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Abstract
Dataflow programming consists in developing a program by de-
scribing its sequential stages and the interactions between them.
The runtimes supporting this kind of programming are responsible
of exploiting the parallelism by concurrently executing the different
stages when their dependencies have been met.

In this paper we introduce a new parallel programming model
and framework based on the dataflow paradigm. Its features are:
It is a unique one-tier model that supports hybrid shared- and
distributed-memory systems; it can express activities arbitrarily
linked, including cycles; it uses a distributed work-stealing mech-
anism to allow Multiple-Producer/Multiple-Consumer configura-
tions; and it has a run-time mechanism for the reconfiguration of
the dependences network which also allows to create task-to-task
affinities.

We present an evaluation using examples of different classes of
applications. Experimental results show that programs generated
using this framework deliver good performance, and that the new
abstractions introduce minimal overheads.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Data-flow languages

Keywords Dataflow programming, Distributed systems, Dynamic
computation, Parallel programming models, Streaming computa-
tion

1. Introduction
The most common programming tools for parallel machines are
based on message passing libraries, such as MPI [14], or shared
memory APIs like OpenMP [6]. These tools allow the programmers
to exploit the capabilities of the machines by explicitly define the
parallel sections inserted in the sequential code and program inter-
process synchronizations and communications.

On the other hand, stream and dataflow libraries and languages
(such as FastFlow [4], CnC [5], OpenStream [17], or S-Net [13])
reduce the complexity of creating a parallel program because the
programmer only has to define the sequential stages and its de-
pendencies. It is the runtime resposability to control the sequential
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stages execution and perform the data synchronizations to exploit
parallelism.

However, these models lack either: A unique representation for
shared- and distributed-memory architectures; dependences struc-
tures involving feedback loops, free of concurrency problems; a
generic system to represent MPMC (Multiple-Producer/Multiple-
Consumer) configurations; mechanisms to reconfigure depen-
dences at run-time; or they do not have ways of intuitively express
task-to-task affinities which would allow a better exploitation of
data-locality across state-driven activities.

In this paper, we propose HitFlow, a new dataflow parallel pro-
gramming model that extends a previous proposal [10]. It uses
a single representation for both shared- and distributed-memory
models. It introduces a generic form of describing a program
as a reconfigurable network of activities and typed data con-
tainers arbitrarily interconnected. It presents an abstraction for
an MPMC channel system that includes a work-stealing, load-
balancing mechanism. Our solution also allows task-to-task affinity
to be set to exploit data locality.

We present an evaluation of our proposal using examples of
three different application classes. We describe how they are rep-
resented in our model, showing how to express different types of
parallel paradigms, and static and dynamic synchronization struc-
tures. Moreover, experimental work has been carried out to prove
that the programs generated using our framework achieve good per-
formance in comparison with manual implementations using mes-
sage passing, or compared with FastFlow [4], another state-of-the-
art tool for dataflow programming. These experiments show that
the overheads introduced by the new abstractions do not have a sig-
nificant impact.

The rest of the paper is organized as follows. Section 2 describes
our proposed parallel programming model. A discussion about its
usage is given in Section 3 while Section 4 shows the implemen-
tation details. Section 5 presents the experimental work carried out
to test the implementation. Section 6 describes some related work
in the field. Finally, the conclusions of the paper are in Section 7.

2. HitFlow model
In this section we present HitFlow, a new parallel programming
framework implemented in C++ that exploits dataflow parallelism
for both shared- and distributed-memory systems. The HitFlow
programming model takes its notation from Colored Petri nets [16].
A HitFlow program is a network composed of two kinds of nodes,
called places and transitions. The places are shared data containers
that keep tokens, while the transitions are the sequential processing
components of the system. Transitions are connected by directed
channels to places, with the direction determining the input and
output role of places for each transition. A transition takes one
token from each of its input places and performs some activity



with them. It may then add tokens to any/all of its output places.
This activity is repeated while there are tokens arriving to the input
places.

We propose the computation inside the transitions to be mode-
driven. Using a mathematical notation, P = {p1, p2, . . . , pn} is
a finite set of places and T = {t1, t2, . . . , tm} is a finite set of
transitions composed of modes: ti = {m1,m2, . . . ,mo}. Each
mode mi is a tuple 〈f, I, O, next〉 where I ⊆ P are the input
channels, O ⊆ P are the output channels, f is the sequential
function, and next ∈ {m1,m2, . . . ,mo} ∪ END is the selected
next mode.

