
Multi-Device Controllers: A Library To Simplify
The Parallel Heterogeneous Programming

Ana Moreton-Fernandez
Universidad de Valladolid

ana@infor.uva.es

Arturo Gonzalez-Escribano
Dept. Informática

Universidad de Valladolid
arturo@infor.uva.es

Diego R. Llanos Ferraris
Dept. Informática

Universidad de Valladolid
diego@infor.uva.es

Abstract
Current HPC clusters are composed by several machines with dif-
ferent computation capabilities and different kinds and families of
accelerators. Programming efficiently for these heterogeneous sys-
tems has become an important challenge. There are many proposals
to simplify the programming and management of accelerator de-
vices, and the hybrid programming mixing accelerators and CPU
cores. However, the portability compromises in many cases the ef-
ficiency on different devices, and there are details about the coor-
dination of different types of devices that should be still tackled by
the programmer.

In this work we introduce the Multi-Controler (MCtrl), an ab-
stract entity implemented in a library, that coordinates the man-
agement of heterogeneous devices, including accelerators with
different capabilities and sets of CPU-cores. Our proposal im-
proves state-of-the-art solutions, simplifying the data partition,
mapping, and transparent deployment of both, simple generic ker-
nels portable across different device types, and specialized im-
plementations defined and optimized using specific native or ven-
dor programming models (such as CUDA for NVIDIA’s GPUs,
or OpenMP for CPU-cores). The run-time system automatically
selects and deploys the most appropriate implementation of each
kernel for each device, managing the data movements, and hiding
the launching details. Results of an experimental study with four
study cases indicates that our abstraction allows the development
of flexible and high efficient programs, that adapt to the heteroge-
neous environment.

Categories and Subject Descriptors D.3.2 Programming Lan-
guages [Language Classifications]: Concurrent, distributed, and
parallel languages

General Terms Parallel programming, Software

Keywords Accelerators, Hybrid computation, GPUs, Kernel char-
acterization, Memory transfers, Optimizations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

1. Introduction
Current HPC clusters are composed by several machines with dif-
ferent computation capabilities and accelerators, such as Graph-
ics Processing Units (GPUs) or XeonPhi coprocessors [17]. Pro-
gramming efficiently for these heterogeneous systems has become
an important challenge. The different computational units (CPUs,
GPUs, XeonPhi, ..) that can form a cluster, typically have different
programming requirements and constraints to achieve the best per-
formance. Thus, different programming models are used for each
kind of device. For example, CUDA programming model achieves
the best performance in NVIDIA GPUs [8], and OpenMP has been
shown to be an efficient programming model for multi-cores in
shared-memory systems or XeonPhi coprocessors.

There are many proposals to simplify the programming and
management of accelerator devices, and the hybrid programming
mixing accelerators and CPU cores. However, the portability com-
promises in many cases the efficiency on different devices. Depend-
ing on the proposal, some details about the coordination of different
types of devices are still tackled by the programmer, such as com-
putation partition and balance, data mapping and locality, or data
movement coordination across different memory hierarchies.

In this work we introduce the Multi-Controler (MCtrl), an ab-
stract entity implemented in a library, that coordinates the manage-
ment of heterogeneous devices, including accelerators with differ-
ent capabilities and sets of CPU-cores. It helps the programmer to
handle the computation partition, mapping, and transparent execu-
tion of complex tasks in such hybrid and heterogeneous environ-
ment, independently of the target devices selected at run-time. Our
proposal allows the exploitation of simple generic kernels that can
fit in any device, very specialized kernels defined and optimized
by the programmer for each architecture, and even wrappers to call
third-party predefined libraries (such as e.g. cuBLAS [12]). This
allows the exploitation of native or vendor specific programming
models, in a highly efficient way. The most appropriate kernels for
each target device are automatically selected by the entity during
the program execution.

Our work is developed on the concept of Controller presented
in [1]. While the Controller transparently manages the data move-
ments and the launching of series of kernels on a given target de-
vice, the Multi-Controller coordinates several Controllers associ-
ated to different devices or groups of CPU-cores. It is implemented
as an extensible library, and it can use the best programming mod-
els, tools, and compilers for each potential device.

We present an experimental study with four case studies. We
show that our approach is highly flexible, with minimum program-
ming effort for changing the target devices. The results of a per-
formance study comparing our approach with optimized reference

codes show that our implementation does not introduce significant
performance penalties.

The rest of the paper is organized as follows: Section 2 presents
the related work. Section 3 introduces the libraries used to build our
proposal. Section 4 explains the proposed model. Section 5 shows
the experimental study, and finally Sect. 6 exposes the conclusions
and future work.

2. Related work
In this section we analyse different works proposed in the literature
that target the simplification of parallel programming on heteroge-
neous systems that have different computational devices, including
accelerators. These proposals avoid the need for using a manual
combination of the specific programming models for each compu-
tation device. They introduce unified programming models or tool
abstractions to manage the architectural differences between com-
putational units of different nature or capabilities.

A widespread programming framework to deal with heteroge-
neous devices is OpenCL [16]. The OpenCL context abstraction
allows to manage multiple devices of the same nature (using the
same platform in OpenCL notation). However, the coordination of
devices of different natures, and the management of data sharing or
partitioning, computation mapping, load balancing, and communi-
cation across them is tricky, and should be manually solved and
coded by the programmer. Moreover, the abstractions introduced
by OpenCL derive in many cases in not reaching the best possible
performance (see e.g. [8]). Many libraries of higher level of ab-
straction, that rely on OpenCL as execution layer, typically inherit
some of these problems (see e.g. [16]). An interesting example of
abstraction built on top of OpenCL is the Maat library [14]. It pro-
vides a unified context with an abstract view regardless of the num-
ber and nature of devices, for GPU and CPU platforms. The main
differences with our proposal are related to our choice of internally
using native or vendor low-level programming models. We propose
the possibility of declaring both unified and specialized/optimized
kernels for different architectures, which are selected at run-time
for each particular device. Our proposal allows the exploitation of
features of the native programming models, or specialized third-
party libraries optimized for the device. We introduce more flexi-
bility to select the desired devices associated to a multicontroller,
applying techniques such as grouping CPU-cores as a single device,
to exploit native multi-threaded parallelism inside a kernel. The
performance results presented for the Maat library are only com-
pared with other OpenCL implementations. It has not been stated
yet the performance effects comparing with using more specific
programming models such as combinations of CUDA for GPUs,
and OpenMP for multicore CPUs.

