance of scientific applications. Later,
Cramer et al. [11] evaluated the behavior of some OpenMP benchmarks in a
Xeon Phi coprocessor. They affirmed that common OpenMP codes could be
easily migrated to Intel Xeon Phi, gaining more parallel performance without
adding overheads. This study was enhanced in [39]. [16] also tested the Xeon
Phi through the development of some microbenchmarks.
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7 Conclusions

In this work we have evaluated the behavior of the Xeon Phi coprocessor in
the context of software-only, thread-level speculation (TLS), a parallel tech-
nique that optimistically executes in parallel sequential codes without a prior
dependence analysis. Intel Xeon Phi coprocessors are one of the state-of-the-
art architecture that aims to execute parallel codes. Our experimental results
show that the particular memory architecture of the Xeon Phi leads to better
scalability with regards to speculative execution, with better relative speedups
than those obtained using a conventional, shared-memory architecture. How-
ever, the relative low computing power of its computational units when specific
vectorization and SIMD instructions are not exploited, indicates that further
development of new specific techniques for this platform is needed to make it
competitive for the application of speculative parallelization comparing with
high-end processors or conventional shared-memory systems. This situation is
likely to change with the arrival of the new generation of Xeon-Phi platforms,
that incorporates more competitive processors. We plan to extend this work
to this new generation, with a more detailed profile analysis, as soon as it
becomes available.

Although the use of a Xeon Phi coprocessor to execute software-based, TLS
codes is not competitive, the Xeon Phi architecture might be useful when com-
bining TLS solutions with other existing techniques such as value prediction
or helper threads. In this way, some of the available threads could be used
to help TLS execution, reducing dependence violations and thus improving
performance.
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