
MARL-Ped+Hitmap: Towards Improving
Agent-based Simulations with Distributed

Arrays

Eduardo Rodriguez-Gutiez1, Francisco Martinez-Gil2, Juan Manuel Orduña2,
and Arturo Gonzalez-Escribano1 ?

1 Dpto. de Informática, Universidad de Valladolid,
Campus Miguel Delibes s/n, 47011 Valladolid (Spain),

{eduardo,arturo}@infor.uva.es
2 Dpto. de Informática, Universidad de Valencia,

Avda. Universidad s/n, 46100 Burjassot (Valencia, Spain)
{francisco.martinez-gil,juan.orduna}@uv.es

Abstract. Multi-agent systems allow the modelling of complex, het-
erogeneous, and distributed systems in a realistic way. MARL-Ped is a
multi-agent system tool, based on the MPI standard, for the simulation
of different scenarios of pedestrians who autonomously learn the best
behavior by Reinforcement Learning. MARL-Ped uses one MPI process
for each agent by design, with a fixed fine-grain granularity. This require-
ment limits the performance of the simulations for a restricted number of
processors that is lesser than the number of agents. On the other hand,
Hitmap is a library to ease the programming of parallel applications
based on distributed arrays. It includes abstractions for the automatic
partition and mapping of arrays at runtime with arbitrary granularity,
as well as functionalities to build flexible communication patterns that
transparently adapt to the data partitions.

In this work, we present the methodology and techniques of granular-
ity selection in Hitmap, applied to the simulations of agent systems.
As a first approximation, we use the MARL-Ped multi-agent pedestrian
simulation software as a case of study for intra-node cases. Hitmap al-
lows to transparently map agents to processes, reducing oversubscription
and intra-node communication overheads. The evaluation results show
significant advantages when using Hitmap, increasing the flexibility, per-
formance, and agent-number scalability for a fixed number of processing
elements, allowing a better exploitation of isolated nodes.

Keywords: Agents, crowd simulation, message-passing, programming
tools, distributed arrays

? This work has been funded by Spanish MINECO and the EU ERDF program un-
der grants HomProg-HetSys TIN2014-58876-P, TIN2015-66972-C5-5-R, CAPAP-H5
network TIN2014-53522-REDT, and COST Program Action IC1305: Network for
Sustainable Ultrascale Computing (NESUS).

2

1 Introduction

Multi-agent systems allow the modelling of complex, heterogeneous, and dis-
tributed systems, in a realistic way. They assign an agent to each entity involved
in the real-world environment [18, 17]. This software paradigm is particularly ap-
propriated for the study of pedestrian dynamics, where autonomous interactions
among individuals generate global system behaviors. MARL-Ped [13] is a multi-
agent distributed tool where each agent (pedestrian) learns its own behavior by
Reinforcement Learning (RL) [15], allowing the simulation of pedestrian groups
(ranging from a few ones to crowds) in different scenarios (queue forwarding,
congestion scenarios, evacuation of enclosed ares, etc.). The great computational
workload added by the learning process of each agent, together with the required
number of agents in medium and large scale scenarios require the use of High Per-
formance Computing platforms. Indeed, the number of agents tested in learning
environments is usually limited by the available computing resources. MARL-
Ped is based on the MPI message-passing standard which provides portability
across distributed- and shared-memory environments. It uses one MPI process
for each agent by design, with a fixed fine-grain granularity. This requirement
limits the performance of the simulations for a restricted number of processors
that is lesser than the number of agents. On the other hand, Hitmap [7] is a
library designed to ease the task of programming parallel applications by using
distributed arrays. It includes abstractions for the automatic partitioning and
mapping of arrays with arbitrary granularity, as well as the automatic construc-
tion of flexible communication patterns adapted to the partition.

In this work, we present the methodology and techniques of granularity se-
lection in Hitmap applied to the simulations of agent systems, using MARL-Ped
as a case of study. Hitmap allows to transparently map agents to processes. We
show the benefits of using this mechanism for improving the performance of
agent-based applications executed in a restricted number of processing elements
that is lesser than the number of agents. It eliminates oversubscription effects,
and reduces intra-node communication overheads by grouping communications.
The application of the Hitmap methodology does not increase the development
effort. The comparative performance evaluation shows that the version using
Hitmap uses more efficiently the computing resources, becoming more scalable
in terms of the number of simulated agents.