More general approaches propose complete integrated frame-
works that exploit lower-level specific programming models. Some
examples include OMPICUDA [9], Cashemere [6], StarPU [7]
or the skeleton programming framework based on it, SkePU [2].
PACXX [4] is a transformation system integrated into the LLVM
compiler framework. It generates code for different kinds of de-
vices, and it transforms explicit parallel constructions that use the
concept of kernel and launching in an abstract an elegant form.
Scogland et al [15] also proposes a mixed approach by adapting
OpenMP pragmas to heterogeneous systems. In general all these
approaches hide the coordination details to the programmer, to
the point of constraining the potential optimizations that could be
achieved manually. Techniques to select launching parameters like
the threadblock size are for example tackled in SkePU using trial-
and-error, with no possibility to extrapolate the results to other ker-
nel codes or architectures.

Unlike previous approaches, our library proposes a flexible tool,
that allows the programming with generic and portable kernels, and

at the same time the integration of higher levels of optimization us-
ing the native or vendor provided programming models, tools, or
libraries, for higher efficiency and performance. The flexibility in
terms of programmer control of the device selection and coordina-
tion at run-time also improves previous techniques.

3. Background
The Multi-Controller library we are presenting in this paper is built
on top of two previous tools. The first one, named Hitmap [3], is
a library to manage the partition and mapping of data structures.
It is used in our model to manage the data distribution across de-
vices, and to provide a common interface to implement data man-
agement inside generic portable kernels. The second one, named
Controller [1], is a library that defines an abstract entity to transpar-
ent manage the data movements and kernel launching for a single
device. Our proposal combines them with a new layer of abstraction
to coordinate the use of several devices of different architectures or
natures. This section introduces the reader to both previous tools,
before describing the new abstraction proposed.

3.1 Hitmap library
Hitmap is a library designed for hierarchical tiling and mapping
of dense and sparse arrays, or graphs. Hitmap is based on a dis-
tributed SPMD programming model, using abstractions to declare
data structures with a global view. It automatizes the partition, map-
ping, and communication of hierarchies of tiles, while still deliver-
ing good performance [3].

An object HitShape represents a subspace of domain indexes.
For dense arrays it is defined as an n-dimensional rectangular par-
allelotope. The limits on each dimension are represented with a Hit-
Sig object, containing the range limits. Each HitSig object is a tuple
of three integer numbers S = (b, e, s) (begin, end, and stride), rep-
resenting the indexes in one of the axis of the domain. Begin and
stride members of a Signature represent the coefficients of a linear
function fS(x) = sx+ b.

Hitmap defines the HitTile structure, an abstract entity for n-
dimensional arrays and tiles. A HitTile structure is a handler to
store array meta-data, along with the pointer to the actual memory
space of the data. A HitTile maps actual data elements to the index
subspace defined by a shape. There are only four functions of
Hitmap needed to work with our Multi-Controller library. First,
hit tileDomain and hit tileDomainAlloc are used to declare the
index domains of a tile array. The second one also allocates the
memory for the data. The function hit tileFree is used to free the
data memory and clean the handler. The function hit tileElem is
used in host or kernels code to access the elements of a tile. It
receives a tile name, a number of dimensions, and the indexes
values of the desired element. The data are accessed in row major
order in all cases, independently of the implementation.

Hitmap library includes many other functionalities. For exam-
ple, the management of hierarchical subselections of parts of the
tiles, and the transparent management of distributed-arrays, with
abstract partition and communication functionalities that internally
use a message-passing paradigm (exploiting MPI). Hitmap has
been extended with a much smaller handler (HitKTile), with the
minimum information needed for data accesses to multidimen-
sional arrays through a data pointer, that is useful to transparently
port the data structures to accelerators in a more efficient form.

3.2 Controllers library
The second abstraction upon we have built our proposal is imple-
mented in the Controllers library. It introduces an abstract entity
that allows the transparent launching of series of tasks on a sin-
gle accelerator device, also considering a group of CPU cores as

1

2 /* Kernel characterizations */
3 KERNEL_CHAR(MatAdd ,1,full ,low ,low)
4

5 /* Generic kernel codes for any device */
6 KERNEL(MatAdd , 3,
7 OUT , HitTile_float , C,
8 IN, HitTile_float , A,
9 IN, HitTile_float , B

10) {
11

12 int x = thread.x;
13 int y = thread.y;
14 hit_tileElem(C, 2, x, y) =
15 hit_tileElem(A, 2, x, y) +
16 hit_tileElem(B, 2, x, y);
17 }

Figure 1. Kernel definition and configuration of a matrix addition
using the Controller library.

a many-core device. The Controller model presents several impor-
tant features: (1) A mechanism to define common kernels reusable
across different types of devices, or specialized kernels for specific
device kinds; (2) A transparent mechanism of memory manage-
ment, including optimized communications of the data structures
between the host and the corresponding images in the accelera-
tors; (3) An optimization system to select proper values for kernel-
launching configuration parameters (such as the threadblock geom-
etry), guided by simple qualitative code characterization provided
by the programmer.