Modes are used to define mutually exclusive activities inside the
transitions that dynamically reconfigure the network. A mode en-
ables a subset of connections to input places or output places. For
each mode, the user defines a function to process inputs, the asso-
ciated places and the default next mode that will be executed when
the current one finishes. A transition with several modes changes
its mode when all the tokens from the active mode have been pro-
cessed. To detect that there are no more tokens remaining or pend-
ing to arrive to the input places, special signal tokens are used to in-
form of a mode change (mode-change signal). The change of mode
in a transition automatically sends mode-change signals to all its
output places. Thus, signals are propagated automatically across
the network, flushing tokens produced on the previous mode, be-
fore changing each transition to the new mode. When a transition
change its mode, input and output places are reconfigured accord-
ing to the new mode specification. An example of a network with
modes can be seen in Fig. 1. The network has a transition (A) with
two modes. On each mode, the transition will send tokens to a dif-
ferent destination B or C.

Finally, the modes can be used to enable data locality, defining
task-to-task affinities. Task implemented as functions of different
modes in the same transition are mutually exclusive and are ex-
ecuted by the same thread so they can share data structures. For
example, data affinity is used in the Smith-Waterman algorithm,
which is one of the benchmarks discussed in the experimental sec-
tion. This benchmark performs a two-phase wavefront algorithm.
In the first phase, it calculates the elements of a matrix starting from
the top left element. The second phase is a backtracking search that
starts from the bottom right element of the resulting matrix using
the data obtained from the previous phase. As is shown in Fig 2,
it is possible to create a network to model this kind of problem
without using the modes. However, using the modes, we can fold
that network adding two different activities in the transitions, one
for each phase of the algorithm. Thus, each transition can perform
the two required stages sharing its assigned portion of the matrix,
avoiding communications of the matrix portions, that would imply
sending big tokens through places.

3. Programming with HitFlow
We have developed a prototype of a framework to implement par-
allel programs in accordance with the proposed model. The cur-
rent prototype relies on POSIX Threads Programming (Pthreads)
and the standard Message Passing Interface (MPI) to support both
shared- and distributed-memory architectures. This section ex-
plains the key features of the programming framework. It contains
a summary of the HitFlow API, a description of how to build a
program network, and details about the mode semantics. The main
HitFlow classes are shown in the UML diagram in Fig. 3. A table
with the API methods can be found in [11].

3.1 Building transitions
To use this framework, the user has to create a class which extends
the provided Transition class with the sequential activities of the
program (See example in Fig. 4). The init and end methods can

1 class MyTransition: public Transition {
2 public:
3 void execute(){ // User activity method
4 double intask;
5 get(&intask); // Retrive a token from the place
6 double outtask = process(intask)
7 put(&outtask); // Put the token into the output
8 }
9 };

Figure 4: HitFlow example of the creation of a Transition extending
the basic Transition class.

be extended to execute starting and ending actions before and after
the execution of the program. The user classes should introduce
one or more new methods with arbitrary names to encapsulate the
code for particular mode activities. The association between modes
and activity methods is established when building the network (see
section 3.2).

The activity method is automatically called when there are to-
kens to be processed in the input places declared for its mode.
If there are no input places for its particular mode, it will be
called just once. The user-defined activity methods can use the
Transition::get or Transition::put methods to retrieve to-
kens from, or append tokens to, the current places. The get method
retrieves one token for each of the active input places of the current
mode. On each activity method invocation, HitFlow ensures that
the get method can be called once. Additional calls to get will
block until there are again at least one token in each input place. If
the framework detects that the producers that feed the input places
have ended their modes, meaning no more tokens will be produced
(end-mode tokens in the input places) and the input places are al-
ready empty of tokens of the active mode, the call to get will throw
an exception. The put method adds a token to a specific output
place. The output place can be selected by its identifier using the
second argument of the put method. It can be omitted if there is
only one active output place in the mode.

A mode automatically finishes when the producer transitions
have sent a mode-end signal indicating that they have finished
the activity in that mode, and all the tokens in the places, that
were generated in the previous mode, have been processed. At this
moment, the transition sends end-mode signals tokens to the active
output places and automatically evolves to the next-programmed
mode. The next-programmed mode can be changed by calling the
Transition::mode method at any time. If it is not changed by
the user, the default next mode is END that is used to finish the
computation.

