
 

 

 

 

PROGRAMA DE DOCTORADO EN MATEMÁTICAS 

 

 

 

 

TESIS DOCTORAL: 

 

 

Applications of regular variation and proximate 

orders to ultraholomorphic classes, asymptotic 

expansions and multisummability 

 

 

 

 

 

 
Presentada por Javier Jiménez Garrido para optar al 

grado de  

Doctor por la Universidad de Valladolid 

 

 

 

 

Dirigida por: 

Javier Sanz Gil   

 

 
 

 

 

 

 





D. JAVIER SANZ GIL, Profesor Titular de Análisis Matemático de
la Universidad de Valladolid,

CERTIFICA: Que la presente memoria, �Applications of regular va-
riation and proximate orders to ultraholomorphic classes, asymptotic ex-
pansions and multisummability�, ha sido realizada bajo su dirección en el
Departamento de Álgebra, Análisis Matemático, Geometría y Topología,
por D. Javier Jiménez Garrido, y constituye su Tesis para optar al grado
de Doctor en Matemáticas.

Que le consta que el trabajo es original e inédito, y que autoriza su
presentación.

Y para que conste a los efectos oportunos, �rma la presente en Valla-
dolid a quince de diciembre de dos mil diecisiete.

Fdo.: Javier Sanz Gil





5

Acknowledgements/Agradecimientos

En estas líneas me gustaría expresar mi más profundo agradecimiento a todas las personas con las
que he compartido estos últimos cuatro años y que me han ayudado a mantenerme en equilibrio
sobre el �no alambre que separa la lucidez de la locura. Para evitar el agravio de quienes no
son nombrados o de quienes siéndolo discrepan de los términos en que se hace, las normas no
escritas marcan tres pautas: brevedad, ambigüedad y corrección política. Sin intención alguna de
menoscabar la solemnidad del texto que se presenta, permítanme aprovechar la libertad, fuera del
rigor matemático, que me brinda este espacio, excediendo lo protocolario en longitud, concreción
y franqueza.

No cabe duda de que la realización de esta tesis no habría sido posible sin la intachable
dirección de Javier Sanz durante estos cinco años, incluyo aquí, puesto que el POD lo hace
someramente, su labor durante el TFM que supone el origen de estos resultados. Me siento pro-
fundamente honrado de que me haya permitido trabajar junto a él en el estudio de los desarro-
llos asintóticos y las series divergentes contagiándome su entusiasmo por el análisis matemático.
Quiero destacar que, pese a sus múltiples tareas y obligaciones, como la dirección del departa-
mento, siempre ha cumplido con sus compromisos haciendo gala de un contorsionismo digno del
Circo del Sol y sacando siempre su mejor versión, como los grandes triplistas, cuando suena la
bocina. Pero sobre todo agradezco y admiro que ni por un instante haya perdido un ápice de su
amabilidad, dedicación y esfuerzo.

Je tiens également à adresser mes remerciements les plus sincères au professeur David Sauzin
pour son chaleureux accueil et son encadrement pendant les trois mois de séjour de recherche à
Pisa. Ses lessons magistrales sur les systèmes dynamiques, les problèmes asymptotiques en mé-
canique hamiltonienne, la théorie de la resurgence et le calcul moulien ont une valeur inestimable
ainsi que ses conseils et les discussions que nous avons eu, les quelles je souhaite approfondir.

No pueden faltar unas palabras para los investigadores con los que he tenido el lujo de
colaborar estrechamente. En primer lugar, para el que esperemos sea mi hermano mayor en
el Mathematics Genealogy Project, Alberto Lastra, que durante este tiempo se ha comportado
como tal y al que doy las gracias por sus excelentes consejos que me han permitido orientarme
académicamente y burocráticamente en el proceso doctoral. In the second place, I would like to
thank professor Shingo Kamimoto who I met in 2015 in Bedlewo where it started our collaboration
which amounted to some of the problems solved in this dissertation. His broad knowledge of
very di�erent areas in mathematics made our discussions really pleasant and thought provoking.
Finally, the most notorious member of my (lc)2 research team, Gerhard Schindl, who I have the
opportunity to work with during the last two years. Part of the material contained in this thesis
is the result of our weekly and fruitful conversations.

A lo largo de mi vida he tenido diversos profesores, pese a haber olvidado sus nombres, de
la mayoría guardo un grato recuerdo. En este apartado quiero agradecer el asesoramiento de los
profesores del Departamento de Álgebra, Análisis Matemático, Geometría y Topología con los que
he compartido tareas de investigación y docencia. Aunque se escape del marco temporal de este
doctorado, he decidido hacer una pequeña reseña de una profesora, interina en aquel momento,
que tuve durante el segundo curso de la Educación Secundaria, Raquel Alonso Galván. Le doy
las gracias por invitarme a desa�ar mis capacidades apuntándome a la olimpiada y, aunque el
periplo no fue muy exitoso, me permitió conocer las matemáticas más allá de los estándares que
marcan los libros de texto.

Mi gratitud es también para las instituciones que han �nanciado esta investigación: el Mi-
nisterio de Economía y Competitividad mediante los proyectos MTM2012-31439 y MTM2016-
77642-C2-1-P; y la Universidad de Valladolid a través de la convocatoria del año 2013 de contratos

Universidad de Valladolid



6 ACKNOWLEDGMENTS/AGRADECIMIENTOS

predoctorales co-�nanciados por el Banco de Santander, las ayudas para asistencias a cursos,
congresos y jornadas relevantes para el desarrollo de tesis doctorales (convocatoria 2015) y para
estancias breves en el desarrollo de tesis doctorales (convocatoria 2017). Vorrei anche ringraziare
il Centro di Ricerca Matematica Ennio De Giorgi (Scuola Normale Superiore di Pisa, Italia) dove
sono stato ottenuti alcuni risultati di questa tesi per il grandissimo supporto che ho ricevuto
durante il mio soggiorno.

No querría olvidarme de los doctorandos y los postdoctorandos de la A132, Oziel, Jesús,
Yolanda, Lucivanio, Azucena, Rodrigo, MaÁngeles y Miguel con los que he compartido tantos
tuppers, cafés y desahogos, esenciales en la rutina investigadora. Una mención especial se merece
mi correligionario de series divergentes, AMC y HBO, Sergio, por estar siempre dispuesto a echar
una cuentica y por dejarse spoilear acerca del contenido de esta memoria mediante los sucesivos
borradores, cuyas correciones han sido de una inestimable valía. I have also enjoyed the company
of Li Yong trying to understand Ecalle's works from monday to friday and discovering Tuscany
on weekends. Finalmente, mi agradecimiento a las dos matemáticas de la pedanía murciana de
Alicante más castellanas que conozco: a Marina, por hacer lo que no está escrito por conexionar
al grupo, y a Beatriz, por darnos temas de conversación tan ingeniosos acerca de sus pósteres.

A pesar de no haberles podido dedicar todo el tiempo que me hubiera gustado en estos
cuatro años, son la base anímica que sustenta esta tesis y que me recuerda, cuando el tiempo
y la distancia lo permiten, lo que verdaderamente importa. Incluyo aquí a aquellas personas
que, aunque no lo sepan, en algún que otro momento de debilidad me han alentado con sus
palabras a seguir adelante. Gracias a los parquesoleños (con alguna adopción) que siempre he
podido encontrar un viernes en el Delbar's: Lorena, Juan Carlos, Fran, Jimmy, Pelu, Alfredo,
Sansi, Mercre, Andrea, Ine, Ana, Escu, Navarro, José, Mosi y Martín; a la `muchachauda'
disponible para la contienda y la jarana: Ana, Miguel, Angélica, Blanca, José Antonio, Gaspar,
Andrés, Laura, Marina, Eduardo, Inmaculada, Nadia, Beni, Gonzalo, Minerva y Álvaro; a los
matemáticos: Edu, Lucas y Ana. San Bourbaki deriva pro eis.

Me siento afortunado de tener tres familias Jiménez, Garrido y Sancho no por el hecho de
ser tres sino por mis tías, tíos, primos y primas que siempre me han arropado en todo lo que he
emprendido. Este viaje no habría sido posible sin su apoyo.

He querido dejar para el �nal los agradecimientos a las personas con las que he compartido el
día a día. A Pedro por transmitirme su pasión por la ciencia y por Salamanca. A mi hermano del
norte de Canadá, Gonzalo, y a mi hermana del sur de la India, Teresa, que hasta en la peor de
las etapas me han sacado una sonrisa con sus locuras producto de una imaginación desbordante
que espero sigan ejercitando. A mi madre, Nieves, por ser durante muchos años madre, amiga
y hermana, por permitirme cometer la herejía de no seguir sus pasos en la física, por dejar que
me equivoque y por su guía, vitalidad y cariño. Por último, gracias a la persona que no me
ha dejado bajar los brazos, vigilante desde la Atalaya de pequeñas piezas, heroína en las aulas,
guardiana de las cuencas mineras del norte, compañera de ruta y responsable de gran parte de
mis alegrías, Lidia.

Muchos, y seguramente insu�cientes, agradecimientos y una dedicatoria a Gonzala del Pozo,
Isabel López, Jesús Jiménez y Marcelino Garrido; aunque no me hayan podido acompañar en
esta aventura, soy de los pequeños de cerca de una treintena de nietos, su afecto, ejemplo y
cuidado son las raíces del árbol cuyo fruto aquí se muestra.

Cerro de la Gallinera, a 15 de diciembre de 2017 a las 8:15,

Javier Jiménez Garrido

JAVIER JIMÉNEZ GARRIDO



7

Contents

Introducción 9

Introduction 19

1 Preliminaries 29

1.1 Logarithmically convex sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1.1 De�nition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.1.2 Equivalent and comparable sequences . . . . . . . . . . . . . . . . . . . . 33
1.1.3 Associated functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.1.4 Growth indices γ(M) and ω(M) . . . . . . . . . . . . . . . . . . . . . . . 38

1.2 Regular variation, O-regular variation and proximate orders . . . . . . . . . . . . 39
1.2.1 Regularly varying functions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2.2 Proximate orders and smooth variation . . . . . . . . . . . . . . . . . . . . 41
1.2.3 O-regularly varying functions . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.2.4 Regularly varying sequences . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.2.5 O-regularly varying sequences . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Log-convex sequences, O-regular variation and proximate orders 51

2.1 Log-convex sequences and O-regular variation . . . . . . . . . . . . . . . . . . . . 51
2.1.1 Strongly nonquasianalyticity and moderate growth characterizations . . . 51
2.1.2 Orders and Matuszewska indices for sequences . . . . . . . . . . . . . . . . 61
2.1.3 Logarithmically convex sequences, growth indices and O-regular variation 63
2.1.4 O-regular variation of the associated function . . . . . . . . . . . . . . . . 72
2.1.5 Dual sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.2 Log-convex sequences, regular variation and proximate orders . . . . . . . . . . . 83
2.2.1 A new characterization of regular variation . . . . . . . . . . . . . . . . . 84
2.2.2 Proximate order associated with a weight sequence . . . . . . . . . . . . . 88
2.2.3 Regularly varying sequences de�ned from proximate orders . . . . . . . . 91
2.2.4 Sequences admitting a nonzero proximate order . . . . . . . . . . . . . . . 93
2.2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3 Injectivity and surjectivity of the asymptotic Borel map 107

3.1 Asymptotic expansions and ultraholomorphic classes . . . . . . . . . . . . . . . . 108
3.1.1 Basic de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.1.2 The asymptotic Borel map . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2 Injectivity of the asymptotic Borel map. Impossibility of bijectivity . . . . . . . . 112
3.2.1 Classical injectivity results . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2.2 New injectivity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.3 Impossibility of bijectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



8 CONTENTS

3.3 Surjectivity of the asymptotic Borel map . . . . . . . . . . . . . . . . . . . . . . 121
3.3.1 Weight sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.3.2 Weight sequences satisfying derivation closedness condition . . . . . . . . 129
3.3.3 Strongly regular sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.3.4 Sequences admitting a nonzero proximate order . . . . . . . . . . . . . . . 134

4 Multisummability via proximate orders 137

4.1 M−summability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.1 M−summability kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.1.2 Generalized Laplace and Borel transforms . . . . . . . . . . . . . . . . . . 142
4.1.3 M−summability and e−summability . . . . . . . . . . . . . . . . . . . . . 144

4.2 Tauberian theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.1 Comparison of sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2.2 Product and quotient of sequences . . . . . . . . . . . . . . . . . . . . . . 149
4.2.3 Tauberian theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.3 Multisummability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.3.1 Moment-kernel duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.3.2 Strong kernels of M−summability . . . . . . . . . . . . . . . . . . . . . . . 158
4.3.3 Convolution kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.3.4 Acceleration kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3.5 Multisummability through acceleration . . . . . . . . . . . . . . . . . . . . 178

5 A Phragmén-Lindelöf theorem via proximate orders and the propagation of

asymptotics 183

5.1 M−�atness extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.2 Watson's Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3 Asymptotic expansion extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Conclusiones y trabajo futuro 197

Conclusions and future work 201

Notation 205

Bibliography 211

JAVIER JIMÉNEZ GARRIDO



9

Introducción

El principal objetivo de esta memoria es dar respuesta a varias preguntas abiertas relativas a
las clases ultraholomorfas de tipo Carleman-Roumieu de funciones, de�nidas en sectores de la
super�cie de Riemann del logaritmo mediante restricciones para el crecimiento de sus derivadas
dadas en términos de una sucesión de números reales positivos. La motivación de estos problemas
surge del estudio de algunas propiedades que aparecen a la hora de trabajar con un proceso de
sumabilidad de series de potencias formales en este contexto y de la construcción de la nueva
herramienta de multisumabilidad correspondiente. La solución que se presenta aquí depende
fuertemente de las teorías clásicas de variación regular y de órdenes aproximados, que están
estrechamente relacionadas. En los siguientes párrafos se describe el origen y desarrollo de estos
ingredientes esenciales.

El primer tema básico que nos interesa es el estudio de series divergentes a través de los de-
sarrollos asintóticos. El comienzo de la manipulación sistemática de series divergentes, atribuido
normalmente a L. Euler, data del siglo XVIII. Las empleó principalmente para la aproximación
de constantes como e y π. Sin embargo, durante el siglo XIX las series divergentes fueron, a
grandes rasgos, excluidas de las matemáticas. La causa principal de este hecho fue la de�nición
rigurosa y general de la suma de una serie (convergente) proporcionada por A. L. Cauchy, que
rápidamente se convirtió en la estándar. En este sentido, podemos citar a G. H. Hardy quien, en
su libro [35, p. 5] de 1949, cuando está debatiendo acerca de la de�nición apropiada de la suma
de una serie divergente, apunta lo siguiente:

�it does not occur to a modern mathematician that a collection of mathematical
symbols should have a `meaning' until one has been assigned to it by de�nition. It
was not a triviality even to the greatest mathematicians of the eighteenth century.
They had not the habit of de�nition: it was not natural to them to say, in so many
words, `by X we mean Y'. There are reservations to be made, but it is broadly true to
say that mathematicians before Cauchy asked not `How shall we de�ne 1−1+1− ...?'
but `What is 1− 1 + 1− ...?' and that this habit of mind led them into unnecessary
perplexities and controversies which were often really verbal.�

En 1886, H. Poincaré renovó el interés matemático en el uso de series de potencias formales
(normalmente divergentes) introduciendo la noción de desarrollo asintótico para resolver diversos
problemas de física matemática y de la mecánica celeste. Los desarrollos asintóticos, en el sentido
de Poincaré, son una especie de desarrollo de Taylor que proporciona aproximaciones sucesivas:
una función f compleja y holomorfa en un sector S = {z ∈ C; 0 < |z| < r, a < arg(z) < b},
admite a la serie de potencias formal con coe�cientes complejos f̂ =

∑∞
p=0 apz

p como su desarrollo
asintótico (uniforme) en el origen si para todo p ∈ N0 = N ∪ {0} existe una constante positiva
Cp tal que para cada z ∈ S se tiene que

∣∣f(z)−
p−1∑
n=0

anz
n
∣∣ ≤ Cp|z|p, (1)
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en cuyo caso escribimos f ∈ Ã(S). En este contexto, es natural considerar la aplicación de Borel
asintótica B̃ : Ã(S)→ C[[z]] que envía cada función f en su desarrollo asintótico f̂ .

En 1916 J. F. Ritt mostró que esta aplicación es sobreyectiva para todo sector S, mientras que
no es nunca inyectiva (dado un sector bisecado por la dirección 0 la exponencial exp(−z−α), para
una elección adecuada de α > 0, es una función plana, i.e., asintóticamente nula, y no trivial).
Por tanto, dada una serie de potencias formal f̂ y un sector S es en general inútil intentar
asignarle una suma de una forma correcta, en el sentido de que no hay una única función en S
asintótica a f̂ .