In our proposal we use the Controller entity to manage each
device inside the new multi-controller that coordinates them. In
the Controller library, a kernel is declared by using the primi-
tive KERNEL <type>. Where type may be empty to indicate a
kernel usable on any kind of device, or a specific value for a
specialized code for a given type of device. This is useful when
different optimizations on the kernel code are required for dif-
ferent devices. Currently, the library supports the specific decla-
rations KERNEL GPU for CUDA code targeting NVIDIA’s GPUs,
KERNEL CPU for host machine code targeting sets of CPU cores,
and KERNEL GPU WRAPPER, KERNEL CPU WRAPPER, for host ma-
chine code which includes calls to specialized GPU or CPU li-
braries, such as cuBLAS or MKL routines.

The kernel-definition primitives declare in brackets the number
of parameters of the kernel, with a tuple of information for each
parameter. The parameter information includes its type, name, and
input/output role:

• IN: for input HitTile parameters, whose elements are only read.
• OUT: for output HitTile parameters, whose elements are only

written.
• IO: for input and output HitTile parameters, with elements can

be both read and written.
• INVAL: for input parameters of any type passed by value.

The programmer can also provide a kernel characterization, in
terms of code features, that helps to automatically determine proper
kernel launching parameters. In the current prototype, the CPU
threads granularity is determined by a simple regular blocking pol-
icy, that does not require a specific kernel characterization. For
GPU kernels, the library integrates the model presented in [13, 18].
This model allows the determination of configuration parameters
(grid, threadblock, and L1 cache memory sizes), for NVIDIA’s
GPUs. The primitive KERNEL CHAR receives the kernel name, the

number of dimensions of the thread space (1, 2, or 3), and descrip-
tive values for the characterization model. These values are a qual-
itative description of characteristics of the kernel code provided by
the programmer. They are related to: (a) The coalescing property
of the global memory access patterns (full, medium, scatter); (b)
The ratio of arithmetic/logic operations per global memory access
(high, medium, low); and (c) The ratio of data sharing accesses in
a block per global memory access (high, medium, low).

Figure 1 shows an example of the kernel for a matrix addition.
We see a kernel characterization in line 3 and a kernel definition in
line 6.

4. Multiple-Device Controller (MCtrl) library
The Multiple-Device Controller (MCtrl) library provides a simpli-
fied way to program applications targeting heterogeneous systems
with different kinds of computational units. In this paper, we define
computational unit/target device as an accelerators (GPU, Xeon
Phi, etc.) or a group of CPU-cores considered as a single indepen-
dent device. The goal of this library is: (1) to automatize the data
partition and data transfer between the host and multiple target de-
vices, as well as (2) to transparently coordinate the division and
execution of the computation among different computational units,
independently of the kind of target device exploited (GPUs, group
of CPU-cores, etc).

The library has an object-oriented design, despite the fact that it
is mainly developed in C language. The classes are implemented as
C structures with associated functions. The Multi-Controller model
architecture is presented in the Fig. 2.

The Multi-Controller object provides functions to manage:

• Multi-device coordination: The Multi-Controller is associated
with a set of different devices at construction. It internally
creates Controller objects to interact with each device. The
Multi-Controller provides an abstract interface that enables to
manage it as a single computational device, independently of
the internally associated devices.

• Data structures: The Multi-Controller abstraction creates an
unified memory context for all of the associated devices, where
internal data structures can be created, or data structures from
the main host thread can be attached. Data structures can be
replicated or partitioned and distributed across the devices as
the programmer requires. In the current prototype a simple
static partitioning method has been included that parts the struc-
tures in as many irregular parts as the number of devices se-
lected in the Multi-Controller construction. The size of each
part is calculated proportionally to a list of weights. Data move-
ments across different device memory hierarchies are transpar-
ently managed by the internal Controller objets associated to
each device.

• Kernel definition and launching: The Multi-Controller model
integrates the Controllers idea of multi-version kernel defini-
tion. Thus, kernel launching in a Multi-Controller simply uses
a kernel name. The internal Controllers selects, at run-time, the
most appropriate kernel version or implementation for the as-
sociated device, among those provided by the programmer. The
Multi-Controller internally divides the computation associated
to a kernel launching among the different devices. The kernel
execution on a device is performed asynchronously with respect
to the kernels execution in the rest of devices. Synchronizations
are required only by data requests on the main host thread.

4.1 Multi-Controller construction
A Multi-Controller object is constructed to manage a specific col-
lection of devices. Its construction functionality receives an ordered

Execution
 policyQueue

Ctrl-0

Execution
 policyQueue

Ctrl-1

Execution
 policyQueue

Ctrl-2

Many-core

Memory

Dev-0

Dev-1

Dev-2

A[0]

Multi-core

Memory

A[1]

Many-core

Memory

A[2]

Kernel
division

 Data
 partition

MCtrl

Host

MAttach

MLaunch

MDetach

HitTile A, B
A

Code

Memory

Attached

MultiController Devices

CPU

CPU

CPU

CPU

A
B B

B[0]

B[1]

B[2]

Internal
X

Figure 2. Diagram of the Multiple-Device Controller library (MCtrl).

list of devices specifications. Each device specification is used to
internally create a Controller object associated to the computa-
tional resource. In the current prototype we support device specifi-
cations that include: (1) NVIDIA’s GPUs, specifying their CUDA
device number, and (2) Groups of main host CPU-cores, specifying
a range of core identifiers, according to their internal numbering in
the CPU information provided by the operating system.

The Multi-Controller internally creates a queue to temporarily
store the requests for kernel launches, before dividing the compu-
tation and mapping it to the queues of the internal device Con-
trollers. The synchronization and coordination operations of each
Controller are executed on its own task, which makes asynchronous
the use of a host thread only when activity is needed, for minimal
interference with other host threads. In the current prototype the
internal device Controllers are implemented using OpenMP tasks.

4.2 Data structures and domains
One of the objectives of the multi-controllers library is to provide
an homogeneous interface to work with data structures in different
device types, preserving the coalescing or vectorization properties
of the code due to the data accesses order. The previous Controllers
library uses Hitmap to provide such an interface.