The example in Fig. 4 extends the Transition class by declar-
ing a user activity method. The method retrieves a token from one
place, processes it, and sends the result to an output place.

The tokens are C++ variables of any type, handled using tem-
plate methods. The marshaling and unmarshaling is done internally
with MPI functions. The basic types (char, int, float, ...) are enabled
by default. User defined types require the programmer to declare a
data type with a HitFlow function (hitTypeCreate) that internally
generates and registers the proper MPI derived type.

3.2 Building the network
Once the transition classes are defined, the programmer builds the
network in the main function of the C++ program. This implies
creating transition and place objects, associating the activity meth-
ods, input, and output places to modes on the transitions, and finally
adding the transitions to a Net object. Fig. 5 shows a simple code
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Figure 2: SmithWaterman network structure with and without modes.
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# Place(string name, ReduceOp op)
+ setMaxSize(int s)
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+ addInput(Place * p, string mode = "default")
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+ init()
+ end()
# get(T1* t1, [T2* t2=NULL,...])
# put(T& t, int placeid=0)
# mode(string name)
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Figure 3: UML diagram of the framework.



1 Place<double> placeA, placeB;
// Declare the places

2 placeA.setMaxSize(10); // Set the place size
3

4 MyTransition transition;
5

6 // Add the method and places to modeA
7 transition.addMethod(&MyTransition::execute,"modeA");
8 transition.addInput(&placeA,"modeA");
9 transition.addOutput(&placeB,"modeA");

10 ...
11

12 Net net; // Declare the net
13 net.add(&transition); // Add the transition
14 net.run(); // Run the net

Figure 5: HitFlow example of the network creation.

with a network using the previously shown MyTransition transi-
tion.

The first step is to create the places that will be used in the
application (line 1). The Place class is a template class used to
build the internal communication channels. The size of the place
defines the granularity of the internal communications: It is an
optimization parameter that represents the number of packed tokens
that will be transferred together. The user can set it in accordance
with the token generation ratio of the transition.

The next step is to set the activity method and the inputs and out-
puts for each mode. The addInput, addOutput, and addMethod
methods, have an optional parameter to specify the mode. When
this parameter is not specified, a default END mode is implic-
itly selected. Lines starting at 7 set the activity method, an input
place, and an output place for the default mode. Multiple calls to
the addInput or addOutput for the same transition mode, allow
MPMC constructions to be built.

Finally, all the transitions are added to a Net class that controls
the mapping and the execution (lines 12 and 13). Line 14 invokes
the Net::run method that starts the computation.

3.3 Mapping
Using HitFlow, the programmer can provide a mapping policy to
assign transitions to the available MPI processes. If it is not pro-
vided, there is a default fallback policy implementing a simple
round-robin algorithm. MPI processes with more than one mapped
transition automatically spawn additional threads to concurrently
execute all the transitions. HitFlow implementation solves the po-
tential concurrency problems introduced by synchronization and
communication when mapping transitions to the same process (see
Sect. 4.3). In the current prototype, the mapping policies should
provide an array associating indexes of transitions to MPI process
identifiers.

4. Implementation details
This section discusses some of the implementation challenges asso-
ciated with the model, and how they have been solved in the current
prototype framework.

4.1 Targeting both shared and distributed systems
One of the main goals of the framework is to support both shared
and distributed memory systems with a single programming level
of abstraction. The user-defined transition objects that contain the
logic of the problem are mapped into the available MPI processes.
Since there may not be enough processes for all of the transitions,
threads are spawned inside the processes if needed.

4.2 Distributed places
The HitFlow places are not physically located in a single process.
Instead, they are distributed token containers. A place is imple-
mented as multiple queues of tokens located in the transitions that
use that place as input. When needed, the tokens are transmitted
and rearranged between the queues an input place on the transi-
tions. This solution builds a distributed MPMC queue mechanism
that exploits data locality, and is more scalable than a centralized
scheme where a single process manages all the tokens of a place.
However, this is a solution that introduces coordination challenges.