Durante los años 1970 se produjeron determinantes y originales avances, en este sentido, con
los trabajos de J. P. Ramis, en los cuales se observa que, aunque las series de potencias formales
son a menudo divergentes, bajo condiciones bastante generales el ritmo de crecimiento de sus
coe�cientes no es arbitrario. De hecho, un resultado notorio de E. Maillet [66] de 1903 establece
que para toda solución f̂ =

∑
p≥0 apz

p de una ecuación diferencial analítica existen C,A, k > 0

tales que |ap| ≤ CAp(p!)1/k para todo p ∈ N0. Inspirado por esto, J. P. Ramis introdujo la noción
y los rudimentos de la k−sumabilidad, que se apoya en resultados clásicos de G. N. Watson y
R. Nevannlina y generaliza el método de sumabilidad de Borel. Sus desarrollos se basan en
una modi�cación de los desarrollos de Poincaré donde el crecimiento de la constante Cp en (1)
se expresa de forma explícita como Cp = CAp(p!)1/k para ciertas constantes A,C > 0, lo que
conlleva estimaciones del mismo tipo para los coe�cientes ap de f̂ . La sucesiónM1/k = (p!1/k)p∈N0

es la sucesión Gevrey de orden 1/k, decimos que f es asintótica 1/k−Gevrey a f̂ (denotado
f ∈ ÃM1/k

(S)) y , debido a las estimaciones que satisfacen sus coe�cientes, se dice que f̂ es una

serie 1/k−Gevrey (f̂ ∈ C[[z]]M1/k
). La aplicación de Borel, de�nida en este caso de ÃM1/k

(S) a
C[[z]]M1/k

, es sobreyectiva si y sólo si la apertura del sector S es menor o igual que π/k (Teorema
de Borel-Ritt-Gevrey), y es inyectiva si y sólo si la apertura es mayor que π/k (Lema de Watson),
ver Sección 3.2.

Este último hecho permite dar la de�nición de una serie de potencias formal k−sumable en
una dirección d como aquella en la imagen de la aplicación de Borel para un sector S su�ciente-
mente amplio y bisecado por la dirección d, a la cual se le puede asignar una k−suma (la única
función holomorfa en S asintótica a ella). J. P. Ramis probó, de forma puramente teórica (no
explícita), que toda solución formal en un punto singular irregular de un sistema lineal de ecua-
ciones diferenciales ordinarias meromorfo en el dominio complejo puede escribirse como ciertas
funciones conocidas multiplicadas por un producto de series formales, cada una de las cuales
es k−sumable (i.e., k−sumable en toda dirección excepto un número �nito de ellas) para algún
nivel k que depende de la serie. El carácter no constructivo de la prueba fue solventado me-
diante el uso de una herramienta más potente, la acelerosumabilidad, introducida por J. Ecalle
[27] y que, en el caso de involucrar solamente a un número �nito de niveles Gevrey, se denomina
multisumabilidad (en el sentido de iteración de procesos elementales de k−sumabilidad). De
hecho, en 1991 W. Balser, B. L. J. Braaksma, J. P. Ramis and Y. Sibuya [9] (ver también [7, 73])
probaron la multisumabilidad de las soluciones formales en un punto singular de las ecuaciones
diferenciales lineales meromorfas y B. L. J. Braaksma [19] (diversas pruebas se pueden consultar
en [6, 85]) extendió este resultado para ecuaciones no lineales en 1992, lo que permite en cada
caso calcular soluciones concretas a partir de las formales. Se ha mostrado que esta técnica
se aplica con éxito a multitud de situaciones relacionadas con el estudio de series de potencias
formales que son solución en un punto singular de ecuaciones en derivadas parciales, así como
problemas de perturbación singular (ver la introducción del Capítulo 4 para más detalles).

No obstante, pueden aparecer series de potencias formales que no son Gevrey en diferen-
tes tipos de ecuaciones que no pueden ser diferenciales ordinarias (a tenor del resultado de

JAVIER JIMÉNEZ GARRIDO
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B. L. J. Braaksma). Por ejemplo, V. Thilliez ha probado ciertos resultados en estas clases más
generales para soluciones formales de ecuaciones algebraicas en [97]. Así mismo, G. K. Immink
en [40, 41] ha obtenido algunos resultados de sumabilidad para soluciones formales de ecuaciones
en diferencias cuyos coe�cientes crecen al ritmo marcado por la sucesión (p! log(p + e)−p)p∈N0 ,
pertenecientes al llamado nivel 1+. Más recientemente, S. Malek [70] ha estudiado ciertas ecua-
ciones diferenciales-en diferencias no lineales singularmente perturbadas de paso pequeño cuyas
soluciones formales con respecto al parámetro de perturbación pueden descomponerse como la
suma de dos series formales, una Gevrey de orden 1 y la otra de nivel 1+, un fenómeno que ya
se había observado para ecuaciones en diferencias [20].

Todos estos ejemplos muestran que es interesante proporcionar una herramienta para un
tratamiento general de la sumabilidad que extienda las potentes teorías de k−sumabilidad y
multisumabildad, y que nos permita trabajar con desarrollos asintóticos donde las estimaciones
en (1) estén dadas por una constante Cp de la forma Cp = CApMp para ciertos A,C > 0
y para una sucesión M = (Mp)p∈N0 de números reales positivos apropiada. Resulta que los
coe�cientes de la serie formal cuyas sumas parciales aparecen en (1), para esta elección de
Cp, están controlados por M del mismo modo. La correspondiente clase de series de potencias
formales se denotará por C[[z]]M.

Esta tarea, el tratamiento común de la sumabilidad, requiere de dos tipos de resultados o
técnicas:

(i) El conocimiento de la inyectividad y la sobreyectividad de la aplicación de Borel en este
contexto general. Obsérvese que una versión análoga del Lema de Watson debería obtenerse
para tener una de�nición adecuada de sumabilidad.

(ii) La construcción de núcleos integrales que nos permitan generalizar las transformadas de
Laplace y Borel (analíticas y formales), mediante las que poder dar una expresión explícita
de la suma de una serie M−sumable en una dirección. Además, diferentes niveles co-
rrespondientes a sucesiones distintas deberían poder combinarse, del mismo modo que los
distintos métodos de k−sumabilidad producen la multisumabilidad. Esto nos conduce a
ser capaces de trabajar con núcleos de convolución y aceleración, como los desarrollados
por W. Balser en [7].

Como se explica a continuación, algunas partes del planteamiento previo habían sido resueltas
cuando me incorporé al grupo de investigación en el que he realizado mi doctorado, otras se
desarrollarán en esta memoria y el resto es trabajo en curso que será comentado hasta cierto
punto en las conclusiones.

Para abordar el primer problema, debemos enfatizar que pueden considerarse tres clases
ultraholomorfas de funciones en un sector S de la super�cie de Riemann del logaritmo y que están
íntimamente relacionadas: la clase ÃuM(S) de funciones holomorfas con desarrollo uniforme en S,
veri�cando (1) para la elección previa de Cp; la clase ÃM(S) formada por las funciones holomorfas
con desarrollo no uniforme en S, lo que quiere decir que (1) se veri�ca para Cp(T ) = CTA

p
TMp

en todo subsector propio y acotado T de S (en lugar de uniformemente en S), donde CT , AT > 0
dependen del subsector; y, �nalmente, la clase AM(S) de funciones con derivadas acotadas, para
las cuales existe A = A(f) > 0 tal que

sup
z∈S, p∈N0

|f (p)(z)|
App!Mp

<∞.

Anterior al estudio de las clases ultraholomorfas es el de las ultradiferenciables, que presentamos
seguidamente. Se trata de un hecho notorio que una función f : [a, b]→ C es real analítica si y

Universidad de Valladolid



12 INTRODUCCIÓN

sólo si existe una constante A > 0 tal que

sup
x∈[a,b], p∈N0

|f (p)(x)|
App!

<∞.

Más aún, una función real analítica está determinada por el valor de sus derivadas en un punto
del intervalo. En 1901, É. Borel mostró la existencia de clases de funciones inde�nidamente
derivables (no analíticas), i.e., contenidas en C∞([a, b]), que heredan la propiedad de unicidad,
y a las que él llamó clases casianalíticas. En 1912, en un intento por formalizar este estudio
e inspirado por un trabajo de E. Holmgren sobre la ecuación del calor, J. Hadamard propuso
considerar las clases EM([a, b]) de funciones inde�nidamente derivables en [a, b] tales que existe
A > 0 para el cual se tiene que

sup
x∈[a,b], p∈N0

|f (p)(x)|
App!Mp

<∞. (2)

Una de estas clases EM([a, b]) es casianalítica si y sólo si siempre que un elemento f de la
clase veri�ca que f (p)(x0) = 0 para todo p ∈ N0 y para algún x0 ∈ [a, b], se tiene que f es
idénticamente nula en [a, b] (avisamos al lector que las notaciones aquí presentes di�eren de las
utilizadas en los trabajos clásicos a los que nos referimos, ver la Observación 3.1.11). Con este
convenio, la formulación del problema es más sencilla: ¾para qué sucesiones M la clase EM([a, b])
es casianalítica? Estas clases para la sucesión (p!1/k)p∈N0 aparecen en un trabajo de M. Gevrey
de 1918, de ahí su nombre. En 1921 A. Denjoy presentó una condición su�ciente y T. Carleman
dió una solución completa al problema de casianaliticidad en 1923. Por tanto, este resultado se
conoce hoy en día como Teorema de Denjoy-Carleman (véase [38, Th. 1.3.8]), y las clases EM,
que se denominan a menudo clases ultradiferenciables de Carleman, se sitúan entre la clase de
funciones reales analíticas y la clase de funciones inde�nidamente diferenciables siempre que la
sucesión M veri�que infp∈N0(Mp)

1/p > 0. Además, si la sucesión (p!Mp)p∈N0 es logarítmicamente
convexa (i.e., la grá�ca de la poligonal que une los puntos (p, log(p!Mp)) es convexa), el teorema
establece que EM([a, b]) es casianalítica si y solo si

∞∑
p=0

Mp

(p+ 1)Mp+1
=∞.

Vale la pena mencionar que, en 1940, A. Gorny y H. Cartan mostraron que la hipótesis sobre
la convexidad logarítmica no es restrictiva. Por ejemplo, las clases Gevrey son no casianalíticas
para todo k > 0 (véase el trabajo panorámico de V. Thilliez [94] sobre casianaliticidad).

Las clases casianalíticas y no casianalíticas han sido ampliamente examinadas en las últimas
décadas; la importancia de las no casianalíticas reside en el hecho de que su dual topológico es
más grande que el espacio de distribuciones, así que se pueden obtener soluciones más débiles
de ciertas clases de ecuaciones en derivadas parciales. Con respecto a su topología natural
los espacios anteriores, denominados de tipo Roumieu, son espacios de Hausdor� (LB), límite
inductivo de espacios de Banach, mientras que si se pide que (2) se cumpla para todo A > 0
tenemos los espacios de tipo Beurling cuya topología es más manejable al tratarse de espacios
de Fréchet.

Naturalmente, la aplicación de Borel se puede considerar en este contexto, enviando a una
función f ∈ C∞([−1, 1]) en la serie de potencias formal construida a partir de su sucesión de
derivadas en cero,

∑∞
p=0(f (p)(0)/p!)zp ∈ C[[z]]. En 1895, É. Borel probó que esta aplicación es

siempre sobreyectiva, por lo que tiene sentido preguntarse acerca de la sobreyectividad de esta
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aplicación cuando nos restringimos a una clase ultradiferenciable, B : EM([a, b])→ C[[z]]M. Tras
T. Carleman, quien mostró en 1923 que la sobreyectividad no se da para clases casianalíticas que
contienen estrictamente a la clase de funciones analíticas, la respuesta completa fue obtenida por
H.-J.Petzsche en 1988 (con algunas imprecisiones corregidas en J. Schmets and M. Valdivia [91]
en 2000): Si (p!Mp)p∈N0 es logarítmicamente convexa, entonces B : EM([a, b]) → C[[z]]M es
sobreyectiva si y solo si M es fuertemente no casianalítica, es decir, existe B > 0 tal que

∞∑
q=p

Mq

(q + 1)Mq+1
≤ B Mp

Mp+1
, p ∈ N0.

En resumen, mientras que se han caracterizado por completo la inyectividad y la sobreyectividad
de la aplicación de Borel para clases ultradiferenciables, el problema para clases ultraholomorfas,
especialmente en lo que se re�ere a la sobreyectividad, dista mucho de estar resuelto íntegramente.

La inyectividad para las clases ÃuM(S) y AM(S) fue completamente resuelto por S. Mandel-
brojt y B. Rodríguez-Salinas en los años 1950 (véase la Sección 3.2).

En lo relativo a la sobreyectividad sólo había disponibles informaciones parciales. Aparte del
anteriormente mencionado Teorema de Borel-Ritt-Gevrey de 1978, y mediante la aplicación de
técnicas del marco ultradiferenciable, V. Thilliez probó en 1995 para la clase Gevrey AMα(S)
que se tiene sobreyectividad si y sólo si la apertura del sector es estrictamente menor que πα.
En el año 2000, J. Schmets y M. Valdivia dieron los primeros resultados para una sucesión peso

M, es decir, logarítmicamente convexa tal que su sucesión de cocientes de términos consecutivos
m = (mp = Mp+1/Mp)p∈N0 tiende a in�nito. Su enfoque se basa en la consideración de ciertas
clases de funciones ultradiferenciables no canónicas y obtienen, para sucesiones peso veri�cando
la propiedad de ser cerrada por derivación, esto es, existe A > 0 tal que Mp+1 ≤ Ap+1Mp

para todo p ∈ N0, una caracterización de la existencia de operadores de extensión lineales y
continuos de C[[z]]M en AM(S) para cualquier sector S, lo que es mucho más exigente que
la sobreyectividad, así que de sus resultados sólo pueden deducirse informaciones parciales. En
2003, V. Thilliez de�ne la noción de sucesión fuertemente regular, i.e., logarítmicamente convexa,
fuertemente no casianalítica que, además, satisface la condición de crecimiento moderado, es
decir, que existe A > 0 tal que Mp+q ≤ Ap+qMpMq para todos p, q ∈ N0. Del mismo modo,
introduce el índice γ(M) y prueba que si la amplitud del sector es estrictamente más pequeña
que πγ(M) entonces B̃ : AM(S) → C[[z]]M es sobreyectiva y no inyectiva (véase la Section 3.3
para más detalles y referencias). Sin embargo, incluso para sucesiones fuertemente regulares los
resultados precedentes para clases ultraholomorfas no son enteramente satisfactorios, dado que
las equivalencias establecidas en el Teorema de Borel-Ritt-Gevrey y en el Lema de Watson para
el caso Gevrey sólo son ahora implicaciones en una dirección.

Los resultados de S. Mandelbrojt y B. Rodríguez-Salinas sugieren la consideración de un
índice de crecimiento ω(M), inicialmente de�nido por J. Sanz [88] para sucesiones fuertemente
regulares, que separa las amplitudes para las cuales las tres clases antes mencionadas son o no
son casianalíticas. No obstante, quedaba abierta en general la casianalíticidad de la clase ÃM(S)
para sectores de amplitud πω(M).

La primera solución, aunque parcial, a esta situación depende del concepto de orden aproxi-
mado, disponible desde los años 1920 y extremadamente útil en la teoría de crecimiento de fun-
ciones enteras, y de ciertos resultado de L. S. Maergoiz [65] de 2001 relacionados con el mismo:
si de�nimos las funciones auxiliares ωM(t) = supp∈N0

log(tp/Mp) y dM(t) := log(ωM(t))/ log(t)
asociadas a M, se mostró en [88] que, siempre que dM(t) sea un orden aproximado no nulo,
se pueden construir funciones planas no triviales en sectores de amplitud óptima y además se
pueden dar versiones generalizadas del Lema de Watson y del Teorema de Borel-Ritt-Gevrey. La
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prueba de la sobreyectividad se basa en el uso de una transformada de Laplace truncada cuyos
núcleos están dados por los resultados de Maergoiz (véase la Subsección 1.2.2) sobre existencia de
funciones analíticas en sectores cuyo crecimiento en la parte central del sector se puede precisar
en términos de ωM(t). Se ha observado que para que los argumentos anteriores funcionen, no es
necesario que dM sea un orden aproximado, sino que basta con que esté su�cientemente cerca de
uno ρ(t), lo que quiere decir que existen constantes A,B > 0 tales que

A ≤ log(t)
(
dM(t)− ρ(t)

)
≤ B para t su�cientemente grande. (3)

Esta propiedad se reformulará diciendo que M admite un orden aproximado.

En lo que respecta al elemento (ii) del plan establecido anteriormente, y siguiendo los
métodos de sumabilidad de momentos desarrollados por W. Balser [7] en el caso Gevrey, A.
Lastra, S. Malek and J. Sanz [60] han descrito recientemente la correspondiente teoría de
M−sumabilidad. La pieza clave es la construcción de los núcleos de M−sumabilidad, con sus
respectivas transformadas analíticas y formales, en términos de las cuales se puede reconstruir la
M−suma de una serie formal de potencias M−sumable en una dirección (véase la Sección 4.1).
La existencia de estos núcleos, bajo condiciones bastante sencillas, está de nuevo garantizada
por los resultados de L. S. Maergoiz y, por tanto, depende de la posibilidad de asociar a M un
orden aproximado. Sin embargo, la combinación de los métodos de sumabilidad de momentos
correspondientes a sucesiones diferentes (no equivalentes pero comparables, como se explicará a
continuación) era una tarea pendiente.

Consecuentemente, al iniciarse esta investigación se pretendía resolver los siguientes proble-
mas:

(a) Caracterizar las sucesiones M tales que dM es un orden aproximado no nulo.