For Multi-Controllers we propose to exploit and extent Hitmap
functionalities to provide a transparent abstraction for the parti-
tion, subselection, and mapping of parts of the data structures to
the different devices associated to a Multi-Controller. The Multi-
Controller model proposes a single memory context for the whole
set of associated heterogeneous devices. Data structures from the
main host thread can be attached to the Multi-Controller context,
and they should not be manipulated on the main host thread until
they are detached from the Multi-Controller. The Multi-Controller
can decide when the real data movements should be done, syn-
chronously or asynchronously, to the actual devices, depending on
the kernels enqueued for execution, and their data dependencies.

To avoid redundant data movement across memory hierar-
chies, the model provides the programmer with a flexible attach-
ment functionality. The current proposal is focused on applications
where: (1) No data transfers between devices are needed across sev-
eral kernel executions; and (2) any part of the computation needs
either, a whole data structure, or a subset of the data structure that
do not overlap with other subparts. Thus, data structures should
be assigned as a whole to all the devices, or partitioned in non-
overlapping parts, one for each device.

To support this model, we have extended the HitTile objects in
the Hitmap library with the capability to part itself in several sub-
selections, and store the information about the partition inside the
object. Internally, when a HitTile is attached to a Multi-Controller,
it performs the following steps:

1. First, it checks that the HitTile is not already attached to any
Multi-Controller. If that particular HitTile object is already at-
tached, the program raises an error, as a second attachment
could lead to race conditions due to the concurent execution
of kernels in different Multi-Controllers.

2. If it is an attachment without the partition option, the whole
space of indexes of the data structure are mapped to each de-
vice. If it is an attachment with the partition option activated,
the Multi-Controller parts the index space of the HitTile data
structure in a number of parts equal to the number of devices
defined in the Multi-Controller. The partition policies intro-
duced in Hitmap are responsible for dividing the data structure
with no-overlapped domains. The partition size corresponding
to each device is proportional to the weights provided in an ar-
ray of floating point numbers, one for each device. More so-
phisticated partition policies can be easily added in the future
thanks to the modular plug-ins system in the Hitmap library.
The information about the mapping is stored in the HitTile ob-
ject for further reference.

3. Finally, the Multi-Controller creates a HitTile structure for the
space or sub-space of indexes mapped for each device, and
proceeds to do the data transfers to the assigned device when
needed. Transfers are not needed for groups of CPU-cores of
the host, or accelerators that can shared the host memory space.
The transfer policies inside the Multi-Controller can take de-
cisions about when and how make the transfers. For example,
the current Multi-Controller prototype implement both, imme-
diate and lazy transfers. The implementation of asynchronous
transfers is currently an on-going work.

When the data structure is detached, the Multi-Controller object
ensures the consistency of the whole data structure in the main
host thread. This may imply data transfers from some or all of the
associated devices. The information stored in the objects about the
index space mapped to each device is used for the transfers, and
eliminated at the end of the detachment procedure. The semantic of
this operation makes it synchronous. The main host thread should
block until its state is consolidated.

Domain to compute Compute
by Dev-0

Compute
by Dev-1

Figure 3. Calculating the domains to compute for each device.

Inherited from the Controllers library, the Multi-Controllers
model also allows the attachment of HitTile structures that have
a defined index space, but no memory allocated in the main host
thread. This creates partitioned internal memory buffers (repli-
cated or partitioned) inside the devices space, that are transparently
treated inside the kernel functions as any other data structure. The
detachment of these structures simply frees the corresponding sub-
parts and internal resources in the devices.

In the case of partitioned data structures, the actual parameters
used in the execution invocations of the Multi-Controller are sub-
stituted by the the HitTiles created by subselecting the mapped por-
tion of the index spaces for each device. Inside the kernel functions
they are transparently used as normal whole HitTile data-structures.
The kernel launching interface will transparently transform the Hit-
Tile handlers for the real parameters handlers to an internal HitK-
Tile type, substituting the data pointer with its equivalent in the de-
vice memory space when needed. The data access primitives used
inside the kernels code are transparently rewritten to use the pointer
contained on these objects, along with a minimum number of arith-
metic operations, to access the data. The resulting code exposes the
arithmetic expressions to the native compiler to open the possibility
of further optimizations. The result obtains as good performance as
direct array accesses in static codes.

4.3 Kernel launching
The Multi-Controllers model proposes a unified space of indexes
for logical threads across the whole set of associated heterogeneous
devices. One instance of the kernel function is executed by each
logical thread. This model directly fits with the threads grid ab-
straction in current GPUs programming models such as CUDA or
OpenCL. In the case of groups of CPU-cores, the internal Con-
troller objects are responsible for executing the kernel invocations
of a grid of many logical threads inside a limited set of coarse
threads (e.g. one OpenMP thread per core) for efficiency.

The Multi-Controller kernel launching function receives as pa-
rameters the name of the kernel, the real parameters for the ker-
nel (whole data structures attached to the multi-controller, or single
typed values), and a definition of the indexes space for the logical
threads.

Internally, the Multi-Controller performs at runtime the inter-
section between the indexes subset defined by grid, or domain of
threads, specified by the programmer, and the data structures do-
mains or sub-selections performed by the attachment procedure.
The result points out the domain of logical threads where each de-
vice should perform the computation. With this method, the com-
putation is transparently divided as a function of the data partitions
previously performed. Figure 3 shows a graphical representation of
an example of this procedure. Stage 1 of the figure shows an exam-
ple of the partition of a data-structure domain. Stage 2 overlaps the
domain (grid of threads) where computation is required. Stage 3
shows the domains of logical threads that should be executed on
each device.

INITIALIZATION

DATA ATTACHMENT

Declare/Allocate Tiles

COMPUTATION

DATA DETACHMENT

ENDING

Attaching Tiles to MCtrl

Detaching Tiles from MCtrl

Sequences of kernels launching

Free resources
Destroy Multi-Controller

Create Multi-Controller

Define computation domains

Figure 4. Typical programming stages using the MCtrl library.
The data-structures attachment/detachment, and kernel launching
stages can be repeated and interleaved as desired.