The rest of the paper is organized as follows: Section 2 shows some related
work. Section 3 introduces MARL-Ped and Hitmap tools. Next, Section 4 de-
scribes how Hitmap has been included in the MARL-Ped original application.
Then, Section 5 presents an experimental evaluation of the modified application.
Finally, Section 6 discusses some conclusion remarks and future work to be done.

2 Related Work

Pedestrian-dynamics models were improved and extended in the 80s with the
advent of low cost computers. Many different models have been used: the social

3

forces model [9], models based on cellular automata [2], or continuum models
based on gas kinetics equations [10]. However, the most extended ones are agent-
based models [14], due to the ease of extracting global behavior as the sum of
individual behaviors. In the last years, some efforts have been made to add
machine learning technique to agent-based pedestrian models [12], in such a
way that the agents learn their individual behavior by themselves, releasing
the programmer of this task. Since the behavior learning is a complex task, it
has become the main challenge for the pedestrian models. On the other hand,
the microscopic simulation of pedestrian in crowded scenarios requires parallel
processing. In this sense, specific architectures have been proposed for these
simulations [1], and parallel architectures, where interconnected servers share the
computational workload, have been developed [16]. Even architectures based on
many-core processors have been used for simulating a marathon of one million
runners [19].

Hitmap offers an intermediate abstraction layer, halfway between the man-
ual programming of distributed data structures on message-passing models,
and PGAS languages (Partitioned Global Address Space), like Chapel [3] or
UPC [11]. Hitmap also provides mechanisms for the construction of reusable
communication patterns at runtime that adapt to the data partition, creat-
ing a low number of aggregated communications. This leads, for example, to a
performance efficiency comparable to UPC, with a reduced programming com-
plexity and development effort [7]. Hitmap is used as a runtime system for the
Trasgo parallel programming framework [8], that offers an approach similar to
PGAS languages. Hitmap extends and generalizes the hierarchy creation and
data partition functionalities of other libraries or distributed arrays models,
such as HTAs [5] o Parray [4]. It allows to use transparent partition policies,
either regular or irregular, defined as interchangeable modules with a common
interface. This hides to the programmer the decisions about granularity and syn-
chronization across hierarchical levels. Hitmap has also been extended to support
data structures such as sparse matrices, or graphs, using the same methodology
and interface [6].

3 MARL-Ped & Hitmap

3.1 MARL-Ped

MARL-Ped is a multi-agent system tool for pedestrian simulation which uses
reinforcement learning (RL) [15] in each agent to learn the individual behavior
of a single pedestrian. The purpose of the RL algorithm is to compute a control
function which will be used by the agent to select at a given moment the action
to do, based on the sensorized local state. MARL-Ped includes two types of
agents: (a) Pedestrian (Learning) agents, which execute the RL algorithms and
store the control function learned; and (b) an Environment agent, which execute
the physical system simulation of the scenario, and sensorizes the state of each
agent. The scenario is a 3D virtual world where the physical model engine named
Open Dynamic Engine (ODE) simulates the collisions and forces moving the

4

ENVIRONMENT AGENT

LEARNING AGENT

M3 M4 M5

M0 M1 M2

Communication
Module

Situation Awareness
&

Reward Function

Action

Reward &
Sensoriz.

Communication
Module

Raw Sensorization

Actions

ODE
Physics Module

Rewards

Action

Feature Extraction
Module

Gener. State + Reward
Learning
Algorithm

Value Function
∑iɸiθi

Decision Module

Generalization Module

i

Fig. 1. MARL-Ped scheme showing the types of agents and their relationships.

pedestrians. Fig. 1 shows a graphic scheme of the system, including both types
of agents, and the communications exchange. These communications take place
exclusively between the Environment agent and the rest of agents.

MARL-Ped has two working modes: learning mode and simulation mode.
Both modes include the same communications between learning agents and the
environment. The only difference is that RL algorithms are active in the learning
mode to incrementally compute the control function, that will be used in the
simulation mode. Both modes are synchronous, and composed of the classical
cycle of observation-action-reward:

1. The Environment agent queries the ODE about the dynamic situation of each
agent, consisting of position, speed, distance to the closest n pedestrians, and
the distance to the closest n objects. In learning mode, the Environment
agent also assigns a reward for each pedestrian agent depending on different
facts: if it has reached the target, if it has collisioned with other agents or
objects, etc.