(b) Caracterizar las sucesiones M que admiten un orden aproximado no nulo. Para estas
sucesiones, el método de M−sumabilidad está disponible.

(c) Determinar si los índices γ(M) y ω(M) coinciden siempre para sucesiones fuertemente
regulares, como es el caso para las sucesiones que aparecen en las aplicaciones.

(d) Decidir si la aplicación de Borel es o no inyectiva en el caso que queda por resolver, es
decir, para el espacio ÃM(S) y para un sector S de amplitud πω(M) cuando M no admite
un orden aproximado.

(e) Mejorar el conocimiento acerca de la sobreyectividad de la aplicación de Borel en clases
ultraholomorfas. Si γ(M) y ω(M) no son siempre coincidentes, será especialmente intere-
sante determinar cuál de los dos separa las amplitudes de sobreyectividad de las de no
sobreyectividad, dado que los resultados conocidos previamente no permiten llegar a una
conclusión.

(f) Llegar, tan lejos como sea posible, en el estudio de la multisumabilidad en este contexto
general. Aplicar estas técnicas al estudio de las soluciones formales de ecuaciones en dife-
rencias como las estudiadas por G. K. Immink, u otro tipo de ecuaciones.

En este punto, comenzaremos a describir los resultados obtenidos en esta memoria y su
organización.

El Capítulo 1, de naturaleza preparatoria, contiene en su primera sección todas las de�ni-
ciones preliminares necesarias y un breve resumen sobre las propiedades de las sucesiones que
aparecen cuando se consideran clases ultraholomorfas y ultradiferenciables. Se presentarán tam-
bién detalladamente la función asociada ωM y los índices de crecimiento γ(M) y ω(M).
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Mientras se intentaba dar respuesta a los tres primeros elementos de la lista anterior, se ob-
servó que el concepto de variación regular y sus extensiones aparecían una y otra vez relacionados
con nuestros problemas. Como se deducirá de los desarrollos presentados en los capítulos segundo
y tercero, resultan ser de hecho fundamentales en la solución de los mismos.

En 1930 J. Karamata inició la disciplina de la variación regular y la aplicó a problemas
tauberianos, como el Teorema de Hardy-Littlewood-Karamata. Sus ideas fueron desarrolladas
por sus colaboradores y alumnos de la `Escuela Yugoslava' en las siguientes décadas. Una función
medible f : [a,∞)→ (0,∞), con a ≥ 0, es de variación regular si

lim
x→∞

f(λx)

f(x)
= g(λ) ∈ (0,∞) (4)

para todo λ ∈ (0,∞). La teoría de variación regular garantiza que existe ρ ∈ R tal que g(λ) = λρ

y la convergencia es uniforme para λ en los conjuntos compactos de (0,∞) (véase la Sección 1.2).
Esta disciplina se popularizó en los años 1970 gracias a su uso en teoría de la probabilidad, im-
pulsado por los trabajos de W. Feller y L. de Haan. Sin embargo, nosotros estamos especialmente
interesados en su aplicación al análisis complejo, donde aparece estrechamente relacionada con
el concepto de orden aproximado, que proviene del estudio del crecimiento de funciones enteras.

En algunas ocasiones esta teoría puede ser muy restrictiva y se han dado diversas generali-
zaciones de la misma. En esta memoria, además de la variación regular, se considerará la llamada
O-variación regular donde el lim en (4) se sustituye por dos condiciones con lim sup y lim inf en
su lugar. Esta noción ya fue considerada por Karamata, pero fue difundida gracias a W. Ma-
tuszewska que estableció su conexión con los espacios de Orlicz en 1964. Además, caracterizó esta
noción en términos de dos índices, conocidos hoy en día como índices de Matuszewska. Debido
a la naturaleza de este trabajo estamos particularmente interesados en las versiones discretas de
estos conceptos. La extensión de la variación regular para sucesiones de números reales positivos
fue llevada a cabo por R. Bojani¢ y E. Seneta en 1973, y la de la O-variación regular ha sido
proporcionada por D. Djur£i¢ y V. Boºin en 1997. En la segunda sección de este primer capí-
tulo se resumirán de forma concisa pero completa estos elementos característicos de la teoría de
Karamata.

El propósito principal del segundo capítulo es la descripción de las relaciones existentes entre
las nociones presentadas en el primero. La primera sección se centra en la noción de O-variación
regular. Ciertas condiciones, como son el crecimiento moderado o la no casianaliticidad fuerte,
que se asumen a menudo para la sucesión M con el objetivo de que la clase correspondiente
tenga ciertas propiedades, pueden reformularse en términos de la O-variación regular. Merece
ser mencionado que el índice de Thilliez γ(M) y el índice de Sanz ω(M), introducidos de forma
independiente, resultan tener una representación adecuada en estos términos. Para establecer la
conexión con las sucesiones logarítmicamente convexas, será necesario expresar estas condiciones
por medio de propiedades de casimonotonía y considerar los órdenes µ(m) y ρ(m) y los índices
de Matuszewska β(m) y α(m) para su sucesión de cocientes m = (mp−1)p∈N. Esta relación
queda re�ejada en los dos siguientes resultados (Teorema 2.1.16 y Proposición 2.1.18).

Teorema. SeaM una sucesión de números reales positivos con sucesión de cocientesm. Entonces

γ(M) = β(m), ω(M) = µ(m).

Proposición. Sea M una sucesión de números reales positivos con sucesión de cocientes m.
Supongamos que (p!Mp)p∈N0 is logarítmicamente convexa, entonces

(i) M tiene crecimiento moderado si y sólo si α(m) < ∞ si y sólo si m es de O-variación
regular.
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(ii) M es fuertemente no casianalítica si y sólo si β(m) > 0.

En consecuencia, existe una conexión estrecha entre la O-variación regular de m y la re-
gularidad fuerte de M. Como resultado colateral, se obtendrán varias de�niciones equivalentes
de estos índices y órdenes, que se emplearán en el Capítulo 3 al lidiar con la sobreyectividad
de la aplicación de Borel, la cual motivó este estudio. Se proporcionará un gran número de
detalles, más de los necesarios para el problema de sobreyectividad, con el objetivo de dar una
visión completa del problema. En particular veremos que γ(M) ≤ ω(M) (lo que ya se sabía
con anterioridad), pero la información más relevante deducida de la O-variación regular es que
en general para sucesiones fuertemente regulares estos índices son distintos. Esto no ha sido
sencillo de mostrar, dado que la mayoría de las sucesiones fuertemente regulares que aparecen
en las aplicaciones admiten un orden aproximado no nulo, que es una condición mucho más
fuerte que implica, en particular, que ω(M) = γ(M). El Ejemplo 2.2.26, al �nal de este capítulo,
muestra cómo se pueden construir sucesiones fuertemente regulares con valores arbitrarios de
estos índices, 0 < γ(M) < ω(M) <∞. Por tanto, el problema (c) está resuelto.

Para terminar la sección, se explica la relación de estas nociones con la función asociada ωM
y la función de conteo νm en el Teorema 2.1.30 y en la Proposición 2.1.38, de donde se deduce
la construción de una sucesión dual.

En la segunda sección de este capítulo, el papel protagonista lo tienen los órdenes aproxi-
mados. Se explora la relación entre la variación regular, los órdenes aproximados y las suce-
siones peso, lo que, como se mencionó anteriormente, es crucial para la disponibilidad de la
teoría de M−sumabilidad. Se obtendrá una caracterización de las sucesiones para las cuales
dM = log(ωM(t))/ log(t) es un orden aproximado no nulo, que era la pregunta abierta (a) satis-
factoriamente respondida en el Teorema 2.2.6 en términos de la variación regular dem, resumida
a continuación:

Teorema. Sea M una sucesión peso. Son equivalentes:

(i) dM(t) es un orden aproximado con limt→∞ dM(t) ∈ (0,∞),

(ii) m es de variación regular con índice positivo.

En el caso de que cualquiera de estos supuestos se veri�que, el valor del índice en (ii) es ω(M) y
el valor del límite en (i) es 1/ω(M).

Para sucesiones que admiten un orden aproximado, en el sentido de (3), se obtendrá una fór-
mula de representación que soluciona el problema en (b). Del mismo modo, dado que sucesiones
equivalentes de�nen las mismas clases ultraholomorfas, resulta que la admisibilidad de un orden
aproximado por parte de M es una condición natural en el sentido de que es equivalente a la
existencia de una sucesión L equivalente a M y tal que dL es un orden aproximado no nulo. La
prueba de estos resultados se establece en el Teorema 2.2.19 que sigue:

Teorema. Sea M una sucesión peso, entonces son equivalentes:

(i) existe una sucesión peso L equivalente a M (i.e., existen constantes A,B > 0 tales que
ApLp ≤Mp ≤ BpLp para todo p ∈ N0) tal que dL(t) es un orden aproximado no nulo,

(ii) M admite un orden aproximado no nulo,

(iii) existen ω ∈ (0,∞) y sucesiones acotadas de números reales (bp)p∈N, (ηp)p∈N tales que
(ηp)p∈N converge hacia ω y podemos escribir

mp = exp

bp+1 +

p+1∑
j=1

ηj
j

 , p ∈ N0.
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En el caso de que cualquiera de los anteriores sea válido, limt→∞ dL(t) = 1/ω = 1/ω(M).

Además se obtendrá una nueva caracterización de las sucesiones de variación regular en la
Proposición 2.2.3 y se mostrará cómo se pueden construir sucesiones con buen comportamiento
a partir de los órdenes aproximados en el Teorema 2.2.14. Finalmente, en la Subsección 2.2.5
y gracias a una mejor comprensión de las propiedades involucradas, se presentarán varios ejem-
plos que exhiben diferentes comportamientos patológicos, incluyendo el Ejemplo 2.2.26 antes
mencionado.

Si, en lugar de la admisibilidad de un orden aproximado, se piden condiciones más débiles
para la sucesión M, por ejemplo y con la notación de la fórmula de representación de arriba, si
(ηp)p∈N es solamente acotada, lo que equivale a decir quem es de O-variación regular, no se sabe
cómo puede ser reproducido el método de M−sumabilidad. No obstante, y este es el problema
que se plantea en (d) y (e), es natural preguntarse sobre la inyectividad y la sobreyectividad de
la aplicación de Borel. El tercer capítulo está dedicado al estudio de estas cuestiones para las tres
clases ultraholomorfas que comentamos anteriormente. Tras introducir la notación básica en la
primera sección, se examinará la inyectividad para la cual, como se ha expuesto antes, casi toda
la información era conocida. Resulta que los órdenes aproximados nos proporcionan una solución
de�nitiva al problema de inyectividad: incluso si M no admite un orden aproximado, siempre
podemos controlar la función dM por arriba por un orden aproximado, y un uso adecuado de la
variación regular de las funciones de Maergoiz asociadas a este orden permite construir funciones
planas en sectores de amplitud óptima. Por tanto, la cuestión en (d) queda respondida, ver
Teorema 3.2.15. Aquí el índice ω(M) muestra su carácter divisorio. Esta sección termina,
ayudados por los resultados de casianaliticidad, con la prueba en el Teorema 3.2.16 de que la
aplicación de Borel no es nunca biyectiva.

La última sección se centra en el problema de la sobreyectividad. Se obtendrán resultados
parciales para sucesiones peso, por ejemplo se mostrará que si hay sobreyectividad para cualquier
amplitud entonces γ(M) > 0 o, en otras palabras, M debe ser fuertemente no casianalítica. Sin
embargo, los principales avances se han producido para sucesiones fuertemente regulares. En el
Corolario 3.3.18, si Sγ es el sector no acotado de amplitud πγ y bisecado por la dirección d = 0
de la super�cie de Riemann del logaritmo, se probará lo siguiente:

Corolario. Sea M fuertemente regular y t ∈ R, t > 0. Cada una de estas a�rmaciones implica
la siguiente:

(i) t < γ(M),

(ii) la aplicación de Borel B̃ : AM(St)→ C[[z]]M es sobreyectiva,

(iii) la aplicación de Borel B̃ : ÃuM(St)→ C[[z]]M es sobreyectiva,

(iv) la aplicación de Borel B̃ : ÃM(St)→ C[[z]]M es sobreyectiva,

(v) para todo ξ ∈ I con ξ < t, la aplicación de Borel B̃ : ÃM(Sξ)→ C[[z]]M es sobreyectiva,

(vi) t ≤ γ(M).

Por consiguiente, γ(M) se muestra como el valor límite adecuado para la sobreyectividad, lo
que responde a la pregunta (e). Por último, se dan ciertas informaciones en el caso de que M
sea todavía más regular.

En el Capítulo 4 volvemos a nuestro último problema (f) de la lista. Obsérvese que ahora
ya conocemos para qué sucesiones el método de M−sumabilidad está disponible. En la primera
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sección se recuerdan los elementos característicos de esta teoría de M−sumabilidad. Ahora esta-
mos interesados en la extensión de la multisumabilidad a este contexto general. Comenzaremos
con una discusión de carácter preliminar que afecta a la necesidad, para que el problema tenga
sentido, de que las sucesiones, que de�nen los métodos de sumabilidad que van a combinarse,
sean comparables y no equivalentes, lo que se estudiará en la Subsección 4.2.1. Tras establecer
las propiedades básicas de las sucesiones producto y cociente de dos sucesiones peso, se obtendrá
el Teorema Tauberiano 4.2.14:

Teorema. Sean L y M sucesiones peso tales que L admite un orden no nulo aproximado, M/L
es logarítmicamente convexa y ω(L) < ω(M). Si f̂ ∈ C[[z]]L y f̂ es M−sumable en todas las
direcciones salvo un número �nito (mod 2π), entonces f̂ es convergente.

Gracias a este resultado, es posible dar una de�nición consistente de multisumabilidad: una
serie de potencias formal se dirá multisumable si se puede dividir en una suma �nita de series
de potencias formales f̂j , cada una de las cuales es sumable para la correspondiente sucesión
Mj que admite un orden aproximado. Nuestro objetivo es determinar el procedimiento para
reconstruir de forma explícita su suma. En los Teoremas 4.3.21 y 4.3.25, se construirán los
núcleos de sumabilidad para las sucesiones cociente y producto, con ellos se podrá reconstruir la
multisuma como se muestra en el Teorema 4.3.31. Debemos mencionar que este estudio no se ha
completado aún, especialmente en lo que respecta a las posibles aplicaciones, pero posponemos
estos comentarios sobre este trabajo en curso para las conclusiones.

El último capítulo de esta memoria no estaba inicialmente programado, pero su inclusión
es natural una vez que las técnicas de los órdenes aproximados y la variación regular se han
incorporado. En él se trata la propagación de las estimaciones M−asintóticas en una dirección
de funciones, holomorfas y asintóticamente acotadas, a toda una región sectorial, dondeM es una
sucesión peso que admite un orden aproximado no nulo. El resultado principal es el siguiente,
Teorema 5.3.1:

Teorema. Dado γ > 0, supongamos que f es holomorfa en una región sectorial G de amplitud
πγ y bisecada por la dirección 0, f está acotada en todo subsector T propio y acotado de G,
y admite a f̂ ∈ C[[z]] como su M−desarrollo asintótico en una dirección θ ∈ (−πγ/2, πγ/2).
Entonces, f ∈ ÃM(G) y f admite a f̂ como su M−desarrollo asintótico en G.

Este teorema generaliza un resultado de A. Fruchard y C. Zhang [29] de 1999 para desarrollos
Gevrey. Como en el caso Gevrey, las pruebas de estos resultados dependen, por un lado, de una
versión adecuada del clásico Teorema de Phragmén-Lindelöf , ver Lema 5.1.6, y por otro lado, de
la disponibilidad de versiones apropiadas del Lema de Watson y el Teorema de Borel-Ritt-Gevrey.
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Introduction

The main objective of this dissertation is to answer several open questions related to Carleman-
Roumieu ultraholomorphic classes of functions, de�ned in sectors of the Riemann surface of
the logarithm by imposing constraints for their derivatives' growth in terms of a sequence of
positive real numbers. These problems were motivated by the study of some properties involved
in the work with a summability procedure of formal power series in this context, and by the
introduction of the corresponding new tool of multisummability. The solutions provided here
will heavily rest on the classical, and closely related, theories of regular variation and proximate
orders. The foundations and development of these diverse essential ingredients will be described
in the following paragraphs.