With the information about how the computation is divided,
the Multi-Controller object deploys the kernel launches on the
internal Controller objects with a non-empty sub-space of threads
mapped. Thus, the global computation launch is subdivided in
sub-kernels that are enqueued for execution in their corresponding
device queues.

Information provided by the characterization primitives sup-
plied by the programmer on kernel declarations are used on the
appropriate devices to determine launching parameters such as
thread-block geometries.

4.4 Programming methodology and example
In this section we discuss, with an example, how a program is de-
veloped using our proposal. The proposed methodology derives
in clearly structured programs, using simple development guide-
lines. Figure 4 shows the typical stages of an application pro-
grammed using the Multi-Controller library. After the creation of
the Multi-Controller object, data structures declared in the main
host thread can be attached to the object. Computations are started
defining the threads space and invocating kernel launches in the
Multi-Controller object. The detachments consolidate the state of
the whole data structures in the main host thread.

Figure 5 presents two codes of a matrix addition programmed
using our proposal. On the left of Fig. 5, a group of ten CPU-cores
and a GPU are exploited, assigning to them the 10% and the 90%
of the computation, respectively. On the other hand, in the code
on the right, two GPUs are exploited for computation. In this case
each GPU performs 50% of the computation. Both codes follow the
basic structure of programming stages presented in Fig. 4.

First, the programmer creates a Multi-Controller object. The
creation of this controller includes the definition of the different
kinds of devices controlled by this object, as well as a parameter
specifying their computation features. The parameter when the
device is a group of CPU-cores, corresponds to the range of CPU-
cores used. For a GPU device, this parameter indicates the GPU
identifier (see lines 4 to 6).

The second step consist of the data structures creation and allo-
cation. HitTile objects are created and allocated using a HitShape
object that represent a domain. To do that, we have applied the func-
tion hit tileDomainAlloc(...) (see lines 13 to 17). HitTiles
are attached to the Multi-Controller using the MCtrlAttach(..)
function (see lines 21 to 23). For the attachment, it is needed an
array of floats indicating the weights used to divide the data struc-
ture among the different target devices. The Multi-Controller is the

1 // Multi -Device Controller (MCtrl) creation
2 CALMCtrl cntrlMult;
3 // Two devices: a 10 CPU -core group , and a GPU
4 CAL_MCtrlCreate2(cntrlMult ,
5 CAL_CNTRL_CPU , RANGE (0,9),
6 CAL_CNTRL_GPU , 0);
7

8 // Specifying the weights corresponding to
9 // each device

10 float percents [2] = {10, 90};
11

12 // Define whole data structures
13 HitTile_float A, B, C;
14 HitShape domain = hit_shapeStd2(SIZE , SIZE);
15 hit_tileDomainAlloc(A, 2, float , domain);
16 hit_tileDomainAlloc(B, 2, float , domain);
17 hit_tileDomainAlloc(C, 2, float , domain);
18

19 // Attach the data structures to a MDC ,
20 // determining the weights for each device
21 CAL_MCtrlAttach(A, cntrlMult , percents);
22 CAL_MCtrlAttach(B, cntrlMult , percents);
23 CAL_MntrlAttach(C, cntrlMult , percents);
24

25 // Determine the threads to launch.
26 HitShape threads= hit_shapeStd2(SIZE , SIZE);
27

28 // Perform the commputation
29 CAL_MCtrlLaunch(cntrlMult , threads , MatAdd , 4,
30 hit_CM (&A), hit_CM (&B),
31 hit_CM (&C));
32

33 // Copy result from MDC memory to host memory
34 CAL_MCtrlDetach(A, cntrlMult);
35 CAL_MCtrlDetach(B, cntrlMult);
36 CAL_MCtrlDetach(C, cntrlMult);
37

38 // Destroy multiple -device controller
39 CAL_MCtrlDestroy2(cntrlMult);
40

41 // Free CHitTiles
42 hit_Free(A);
43 hit_Free(B);
44 hit_Free(C);

1 // Multi -Device Controller (MCtrl) creation
2 CALMCtrl cntrlMult;
3 // Two devices: two GPUs
4 CAL_MCtrlCreate2(cntrlMult ,
5 CAL_CNTRL_GPU , 0,
6 CAL_CNTRL_GPU , 1);
7

8 // Specifying the weights corresponding to
9 // each device

10 float percents [2] = {50, 50};
11

12 // Define whole data structures
13 HitTile_float A, B, C;
14 HitShape domain = hit_shapeStd2(SIZE , SIZE);
15 hit_tileDomainAlloc(A, 2, float , domain);
16 hit_tileDomainAlloc(B, 2, float , domain);
17 hit_tileDomainAlloc(C, 2, float , domain);
18

19 // Attach the data structures to a MDC ,
20 // determining the weights for each device
21 CAL_MCtrlAttach(A, cntrlMult , percents);
22 CAL_MCtrlAttach(B, cntrlMult , percents);
23 CAL_MCtrlAttach(C, cntrlMult , percents);
24

25 // Determine the threads to launch.
26 HitShape threads= hit_shapeStd2(SIZE , SIZE);
27

28 // Perform the commputation
29 CAL_MCtrlLaunch(cntrlMult , threads , MatAdd , 4,
30 hit_CM (&A), hit_CM (&B),
31 hit_CM (&C));
32

33 // Copy result from MDC memory to host memory
34 CAL_MCtrlDetach(A, cntrlMult);
35 CAL_MCtrlDetach(B, cntrlMult);
36 CAL_MCtrlDetach(C, cntrlMult);
37

38 // Destroy multiple -device controller
39 CAL_MCtrlDestroy2(cntrlMult);
40

41 // Free CHitTiles
42 hit_Free(A);
43 hit_Free(B);
44 hit_Free(C);

Figure 5. Matrix addition example programmed using our approach: Exploiting a group of 10 CPU-cores and a GPU for the computation
(left); and exploiting two GPUs for the computation (right).

responsible for the actual data attachment on the final device where
the computation will be performed.