Internally, the distributed places are implemented using ports
that move the tokens from the source to one of the destination
transitions. Input and output ports are linked using channels. Fig-
ure 6 shows how the arcs of the model are implemented using ports.
There are five situations:

(a) When a place connects two transitions, a channel will be con-
structed to send the tokens from the source to the destination.

(b) When there are two or more input places in a transition, it will
have several input token ports, each of them connected to the
corresponding source.

(c) When two or more transitions send tokens to a common place,
the destination will have a single port that will receive tokens,
regardless of the actual source.

(d) If a place has several output transitions, any of them can con-
sume the tokens. To allow this behavior, when a place is shared
by several destinations, the source will send tokens in a round-
robin fashion to each output port. This can lead to load unbal-
ance if the time to consume tokens in the destinations is not
compensated. To solve this, a work-stealing mechanism is used
to redistribute tokens between the destination transitions.

(e) When a transition uses the same place as input and output, the
token will flow directly to the input port for efficiency reasons.

4.3 Ports, buffers, and communications
This section shows the internal port objects and explains the de-
tails about the communications and buffering. Figure 7 shows an
example of a two-transition network. There is a producer that gen-
erates tokens which are sent to a consumer using the place A. The
consumer presumably performs a filter operation on the tokens and
sends some of them back to the producer using the place B. Figure 8
describes the internal structures of the previous example.

The internal communications are handled by Port objects. The
transitions have a port for every input or output place. The ports
have a buffer where the tokens are stored. The size of the buffer is
determined by the maximum number of tokens that can be stored at
the same time in the place that it represents, as defined by the user
with the Place::setMaxSize method. The size of the buffer also
has an extra space for the message headers and other information
that must be sent along with the tokens. When tokens are sent to
a place, they are first stored in the output port buffer. The HitFlow
runtime library decides when to perform the real communication.
By default, it will try to maximize the port buffer usage, packing as
many tokens as possible to minimize the number of MPI messages
to be sent, without delaying communications.

In addition to the input port buffers, the transitions have queues
to store the tokens received. There is a queue for each input place.
When an incoming MPI message is received, the input port buffer
associated to the channel is used to retrieve the tokens and are
store them in the corresponding queue where they can be accessed
by the transition get method. Unlike the buffers, which have a
limited memory space assigned, the queues grow dynamically and
are only limited by the host memory. Finally, the user method is
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Figure 7: Small example network with two transitions.

automatically called to process the available tokens when there is
at least one token in each input queue.

In Fig. 8, the producer transition (2) and the consumer transition
(2’) are executed in two different processes (1 and 1’, respectively).
Since both transitions have only one input place, they have only one
input token queue (3 and 3’). The size of the place A is 5, thus the
output port of the producer (5) and the input port of the consumer
(4’) have a buffer for 5 elements. In contrast, the size of B is 3,
so its port buffers (4 and 5’) have that same size. The figure also
represents the MPI communication buffers for the two processes (6
and 6’).

With the HitFlow runtime, it is not possible to produce a dead-
lock due to port buffer exhaustion, even in unbalanced networks
with cycles. Consider for example the network depicted in Fig. 8.
Assuming that the producer and consumer send tokens with a very
unbalanced ratio, causing the port buffer of the two transitions to
become exhausted, it will not cause a deadlock. The runtime will
keep receiving messages and storing them in the local and unlim-
ited transition queue. Thus, the only limitation will occur when one
of the processes depletes the host memory.

However, due to a limitation of the MPI-3 standard that only
allows one MPI buffer per process, it is possible to produce a
deadlock when several transitions are mapped in the same MPI
process using threads. If two transitions are mapped to the same
process, they share the same MPI buffer. Thus, the messages of
one transition could consume all the buffer memory, preventing the
other transition from performing its communications. This opens
the possibility of producing a deadlock on the progression of the
whole network. This problem can be solved using the new features
that are being studied to be included in MPI-4. Such as Allocate
Receive communications [15] that allocate memory internally for
incoming messages to eliminate buffering overhead when receiving
unknown-size messages, and Communication Endpoints [8] that
allow the threads inside a process to communicate as if they are
separate ranks.