The �rst and basic topic which we are interested in is the study of divergent series through
asymptotic expansions. L. Euler is commonly credited with starting the systematic manipulation
of divergent series in the 18th century. He was concerned with their application for the approx-
imation of the values of constants such as e and π. However, during the 19th century and for
some time after this, divergent series were, roughly speaking, excluded from mathematics. This
was mainly due to the fact that A. L. Cauchy gave a rigorous and general de�nition of the sum
of a (convergent) series which quickly became the standard one. In this sense, we may cite G.
H. Hardy that, in his book [35, p. 5] in 1949, when discussing about the appropriate de�nition
of the sum of a divergent series, notes the following:

�it does not occur to a modern mathematician that a collection of mathematical
symbols should have a `meaning' until one has been assigned to it by de�nition. It
was not a triviality even to the greatest mathematicians of the eighteenth century.
They had not the habit of de�nition: it was not natural to them to say, in so many
words, `by X we mean Y'. There are reservations to be made, but it is broadly true to
say that mathematicians before Cauchy asked not `How shall we de�ne 1−1+1− ...?'
but `What is 1− 1 + 1− ...?' and that this habit of mind led them into unnecessary
perplexities and controversies which were often really verbal.�

In 1886, H. Poincaré boosted again the mathematical interest in formal (usually divergent)
power series introducing the notion of asymptotic expansion in order to solve several problems
of mathematical physics and celestial mechanics. The asymptotic expansions, in the sense of
Poincaré, are kind of Taylor expansions which provide successive approximations: a complex
function f , holomorphic on a sector S = {z ∈ C; 0 < |z| < r, a < arg(z) < b}, admits the
complex formal power series f̂ =

∑∞
p=0 apz

p as its (uniform) asymptotic expansion at the origin
if for every p ∈ N0 = N ∪ {0} there exists a positive constant Cp such that for every z ∈ S one
has ∣∣f(z)−

p−1∑
n=0

anz
n
∣∣ ≤ Cp|z|p, (1)
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and we write f ∈ Ã(S). In this context it is natural to consider the asymptotic Borel map
B̃ : Ã(S)→ C[[z]] sending a function f into its asymptotic expansion f̂ .

In 1916, J. F. Ritt showed that this map is surjective for any sector S, while it is never injective
(given a sector bisected by direction 0, the exponential exp(−z−α), α > 0, is a nontrivial �at,
i.e., asymptotically null, function for a suitable choice of α). Hence, given a formal power series
f̂ and a sector S, it is in general hopeless to try to assign a well-de�ned sum to it, in the sense
that there is not a unique holomorphic function in S asymptotic to f̂ .

Crucial and original advances were produced in this sense during the 1970's with the works of
J. P. Ramis. He noted that, although the formal power series solutions to di�erential equations
are frequently divergent, under fairly general conditions the rate of growth of their coe�cients
is not arbitrary. Indeed, a remarkable result of E. Maillet [66] in 1903 states that for any
solution f̂ =

∑
p≥0 apz

p of an analytic di�erential equation there will exist C,A, k > 0 such that

|ap| ≤ CAp(p!)1/k for every p ∈ N0. Inspired by this fact, Ramis introduces and structures the
notion of k−summability, that rests on classical results by G. N. Watson and R. Nevannlina
and generalizes Borel's summability method. His developments are based on a modi�cation of
Poincaré's asymptotic expansion where the growth of the constant Cp in (1) is made explicit
in the form Cp = CAp(p!)1/k for some A,C > 0, what entails the same kind of estimates for
the coe�cients ap in f̂ . The sequence M1/k = (p!1/k)p∈N0 is the Gevrey sequence of order 1/k,

f is said to be 1/k−Gevrey asymptotic to f̂ (denoted by f ∈ ÃM1/k
(S)), and f̂ , because of

the estimates satis�ed by its coe�cients, is said to be a 1/k−Gevrey series (f̂ ∈ C[[z]]M1/k
).

The Borel map, de�ned in this case from ÃM1/k
(S) to C[[z]]M1/k

, is surjective if and only if the
opening of the sector S is smaller than or equal to π/k (Borel-Ritt-Gevrey Theorem), and it is
injective if and only if the opening is greater than π/k (Watson's Lemma), see Section 3.2.

This last fact enables the de�nition of k−summable power series in a direction d as those in
the image of the Borel map for a wide enough sector S bisected by d, to which a k−sum (the
unique holomorphic function in S asymptotic to it) is assigned. J. P. Ramis proved, by a purely
theoretical (not explicit) method, that every formal solution to a linear system of meromorphic
ordinary di�erential equations in the complex domain at an irregular singular point can be
written as some known functions times a �nite product of formal power series, each of which
is k−summable (i.e., k−summable in every direction except for a �nite number of them) for
some level k depending on the series. The non-constructive character of the proof was solved
by the introduction of a more powerful tool, accelerosummability, due to J. Ecalle [27] and
which, in the case involving only a �nite number of Gevrey levels, is named multisummability
(in a sense, an iteration of elementary k−summability procedures). Indeed, in 1991 W. Balser,
B. L. J. Braaksma, J. P. Ramis and Y. Sibuya [9] (see also [7, 73]) proved the multisummability
of the formal solutions of linear meromorphic di�erential equations at a singular point, and
B. L. J. Braaksma [19] (for di�erent proofs, see [6, 85]) extended this result for nonlinear equations
in 1992, which allows in every case to compute actual solutions from formal ones. This technique
has also been proven to apply successfully to a plethora of situations concerning the study of
formal power series solutions at a singular point for partial di�erential equations, as well as for
singular perturbation problems (see the introduction to Chapter 4 for further references).

However, nonGevrey formal power series solutions may appear for di�erent kinds of equations,
which must not be ordinary di�erential equations (according to the aforementioned result by
B. L. J. Braaksma). For example, V. Thilliez has proven some results on formal solutions
within these more general classes for algebraic equations in [97]. Also, G. K. Immink in [40, 41]
has obtained some results on summability for formal solutions of di�erence equations whose
coe�cients grow at the rate speci�ed by the sequence (p! log(p + e)−p)p∈N0 , belonging to the
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so-called level 1+. More recently, S. Malek [70] has studied some singularly perturbed small
step size di�erence-di�erential nonlinear equations whose formal solutions with respect to the
perturbation parameter can be decomposed as sums of two formal series, one with Gevrey order
1, the other of 1+ level, a phenomenon already observed for di�erence equations [20].

All these examples made it interesting to provide the tools for a general, common treatment of
summability, extending the powerful theory of k−summability and multisummability, and which
were able to deal with asymptotic expansions whose estimates in (1) correspond to a constant
Cp of the form Cp = CApMp for some A,C > 0 for a suitable sequence M = (Mp)p∈N0 of positive
real numbers. It turns out that the coe�cients of the formal power series whose partial sums
appear in (1) for this choice of Cp are also controlled in the same way by M. The corresponding
class of formal power series is denoted by C[[z]]M.

This task, the common treatment of summability, requires two main types of results or
techniques:

(i) The knowledge of injectivity and surjectivity results for the Borel map in this general
context. Observe that an analogue of Watson's Lemma should be obtained for a proper
de�nition of summability.

(ii) The construction of integral kernels for generalized Laplace and Borel (both formal and
analytic) transforms which allow one to obtain an explicit expression for the sum of an
M−summable series in a direction. Moreover, di�erent levels corresponding to distinct se-
quences should be combined, in the same way as di�erent k−summability methods produce
multisummability. This amounts to being able to deal with convolution and acceleration
kernels, as developed by W. Balser in [7].

As we will explain now, some parts of the previous program had been already achieved when
I joined the research team in which my PhD has been developed, some other parts will be carried
out in this dissertation, and the rest are work in progress and will be commented on to some
extent in the conclusions.

In order to tackle the �rst problem, one should emphasize that one may consider three closely
related, so-called ultraholomorphic classes of functions in a sector S of the Riemann surface of
the logarithm: the class ÃuM(S) of holomorphic functions with uniform asymptotic expansion in
S, satisfying (1) for the above choice of Cp; the class ÃM(S) consisting of holomorphic functions
with nonuniform asymptotic expansion in S, meaning that (1) holds for Cp(T ) = CTA

p
TMp on

every proper bounded subsector T of S (instead of uniformly on S), where CT , AT > 0 depend
on the subsector; and, �nally, the class AM(S) of functions with bounded derivatives and for
which there exists A = A(f) > 0 such that

sup
z∈S, p∈N0

|f (p)(z)|
App!Mp

<∞.

Much older than the study of the ultraholomorphic classes is that of the ultradi�erentiable ones,
which we introduce now. It is well-known that a function f : [a, b] → C is real analytic if and
only if there exists a constant A > 0 such that

sup
x∈[a,b], p∈N0

|f (p)(x)|
App!

<∞.

Moreover, a real analytic function is determined by the values of its derivatives at a point of the
interval. In 1901, É. Borel showed the existence of classes of (nonanalytic) smooth functions,
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i.e., contained in C∞([a, b]), which inherit that uniqueness property, what he called quasianalytic

classes. In 1912, in order to formalize this study and inspired by a work of E. Holmgren for
the heat equation, J. Hadamard proposed the consideration of the classes EM([a, b]) of smooth
functions in [a, b] such that there exists A > 0 for which we have

sup
x∈[a,b], p∈N0

|f (p)(x)|
App!Mp

<∞. (2)

Such a class EM([a, b]) is said to be quasianalytic if and only if whenever an element f in this
class satis�es f (p)(x0) = 0 for all p ∈ N0 and for some x0 ∈ [a, b], then f identically vanishes
on [a, b] (we warn the reader that our notations di�er from those in the classical works, see
Remark 3.1.11). With this conventions the formulation of the problem became simple: for which
sequences M the class EM([a, b]) is quasianalytic? These classes for the sequence (p!1/k)p∈N0

appear in a work of M. Gevrey in 1918, hence their name. In 1921 A. Denjoy presented a
su�cient condition, and T. Carleman gave a complete solution of the problem of quasianalyticity
in 1923. Hence, this result is nowadays called Denjoy-Carleman Theorem (see [38, Th. 1.3.8]),
and the classes EM are frequently named Carleman ultradi�erentiable classes, lying between the
classes of real analytic and of smooth functions as soon as the sequence M is assumed to satisfy
infp∈N0(Mp)

1/p > 0. In addition, if the sequence (p!Mp)p∈N0 is logarithmically convex (i.e., the
graph of the polygonal curve joining the points (p, log(p!Mp)) is convex), the theorem states that
EM([a, b]) is quasianalytic if and only if

∞∑
p=0

Mp

(p+ 1)Mp+1
=∞.

It is worthy to mention that, in 1940, A. Gorny and H. Cartan showed that the logarithmic
convexity assumption is not restrictive. For example, Gevrey classes are nonquasianalytic for all
k > 0 (see the panoramic work about quasianalytic classes of V. Thilliez [94]).

Quasianalytic and nonquasianalytic classes have been broadly analyzed in the past decades;
the importance of the nonquasianalytic classes lies in the fact that their topological dual is bigger
than the space of distributions, so one may obtain `weaker' solutions for some classes of partial
di�erential equations. Regarding their natural topological structure, the former spaces, called
of Roumieu type, are Hausdor� (LB)-spaces, inductive limit of Banach spaces, whereas if we
require that (2) holds for every A > 0 we will have Beurling type spaces whose topology is nicer,
they are Fréchet spaces.

Of course, one may also consider the Borel map in this context, sending a smooth function
f ∈ C∞([−1, 1]) into the formal power series constructed by the sequence of its derivatives at
zero,

∑∞
p=0(f (p)(0)/p!)zp ∈ C[[z]]. In 1895, É. Borel proved that this map is surjective, and

it makes sense to wonder about the surjectivity of its restriction to an ultradi�erentiable class,
B : EM([a, b]) → C[[z]]M. After T. Carleman, who showed in 1923 that surjectivity is never
the case for quasianalytic classes strictly containing the class of analytic functions, the complete
answer was achieved by H.-J.Petzsche in 1988 (with some inaccurate statements corrected by
J. Schmets and M. Valdivia [91] in 2000): if (p!Mp)p∈N0 is logarithmically convex, then B :
EM([a, b]) → C[[z]]M is surjective if and only if M is strongly nonquasianalytic, that is, there
exists B > 0 such that

∞∑
q=p

Mq

(q + 1)Mq+1
≤ B Mp

Mp+1
, p ∈ N0.

Summing up, while injectivity and surjectivity of the Borel map for ultradi�erentiable classes
have been fully characterized, the problem for ultraholomorphic classes, specially in the case of
surjectivity, was far from being completely solved.
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The injectivity for the classes ÃuM(S) and AM(S) was completely solved by S. Mandelbrojt
and B. Rodríguez-Salinas in the 1950's (see Section 3.2).

For the surjectivity only partial informations were available. After the aforementioned Borel-
Ritt-Gevrey Theorem in 1978, and by applying techniques from the ultradi�erentiable setting,
V. Thilliez proved in 1995 that for the Gevrey class AMα(S) one has surjectivity if and only if
the opening of the sector is strictly smaller than πα. In 2000 J. Schmets and M. Valdivia gave
the �rst results for a weight sequence M, that is, logarithmically convex sequence such that its
sequence of quotients of consecutive terms m = (mp = Mp+1/Mp)p∈N0 tends to in�nity. Their
approach is based on the consideration of some nonclassical ultradi�erentiable classes, and they
obtained, for weight sequences satisfying the property derivation closedness, namely there exists
A > 0 such that Mp+1 ≤ Ap+1Mp for every p ∈ N0, a characterization for the existence of linear
and continuous global extension from C[[z]]M to AM(S) for any sector S, which is much more
demanding than surjectivity, so only partial information can be inferred from their results. In
2003, V. Thilliez de�ned the notion of strongly regular sequence, i.e., logarithmically convex,
strongly nonquasianalytic sequences that, in addition, satisfy the moderate growth condition,
that is, there exists A > 0 such that Mp+q ≤ Ap+qMpMq for every p, q ∈ N0. Moreover, he
introduced the index γ(M) and showed that if the opening of the sector is strictly smaller than
πγ(M) then B̃ : AM(S) → C[[z]]M is surjective and not injective (see Section 3.3 for further
details and references). However, even for strongly regular sequences the preceding results for
ultraholomorphic classes are not fully satisfactory, since the equivalences stated in Borel-Ritt-
Gevrey Theorem and Watson's Lemma for the Gevrey case are now only one-side implications.

The results of S. Mandelbrojt and B. Rodríguez-Salinas suggested the introduction of a
growth index ω(M), initially given by J. Sanz [88] for strongly regular sequences M, which puts
apart the openings of quasianalyticity from those of nonquasianalyticity for the three ultraholo-
morphic classes considered. Nevertheless, in general it remained open the quasianalyticity of the
class ÃM(S) for sectors of opening πω(M).

A �rst and partial solution to this situation relies on the concept of proximate order, available
since the 1920s and extremely useful in the theory of growth of entire functions, and on some
related results of L. S. Maergoiz [65] in 2001: if we de�ne the auxiliary functions ωM(t) =
supp∈N0

log(tp/Mp) and dM(t) := log(ωM(t))/ log(t) associated with M, it was shown in [88] that,
whenever dM(t) is a nonzero proximate order, one is able to produce nontrivial �at functions in
sectors of optimal opening, and generalized versions of Watson's Lemma and Borel-Ritt-Gevrey
Theorem are available. The proof of the surjectivity rests on a truncated Laplace transform
technique with kernels provided by the results of Maergoiz (see Subsection 1.2.2) on the existence
of suitable analytic functions in sectors whose growth in the central part of the sector is accurately
given by ωM(t). Moreover, one may note that, for the previous arguments to work, dM need not
be a proximate order, but rather be close enough to a proximate order ρ(t) in the sense that
there exist constants A,B > 0 such that

A ≤ log(t)
(
dM(t)− ρ(t)

)
≤ B for t large enough. (3)

This fact will be rephrased by saying that M admits a proximate order.

Regarding the program in (ii) above, and following the technique of moment summability
methods developed by W. Balser [7] in the Gevrey case, A. Lastra, S. Malek and J. Sanz [60]
have recently put forward the corresponding M−summability theory. The main point is the
introduction of kernels of M−summability, and the associated formal and analytic transforms, in
terms of which to reconstruct the sums of M−summable formal power series in a direction (see
Section 4.1). The existence of such kernels, under fairly mild assumptions, is again guaranteed
by the results of L. S. Maergoiz and so depends on the possibility of associating M with a
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proximate order. However, the combination of summability methods corresponding to di�erent
(nonequivalent but comparable, as it will be explained later) sequences was left as a pending
task.

So, the problems we had in mind when this research was initiated were the following:

(a) Characterize the sequences M such that dM is a nonzero proximate order.

(b) Characterize the sequences M that admit a nonzero proximate order. For these sequences,
the M−summability technique is available.

(c) Determine whether the indices γ(M) and ω(M) are always equal for strongly regular se-
quences, as it happened to be the case for the sequences appearing in the applications.

(d) Decide about the injectivity of the Borel map in the only unsolved case, the space ÃM(S)
for a sector S of opening πω(M) in case M does not admit a nonzero proximate order.

(e) Improve our knowledge about the surjectivity of the Borel map in general ultraholomorphic
classes. In case γ(M) and ω(M) are not always equal, it is specially interesting to determine
which of them puts apart the values of surjectivity from those of nonsurjectivity, since
previously known results do not lead to a conclusion.

(f) Proceed, as far as possible, in the study of multisummability in this general context. If
reasonable, apply the technique to the formal solutions of some class of di�erence equations,
as those studied by G. K. Immink, or other types of equations.

At this point we start describing the results obtained in this dissertation and how they are
organized.

Chapter 1, of a preparatory nature, contains in its �rst section all the preliminary de�nitions
needed and a brief overview of the most common properties for sequences that appear in the
consideration of ultraholomorphic and ultradi�erentiable classes. The associated function ωM
and the growth indices γ(M) and ω(M) will also be presented in detail.

While preparing for addressing the �rst three items in the previous list, we found that the
concept of regular variation and its extensions appeared once and again related to our problems.
As it will be inferred from the developments presented in the second and third chapter, it enters
crucially in the solution of these problems.