After that, the computation domain (indexes domain for logical
threads) is defined by a HitShape object (see line 26). Typically, the
kernel execution is performed for each element of a matrix, as in
all the cases studied in this paper (see Sect. 5.1). In this cases the
computation domain and the data structure domain are equal.

The kernel launching is performed in line 29. The parameters of
the MCtrlLaunch function are: (a) The Multi-Controller object; (c)
The domain that defines the computation space index. (c) The name
of the kernel; (d) The number of parameters required by the kernel;
and (e) The real parameters for the kernel execution. It deploys the
kernels execution on all the computational devices associated to the
Multi-Controller. It internally enqueues in each device Controller a
copy of the kernel launching, adapting the threads indexes domain
in order to each target device performs only its corresponding part
of computation.

Finally, once the computation has finished, HitTiles are de-
tached of the controller, the Multi-controller is destroyed, and the
data structures are free (see lines 34 to 44).

5. Experimental study
This section presents an experimental study to show how this ap-
proach simplifies the programmer effort to adapt programs to dif-
ferent sets of heterogeneous devices, and the efficiency obtained by
our prototype implementation of the Multi-Controller library. First,
we present several benchmarks used in the study, discussing their
features. Second, we present some development effort metrics. Fi-
nally, we provide a comparison of performance measures obtained
by programs using device vendor or native programming models,
and programs developed with the Multi-Controller library.

5.1 Study cases
We have used three common benchmarks as base-lines for four case
studies, in order to test our proposal.

5.1.1 Matrix addition
The Matrix addition consists on the sum of two different matri-
ces, storing the result in a third one: C = A + B. The computa-
tion of each cell does not imply any kind of dependencies with the
computation of another one. The solution developed using our pro-
posal involves just one kernel with a bidimensional grid and bidi-
mensional threadblocks. Depending on the size of the grid and the
matrices, each block of threads computes the result values of sev-

eral blocks of the matrix iteratively, following the example imple-
mentation presented to the CUDA community in the programming
guide [11]. The accesses to global memory are fully coalesced. This
benchmark requires a big amount of data transfers to the accel-
erators used, while the computation load is really low. Using our
model, the CPU solution for this problem is similar to the GPU
version. Only one generic kernel should be defined by the program-
mer.

5.1.2 Matrix multiplication
The Matrix multiplication computes the product of two different
square matrices, storing the result in a third one: C = A ∗ B. The
computation of each cell of the resulting matrix is not dependent
on another computation.

A direct simple solution to this problem involves one generic
kernel, using a bidimensional grid of threads, for both CPU and
GPU. Each thread ti,j is responsible of computing the dot product
operation (

∑n−1
k=0 A[i][k] ∗ B[k][j]), storing the result in the (i, j)

position of the C matrix. Nevertheless, different logical threads use
elements of A or B that are also read by other logical threads. Thus,
data can be reused and shared across the computation of several
cells. Moreover the read patterns on A and B matrices should be
studied and adapted to exploit coalescence in GPUs, and properly
exploit caches and vectorization on CPUs. These lead to interesting
optimizations in both GPU and CPU devices. Thus, in our model
we can declare different specialized kernels for each kind of device.

The optimized GPU implementation in the CUDA Toolkit
Samples exploits the shared-memory for better performance. The
threads on each threadblock can use shared-memory to collectively
load a square block of A and B matrices in a coalesced way. Then,
they can efficiently perform a block matrix multiplication using
the elements on the shared-memory. Several iterative stages should
be applied to compute all the matrix block multiplications needed
at each threads block. Threads need to use block synchronizations
on the global memory read operations, using specific CUDA code.
This code, due to the way it uses the shared memory and it aligns
the read operations, forces the use of a specific square threadblock
size (32 × 32). We have simply modified the CUDA Toolkit Sam-
ples code to use the abstract Multi-Controllers thread indexes, and
the HitTiles structures in the data accesses.

The current CPU kernel version is the generic simple imple-
mentation of the dot product of a row of A and a column of B to
compute the result for a single output element. Further optimiza-
tions based on loop reordering and tiling for better cache usage can
be automatically be applied by the native C compiler.

5.1.3 Black-Sholes
The Black-Scholes formula is based on a mathematical model of a
financial market. The result estimates the price of European-style
options. The program, obtained from the CUDA Toolkit Samples,
independently applies the formula to a chosen number of input val-
ues stores in an array, calculating and storing their results. Thus,
it is an embarrassing parallel program with perfectly coalesced ac-
cesses on a GPU. Each thread does only one read and one write
operation to global memory. It applies several floating point opera-
tions calculating intermediate results stored in registers or temporal
variables. We have explored two case studies using this benchmark:
A simple execution of the kernel (BlackScholes), and a program
that iteratively launches a sequence of 2048 executions of this ker-
nel for the same array (BlackScholes 2028).

As in the matrix addition benchmark, the data transfers are not
negligible compared with the computation time. In our model, the
same generic kernel definition is used for both CPU and GPU.

Table 1. Development effort measures for the three benchmarks
when they are programmed using Cuda, OpenMP, and the proposed
Multi-Controller library.

Benchmark Code Lines Cyclomatic Halstead
of Code Complexity Measure

Matrix Cuda 72 7 202361
Addition OpenMP 49 11 99783

MCtrl 61 5 103528
Matrix Cuda 142 5 409862
Mult. OpenMP 45 9 81136

MCtrl 97 6 201242
Black- Cuda 211 7 742735
Scholes OpenMP 134 8 389556

MCtrl 163 6 486956

5.2 Development effort
In this section we compare, in terms of development effort, the use
of our library with the most common native programming models
for NVIDIAS’s GPUs and multi-core CPUs, which are CUDA and
OpenMP respectively. For this comparison, we use three classical
development effort metrics: COCOMO lines of code, McCabe’s
cyclomatic complexity [10], and Halstead development effort [5].
The metrics are applied to the parts of code that include: kernel
definitions, kernel characterizations, the coordination code in the
main host thread with the multi-controller management, and data
structures management. We ignore code devoted to error or results
checking, performance instrumentation, and writing messages to
the standard output.