2. The Environment agent sends the state and reward information to the Learn-
ing agents.

3. Each Learning agent uses the received information to build the local state
and the immediate reward value. In the learning mode, the data built will be
used by the RL algorithm to update the control function. In the simulation
mode, the control function is not updated.

4. The agent queries the current control function to obtain the new action to
be executed. The action indicates a change in direction and/or speed of the
pedestrian.

5

5. The agents send their actions to the Environment agent, which in turn trans-
late them into physical actions executed by the ODE in the virtual environ-
ment.

This cycle is repeated a given number of times which is a configuration pa-
rameter of the system. In the learning mode with some tens of agents, this
parameter can range from hundreds of thousands to several million times.

3.2 Hitmap

Hitmap [7] is a library for the partition, mapping, and management of hier-
archically distributed data structures at runtime. It was originally designed for
dense arrays, and has been also extended to support sparse data structures, such
as sparse matrices or graphs, using the same methodology and interface [6]. It
is based on an SPMD (Single Program Multiple Data) model and the message-
passing paradigm. Hitmap defines several abstractions to write parallel programs
using distributed data structures. The functions in the library are grouped in
three main modules.

Tiling functions. They allow the definition and management of hierarchically
tiled data structures. These functionalities can be used independently of the rest
of the library to improve locality on sequential code. They define classes to rep-
resent domains of indexes in a compact form. A class named HitTile represents
the association between the elements of the indexes-domain space and the actual
data, allowing the accesses to data with the same efficiency as manually devel-
oped codes without the tile abstraction. A process can declare and allocate a
subspace of the original domain, in order to create a distributed data structure.

Mapping functions. They include interchangeable modules that implement
policies to automatically part and map domains in terms of the processes of a
virtual topology. The virtual topologies are also generated by another class of
policy modules at runtime. Neighbor relations across processes are established
by these policies. The partitions are represented by objects named HitLayouts
that can be queried to obtain the indexes subdomain mapped to the local, a
neighbor, or any other remote virtual process.

Communication functions. They are an abstraction of the message-passing
model for tiles or tiles parts across virtual processes. They allow the creation
of HitCom objects that store the information needed to marshall/unmarshall
and exchange selected tile data across processes. Several interfaces for differ-
ent types of point-to-point and collective communications are available. More
complex patterns composed of multiple communication operations involving one
or more tiles (several HitCom objects), are implemented as HitPattern objects.
The constructor functions have always HitLayout parameters that are queried
internally to automatically determine who communicates and what. Thus, these
objects are transparently adapted on construction to the target platform details
and the actual data distribution selected. The communication objects have a
method that can be called at any time, and as many times as needed, to execute
the communications. Internally, these objects exploit efficient MPI techniques
such as derived data types, asynchronous communications, etc.

6

A
P...

A
Pk-1

E
Pk

A
P0

A
P1

A A A A A A A A A A A A

P0

E
A A
A

P1

A A
A

P...

A A
A

Pk

A A
A

A A A A A A A A AA A A

Fig. 2. Global structure of the simulation and task distribution across processors in
the original MARL-Ped design (top) and after applying Hitmap (bottom).

4 Applying Hitmap Techniques & Methodology

In this section we describe how the Hitmap methodology and techniques can be
applied to agent-based simulation applications to adapt the granularity of tasks
to the available processing resources. We show this process using MARL-Ped as
a case of study.

4.1 Structural Changes

The structure of the MARL-Ped application has been redesigned. The Hitmap
version applies the concept of distributed arrays to group learning agents in pro-
cesses, instead of using a single MPI process for each one, and a different process
for the environment agent. Fig. 2 (top) shows the conceptual distribution of the
computation in the original MARL-Ped version. Each process executes the code
of a single agent (RLAgent class). The last process performs the environment
simulation (RLEnvironment class). The objects of these classes have several
methods that implement the corresponding operations of the simulation loop
that is repeatedly executed.