The subject of regular variation was initiated by J. Karamata in 1930, who made use of it
in Tauberian Theorems, like the Hardy-Littlewood-Karamata Theorem. His ideas were devel-
oped by his collaborators and pupils from the `Yugoslavian School' in the following decades. A
measurable function f : [a,∞)→ (0,∞), with a ≥ 0, is regularly varying if

lim
x→∞

f(λx)

f(x)
= g(λ) ∈ (0,∞) (4)

for every λ ∈ (0,∞). The theory of regular variation ensures that there exists ρ ∈ R such that
g(λ) = λρ and the convergence is uniform for λ in the compact sets of (0,∞) (see Section 1.2).
This subject was popularized in the 1970's by its applications to probability theory, stimulated
by the contributions of W. Feller and L. de Haan. However, we will be specially interested in its
application to complex analysis, where it appears tightly connected to the notion of proximate
order whose de�nition was motivated by the study of the growth of entire functions.

In some occasions this theory is too limited and several generalizations have been provided.
In this dissertation, apart from regular variation, we will concentrate on the so-called O-regular
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variation, where the lim in (4) is substituted by two conditions with lim sup and lim inf instead.
This notion was also considered by J. Karamata, but it was spread by W. Matuszewska thanks
to its relation with Orlicz spaces in 1964. She characterized it in terms of two indices commonly
known as Matuszewska indices. In virtue of the nature of this work we will be specially interested
in the discrete versions of these concepts. The extension of regular variation for sequences of
positive real numbers was carried out by R. Bojani¢ and E. Seneta in 1973, and the O-regularly
varying version was provided by D. Djur£i¢ and V. Boºin in 1997. In the second section of
the �rst chapter the elementary features of Karamata theory are summarized in a concise but
complete form.

The main purpose of the second chapter is the description of the existing relations among the
notions presented in the �rst one. The �rst section is centered on the notion of O-regular vari-
ation. Some of the conditions, for instance, moderate growth and strongly nonquasianalyticity,
frequently assumed for the sequence M in order to have suitable properties for the correspond-
ing class, can be restated in terms of O-regular variation. It deserves a speci�c mention that
Thilliez's index γ(M) and Sanz's index ω(M), independently introduced, will be proved to have
an adequate representation in the classical theory of O-regular variation. In order to establish
its connection to logarithmically convex sequences, we will need to express these conditions by
means of almost monotonicity properties, and to introduce the orders µ(m) and ρ(m) and the
Matuszewska indices β(m) and α(m) for its sequence of quotientsm = (mp−1)p∈N. The following
two results (Theorem 2.1.16 and Proposition 2.1.18) illustrate this relation.

Theorem. Let M be a sequence of positive real numbers with sequence of quotients m. Then

γ(M) = β(m), ω(M) = µ(m).

Proposition. Let M be a sequence of positive real numbers with sequence of quotients m.
Assume that (p!Mp)p∈N0 is logarithmically convex, then

(i) M has moderate growth if and only if α(m) <∞ if and only if m is O-regularly varying.

(ii) M is strongly nonquasianalytic if and only if β(m) > 0.

Consequently, there is a tight connection between the O-regular variation of m and the
strong regularity of M. As a by-product, equivalent descriptions of those indices and orders are
obtained, which will be employed in Chapter 3 when dealing with the surjectivity of the Borel
problem, which indeed motivated the study. A considerable number of details, more than needed
for the surjectivity issue, will be provided in order to exhibit a complete vision of the subject. In
particular, we always have that γ(M) ≤ ω(M) (as it was already known before noting this link),
but the most revealing feature deduced from O-regular variation will be that, in general, they
are distinct for strongly regular sequences. This has been not easy to show, since most of the
strongly regular sequences appearing in the applications admit a nonzero proximate order, which
is a stronger condition that in particular implies that ω(M) = γ(M). Example 2.2.26, at the end
of the chapter, shows how to construct a strongly regular sequence with arbitrarily prescribed
values of these two indices, 0 < γ(M) < ω(M) <∞. Hence, problem (c) is solved.

At the end of the section, the link of these notions with the associated function ωM and the
counting function νm is explained in Theorem 2.1.30 and Proposition 2.1.38, from which the
construction of a dual sequence is derived.

In the second section of this chapter, the leading role is played by proximate orders. The
relation between regularly varying sequences, proximate orders and weight sequences is explored,
which, as mentioned before, is crucial for the availability of the M−summability theory. We will
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obtain a characterization of the sequences for which dM = log(ωM(t))/ log(t) is a nonzero proxi-
mate order, which was the open question (a) and has been successfully answered in Theorem 2.2.6
in terms of the regular variation of m, summarized as follows:

Theorem. Let M be a weight sequence. The following are equivalent:

(i) dM(t) is a proximate order with limt→∞ dM(t) ∈ (0,∞),

(ii) m is regularly varying with a positive index of regular variation.

In case any of these statements holds, the value of the index mentioned in (ii) is ω(M) and the
limit in (i) is 1/ω(M).

Regarding the sequences admitting a nonzero proximate order, in the sense of (3), we will get
a representation formula for them so solving the problem in (b). Furthermore, since equivalent
sequences de�ne the same ultraholomorphic classes, it will turn out that the admissibility of a
proximate order by M is a natural condition in the sense that it is equivalent to the existence of
a sequence L equivalent to M and such that dL is a nonzero proximate order. The proof of these
facts is presented in Theorem 2.2.19, that states:

Theorem. Let M be a weight sequence, then the following conditions are equivalent:

(i) There exists a weight sequence L equivalent to M (i.e., there exist constants A,B > 0 such
that ApLp ≤Mp ≤ BpLp for all p ∈ N0) such that dL(t) is a nonzero proximate order,

(ii) M admits a nonzero proximate order,

(iii) There exist ω ∈ (0,∞) and bounded sequences of real numbers (bp)p∈N, (ηp)p∈N such that
(ηp)p∈N converges to ω and we can write

mp = exp

bp+1 +

p+1∑
j=1

ηj
j

 , p ∈ N0.

In case the previous holds, limt→∞ dL(t) = 1/ω = 1/ω(M).

In addition, a new characterization of regularly varying sequences will be obtained in Propo-
sition 2.2.3 and it will also be shown how one can construct well-behaved weight sequences from
proximate orders in Theorem 2.2.14. Finally, in Subsection 2.2.5 and thanks to our improved
understanding of the properties involved, several examples will be provided exhibiting di�erent
pathological behaviors, including Example 2.2.26 mentioned before.

If, instead of admitting a proximate order, weaker conditions are asked for M, for instance
and with the notation of the above representation formula, if (ηp)p∈N is only bounded, which
is equivalent to the O-regular variation of m, it is not known how the M−summability method
can be replicated. However, and this was the problem posed in (d) and (e), it is natural to ask
oneself about the injectivity and surjectivity of the Borel map. The third chapter is devoted
to the study of these questions in the three ultraholomorphic classes of functions previously
considered. After introducing the basic notation in the �rst section, we analyze the injectivity
for which, as commented above, nearly all the information was already known. It turns out that
proximate orders again provide the de�nitive solution for the injectivity problem: even if M does
not admit a nonzero proximate order, one can always control dM by a nonzero proximate order
from above, and a suitable use of the regular variation of the functions of Maergoiz associated
with this proximate order allows one to construct �at functions in sectors of optimal opening.
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So, the question in (d) is answered, see Theorem 3.2.15. Here the index ω(M) shows its dividing
character. This section ends, helped by the quasianalyticity results, showing in Theorem 3.2.16
that the Borel map is never bijective.

The last section is centered on the surjectivity problem. Some partial results will be obtained
for weight sequences, for example it is shown that for arbitrary weight sequences, surjectivity
for any opening requires γ(M) > 0 or, in other words, M has to be strongly nonquasianalytic.
However, the main advances are for strongly regular sequences. In Corollary 3.3.18, if Sγ is the
unbounded sector of opening πγ and bisecting direction d = 0 of the Riemann surface of the
logarithm, it will be proved the following:

Corollary. Let M be a strongly regular sequence, and let t ∈ R, t > 0. Each assertion implies
the following one:

(i) t < γ(M),

(ii) the Borel map B̃ : AM(St)→ C[[z]]M is surjective,

(iii) the Borel map B̃ : ÃuM(St)→ C[[z]]M is surjective,

(iv) the Borel map B̃ : ÃM(St)→ C[[z]]M is surjective,

(v) for every ξ ∈ I with ξ < t, the Borel map B̃ : ÃM(Sξ)→ C[[z]]M is surjective,

(vi) t ≤ γ(M).

Hence, γ(M) is shown to be the suitable limiting value for surjectivity and this answers the
previous question (e). Finally, some information is speci�ed in case the sequence is even more
regular.

In Chapter 4 we turn to last problem, (f), in the previous list. Observe that we know
now for which sequences the M−summability method is available. The �rst section recalls the
most import features of M−summability theory. So, we are now interested in the extension
of multisummability to this general context. A preliminary discussion concerns the necessity,
for the problem to make sense, that the sequences, which de�ne the summability methods to
be merged, are comparable and nonequivalent, what will be studied in Subsection 4.2.1. After
establishing the basic properties of the quotient and product sequences of two weight sequences,
the Tauberian Theorem 4.2.14 will be obtained:

Theorem. Let L and M be weight sequences such that L admits a nonzero proximate order,
M/L is logarithmically convex and ω(L) < ω(M). If f̂ ∈ C[[z]]L and f̂ is M−summable in all
directions except a �nite set (mod 2π), then f̂ is convergent.

Thanks to this result, a consistent de�nition of multisummability can be given: a formal
power series will be said to be multisummable if it can be split into the sum of �nitely many
formal power series f̂j , each of them summable for a corresponding sequence Mj admitting a
nonzero proximate order. Our objective is to devise a procedure for the explicit reconstruction
of its sum. In Theorems 4.3.21 and 4.3.25, the summability kernels for the quotient and product
sequences of two sequences will be built, with them we will be able to construct the multisum
as it is shown in Theorem 4.3.31. We should mention that the study of multisummability has
not been completed, specially what pertains to some of its possible applications, but we will
postpone the comments on this work in progress to the conclusions.

The last chapter in this dissertation was not initially scheduled, but its inclusion is natu-
ral once the techniques of proximate order and regular variation have been incorporated. It
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deals with the propagation of M−asymptotics in a direction for holomorphic and asymptoti-
cally bounded functions to the whole sectorial region, where M is a weight sequence admitting a
nonzero proximate order. The main result is the following, Theorem 5.3.1:

Theorem. Given γ > 0, suppose f is holomorphic in a sectorial region G of opening πγ and
bisected by direction 0, f is bounded in every proper and bounded subsector T of G and it admits
f̂ ∈ C[[z]] as its M−asymptotic expansion in a direction θ ∈ (−πγ/2, πγ/2). Then, f ∈ ÃM(G)
and f admits f̂ as its M−asymptotic expansion in G.

This generalizes a result by A. Fruchard and C. Zhang [29] in 1999 for Gevrey asymptotic
expansions. As in the Gevrey version, the proofs of the results rest, on one hand, on a suitable
version of the classical Phragmén-Lindelöf Theorem, Lemma 5.1.6, here obtained for functions
whose growth in a sector is speci�ed by a nonzero proximate order; and, on the other hand, on
the available versions of the Watson Lemma and Borel-Ritt-Gevrey Theorem.

JAVIER JIMÉNEZ GARRIDO



29

Chapter 1

Preliminaries

1.1 Logarithmically convex sequences

The classes of functions and formal power series considered in this dissertation are de�ned by
growth restrictions of their derivatives or of their coe�cients, respectively. These restrictions
will be expressed in terms of a sequence of positive real numbers that will be assumed to satisfy
suitable conditions depending on the problem. In this �rst section, these conditions and their
immediate consequences will be presented. Most of the information is taken from the classical
works of S. Mandelbrojt [72] and H. Komatsu [52], which we refer to for further details.

1.1.1 De�nition and properties

In what follows, M = (Mp)p∈N0 always stands for a sequence of positive real numbers, and we
always impose that M0 = 1, where N0 = {0, 1, 2, . . . } = N ∪ {0}. The names of the condi-
tions given by V. Thilliez and, for the convenience of the reader, the corresponding descriptive
acronyms employed by G. Schindl [90] have been used.

De�nition 1.1.1. We say that:

(i) M is logarithmically convex (for short, (lc)) if

M2
p ≤Mp−1Mp+1, p ∈ N.

(ii) M is of or has moderate growth (brie�y, (mg)) whenever there exists A > 0 such that

Mp+q ≤ Ap+qMpMq, p, q ∈ N0.

(iii) M satis�es the strong nonquasianalyticity condition (for short, (snq)) if there exists B > 0
such that

∞∑
q=p

Mq

(q + 1)Mq+1
≤ B Mp

Mp+1
, p ∈ N0.

According to V. Thilliez [95], if M is (lc), has (mg) and satis�es (snq), we say that M is a strongly
regular sequence.

De�nition 1.1.2. For a sequence M we de�ne the sequence of quotients m = (mp)p∈N0 by

mp :=
Mp+1

Mp
p ∈ N0.
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Remark 1.1.3. The properties (lc) and (snq) can be easily stated in terms of the sequence of
quotients and, as we will see in Lemmas 1.1.9 and 2.1.3, the same holds for (mg). Moreover,
observe that for every p ∈ N one has

Mp =
Mp

Mp−1

Mp−1

Mp−2
. . .

M2

M1

M1

M0
= mp−1mp−2 · · ·m1m0. (1.1)

So, one may recover the sequence M (with M0 = 1) once m is known, and hence the knowledge
of one of the sequences amounts to that of the other. Sequences of quotients of sequences M, L,
etc. will be denoted by lowercase letters m, l and so on. Whenever some statement refers to a
sequence denoted by a lowercase letter such as m, it will be understood that we are dealing with
a sequence of quotients (of the sequence M given by (1.1)).

Example 1.1.4. We mention some interesting examples. In particular, those in (i) and (iii)
appear in the applications of summability theory to the study of formal power series solutions
for di�erent kinds of equations.

(i) The sequences Mα,β :=
(
p!α
∏p
m=0 logβ(e+m)

)
p∈N0

, where α > 0 and β ∈ R, are strongly
regular (in case β < 0, the �rst terms of the sequence have to be suitably modi�ed in order
to ensure (lc), see Remark 1.1.19). In case β = 0, we have the best known example of
strongly regular sequence, Mα := Mα,0 = (p!α)p∈N0 , called the Gevrey sequence of order α.

(ii) The sequence M0,β := (
∏p
m=0 logβ(e + m))p∈N0 , with β > 0, is (lc), (mg) and m tends to

in�nity, but (snq) is not satis�ed.

(iii) For q > 1, Mq := (qp
2
)p∈N0 is (lc) and (snq), but not (mg).

Some results remain valid, however, when (mg) and (snq) are replaced by the following weaker
conditions:

De�nition 1.1.5. Let M be a sequence, we say that

(i) M is stable under di�erential operators or satis�es derivation closedness condition (brie�y,
(dc)) if there exists D > 0 such that

Mp+1 ≤ Dp+1Mp, p ∈ N0.

(ii) M is nonquasianalytic (for short, (nq)) if

∞∑
k=0

Mk

(k + 1)Mk+1
<∞.

The following properties are easy consequences of the de�nitions.

Lemma 1.1.6. For every sequence M we have the following properties:

(i) If M has moderate growth then M is stable under di�erential operators.

(ii) If M is strongly nonquasianalytic then M is nonquasianalytic.

Lemma 1.1.7. For every sequence M the following holds:

(i) M is logarithmically convex if and only if m is nondecreasing.

JAVIER JIMÉNEZ GARRIDO



1.1. LOGARITHMICALLY CONVEX SEQUENCES 31

(ii) If M is logarithmically convex and nonquasianalytic, then limp→∞mp =∞.

(iii) If limp→∞mp =∞, then it exists p0 ∈ N such that Mp ≤Mp+1 for every p ≥ p0.

(iv) If M is logarithmically convex, then MpMl ≤Mp+l for every p, l ∈ N0.

(v) If M is logarithmically convex, then (Mp)
1/p ≤ mp−1 for every p ∈ N.

(vi) If M is logarithmically convex, then ((Mp)
1/p)p∈N is nondecreasing.

(vii) If M is logarithmically convex, limp→∞(Mp)
1/p =∞ if and only if limp→∞mp =∞.

Proof. (i) Note that M is logarithmically convex if and only ifMp/Mp−1 ≤Mp+1/Mp for every
p ∈ N. Since mp = Mp+1/Mp, M is logarithmically convex if and only if mp−1 ≤ mp for
every p ∈ N.

(ii) Since M is logarithmically convex, m is nondecreasing (by (i)). If we suppose that m is
bounded, i.e., it exists C > 0 such that mp ≤ C for every p ∈ N, we see that

∞∑
l=0

Ml

(l + 1)Ml+1
=

∞∑
l=0

1

(l + 1)ml
≥
∞∑
l=0

1

(l + 1)C
=∞.

This is impossible if M is nonquasianalytic, so m is unbounded and nondecreasing, and we
conclude that limp→∞mp =∞.