Table 1 shows the different measures for the different codes
evaluated. The results show that our library implies less devel-
opment effort for the programmer than using CUDA for all the
study cases. On the other hand, although the OpenMP program-
ming model needs a less volume of lines of code, the cyclomatic
complexity of our proposed is less because our abstraction hides
some run-time decissions and checkings.

Transforming a CUDA program into an OpenMP version, or in
the opposite way, is not a trivial task. Remind the Fig. 5, where we
show two codes using the Multi-Controller abstraction, that per-
form a matrix addition using different target devices combinations.
When we compare both codes, we observe that the effort required
by the programmer to change the program in order to exploit 1 GPU
+ 10 CPU-cores, or two GPU devices, only involves 4 lines of code.
We can see these four lines highlighted on both codes in the figure.

This simplification makes transparent to the programmer all the
differences on data transfers, kernel launches, and data manage-
ments for different kind of computational devices such as acceler-
ators or groups of CPU-cores.

5.3 Performance results
In this section we present performance results: (1) comparing our
proposal with pure CUDA reference programs, and (2) evaluating
the impact of using in our model different computational units for
the four case studies selected. The goal of this study is to deter-
mine the potential performance penalty introduced by using our
approach, as well as the performance gain obtained when exploit-
ing a combination of heterogeneous devices with different compu-
tational capabilities.

The experiments have been executed on a host machine named
Hydra, with two CPUs Intel Xeon E5-2609 v3 @1.90GHz, 64Gb
DDR3 main memory, and two GPUs: an NVIDIA’s GeForce Titan
Z (named GPU-0) and a Titan Black X (named GPU-1). We ex-
ploit the two GPU devices, and multiple CPU-cores organized in
a single virtual device in our model. For this test we have decided

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

20 15 10 7.5 5 2.5 0 Cuda_Ref

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

CPU % data

Matrix Addition CPU+GPU, SIZE=20000x20000

Computation
Data transfers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

20 15 10 7.5 5 2.5 0 Cuda_Ref

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

CPU % data

BlackScholes CPU+GPU, SIZE= 3*10^8

Computation
Data transfers

 0

 200

 400

 600

 800

 1000

 1200

 1400

20 15 10 7.5 5 2.5 0 Cuda_Ref

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

CPU % data

Matrix Multiplication CPU+GPU, SIZE=12800x12800

Computation
Data transfers

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

20 15 10 7.5 5 2.5 0 Cuda_Ref

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

CPU % data

BlackScholes_2048 CPU+GPU, SIZE= 1*10^6

Computation
Data transfers

Figure 6. Performance results (in seconds) for experiments on Hydra using a group of 10 CPU-cores and a GPU. The right-most columns
show the result of the reference CUDA programs run on the same GPU.

to avoid performance effects derived form oversuscription or hy-
perthreading. As our Multi-Controllers library uses one host thread
for each device to be controlled, the number of CPU-cores we use
to compute and execute kernels is 10.

The programs have been compiled using the CUDA Toolkit 8.0,
and GCC 4.8.3. We have used the flags, -O3, and -fopenmp to ex-
ploit parallelism when using a group of CPU-cores as a computa-
tional unit. We have executed all the experiments ten times, reg-
istering the lower total execution times. We have also measured
separately the times spent in copying data forth to and back from
the target devices, and the computation time of the kernels.

We have tested three kinds of codes:

• A native CUDA implementation of the different benchmarks
tested. We present measures obtained in one or both GPUs in
our target system depending on the study. See the right-most
and/or the left-most columns in the figures discussed bellow.
Cuda Ref: Measures in NVIDIA’s GeForce Titan Black Z.
Cuda Ref-2: Measures in NVIDIA’s GeForce Titan Black X.

• CPU+GPU: This code, programmed using the MCtrl library,
executes the programmed application on two devices, a group
of 10 CPU-cores, and an NVIDIA’s GeForce Titan Black Z.
Different mappings have been tested, determined by the per-
centage of data and computation assigned to each device.

• GPU+GPU: This code, programmed using the MCtrl library,
executes the application on the two GPUs available in the target

system. Again, different mappings have been tested, determined
by the percentage of data and computation assigned to each
device.

Figure 6 shows the performance results obtained by our pro-
posal when the data, and thus the computation, is divided among
the group of CPU-cores and a GPU, the NVIDIA’s GeForce Titan
Black Z. In the applications where data transfers dominate the to-
tal time (Matrix Addition and Black-Scholes benchmarks) we can
achieve a better performance by giving part of the computation to
the group of CPU-cores. Despite the computational power of the
GPU accelerator, the computation division improves performance
by reducing the time spent in data transfers to/from the GPU. When
the computational load is high, such as in the matrix multiplication
and Black-Scholes 2048, the best performance is obtained doing
the whole computation in the GPU. This is typical for this kind of
programs that really suit the GPU computational model.

Figure 7 shows the performance results obtained when we di-
vide the computation between the two GPUs. In our first proto-
type of the library, data transfers for several GPUs are still se-
quentialized. Thus, in those applications where data transfers lead
the execution time, the best performance is obtained when the ap-
plication is executed only in the most powerful GPU. However,
when the computation time is much higher than the communica-
tion times (applications such as matrix multiplication or Black-
Scholes 2048), a division of the computation among the GPUs,
proportional to their relative computation power for this problem,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Cuda_Ref 100 70 65 60 55 50 0 Cuda_Ref-2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

Matrix Addition GPU+GPU, SIZE=20000x20000

Computation
Data transfers

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Cuda_Ref 100 70 65 60 55 50 0 Cuda_Ref-2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

BlackScholes GPU+GPU, SIZE= 3*10^8

Computation
Data transfers

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Cuda_Ref 100 70 65 60 55 50 0 Cuda_Ref-2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

Matrix Multiplication GPU+GPU, SIZE=12800x12800

Computation
Data transfers

 0

 0.05

 0.1

 0.15

 0.2

 0.25

Cuda_Ref 100 70 65 60 55 50 0 Cuda_Ref-2

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
.)