4.4 Work-stealing
To solve load unbalances when a place has several output transi-
tions, HitFlow uses a work-stealing mechanism to redistribute to-
kens between the consumers. The token queues that were presented
in Sect 4.3 are in fact double-ended queues. The user function
retrieves the tokens from the bottom with the Transtion::get
method while the work-stealing mechanism takes or adds tokens
using the top end. When a transition processes all the tokens in its
queue, the HitFlow runtime will try to obtain more tokens. First it
will select a victim from within the other transitions in the work-
stealing group, and then it will send a request message. Depending
on the number of available tokens in the victim, it can send some
of its tokens back or send a message denying the request. In order
to determine when there are no more tokens available in any of the
transitions, a distributed voting-tree scheme is performed.

5. Case Studies: HitFlow Evaluation
In this section, three case studies are discussed to test whether the
model is suitable to represent different kinds of applications and to
check the performance of the framework.

5.1 Benchmarks
The first benchmark calculates the Mandelbrot set, an embarrass-
ingly parallel programming application that helps us to test the ba-
sic functionalities of our proposal, to detect potential overheads,
and also allows us to compare with other solutions.

The next two benchmarks are two implementations of a real
application. They present very different implementations of the
Smith-Waterman algorithm, an algorithm to perform local align-
ments of protein sequences. One of them is swps3 [18], a highly
optimized implementation that extensively uses vector instructions.
The other one is a parallelization based on the implementation de-
veloped by Clote [7]. The first one is a simple task-farm applica-
tion, while the second represents a complex combination of wave-
front and reduction operations.

5.2 Performance
Experimental work has been conducted to show that the imple-
mentation of HitFlow achieves a good performance compared with
other frameworks and with manually optimized implementations.
We use two different experimental platforms with different archi-
tectures: A multicore shared-memory machine and a distributed
cluster of shared memory multicores. The shared-memory system,
Atlas, has 4 AMD Opteron 6376 processors with 16 cores each
at 2.3GHz, and 256GB of RAM. The distributed system, CETA-
Ciemat, is composed of several MPI nodes with two Quad Core In-
tel Xeon processors (4 cores, 2.26GHz) each, thus each node con-
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tains 8 cores. For experimentation in this paper, we have used 8
nodes to match the 64 cores of Atlas.

5.2.1 Mandelbrot set
For the Mandelbrot benchmark, we compare the HitFlow version
against a manual MPI version, and two versions using FastFlow [4],
a structured parallel programming framework originally targeting
shared memory multi-core architectures with specific extensions to
support combined distributed- and shared-memory platforms. The
first FastFlow implementation only uses the shared-memory layer.
The second implementation includes the use of both the distributed
and the shared-memory layers. The shared-memory pure version is
directly the implementation included in the FastFlow distribution
examples, that uses the FastFlow farm pattern. We have developed
the distributed version using the two-tier model of the extended
FastFlow library that supports both shared and distributed memory
using different classes [3]. This last version has a farm pattern
inside each distributed node. There is also an upper tier producer
that coordinates the work and feeds tasks to the nodes, with their
lower tier farms.

All the implementations use a farm structure that processes the
grid by rows. The manually developed one implements a simple
farm algorithm in MPI. The HitFlow version uses a network with
a producer transition and several worker transitions connected by a
single place, This is a very simple benchmark used to test the Hit-
Flow channel implementation, and the work-stealing mechanism.

Figure 9 shows the results of the Mandelbrot implementations.
The programs calculate the set in a grid of 214 × 213 elements.
The programs use up to 1 000 iterations to determine if each ele-
ment belongs to the set leading to many low cost tasks to be pro-
cessed. FastFlow shared-memory implementation scales better in
Atlas, since the internal lock-free queues take advantage of the ar-
chitecture. HitFlow implementation is simpler than the distributed
FastFlow version because it uses a unique tier for both shared- and
distributed-memory architectures. It shows worse scalability in the
shared-memory machine but obtains the same results as FastFlow
in the distributed one. This shows that HitFlow channel and work-
stealing implementation have a great scalability in distributed envi-
ronments, there that is still room for improvement in shared mem-
ory machines.

5.2.2 Swps3
For the swps3, we compare the original version [18], which is im-
plemented using pipe and fork system calls to create several pro-
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Figure 9: Mandelbrot set benchmark results.

cesses in the same machine, with the FastFlow and the HitFlow
versions. The structure of this benchmark is a farm with an emit-
ter. For a fair comparison, we have developed the FastFlow and
HitFlow versions starting with the sequential code of the original
swps3 benchmark. We have not used the original example included
in FastFlow [2], since it uses some memory allocation optimiza-
tions and does not work for the bigger sequences chosen as input
for our experiments, needed to generate enough workload for our
target systems. All the versions match a single protein sequence to
all the proteins from a database of sequences. We have used the
UniProt Knowledgebase (UniProtKB) release 2014 04, a protein
information database maintained by the Universal Protein Resource
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Figure 10: Swps3 benchmark results using the protein sequence
Q8WXI7 as inputset.