(iii) If limp→∞mp = ∞, it exists p0 ∈ N such that mp ≥ 1 for every p ≥ p0 that implies
Mp+1 ≥Mp for every p ≥ p0.

(iv) We �x p ∈ N0 and apply an induction argument on `. The statement holds for ` = 0,
becauseM0 = 1. Assume that it is valid for some value of `, using the induction hypothesis
and that m is nondecreasing (by (i)) we have

MpM`+1 = MpM`
M`+1

M`
≤Mp+`m` ≤Mp+`mp+` = Mp+`+1.

(v) We observe thatMp = m0m1 · · ·mp−2mp−1 and, sincem is nondecreasing (by (i)), we have
Mp ≤ (mp−1)p for every p ∈ N.

(vi) By (v), we deduce that

M (p+1)/p
p = Mp(Mp)

1/p ≤Mpmp−1 ≤Mpmp = Mp+1, p ∈ N.

(vii) By (v), if limp→∞(Mp)
1/p =∞, then limp→∞mp =∞. If limp→∞mp =∞, since

lim
p→∞

log(Mp+1)− log(Mp)

(p+ 1)− p
= lim

p→∞
log(mp) =∞,

we deduce by the Stolz's criterion that limp→∞(Mp)
1/p =∞.

�

Along this document, we may use the basic properties of the last lemma, specially (i) and
(ii), without mentioning.
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De�nition 1.1.8. We say that a sequence M is a weight sequence if it is logarithmically convex
and limp→∞(Mp)

1/p = ∞ or, equivalently by the lemma above, if m is nondecreasing and
limp→∞mp =∞.

Under the assumption of logarithmic convexity H.-J. Petzsche and D. Vogt gave the following
characterization of the moderate growth condition in terms of m. For the sake of clarity and
completeness, since there is an index shift in their de�nition of the quotient sequence, the proof
has been included.

Lemma 1.1.9 ([78], Lemma 5.3). Let M be a logarithmically convex sequence. Then the
following statements are equivalent:

(i) M has moderate growth,

(ii) supp∈N(mp/M
1/p
p ) <∞,

(iii) supp∈N(m2p/mp) <∞,

(iv) supp∈N
(
M2p/M

2
p

)1/p
<∞.

Proof. (i)⇒ (ii) From the logarithmic convexity, we know that m is nondecreasing and for all
p ∈ N, we have

(mp)
p ≤ mpmp+1 . . .m2p−1 =

M2p

Mp
,

and, applying the (mg) condition with p = l, we show that it exists A > 1 such that (mp)
p ≤

M2p/Mp ≤ A2pMp for all p ∈ N.
(ii) ⇒ (iii) By the logarithmic convexity, if we assume that (ii) is true, we see that there exists
H > 0 such that

m2p
2p ≤ H

2pM2p = H2pm0m1 . . .m2p−1 ≤ H2p(mp)
p(m2p)

p, p ∈ N.

(iii)⇒ (iv) First, we will show that

sup
p∈N

(m2p/mp−1) <∞. (1.2)

Using (iii), we see that it exists H > 1 such that

m2p

mp−1
=
m2p

mp

mp

mp−1
≤ H mp

mp−1
, p ∈ N.

We observe that for p ≥ 2, we have 2p − 2 ≥ p. Using the logarithmic convexity and applying
(iii) again, we show that

m2p

mp−1
≤ H mp

mp−1
≤ Hm2p−2

mp−1
≤ H2, p ≥ 2.

Finally, taking C := max(H2,m2/m0), we see that supp∈N(m2p/mp−1) ≤ C. Now, using the
logarithmic convexity, we have that

M2p = m0m1 . . .m2p−2m2p−1 ≤ m0m
2
2m

2
4 . . .m

2
2(p−1)m

2
2p

1

m2p
, p ∈ N.

Applying (1.2) and the logarithmic convexity again, we obtain

M2p ≤ C2pm2
0m

2
1m

2
2 . . .m

2
p−2m

2
p−1

m0

m2p
≤ C2pM2

p , p ∈ N.
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(iv)⇒ (i) We �x p, ` ∈ N0. Firstly, if one or both of them are equal to 0, sinceM0 = 1, condition
(mg) holds for A = 1. Secondly, if p+ ` = 2k with k ∈ N, by (iv), we deduce that it exists H > 1
such that

Mp+` = M2k ≤ HkM2
k =

(√
H
)2k

MpM`
Mk

Mp

Mk

M`
.

We suppose p ≤ k ≤ ` (the proof is the same if ` < k < p). Then, by the logarithmic convexity,
we see that

Mk

Mp

Mk

M`
= mpmp+1 . . .mk−1

1

mkmk+1 . . .m`−1
≤
mk−p
k

m`−k
k

= m0
k = 1.

Finally, if p+ ` = 2k − 1 with k ≥ 2, then one of the values ` or p is odd and the other is even.
Without lost of generality, we suppose ` is odd and so p ≥ 2. Using the property Lemma 1.1.7.(iv)
and applying the last statement for p and `+ 1, we see that it exists A > 1 such that

M2k−1 ≤
M2k

M1
≤ A2kMpM`+1

M1
.

Applying again the �rst part for 1 and `, whose sum `+1 is even, we see thatM`+1 ≤ A`+1M`M1.
So we have

Mp+` = M2k−1 ≤ A`+p+1MpA
`+1M` ≤ (A2)`+pMpM`.

�

Remark 1.1.10. By a slight modi�cation of this proof, given k ∈ N, k ≥ 2, we can see that the
following conditions are equivalent:

(i) M has moderate growth,

(ii) supp∈N(mkp/mp) <∞,

(iii) supp∈N
(
Mkp/M

k
p

)1/p
<∞.

As an immediate consequence of Lemma 1.1.7.(v) and Lemma 1.1.9.(ii), V. Thilliez gave the
following result.

Lemma 1.1.11 ([95]). Let M = (Mp)p∈N0 be a (lc) sequence satisfying (mg) condition for a
constant A > 0 appearing in De�nition 1.1.1.(ii). Then,

mp ≤ A2M1/p
p ≤ A2mp for every p ∈ N. (1.3)

1.1.2 Equivalent and comparable sequences

The nature of the classes of functions de�ned in terms of sequences (see Section 3.1) leads us to
consider the notions of equivalent and comparable sequences.

De�nition 1.1.12. Let M and L be sequences, we say that M is smaller than L if it exists
C > 0 such that

Mp ≤ CpLp, p ∈ N0,

or, equivalently, if

sup
p∈N

(
Mp

Lp

)1/p

<∞,

and we write M - L. We call M and L comparable if M - L or L -M holds. If both conditions
hold, we say that M is equivalent to L, and we write M ≈ L.
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From (1.3) we observe that if M is a (lc) sequence satisfying (mg) condition, then M and
(mp

p)p∈N0 are equivalent.

Remark 1.1.13. Since equivalent sequences will turn out to de�ne the same class of functions
or series (see Remarks 3.1.4 and 3.1.7), we are particularly interested in comparable but not
equivalent sequences. In particular, if M - L and M 6≈ L, we observe that

inf
p∈N

(
Mp

Lp

)1/p

= 0 and sup
p∈N

(
Mp

Lp

)1/p

<∞,

or, equivalently, if

lim inf
p→∞

(
Mp

Lp

)1/p

= 0 and lim sup
p→∞

(
Mp

Lp

)1/p

<∞.

Consequently, M and L are noncomparable if

inf
p∈N

(
Mp

Lp

)1/p

= 0 and sup
p∈N

(
Mp

Lp

)1/p

=∞,

or, equivalently, if

lim inf
p→∞

(
Mp

Lp

)1/p

= 0 and lim sup
p→∞

(
Mp

Lp

)1/p

=∞.

In the next de�nitions and results we take into account the conventions adopted in Re-
mark 1.1.3.

De�nition 1.1.14. Letm and ` be sequences of positive real numbers, we say thatm is bounded

from above by ` if it exists c > 0 such that

mp ≤ c `p, p ∈ N0,

or, equivalently, if

sup
p∈N0

mp

`p
<∞,

and we write m � `. The sequence m is said to be similar to ` if m � ` and ` � m and we
write m ' `.

Proposition 1.1.15. Let M and L be sequences, m and ` the sequences of quotients associated
with M and L, respectively. If m � `, then M - L. Consequently, if m ' ` then M ≈ L.

Proof. There exists c > 0 such that mp ≤ c `p for every p ∈ N0. Writing Mp = m0m1 . . .mp−1

and Lp = `0`1 . . . `p−1, we see that

Mp = m0m1 . . .mp−2mp−1 ≤ c`0c`1 . . . c`p−2c`p−1 = cpLp,

for every p ∈ N0, then M - L. �

The last proposition shows that the notion of comparability for the sequences of quotients
is stronger than the former one. Under suitable assumptions, the converse implication can be
obtained.

JAVIER JIMÉNEZ GARRIDO



1.1. LOGARITHMICALLY CONVEX SEQUENCES 35

Proposition 1.1.16. Let M and L be (lc) sequences, m and ` the corresponding sequences of
quotients. We suppose that M has moderate growth. If M - L, then m � `.

Proof. By Lemma 1.1.7.(v), we see that (Lp)
1/p ≤ `p and, by Lemma 1.1.9.(ii), mp ≤ A2(Mp)

1/p

for some A > 0 and for every p ∈ N. If one has M - L, then there exists C > 0 such that
Mp ≤ CpLp for every p ∈ N0 and we conclude that

mp ≤ A2(Mp)
1/p ≤ A2C(Lp)

1/p ≤ A2C`p,

for every p ∈ N, then m � `. �

We study the stability under equivalence of the properties in De�nition 1.1.1.

Proposition 1.1.17. Let M and L be sequences. If M ≈ L and M has (mg), then L also has
(mg).

Proof. Since L ≈M, there exists C > 1 such that C−pLp ≤Mp ≤ CpLp for every p ∈ N0. Using
the moderate growth of M, we see that

Lp+q ≤ Cq+pMq+p ≤ (AC)q+pMpMq ≤ (AC)q+pCpCqLqLp = (AC2)p+qLqLp,

for every p, q ∈ N0, then L satis�es (mg) condition. �

Proposition 1.1.18. Let M and L be sequences. If m ' ` and M is (snq), then L also is (snq).

Proof. Since ` 'm, there exists c > 1 such that c−1 `p ≤ mp ≤ c `p for every p ∈ N0. Using the
strong nonquasianalyticity of M, we have

∞∑
k=p

Lk
(k + 1)Lk+1

≤ c
∞∑
k=p

Mk

(k + 1)Mk+1
≤ cB Mp

Mp+1
≤ c2B

Lp
Lp+1

,

for every p ∈ N0, then L also satis�es (snq) condition. �

Remark 1.1.19. If M is a sequence such that (mp)p≥p0 is nondecreasing for some p0 ∈ N,
i.e., m is eventually nondecreasing, we de�ne `p = mp0 for p < p0 and `p = mp for p ≥ p0,
then ` is nondecreasing (L is (lc)) and ` ' m. Moreover, whenever M is (mg) or (snq), by
Propositions 1.1.15, 1.1.17 and 1.1.18 we have that L is also (mg) or (snq).

Using the Propositions 1.1.16, 1.1.17 and 1.1.18, above we easily deduce that:

Proposition 1.1.20. Let M and L be sequences, m and ` the corresponding sequences of
quotients. We suppose that M and L are (lc) and one of them has (mg). If M ≈ L, then m ' `.

In particular, if M is strongly regular and L is (lc), then m � ` if and only if M - L, and
m ' ` if and only if M ≈ L. Consequently, if M ≈ L, then L is also strongly regular.

Remark 1.1.21. Logarithmic convexity is not stable for either ≈ or '. Regarding (snq), apart
from Proposition 1.1.18, one may deduce that, for weight sequences, (snq) is stable for ≈ by
using [77, Th. 3.4], restated with our notation in Theorem 3.3.4. In this result of H.-J. Petszche,
the stability of the condition (γ1) for ≈ (see Remark 2.1.23 for the connection between (γ1) and
(snq)) is indirectly deduced, to the best of our knowledge there is no direct proof of this fact.
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1.1.3 Associated functions

In the classical study of classes of functions de�ned in terms of a sequence of positive real numbers,
for instance see S. Mandelbrojt [72] and H. Komatsu [52], the importance of the functions ωM(t)
and hM(t) considered below has been illustrated.

For any sequence M we can consider the map ωM : [0,∞)→ R, de�ned by

ωM(t) := sup
p∈N0

log
( tp
Mp

)
, t > 0; ωM(0) = 0. (1.4)

If M is a weight sequence, i.e., (lc) and such that m tends to in�nity, we can show that ωM is a
nondecreasing continuous map in [0,∞) with limt→∞ ωM(t) =∞. Indeed,

ωM(t) =

{
p log t− log(Mp) if t ∈ [mp−1,mp), p = 1, 2, . . . ,

0 if t ∈ [0,m0).
(1.5)

and one can easily check that ωM is convex in log t, i.e., the map t 7→ ωM(et) is convex in R. We
also observe that

ωM(mp) = log

(
mp
p

Mp

)
, p ∈ N0. (1.6)

Alternatively, we can consider the map hM : [0,∞)→ R, given by

hM(t) := inf
p∈N0

Mpt
p = exp

(
− ωM(1/t)

)
, t > 0; hM(0) = 0,

which turns out to be, for a weight sequence, a nondecreasing continuous map in [0,∞) onto
[0, 1]. In fact,

hM(t) =

{
Mpt

p if t ∈
[

1
mp
, 1
mp−1

)
, p = 1, 2, . . . ,

1 if t ≥ 1/m0.

If L is another weight sequence such that L ≈ M, it is straightforward to check that there
exist A,B > 0 such that

ωM(At) ≤ ωL(t) ≤ ωM(Bt), t ≥ 0, (1.7)

or, equivalently, H,L > 0 such that

hM(Lt) ≤ hL(t) ≤ hM(Ht), t ≥ 0.

Example 1.1.22. The following information with respect to the associated function ωM(t) for
the sequences appearing in Example 1.1.4 can be given.

(i) We recall that Mα,β =
(
p!α
∏p
m=0 logβ(e + m)

)
p∈N0

and we have that there exist positive
constants A,B such that:

At1/α log(t)β/α ≤ ωMα,β
(t) ≤ Bt1/α log(t)β/α, t large enough

(see [98, Example 1.2.2]). In case β = 0, i.e., for the Gevrey sequence of order α, At1/α ≤
ωMα(t) ≤ Bt1/α for t large enough.

(ii) For q > 1, Mq = (qp
2
)p∈N0 we can show that there exist positive constants A,B such that:

A log(t)2 ≤ ωMq(t) ≤ B log(t)2, t large enough

(see [17, Example 21]).
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One may consider the logarithmically convex minorant sequence M(lc) of a sequence M, that
is, the (lc) sequence such that M (lc)

p ≤ Mp for all p ∈ N0, and for every other (lc) sequence L
with Lp ≤Mp for every p ∈ N0 we have that Lp ≤M (lc)

p for all p ∈ N0. The associated function
is related to this minorant in the following sense.

Proposition 1.1.23 ([72] p. 17 and [52] Prop. 3.2.). Let M be a sequence with lim inf M
1/p
p > 0.

Then, we have that M (lc)
p = supt>0 t

p/eωM(t) for all p ∈ N0. Consequently, M is (lc) if and only if

Mp = sup
t>0

tp

eωM(t)
= sup

t>0
tphM(1/t), p ∈ N0.

In particular, this representation is valid for weight sequences.

Some of the conditions for sequences in Section 1.1.1 can be described in terms of the asso-
ciated function, see Subsection 2.1.4. In particular, the next characterization of (mg) condition
plays a fundamental role in many of our arguments, it already appears in the work of H. Ko-
matsu [52, Prop. 3.6] and of V. Thilliez [95].

Lemma 1.1.24. Let M = (Mp)p∈N0 be a weight sequence. The following are equivalent:

(i) M has (mg),

(ii) For every real number with s ≥ 1, there exists ρ(s) ≥ 1 (only depending on s and M) such
that

hM(t) ≤ (hM(ρ(s)t))s for t ≥ 0,

or, equivalently, that
sωM(t) ≤ ωM(ρ(s)t) for t ≥ 0. (1.8)

(iii) There exist H ≥ 1 and t0 > 0 (only depending on M) such that

hM(t) ≤ (hM(Ht))2 for t ≤ 1/t0,

or, equivalently, that
2ωM(t) ≤ ωM(Ht) for t ≥ t0.