One of the first design decisions for the Hitmap version is to distribute agents
across the available processes without reserving a special process for the envi-
ronment. The environment code will be executed by one of the processes that
will also have learning agents assigned, as the main computation for the learn-
ing agents and environment never overlap in time. Hitmap provides the tools
needed for the balanced distribution of agents between the available processes
as depicted in Fig. 2 (bottom). Each process should be able to execute, for each
iteration of the simulation loop, the code of several learning agents.

In addition, the process in which the environment agent is mapped should
execute its code. Thus, the simulation loop code cannot be placed inside the
environment or learning agent classes. The application must be redesigned to
execute the simulation loop in the main function. The simulation loop must
iterate across the number of agents mapped to the process. To achieve this, the

7

codes of the simulation loop are removed from the methods of the learning and
environment classes. The private and protected methods called inside the loops
are redeclared as public. The control logic that do the calls is relocated inside
the new simulation loop at the main function. The environment control logic is
wrapped with conditionals to ensure that only one process executes it. Hitmap
automatically labels one process as the group leader. This process can identify
itself by using a function call, and is therefore the one selected to execute the
environment logic.

4.2 Distributed Arrays and Communication Patterns

The MPI-based communications in original MARL-Ped code have been replaced
by distributed-array management functions provided by Hitmap. All data struc-
tures involved in communications are substituted by HitTile structures.

During the initialization stage of the program, the distributed arrays and
objects of type HitCom and HitPattern are created to contain the specifications
of the communications that will be invoked from the new simulation loop. Con-
trol signals are represented by a single integer-type variable at each process,
independently of the number of assigned agents. On the other hand, two dis-
tributed arrays are declared for each data flow between the environment and
the learning agents. These arrays have a global index domain equal to the num-
ber of learning agents. For one of the arrays, we use a distribution policy that
maps its elements evenly across the processes. For the other one, we use a policy
that maps all of the domain elements to the process running the environment.
Given these two arrays with the same domain but different distribution poli-
cies, Hitmap allows the creation of a HitPattern object with a single function
call. This object implements a communication pattern capable of redistributing
the data from one array to the correspondent local or remote elements of the
other array. This technique allows the construction of communication objects
that will transparently move the data between the two copies of each array; the
one actually distributed and the other one having the entire index domain at
the environment process. The communication pattern adapts (at construction
time) to the results of the partition policies, regardless of the number of agents
and processes. This mechanism solves, in a unique way, the construction of the
communication flows.

5 Experimental Study

This section describes an experimental study to show the advantages of using
Hitmap on agent-based simulation programs. The study is focused on two areas.
The first one is the code complexity and development effort. The second one is
the performance when the number of agents grows above the number of available
processing elements.

8

MARL-Ped MARL-Ped+Hitmap

KDSI (code lines) 1970 1888
McCabe’s C.C. 209 171
Halstead 19.38 ×106 18.26 ×106

Table 1. Measurements of complexity and development effort.

5.1 Development Effort

The first part of this experimental study shows that programming with Hitmap
introduces granularity flexibility, even with a slightly lower development effort
and code complexity than the original agent-per-process approach. We have
measured several metrics both in the original MARL-Ped source code and in
the modified Hitmap version: (a) The KDSI metric of the COCOMO method-
ology, based in the total number of source code lines; (b) McCabe’s cyclomatic
complexity; and (c) Halstead development effort metric. We have applied these
metrics on the main function of the programs and the three classes modified
when redesigning the original application. We have considered both the code of
the modified functions and the header files, excluding comments and removing
conditional compilation parts related to versions, alternatives or details of the
MPI libraries used, etc. The modified code represents 16% of the total applica-
tion code, that has approximately 12 200 lines of code.

The results in Table 1 show that the version directly designed and pro-
grammed using Hitmap presents slightly lower complexity and effort than the
original MPI version. Programming a direct MPI version with the agent distri-
bution and load balancing capacity of the Hitmap version would clearly increase
the programming effort, since the programmer would have to include code deal-
ing with decisions about distributed array partition and management, that are
transparently implemented in Hitmap.