(UniProt) [1]. This database consists of 544 996 sequences which
minium length is 2, its maximum is 35 213, and its average is 355.
Each sequence in the database is a task that will be fed to a farm
worker, so they can be matched concurrently. With this example,
we test the HitFlow communication and work-stealing performance
on a real application.

Figure 10 shows the experimental results for the sequence
named Q8WXI7, which has 22 152 proteins. For the shared-
memory machine, both HitFlow and FastFlow surpass the results
of the reference version. FastFlow obtains a slightly better perfor-
mance than HitFlow. In the cluster, there is no significant difference
between both versions. We can conclude that HitFlow can be used
for this kind of real applications with minimum performance degra-
dation thanks to the proposed implementation.

5.2.3 Clote’s algorithm
The third benchmark, CloteSW, is a different implementation of
the Smith-Waterman protein alignment that aims to compare two
big sequences [7]. For this benchmark, we compare two sequences
of 100 000 elements. They are bigger than any of the sequences
used in the previous experiment. For this case, the Smith-Waterman
algorithm requires a 100 000 x 100 000 elements matrix to be cal-
culated with the alignment. The computation is broken down into
pieces, following a distributed wavefront structure. The benchmark
has several phases: First, it populates the alignment matrix follow-
ing the wavefront structure. Then, it performs a reduce operation
to determine the maximum match sequence. Finally, it uses a back-
tracking method to compose the sequence traversing the wavefront
structure in the inverse order. We have developed a manual C++ &
MPI version and a HitFlow version. The HitFlow implementation
use the mode structure described in Fig. 2. The use of the modes in
HitFlow allows the data affinity between phases of the benchmark
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to be defined, avoiding extra communications or coordinations. The
results are shown in Fig. 11. Both versions show a similar perfor-
mance.

6. Related work
HitFlow is a complement of Hitmap, a library for automatic but
static hierarchical mapping, with support for dense and sparse data
structures [9, 12]. The Hitmap library focuses on data-parallel tech-
niques and lacks support for dataflow applications. In a previous
work [10], we introduced a first approach to a dataflow model that
could be used as a Hitmap extension. The model introduced in this
paper generalizes several restrictions of the previous one, introduc-
ing a complete generic model to represent any kind of combina-
tions of parallel structures and paradigms. The differences with the
previous Hitmap extension can be summarized as: (1) We present
a general MPMC system where consumers can consume different
task types from different producers. (2) It supports cycles in the
network construction. (3) The new model introduces a concept of
mode inside the processing units to reconfigure the network, allow-
ing mutually exclusive functions in a transition, and to intuitively
define task-to-task affinity.

HitFlow has several similarities with FastFlow [4], a structured
parallel programming framework targeting shared memory multi-
core architectures. FastFlow is structured as a stack of layers that
provide different levels of abstraction, providing the parallel pro-
grammer with a set of ready-to-use, parametric algorithmic skele-
tons, modeling the most common parallelism exploitation patterns.
HitFlow transition API is similar to FastFlow; Fig. 12 shows a full
example of a simple pipeline application to compare both of them.
The main differences are that the HitFlow framework is designed
to support both shared- and distributed-memory with a single tier
model. It includes a transparent mechanism for the correct termi-
nation of networks even in the presence of feedback-edges, and



mode-driven control to create affinity between transitions in dis-
tributed memory environments. Regarding the system targeted, the
FastFlow group has develop a distributed memory extension us-
ing a two tier model [3]. However, this solution forces the pro-
grammer to manually divide the program structure for the available
memory spaces and use a different mechanism of external chan-
nels to communicate the tasks. In this sense, HitFlow makes the
program design independent from the mapping. An extended com-
parison including development effort metrics of the previous two
stage pipeline example using distributed FastFlow can be found in
[11].