Proof. (i) ⇒ (ii) Given s ≥ 1 we take k ∈ N such that k > s. By (mg) condition, there exists
A > 0, depending on k and M (see Remark 1.1.10), such that Mkp ≤ AkpMk

p for every p ∈ N0.
We deduce that

hM(t) = inf
p∈N0

tpMp ≤ inf
p∈N0

tkpMkp ≤ inf
p∈N0

(tA)kpMk
p = (hM(At))k,

for every t ≥ 0. Since hM(t) ∈ [0, 1], (hM(At))k ≤ (hM(At))s for all t ≥ 0, then (ii) is satis�ed
with ρ(s) = A.
(ii) ⇒ (iii) Immediate.
(iii) ⇒ (i) Since M is (lc), applying Proposition 1.1.23, we see that Mp = supt>0 (tphM(1/t)) for
all p ∈ N0. By (iii), we obtain that

M2p = sup
t>0

t2phM(1/t) = max( sup
0<t<t0

(t2phM(1/t)), sup
t≥t0

(t2phM(1/t)))

≤max(t2p0 , sup
t≥t0

(t2phM(H/t)2)) ≤ max(t2p0 , H
2pM2

p )

for all p ∈ N0. Since Mp ≥ 1, for p large enough, we can choose A ≥ 1 such that M2p ≤ A2pM2
p

for every p ∈ N0. Then, by Lemma 1.1.9, we deduce that M satis�es (mg).
�
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1.1.4 Growth indices γ(M) and ω(M)

The growth index γ(M) was de�ned and considered by V. Thilliez [95, Sect. 1.3] in the study
of ultraholomorphic classes of functions. The original de�nition was given for strongly regular
sequences and γ > 0, but one can consider it for any sequence M and γ ∈ R.

De�nition 1.1.25. Let M be a sequence and γ ∈ R. We say M satis�es property (Pγ) if there
exists a sequence of real numbers ` = (`p)p∈N0 such that:

(i) m ' `, that is, there is a constant a ≥ 1 such that a−1mp ≤ `p ≤ amp, for all p ∈ N0,

(ii) ((p+ 1)−γ`p)p∈N0
is nondecreasing.

If (Pγ) is satis�ed, then (Pγ′) is satis�ed for γ′ ≤ γ. It is natural to consider its growth index

γ(M) de�ned by
γ(M) := sup{γ ∈ R : (Pγ) is ful�lled}.

Remark 1.1.26. Thanks to the property described above, we are allowed to use the classical
conventions inf ∅ = supR =∞ and inf R = sup ∅ = −∞.

For the study of the injectivity of the asymptotic Borel map (see Section 3.2 for further
details), J. Sanz [88] de�ned the growth index ω(M).

De�nition 1.1.27. Let M be a sequence. We de�ne its index ω(M) by

ω(M) := lim inf
p→∞

logmp

log p
.

By de�nition, the value of γ(M) and of ω(M) is stable for '. For weight sequences with
(mg), in particular for strongly regular sequences, these values are also stable for ≈, thanks to
the equivalence between ≈ and ' (see Proposition 1.1.20). In Section 2.1, we will eventually
show the stability under ≈ for arbitrary weight sequences.

Regarding the relation between ω(M) and γ(M), J. Sanz [88, Prop. 3.7], using the properties
of γ(M) described in [95, Sect. 1.3], stated the following result for strongly regular sequences,
which also holds for any sequence.

Proposition 1.1.28. For every sequence M one has γ(M) ≤ ω(M).

Proof. If γ < γ(M), then M satis�es (Pγ). By (Pγ), for every p ∈ N0, we observe that

m0 ≤ a`0 ≤ a
`p

(p+ 1)γ
≤ a2 mp

(p+ 1)γ
.

Consequently, a−2m0(p+ 1)γ ≤ mp for every p ∈ N0 and we deduce that

ω(M) = lim inf
p→∞

logmp

log p
≥ lim inf

p→∞

log(a−2m0(p+ 1)γ)

log p
= γ,

and we conclude that γ(M) ≤ ω(M). �

The regularity of the sequence entails properties for the corresponding indices.

Lemma 1.1.29. If M is (lc), then γ(M), ω(M) ∈ [0,∞].
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Proof. Since m is nondecreasing, (P0) is satis�ed then γ(M) ≥ 0 and we also have

logmp

log p
≥ logm1

log p

for all p ∈ N then ω(M) ≥ 0. �

From this last lemma, we deduce also that for (lc) sequences the original de�nition of γ(M)
given by V. Thilliez, where the supremum is taken only for γ > 0, coincides with the general
one considered in this subsection. In [88, 95], it has been shown that if M is strongly regular
then γ(M), ω(M) ∈ (0,∞) (see also Remark 2.1.19). However, there are sequences that are not
strongly regular such that γ(M), ω(M) ∈ (0,∞) (see Remark 2.2.27). These properties of the
indices will be obtained in Section 2.1, where the relation between O-regularly varying sequences
and (lc) sequences is presented, as an easy consequence of Theorem 2.1.16.

Example 1.1.30. For the sequences appearing in Example 1.1.4, one may prove (see Exam-
ple 2.1.20) that

(i) For α > 0 and β ∈ R or α = 0 and β > 0 we have that γ(Mα,β) = ω(Mα,β) = α.

(ii) For (qp
2
)p∈N0 with q > 1, γ((qp

2
)p∈N0) = ω((qp

2
)p∈N0) =∞.

Most of the classical examples of strongly regular sequences satisfy that ω(M) = γ(M).
Moreover, in Section 2.2 we will show that the values of the indices coincide for a large class of
sequences. However, it is possible to construct a strongly regular sequence for which the values
are di�erent, arbitrarily chosen, positive real numbers (see Example 2.2.26).

1.2 Regular variation, O-regular variation and proximate orders

In the next chapter, the relations between the sequences, the associated functions and the notions
of regular variation, O-regular variation and proximate orders will be studied. This section is
devoted to the description of these concepts and their fundamental properties.

1.2.1 Regularly varying functions

First, we will recall the notion of regular variation introduced in 1930 by J. Karamata ([49, 50]),
although partial treatments may be found in the works of E. Landau [56], G. Valiron [102], G.
Pólya [79] and others (see the historical survey [14]). Several applications of this concept have
been shown in analytic number theory, complex analysis and, specially, in probability. The proofs
of most of the results in this subsection are gathered in the books of E. Seneta [92] and N. H.
Bingham, C. M. Goldie and J. L. Teugels [13].

De�nition 1.2.1. A measurable function f : [a,∞) → (0,∞), with a ≥ 0, is regularly varying

if

lim
x→∞

f(λx)

f(x)
= g(λ) ∈ (0,∞), (1.9)

for every λ ∈ (0,∞).

There are three main results regarding the notion of regular variation, the continuous version
of these results is due to J. Karamata [49] and the measurable one was given by J. Korevaar,
T. van Aardenne-Ehrenfest and N.G. de Bruijn [55].
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Theorem 1.2.2 ([13], Th. 1.4.1, Characterization Theorem). Let f : [a,∞) → (0,∞), with
a ≥ 0, be a measurable function. If f is regularly varying, then there exists ρ ∈ R such that the
function g(λ) in (1.9) is equal to λρ.

In this case, ρ is called the index of regular variation of f , we write f ∈ Rρ andRV := ∪ρ>0Rρ.
If ρ = 0, then f is said to be slowly varying. We have that f ∈ Rρ if and only if f(x) = xρ`(x)

for some ` ∈ R0.

Consequently, the behavior of a regularly varying function at∞ is in some sense similar to the
behavior of a power-like function. For n ∈ N, logn x denotes the n−th iteration of the logarithm.
Given ni ∈ N and αi ∈ R for i = 0, 1 . . . , k, the classical example of a regularly varying function
is

f(x) = xα0(logn1
x)α1(logn2

x)α2 · · · (lognk x)αk .

Theorem 1.2.3 ([13], Th. 1.5.2, Uniform Convergence Theorem). Let f : [a,∞)→ (0,∞), with
a ≥ 0, be a measurable function. If f ∈ Rρ, then for every b1, b2 ∈ (0,∞) with b1 ≤ b2 we have
that

lim
x→∞

f(λx)

f(x)
= λρ

uniformly for λ ∈ [b1, b2].

Theorem 1.2.4 ([13], Th. 1.3.1 and Th. 1.4.1, Representation Theorem). Let f : [a,∞) →
(0,∞), with a ≥ 0, be a measurable function. Then f ∈ Rρ if and only if there exist A ≥ a
and measurable and bounded functions c, η : [A,∞) → R with limx→∞ c(x) = c ∈ R and
limx→∞ η(x) = ρ ∈ R such that

f(x) = exp

(
c(x) +

∫ x

A
η(u)

du

u

)
x ≥ A.

The value of A is unimportant because f , c and η can be rede�ned in �nite intervals preserving
the regular variation, then A can be chosen equal to 0, 1 or a as appropriate. Moreover, this
representation is not unique because, for instance, one may take

c̃(x) = c(x) +
1

x
− 1

A
, η̃(x) = η(x) +

1

x
.

Remark 1.2.5. As an immediate consequence of the Representation Theorem, if f ∈ Rρ we
deduce that

ρ = lim
x→∞

η(x) = lim
x→∞

log f(x)

log x
.

Finally, we can see that regular variation is preserved for the classical equivalence.

Remark 1.2.6. Let f, g : [a,∞) → (0,∞), with a ≥ 0, be measurable functions. Assume that
f and g are equivalent, in the classical sense, at ∞, that is,

lim
x→∞

f(x)

g(x)
= 1,

we write f ∼ g. It is plain to check that f ∈ Rρ if and only if g ∈ Rρ.
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1.2.2 Proximate orders and smooth variation

In order to study quasianalyticity of the ultraholomorphic classes (see Section 3.2) and to con-
struct kernels of summability in this context (see Section 4.1) we need to introduce the notion
of proximate order, appearing in the theory of growth of entire functions and developed, among
others, by G. Valiron [103], B. Ja. Levin [63] and A. A. Goldberg and I. V. Ostrosvkii [32]. In
this dissertation, a prominent role is played by the results of L. S. Maergoiz [65]. The concept of
proximate order, its elementary properties, its relation to regular variation and the main results
of L. S. Maergoiz are presented in this subsection.

De�nition 1.2.7. We say a real function ρ(t), de�ned on (c,∞) for some c ≥ 0, is a proximate

order, if the following hold:

(A) ρ is continuous and piecewise continuously di�erentiable in (c,∞) (meaning that it is dif-
ferentiable except possibly at a sequence of points, tending to in�nity, at any of which it is
continuous and has �nite but distinct lateral derivatives),

(B) ρ(t) ≥ 0 for every t > c,

(C) limt→∞ ρ(t) = ρ <∞,

(D) limt→∞ tρ
′(t) log t = 0.

In case the value ρ in (C) is positive (respectively, is 0), we say ρ(t) is a nonzero (resp. zero)
proximate order.

Remark 1.2.8. If ρ(t) is a proximate order with limit ρ at in�nity, for every ε > 0 there exists
tε > 1 such that

tρ−ε < tρ(t) < tρ+ε, t > tε.

De�nition 1.2.9. Two proximate orders ρ1(t) and ρ2(t) are said to be equivalent if

lim
t→∞

[ρ1(t)− ρ2(t)] log t = 0.

For the functions V1(t) = tρ1(t) and V2(t) = tρ2(t), this precisely means that

lim
t→∞

V1(t)

V2(t)
= lim

t→∞

tρ1(t)

tρ2(t)
= 1,

that is, V1 ∼ V2.

Remark 1.2.10. If ρ1(t) and ρ2(t) are equivalent and limt→∞ ρ1(t) = ρ, then

lim
t→∞

ρ2(t) = ρ.

Example 1.2.11. The following are examples of proximate orders, de�ned in suitable intervals
(c,∞):

(i) ρα,β(t) =
1

α
− β

α

log(log t)

log t
, α > 0, β ∈ R.

(ii) ρ(t) = ρ+
1

tγ
, ρ ≥ 0, γ > 0.

(iii) ρ(t) = ρ+
1

logγ(t)
, ρ ≥ 0, γ > 0.
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An example of a function verifying all the conditions except (D) is ρ(t) = ρ+ sin(t)/t.

There is a basic connection between regular variation and proximate orders.

Lemma 1.2.12 ([63], Sect. I.12, p.32). Let ρ(t) be a proximate order with limt→∞ ρ(t) = ρ.
Then, the function V (t) = tρ(t) ∈ Rρ.

The relation is even stronger, that is, it is also possible to go from regularly varying functions
of positive index to nonzero proximate orders. Even more general, we can associate with a
regularly varying function a smooth function of the class de�ned below and considered by A.
A. Balkema, J. L. Geluk and L. de Haan [4]. Several of the next results will not be used in the
forthcoming sections and have been included to make the reader aware of the deep connection
between proximate orders and regular variation.

De�nition 1.2.13. A function f : [a,∞) → (0,∞), with a ≥ 0, varies smoothly with index

ρ ∈ R, if f ∈ C∞((a,∞)) and the function h(x) = log(f(ex)) satis�es

lim
x→∞

h′(x) = ρ, lim
x→∞

h(n)(x) = 0, n ≥ 2. (1.10)

In this case, we write f ∈ SRρ.

If f ∈ SRρ, it turns out that the function η(x) := h′(log(x)) = xf ′(x)/f(x) tends to ρ as x
tend to ∞ and

f(x) = exp

(
log(f(a)) +

∫ x

a
η(u)

du

u

)
,

and by the Representation Theorem 1.2.4, we deduce that f ∈ Rρ, i.e., SRρ ⊆ Rρ. Furthermore,
one may check (see [4, Lemma 9]) that (1.10) is equivalent to the fact that

lim
x→∞

xnf (n)(x)

f(x)
= ρ(ρ− 1) . . . (ρ− n+ 1), n ∈ N.

The interest of smoothly varying functions is that every function in Rρ can be approximated
by a function in SRρ.

Theorem 1.2.14 ([13], Th. 1.8.2). Let f : [a,∞) → (0,∞), with a ≥ 0, be a measurable
function. If f ∈ Rρ, then there exist f1, f2 ∈ SRρ with f1 ∼ f2, equivalent in the classical sense,
such that f1(x) ≤ f(x) ≤ f2(x) for x large enough. In particular, if f ∈ Rρ there exists g ∈ SRρ
such that g ∼ f .

We observe that if f ∈ SRρ, de�ning ρf (x) := log(f(x))/ log(x) ∈ C∞ for x large enough
and, since f ∈ Rρ, by Remark 1.2.5, we have that limx→∞ ρf (x) = ρ. Finally, we notice that

lim
x→∞

xρ′f (x) log(x) = lim
x→∞

(
xf ′(x)

f(x)
− ρf (x)

)
= 0.

Consequently, if ρ > 0, ρf (x) is also positive for x large enough and we deduce that ρf (x) is a
proximate order. As an immediate consequence of the previous result and this construction, one
may also approximate regularly varying functions by proximate orders.

Proposition 1.2.15 ([13], Prop. 7.4.1). Let f : [a,∞) → (0,∞), with a ≥ 0, be a measurable
function and ρ > 0. Then f ∈ Rρ if and only if there exists a proximate order ρ(x) with
limt→∞ ρ(t) = ρ such that f(x) ∼ xρ(x).
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If condition (B) is removed from the de�nition of proximate order the previous result is valid
for ρ ∈ R. Then, as it was mentioned in [13, p. 311], �it is a matter of indi�erence whether one
uses the language of regular variation or of proximate orders. Incidentally, from an historical
point of view it seems that Valiron may well be credited with initiating the subject of regular
variation.�

Moreover, condition (A) is imposed for essentially traditional reasons, because Lemma 1.2.12
and Theorem 1.2.14 show, up to asymptotic equivalence, that smoothness for ρ(x) can be as-
sumed. In the same direction, one may study if stronger regularity conditions for ρ(x) could be
guaranteed. In particular, G. Valiron [102] showed that, always up to asymptotic equivalence,
the function xρ(x) has an analytic continuation to a sector in the complex plane containing the
positive real axis (see [13, Th. 7.4.3]). For our purposes, we will use the extension constructed
by L.S. Maergoiz in Theorem 1.2.16 below. For an arbitrary sector bisected by the positive real
axis, it provides holomorphic functions whose restriction to (0,∞) is real, has a growth at in�nity
speci�ed by a prescribed proximate and satis�es several regularity properties.

In order to state this result, we need to consider unbounded sectors of the Riemann surface
of the logarithm R

S(d, γ) := {z ∈ R : |arg(z)− d| < γ π

2
},

with bisecting direction d ∈ R and opening γ π (γ > 0). If d = 0, we write Sγ := S(0, γ).

Theorem 1.2.16 ([65], Th. 2.4). Let ρ(t) be a nonzero proximate order and ρ = limt→∞ ρ(t).
For every γ > 0 there exists an analytic function V (z) in Sγ such that:

(I) For every z ∈ Sγ ,

lim
t→∞

V (zt)

V (t)
= zρ,

uniformly in the compact sets of Sγ .

(II) V (z) = V (z) for every z ∈ Sγ (where, for z = (|z|, arg(z)), we put z = (|z|,− arg(z))).

(III) V (t) is positive in (0,∞), strictly increasing and limt→0 V (t) = 0.

(IV) The function r ∈ R 7→ V (er) is strictly convex (i.e. V is strictly convex relative to log(r)).

(V) The function log(V (t)) is strictly concave in (0,∞).

(VI) The function ρV (t) := log(V (t))/ log(t), t > 0, is a proximate order equivalent to ρ(t),
that is,

lim
t→∞

V (t)/tρ(t) = lim
t→∞

tρV (t)/tρ(t) = 1.

This result motivates the following de�nition.

De�nition 1.2.17. Given γ > 0 and ρ(t) a nonzero proximate order,MF (γ, ρ(t)) denotes the set
of Maergoiz functions V de�ned in Sγ and satisfying the conditions (I)-(VI) of Theorem 1.2.16.