5.2 Experimental Methodology for Performance Studies

The second part of the experimental study includes performance measurements
of both the original MARL-Ped program and the Hitmap-based version. This
work is focused on the MARL-Ped learning process, which is the most computa-
tionally demanding mode, and does not imply input/output operations during
the main computation and communication loop. The code has been instrumented
in order to measure the execution time for each distributed process. We have
measured the time elapsed from the start of the initialization of parallelism-
related structures (MPI or Hitmap) to the end of the execution of the learning
process, before writing the results in files. Since each execution of the whole
program gives one time measurement for each process, we consider as the global
result the time of the slowest process, the one that has required the longer time
to be completed. In addition, each experiment has been repeated several times in

9

Fig. 3. Snapshot of the simulated scenario.

order to test the variability of the results. Both codes have been executed in mul-
ticore platforms, where communication costs are lower and potential overheads
have a higher impact on the overall performance. These potential overheads can
be associated to changes in execution structure, handling of internal Hitmap
data structures, or computations and choices about the particular communica-
tions, among others. We have selected two machines, one with 8 cores (named
Miami), and the other with 12 cores (named Chimera). Both machines had the
hyperthreading option enabled. Table 2 summarizes the characteristics of these
platforms as well as the development tools used in the study.

Since the execution time required for a full learning process execution is ex-
tremely long (RL is based on a long iterative process), the program has been
limited to only 100 training iterations in all cases, in order to analyze a search
space that is broad enough in terms of execution parameters. This threshold
has been experimentally set to produce both a large computational load, and a
significant number of communication and synchronization steps. The test sce-
nario selected for the experiments has been validated in previous works [13].
This scenario reproduces a classic navigation problem in pedestrian dynamics
called “shortest path vs. quickest path”. In this scenario, a group of pedestri-
ans must move from the room where they are initially located to a target place
located outside of the room. This room has two exits, one of them being closer
to the target than the other one. Agents must learn that if all of them head
for the nearest exit, then a bottleneck is formed, making the overall evacuation
time longer. A better solution implies that approximately half of the agents use
the nearest exit, while the other half leaves the room through the most distant
one, leading to a quicker evacuation. The configuration chosen places 28 agents
in a 30-meter by 30-meter square room with two possible exits. Each exit has
a width of one meter in order to prevent passage of more than one pedestrian

10

at the same time. The goal of the agents is to reach the meeting point placed
outside the room. Fig. 3 illustrates the considered scenario, showing a snapshot
of the simulation.

5.3 Performance Effect of the Agents Grouping

One of the objectives of this work is to obtain a better scalability when the
number of agents grow, for a restricted number of processing elements in single
cluster nodes. It is achieved using the Hitmap strategy of grouping several agents
to the same process. This first performance study experimentally tests the dif-
ference in performance when the number of agents increases above the number
of available processing elements in a given machine. Both programs (the original
MARL-Ped version and the Hitmap-based version) have been run in learning
mode with the number of MPI processes set to the number of cores available on
each machine, and we have progressively increased the number of agents above
that number.

Fig. 4 shows the execution times required by Miami and Chimera machines
(using 8 and 12 MPI processes respectively) for simulations of 100 learning iter-
ations with different numbers of learning agents. In the original MARL-Ped tool
(whose plots are labeled as MARL-Ped in the figure), the number of MPI pro-
cesses is the number of agents plus one. In the MARL-Ped+Hitmap tool (whose
plots are labeled as Hitmap in the figure), the number of processes has been
fixed to be the number of actual cores of the machine. The structure of these
simulation applications, that make use of collective communications with clear
global synchronization points around the execution of the simulation engine,
does not present a parallel slackness property. This property appears in cer-
tain applications when several processes assigned to the same element alternate
communication and computation phases without overlapping.

Fig. 4 shows a very similar behavior in both platforms: the required execu-
tion time is slightly longer for MARL-Ped than for the Hitmap version while

Miami Chimera

Processor 2x Intel X5550 2x Intel E5-2620 v2
Clock speed 2.66 GHz 2.10GHz
Cores 8 12
Main memory 32GB DDR3-1333 8GB DDR4-1866
Cache L1 128K 32K

L2 1024K 256K
L3 8192K 15360K

Operative system CentOS 7.2.1511 x64 CentOS 7.0.1406 x64
C++ Compiler GCC 4.8.5 20150623 GCC 4.8.2 20140120
Compilation flags -O3 -O3
MPI implementation MPICH 3.0.4 MPICH 3.1.3

Table 2. Characteristics of the machines used in the experimental study.