GPU-0 % data

BlackScholes_2048 GPU+GPU, SIZE= 1*10^6

Computation
Data transfers

Figure 7. Performance results (in seconds) for experiments on Hydra using two different GPUs. The left- and right-most columns show the
results of the reference CUDA programs run on each of the two GPUs considered in the study.

improves the performance as we show in the figures. When the
computation load is really low, the time spent in the queue man-
agements can be noticeable, such in the BlackScholes 2048 case
(it takes approximately 0.04 seconds).

6. Conclusion
In this paper we present the Multi-Controller (MCtrl), an abstract
entity implemented in a library, that coordinates the management
of heterogeneous devices, including accelerators with different ca-
pabilities and sets of CPU-cores. This entity offers a global view
of the computation, transparently managing the coordination, data
partition, mapping, and execution of whole computations on its
associated devices. Our solution allows the use of simple generic
kernels (portable across different device types), or specialized im-
plementations defined and optimized using specific native or ven-
dor programming models (such as CUDA for NVIDIA’s GPUs, or
OpenMP for CPU-cores). The run-time system automatically se-
lects and deploys the most appropriate implementation of each ker-
nel for each device, managing the data movements, and hiding the
launching details. Results of an experimental study with four study
cases indicates that our abstraction allows the development of flexi-
ble and high efficient programs, that adapt to the heterogeneous en-
vironment. On-going and future work include studying the support
for other kinds of accelerators, and the effect of more sophisticated
techniques for data movement.

Acknowledgments
This research has been partially supported by MICINN (Spain) and
ERDF program of the European Union: HomProg-HetSys project
(TIN2014-58876-P) and COST Program Action IC1305: Network
for Sustainable Ultrascale Computing (NESUS).

References
[1] A. Alonso-Mayo, H. Ortega-Arranz, and A. Gonzalez-Escribano.

Communicators: An abstraction to ease the use of accelerators. In
HLPGPU’2016, ene 2016.

[2] U. Dastgeer, J. Enmyren, and C. W. Kessler. Auto-tuning SkePU:
A Multi-backend Skeleton Programming Framework for multi-GPU
Systems. In Proc. IWMSE’11, pages 25–32, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0577-8.

[3] A. Gonzalez-Escribano, Y. Torres, J. Fresno, and D. R. Llanos. An
extensible system for multilevel automatic data partition and mapping.
IEEE Transactions on Parallel and Distributed Systems, 25(5):1145–
1154, 2014.

[4] M. Haidl and S. Gorlatch. PACXX: Towards a Unified Programming
Model for Programming Accelerators using C++14. In Proc. LLVM-
HPC’14. IEEE, 2014.

[5] M. H. Halstead. Elements of Software Science (Operating and pro-
gramming systems series). Elsevier Science Inc., 1977.

[6] P. Hijma, C. J. Jacobs, R. V. van Nieuwpoort, and H. E. Bal. Cash-
mere: Heterogeneous many-core computing. In Parallel and Dis-

tributed Processing Symposium (IPDPS), 2015 IEEE International,
pages 135–145. IEEE, 2015.

[7] A.-E. Hugo, A. Guermouche, P.-A. Wacrenier, and R. Namyst. Com-
posing Multiple StarPU Applications over Heterogeneous Machines:
A Supervised Approach. In Proc. IPDPSW’13 PhD Forum, pages
1050–1059, Washington, D.C., USA, 2013. IEEE. ISBN 978-0-7695-
4979-8.

[8] K. Karimi, N. G. Dickson, and F. Hamze. A performance comparison
of cuda and opencl. arXiv preprint arXiv:1005.2581, 2010.

[9] T. Liang, H. Li, and J. Chiu. Enabling Mixed OpenMP/MPI Pro-
gramming on Hybrid CPU/GPU Computing Architecture. In Proc.
IPDPSW’12, PhD Forum, pages 2369–2377, Washington, D.C., USA,
2012. IEEE. .

[10] T. J. McCabe. A complexity measure. Software Engineering, IEEE
Transactions on, (4):308–320, 1976.

[11] NVIDIA. NVIDIA CUDA C Programming Guide 7.5, 2015. URL
http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf.
Last visit: November 16th, 2015.

[12] C. Nvidia. Cublas library. NVIDIA Corporation, Santa Clara, Cali-
fornia, 15:27, 2008.

[13] H. Ortega-Arranz, Y. Torres, A. Gonzalez-Escribano, and D. R.
Llanos. Optimizing an APSP implementation for NVIDIA GPUs us-
ing kernel characterization criteria. The Journal of Supercomputing,
70(2):786–798, 2014. ISSN 0920-8542. .

[14] B. Pérez, J. L. Bosque, and R. Beivide. Simplifying programming
and load balancing of data parallel applications on heterogeneous
systems. In Proceedings of the 9th Annual Workshop on General
Purpose Processing using Graphics Processing Unit, pages 42–51.
ACM, 2016.

[15] T. R. Scogland, B. Rountree, W.-c. Feng, and B. R. de Supinski. Het-
erogeneous task scheduling for accelerated openmp. In Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th Inter-
national, pages 144–155. IEEE, 2012.

[16] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science
& engineering, 12(1-3):66–73, 2010.

[17] TOP500.org. Top500 supercomputing sites. WWW, Nov 2014. on
http://www.top500.org/.

[18] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos. uBench: expos-
ing the impact of CUDA block geometry in terms of performance.
The Journal of Supercomputing, 65(3):1150–1163, 2013. ISSN 0920-
8542. .