HitFlow networks are similar to CnC (Concurrent Collec-
tions [5]) graphs. CnC is a parallel programming model where
the computation is defined by serial functions called computation
steps and their semantic ordering constraints. Like HitFlow transi-
tions, CnC steps communicate through message-passing as well as
shared memory using shared entities called item collections. One
of the differences between HitFlow and CnC is that CnC allows the
programmer to give the scheduler hints about the thread affinity of
the steps. However, CnC steps only execute one activity each one
with its own memory space. Thus it is not possible to define task to
task affinities in the way HitFlow transitions do.

OpenStream [17] is a dataflow OpenMP extension where dy-
namic independent tasks communicate through streams. The pro-
grammer exposes data flow information using pragmas to define
the stream input and output task. This allows arbitrary dependence
patterns between tasks to be created. A stream can have several
producers and consumers that access the data in the stream using a
sliding window. The OpenStream runtime ensures the coordination
of the different elements. These streams are equivalent to the Hit-
Flow places and they also relay on work stealing. However, Open-
Stream does not natively support distributed memory hence cannot
handle load balancing at the cluster level. Trying to transfer this
model to distributed memory involves the same problems as the
use of distributed FastFlow.

S-Net [13] is a declarative coordination language. It defines the
structure of a program as a set of connected asynchronous com-
ponents called boxes. S-Net only takes care of the coordination:
The operations done inside boxes are defined using conventional
languages. Boxes are stateless components with only a single input
and a single output stream. From the programmers’ perspective, the
implementation of streams on the language level by either shared
memory buffers or distributed memory message passing is entirely
transparent.

7. Conclusions
This paper presents a new parallel programming model and frame-
work based on a dataflow paradigm. It allows programs to be de-
scribed as a network of communicating activities in an abstract
form. The system allows to implement from simple static paral-
lel structures to complex combinations of dataflow and dynamic
parallel programs. The description is decoupled from the mapping
techniques or policies, which can be efficiently applied at run-time,
automatically adapting static or dynamic structures to different re-
source combinations. Our current framework transparently targets
hybrid shared- and distributed-memory platforms.

We present an evaluation with examples of different classes of
dynamic and static applications. Experimental performance results
show that the overhead introduced by our abstractions has minimal
impact compared with manual implementations. Moreover, the re-
sults obtained in a distributed-memory environment show a similar
performance to FastFlow, a dataflow programming framework for
multi-core platforms.

This generic framework will allow us to focus research on
the best mapping policies that can transparently target heteroge-

neous platforms for specific or generic combinations of parallel
paradigms, allowing us to build powerful parallel patterns using a
common and generic framework. Although, the experimental re-
sults show that the distributed support in our current prototype
achieves good performance, there is still room for improvement on
the thread-level communication implementation for shared mem-
ory systems.
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1 #include <hitflow.h>
2 using namespace hitflow;
3

4 class StageA: public Transition {
5 int numtasks;
6 public:
7 StageA(int t): numtasks(t){};
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9 void create(){
10 long task;
11 for(int i=0; i<numtasks; i++){
12 task = i;
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35 }
36 };
37
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49 st_b.addInput(&place,"processTasks");
50
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52 net.add(&st_a); net.add(&st_b);
53 net.run();
54

55 return 0;
56 }

1 #include <ff/pipeline.hpp>
2 using namespace ff;
3

4 class StageA: public ff_node {
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6 public:
7 StageA(int t): numtasks(t){};
8

9 void * svc(void * intask){
10

11 for(int i=0; i<numtasks; i++){
12 long * task = new long;
13 *task = (long) i;
14 ff_send_out(task);
15 }
16 return NULL;
17 }
18 };
19

20 class StageB: public ff_node {
21 long sum;
22 public:
23 int svc_init(){
24 sum = 0;
25 return 0;
26 }
27 void * svc(void * intask){
28 long * task = (long*) intask;
29 sum += *task;
30 delete task;
31 return GO_ON;
32 }
33 void svc_end(){
34 cout << "Sum " << sum << endl;
35 }
36 };
37

38 int main() {
39

40 ff_pipeline pipe;
41 pipe.add_stage(new StageA(10));
42 pipe.add_stage(new StageB());
43 if (pipe.run_and_wait_end()<0)
44 return -1;
45 return 0;
46 }

Figure 12: A full pipeline example in both HitFlow (left) and shared-memory only FastFlow (right) frameworks.
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