11

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 5 10 15 20 25 30

T
im

e
 (

s
e

c
o

n
d

s
)

Number of agents

Execution time vs number of agents (Miami)

 MARL-Ped avg
 Hitmap 8 proc avg

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 12 14 16 18 20 22 24 26 28 30

T
im

e
 (

s
e

c
o

n
d

s
)

Number of agents

Execution time vs number of agents (Chimera)

 MARL-Ped avg
 Hitmap 12 proc avg

Fig. 4. Execution time vs. number of agents for 100 iterations of learning. The plots
show with error bars the standard deviation of six different executions.

the number of agents does not reach double the number of existing cores in the
machine. From this value up, the execution time required by MARL-Ped is signif-
icantly higher, linearly increasing with a high slope. These plots show how the
additional costs of oversubscription (executing simultaneously more processes
than processing elements available) has a negative impact on the application
performance. Thus, in the Chimera machine, with 12 cores and hyperthreading
enabled, the effect is much more remarkable starting at 24 agents, where MARL-
Ped uses 25 MPI processes, increasing the oversubscription ratio to more than
two. When there is oversubscription, the way in which task schedulers swap pro-
cesses becomes relevant. Thus, we can observe slightly higher differences between
maximum and minimum execution times in both Miami and Chimera machines
for the original MARL-Ped program. On the contrary, the Hitmap plots remain
almost flat regardless of the number of agents, showing much shorter execu-
tion times than the original MARL-Ped. This behavior is due to the fact that
Hitmap can limit the number of processes, executing sequentially on each process
the code of several agents in a more efficient way.

5.4 Impact of the Amount of Processes

This section studies the impact of modifying the number of processes, and there-
fore the agents distribution per process, when MARL-Ped+Hitmap is used.

12

 50
 100
 150
 200
 250
 300

 350
 400
 450
 500

 0 5 10 15 20 25

T
im

e
 (

s
e

c
o

n
d

s
)

Number of processes executing agents

Execution time vs processes (Miami)

 28 Agents Hitmap, expt. 1
 28 Agents Hitmap, expt. 2
 28 Agents Hitmap, expt. 3
 28 Agents Hitmap, expt. 4
 MARL-Ped avg

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25

T
im

e
 (

s
e

c
o

n
d

s
)

Number of processes executing agents

Execution time vs processes (Chimera)

 28 Agents Hitmap, expt. 1
 28 Agents Hitmap, expt. 2
 28 Agents Hitmap, expt. 3
 28 Agents Hitmap, expt. 4
 MARL-Ped avg

Fig. 5. Execution time vs. number of processes for 100 iterations of training, with a
fixed number of 28 agents.

Fig. 5 shows the results obtained for a fixed number of 28 agents in the
two machines. For MARL-Ped+Hitmap, we include plots for several consecu-
tive experiments to show the variability of the results. The execution results
of MARL-Ped+Hitmap are better than those of the original MARL-Ped in all
cases, because of the oversubscription effects discussed in the previous section.
It can be seen that the results for the Hitmap version when executed with a
single process are slightly improved when the number of processes grows up to
the number of cores in the machine, since the parallelism level increases. How-
ever, when the number of processes exceeds the number of real cores (without
taking hyperthreading into account), the performance decreases and results be-
come more unstable, due to stochastic negative effects of oversubscription. The
process scheduling policy of the operative system also contributes to make the
results more unpredictable. Due to the execution order of the processes during
the context switching, in some cases execution times are as short (good) as before
the start of the oversubscription, while in other cases the results are worse, but
with a clear upper limit. Once the number of processes exceeds the number or
available threads, taking hyperthreading into account, the results considerably
worsen.

These results indicate that the number of processes to select in MARL-
Ped+Hitmap in training mode is predictable, and can be adapted to the features
of the target machines when the application is launched. The execution times

13

are shorter and more stable when the number of processes is equal to the num-
ber of real processing elements, without taking into account the hyperthreading
option.

6 Conclusions

This article presents the application of the techniques and tools of the Hitmap
library to control the granularity of agent to processes map in agent-based simu-
lation applications. As a first approximation, we use the MARL-Ped multi-agent
pedestrian simulation software as a case of study for intra-node cases. The per-
formance evaluation results show that MARL-Ped+Hitmap allows simulations
with a number of agents greater than the number of processing elements avail-
able in a machine, while keeping execution times stable and predictable, These
results show that the use of distributed arrays and automatic data partitions
improves the performance agent-based simulation tools, due to the ability of
Hitmap of transparently map a high number of agents to a constricted number
of processes.

Future work includes the study of the scalability of Hitmap techniques in
multi-node clusters when the effects of network and communication across nodes
appear; the application of Hitmap to other related simulation applications; re-
search on ways to suppress or mitigate bottlenecks in the simulation stages; and
the use of the new MARL-Ped+Hitmap version to further study the quality and
results of crowd simulations with a much greater number of agents.

References

1. Bharambe, A., Pang, J., Seshan, S.: Colyseus: a distributed architecture for online
multiplayer games. In: NSDI’06: Proceedings of the 3rd conference on Networked
Systems Design & Implementation. pp. 12–12. USENIX Association, Berkeley, CA,
USA (2006)

2. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-
directional pedestrian walkways. Transportation Research Part B: Methodological
35(3), 293–312 (2001)

3. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (aug 2007)

4. Chen, Y., Cui, X., Mei, H.: Parray: A unifying array representation for heteroge-
neous parallelism. SIGPLAN Not. 47(8), 171–180 (feb 2012)

5. Fraguela, B.B., Bikshandi, G., Guo, J., GarzaráN, M.J., Padua, D., Von Praun,
C.: Optimization techniques for efficient hta programs. Parallel Comput. 38(9),
465–484 (sep 2012)

6. Fresno, J., Gonzalez-Escribano, A., Llanos, D.: Blending extensibility and per-
formance in dense and sparse parallel data management. IEEE Transactions on
Parallel and Distributed Systems 25(10), 2509–2519 (2014)

7. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.: An extensible system for
multilevel automatic data partition and mapping. IEEE Transactions on Parallel
and Distributed Systems 25(5), 1145–1154 (2014)

14

8. Gonzalez-Escribano, A., Llanos, D.R.: Trasgo: a nested-parallel programming sys-
tem. The Journal of Supercomputing 58(2), 226–234 (2011)

9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51, 4282–4286 (1995)

10. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182
(2003)

11. Mallón, D.A., Gómez, A., Mouriño, J.C., Taboada, G.L., Teijeiro, C., Touriño,
J., Fraguela, B.B., Doallo, R., Wibecan, B.: Upc performance evaluation on a
multicore system. In: Proceedings of the Third Conference on Partitioned Global
Address Space Programing Models. pp. 9:1–9:7. PGAS ’09, ACM, New York, NY,
USA (2009)

12. Martinez-Gil, F., Lozano, M., Fernández, F.: Multi-agent reinforcement learning for
simulating pedestrian navigation. In: Adaptive and Learning Agents: International
Workshop, ALA 2011, Held at AAMAS 2011, Taipei, Taiwan. pp. 54–69. Springer
Berlin Heidelberg (2012)

13. Martinez-Gil, F., Lozano, M., Fernández, F.: MARL-ped: A multi-agent reinforce-
ment learning based framework to simulate pedestrian groups. Simulation Mod-
elling Practice and Theory 47, 259–275 (2014)

14. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers
Conference. pp. 763–782. Miller Freeman Game Group, San Francisco, California.
(1999)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

16. Vigueras, G., Orduña, J.M., Lozano, M.: A read-copy update based parallel server
for distributed crowd simulations. The Journal of Supercomputing 64(1), 156–166
(2013)

17. Wooldridge, M.: Multi-Agent Systems 2nd Edition, chap. Intelligent Agents, pp.
3–50. MIT Press (2013)

18. Wooldridge, M., Jennings, N.: Intelligent agents: theory and practice. The Knowl-
edge Engineering Review 10, 115–152 (1995)

19. Yilmaz, E., Isler, V., Cetin, Y.Y.: The virtual marathon: Parallel computing sup-
ports crowd simulations. IEEE Computer Graphics and Applications 29(4), 26–33
(2009)