Remark 1.2.18. Suppose ρ(t) (t ≥ c ≥ 0) is a nonzero proximate order. Then the function
V (t) = tρ(t) is strictly increasing for t > R, where R is large enough. The inverse function t =
U(s), de�ned for every s > V (R), has the property that the function ρ∗(s) := log(U(s))/ log(s)
is a proximate order and ρ∗(s) tends to 1/ρ as s tends to ∞ (see [65, Property 1.8]). This ρ∗(s)
is called the proximate order conjugate to ρ(t). Note that, by Lemma 1.2.12, the function U is
regularly varying.
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This conjugate proximate order can be also extended, up to equivalence, to an analytic
function.

Theorem 1.2.19 ([65], Th. 2.6). Let ρ(t) be a nonzero proximate order, γ > 0 and V ∈
MF (γ, ρ(t)). Let t = U(s), de�ned for all s > 0, be the function inverse to s = V (t), for
every t ∈ (0,∞), and let ρ∗(s) be the proximate order conjugate to ρ(t). Then lnU(s)/ ln s is
a proximate order equivalent to ρ∗(s), and the function U(s) admits an analytic continuation
to a function U(W ) in a domain T ⊆ Sργ symetric relative to the real axis and such that for
β < γ there exists Rβ > 0 such that the domain T contains Sρβ ∩ {|z| > Rβ}. Furthermore, the
function U veri�es, in its domain, the properties (I)-(VI) in Theorem 1.2.16 of the functions of
the class MF (ργ, ρ∗(s)).

In Section 2.2, the possibility of associating with a weight sequence a nonzero proximate
order, consequently also a Maergoiz function, is characterized. These functions are used in the
study of the injectivity of the Borel map in Section 3.2 are an essential part of the asymptotic
problems considered in Chapter 4. For the classical problem that motivates the introduction of
the notion of proximate order, that is, the study of the growth of entire functions, the reader is
referred to [63, Sect. I.12], [32, Section 2.2] and [13, Sect. 7.4], in the last one the solution is
stated through regular variation (see also Theorem 3.2.12).

1.2.3 O-regularly varying functions

For some of our purposes, the theory of regular variation is too restrictive and one may ask
what remains valid if we replace lim by lim sup and lim inf in (1.9). This extension of the
class of regularly varying functions, was de�ned by J. Karamata [51], V. G. Avakumovi¢ [3]
and considered by W. Matuszewska [74] and W. Feller [28]. Although we refer to the book of
N. H. Bingham, C. M. Goldie, and J. L. Teugels [13] for the proofs, the �rst complete study was
done by S. Aljan£i¢ and I. D. Arandjelovi¢ [1] in 1977. In this subsection, it is shown that this
weaker notion preserves several desirable properties.

De�nition 1.2.20. A measurable function f : [a,∞) → (0,∞), with a ≥ 0, is O-regularly

varying if

0 < flow(λ) := lim inf
x→∞

f(λx)

f(x)
≤ fup(λ) := lim sup

x→∞

f(λx)

f(x)
<∞ (1.11)

for every λ ≥ 1, and we write f ∈ ORV .

Remark 1.2.21. We observe that flow(λ) = 1/fup(1/λ) for every λ ≥ 1. Consequently, if
f ∈ ORV , then (1.11) holds for every λ ∈ (0,∞) and we deduce that RV ⊆ ORV . Moreover,
f ∈ ORV if and only if

fup(λ) = lim sup
x→∞

f(λx)

f(x)
<∞

for every λ ∈ (0,∞).

In this general context, the index ρ of regular variation is split into two values, the Ma-
tuszewska indices, de�ned for any positive function.

De�nition 1.2.22. For a function f : [a,∞)→ (0,∞), with a ≥ 0, its upper Matuszewska index

α(f) is de�ned by

α(f) := inf

{
α ∈ R; ∃Cα > 0 s.t. ∀Λ > 1, lim sup

x→∞
sup

λ∈[1,Λ]

f(λx)

λαf(x)
≤ Cα

}
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and its lower Matuszewska index β(f) by

β(f) := sup

{
β ∈ R; ∃Dβ > 0 s.t. ∀Λ > 1, lim inf

x→∞
inf

λ∈[1,Λ]

f(λx)

λβf(x)
≥ Dβ,

}
with the conventions in Remark 1.1.26.

We always have that β(f) ≤ α(f). The �niteness of these indices characterizes O-regular
variation and the analogous version of the three main theorems of regular variation is available.

Theorem 1.2.23 ([13], Th. 2.1.7, Characterization Theorem for ORV). Let f : [a,∞)→ (0,∞),
with a ≥ 0, be a measurable function. Then

f is O-regularly varying if and only if β(f) > −∞ and α(f) <∞.

Theorem 1.2.24 ([13], Th. 2.0.7, Uniform Convergence Theorem for ORV). Let f : [a,∞) →
(0,∞), with a ≥ 0, be a measurable function. If f ∈ ORV , then for every Λ > 1 we have that

0 < lim inf
x→∞

inf
λ∈[1,Λ]

f(λx)

f(x)
≤ lim sup

x→∞
sup

λ∈[1,Λ]

f(λx)

f(x)
<∞.

Theorem 1.2.25 ([13], Th. 2.2.7, Representation Theorem for ORV). Let f : [a,∞)→ (0,∞),
with a ≥ 0, be a measurable function. Then f ∈ ORV if and only if there exist A ≥ a and
measurable and bounded functions d, ξ : [A,∞)→ R such that

f(x) = exp

(
d(x) +

∫ x

A
ξ(u)

du

u

)
, x ≥ A. (1.12)

This representation is not unique and for every α, β satisfying β < β(f) ≤ α(f) < α, represen-
tations exist with the function ξ taking values only in [β, α].

We can give several alternative de�nitions of the indices α(f) and β(f).

Theorem 1.2.26 ([13], Th. 2.1.5 , Coro. 2.1.6 and Th. 2.1.7). Let f : [a,∞) → (0,∞), with
a ≥ 0, be a measurable function. If β(f) > −∞ or α(f) <∞, then

α(f) = lim
λ→∞

log fup(λ)

log λ
= inf

λ>1

log fup(λ)

log λ
,

β(f) = lim
λ→∞

log flow(λ)

log λ
= sup

λ>1

log flow(λ)

log λ
.

Please note that, in particular, last theorem states that if β(f) > −∞ the formula for α(f)
holds, and the one for β(f) is valid if α(f) < ∞. For instance, if f is nondecreasing β(f) ≥ 0
and both formulas hold.

The second equivalent de�nition is a concise characterization in terms of almost increasing
and almost decreasing properties and it is valid for any positive function.

De�nition 1.2.27. Let f : [a,∞)→ (0,∞), with a ≥ 0, be a function. We say that f is almost
increasing if there exists M > 0 such that

f(x) ≤Mf(y), y ≥ x ≥ a,

and f is said to be almost decreasing if there exists m > 0 such that

f(x) ≥ mf(y), y ≥ x ≥ a.
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Theorem 1.2.28 ([13], Th. 2.2.2). Let f : [a,∞)→ (0,∞), with a ≥ 0, be a function. Then

α(f) = inf{α ∈ R; x−αf(x) almost decreasing},

β(f) = sup{β ∈ R; x−βf(x) almost increasing}.

Finally, the third alternative de�nition is a consequence of the Representation Theorem for
ORV.

Theorem 1.2.29 ([1], Th. 3). Let f : [a,∞)→ (0,∞), with a ≥ 0, be a measurable function.
If f ∈ ORV , then

α(f) = inf
ξ
{lim sup

x→∞
ξ(x)},

β(f) = sup
ξ
{lim inf
x→∞

ξ(x)}.

where the sup and inf are taken over all measurable and bounded functions ξ for which there
exists d measurable and bounded such that (1.12) holds.

Other de�nitions of α and β are available if one assumes that f is O-regularly varying and
locally integrable on [a,∞) (see [1]).

These indices can be compared to the classical upper and lower order of a function.

De�nition 1.2.30. For a function f : [a,∞) → (0,∞), with a ≥ 0, its upper order ρ(f) (often
shorted to order) and lower order µ(f) are de�ned by

µ(f) := lim inf
x→∞

log f(x)

log x
, ρ(f) := lim sup

x→∞

log f(x)

log x
.

It is possible to de�ne a class of functions, that contains ORV, attending to the �niteness of
these orders. In the recent work of M. Cadena, M. Kratz and E. Omey [21], a generalization of
the main theorems of regular variation and O-regular variation has been shown for this class.

Similarly to Remark 1.2.6, O-regular variation has some stability property.

Remark 1.2.31. If f, g : [a,∞)→ (0,∞), with a ≥ 0, are measurable functions with

0 < lim inf
x→∞

f(x)

g(x)
≤ lim sup

x→∞

f(x)

g(x)
<∞, (1.13)

it is plain to check that β(f) = β(g), µ(f) = µ(g), ρ(f) = ρ(g) and α(f) = α(g). Consequently,
f ∈ ORV if and only if g ∈ ORV . In particular, if f ∈ RV then g ∈ ORV and β(g) = µ(g) =
ρ(g) = α(g).

Proposition 1.2.32 ([13], Prop. 2.2.5). Let f : [a,∞) → (0,∞), with a ≥ 0, be a function.
The orders and Matuszewska indices of f are related by

β(f) ≤ µ(f) ≤ ρ(f) ≤ α(f).

As an easy consequence of the Representation Theorem 1.2.4, if f ∈ Rρ, then β(f) = µ(f) =
ρ(f) = α(f) = ρ. However, the converse is not true as it shows the next example.

Example 1.2.33 ([13], Prop. 2.2.8). The function f : [1,∞)→ (0,∞) given by

f(x) =

{
f(e2j ) exp((log(x)− 2j)1/2) if x ∈ (e2j , e2j+1

], j = 0, 1, 2, . . . ,
1 if x ∈ [1, e].

satis�es the following properties:

JAVIER JIMÉNEZ GARRIDO



1.2. REGULAR VARIATION, O-REGULAR VARIATION AND PROXIMATE ORDERS 47

(i) f is nondecreasing and continuous,

(ii) 1 ≤ flow(λ) ≤ fup(λ) = exp((log(λ))1/2) for every λ > 1,

(iii) f ∈ ORV and β(f) = µ(f) = ρ(f) = α(f) = 0,

(iv) There do not exist A ≥ a and measurable and bounded functions d, ξ : [A,∞) → R with
limx→∞ ξ(x) = 0 such that

f(x) = exp

(
d(x) +

∫ x

A
ξ(u)

du

u

)
, x ≥ A.

Consequently, by Theorem 1.2.4, f is not RV and it does not exists g ∈ RV such that
(1.13) holds. Regarding Theorem 1.2.25 and Theorem 1.2.29 it shows that neither β(f) nor
α(f) is in general attainable for the representation.

We refer the reader to the cited proposition for the proof.

In Section 2.1, the relation between the orders, Matuszewska indices and O-regular variation
with growth properties for sequences is studied. In this context, this �nal result, comparing
the O-regular variation of a function and its derivative, will be used to connect the associated
function and the counting function of a weight sequence M (see Subsection 2.1.4).

Theorem 1.2.34 ([13], Th. 2.6.1, Coro. 2.6.2). Let f : [X,∞)→ (0,∞) be a locally integrable
function. We de�ne F (x) :=

∫ x
X f(t)/tdt. Then,

(i) if α(f) <∞, then lim supx→∞ f(x)/F (x) <∞.

(ii) if β(f) > 0, then lim infx→∞ f(x)/F (x) > 0.

(iii) we have that α(F ) ≤ lim supx→∞ f(x)/F (x).

(iv) we have that β(F ) ≥ lim infx→∞ f(x)/F (x).

Moreover, we have that

0 < lim inf
x→∞

f(x)

F (x)
≤ lim sup

x→∞

f(x)

F (x)
<∞.

if and only if α(f) <∞ and β(f) > 0. In this case, α(F ) = α(f) and β(F ) = β(f).

1.2.4 Regularly varying sequences

In 1973, R. Bojani¢ and E. Seneta [16] show that, under a suitable adaptation, one may consider
regularly varying sequences satisfying similar properties to the ones of regularly varying functions.
Even if all the results in this subsection, except the last one, were shown by R. Bojani¢ and
E. Seneta, we refer to [13] for the proofs, as in the previous sections. In the next chapter,
this notion will be used to characterize those sequences which can be attached to a proximate
order. This characterization will be given in terms of the sequence of quotients m = (mp−1)p∈N
of M, then the notation in this subsection has been chosen according to the considerations in
Remark 1.1.3.

De�nition 1.2.35. A sequence a = (ap)p∈N of positive numbers is said to be regularly varying

if
lim
p→∞

abλpc

ap
= g(λ) ∈ (0,∞), (1.14)

for every λ ∈ (0,∞).
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Theorem 1.2.36 ([13], Th. 1.9.5, Characterization Theorem for regularly varying sequences).
Let a = (ap)p∈N be a regularly varying sequence of positive numbers. Then there exists ρ ∈ R
such that the function g(λ) in (1.14) is equal to λρ.

In this case, ρ is called the index of regular variation of a.

The next theorem makes possible to apply the results about the theory of regularly varying
functions to regularly varying sequences.

Theorem 1.2.37 ([13], Th. 1.9.5). Let a = (ap)p∈N be a sequence of positive numbers. The
sequence a is regularly varying if and only if the function fa(x) = abxc for x ≥ 1 is regularly
varying.

From this embedding result, we deduce that the convergence of the limit in (1.14) is uniform
in the compact sets of (0,∞) and we see that regularly varying sequences also admit a very
convenient representation.

Theorem 1.2.38 ([13], Th. 1.9.7, Representation Theorem for regularly varying sequences).
Let a = (ap)p∈N be a regularly varying sequence of positive numbers of index ρ. There exist
sequences of real numbers (cp)p∈N and (ηp)p∈N, converging to c ∈ R and ρ, respectively, such
that

ap = exp

cp +

p∑
j=1

ηj
j

 , p ∈ N.

Conversely, such a representation for a sequence (ap)p∈N implies that it is regularly varying of
index ρ.

As it happens for functions, this notion is stable for the classical equivalence.

Remark 1.2.39. Let a = (ap)p∈N and b = (bp)p∈N be sequences of positive numbers. Assume
that a and b are equivalent in the classical sense , that is,

lim
p→∞

ap
bp

= 1,

we write a ∼ b. It is plain to check that a is a regularly varying sequence of index ρ if and only
if b also is. Please note that if a ∼ b, then there exists c > 0 such that c−1bp ≤ ap ≤ cbp for
every p ∈ N, that is, a ' b.

In Section 2.2, we will need to deal with sequences de�ned for p ∈ N0. As it is shown below,
there is no problem with this approach since regular variation is stable for index shifts.

Lemma 1.2.40 ([13], Lemma 1.9.6.). If a = (ap)p∈N is a regularly varying sequence, then

lim
p→∞

ap+1/ap = 1.

Consequently, the sequence a is regularly varying of index ρ if and only if the shifted sequence
sa := (sp = ap+1)p∈N is regularly varying of index ρ.

The next theorem is the discrete version of Proposition 1.2.15. We construct a `smooth'
sequence b = (bp)p∈N from a regularly varying sequence a = (ap)p∈N, where the condition
limx→∞ xf

′(x)/f(x) = ρ is replaced by

lim
p→∞

p(bp+1 − bp)
bp

= ρ.
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Theorem 1.2.41 ([13], Th. 1.9.8). Let ρ ∈ R be given. A sequence of positive real numbers
a = (ap)p∈N is regularly varying with index ρ if and only if it exists a sequence of positive real
numbers b = (bp)p∈N such that

(i) limp→∞ bp/ap = 1, i.e., a ∼ b.

(ii)
bp+1

bp
= 1 +

ω

p
+ o

(
1

p

)
as p→∞, (1.15)

and we know by Remark 1.2.39 that b is also a regularly varying sequence of index ρ.

Example 2.2.21 at the end of Chapter 2 shows that (1.15) does not hold in general for regularly
varying sequences.

Finally, we should mention that the theory of regularly varying sequences becomes much
simpler if one considers only monotone sequences. The following theorem of L. de Haan [33]
shows that if we have monotonicity, we only need to prove (1.14) for two suitable integer values
of λ.

Theorem 1.2.42 ([33], Th. 1.1.2). A monotone sequence of positive real numbers (ap)p∈N0 is
regularly varying if there exist positive integers `1, `2 ≥ 2 with log(`1)/ log(`2) irrational such
that for some real number ρ,

lim
p→∞

a`jp

ap
= `ρj , j = 1, 2.

This property is not true if the monotonicity hypothesis is removed as it has been proved by
J. Galambos and E. Seneta [30]. As it will be shown in Section 2.2, this is specially useful when
dealing with the quotient sequence m of a (lc) sequence M.

1.2.5 O-regularly varying sequences

The extension of the notion of O-regular variation for sequences was stated by S. Aljan£i¢ [2]
and detailed by D. Djur£i¢ and V. Boºin [25] in 1997. We introduce the basic elements of this
concept that will be required in the next chapter. For the de�nition, the characterization of
O-regularly varying functions given in Remark 1.2.21 has been taken into account.

De�nition 1.2.43. A sequence a = (ap)p∈N of positive numbers is said to be O-regularly varying
if

lim sup
p→∞

abλpc

ap
<∞,

for every λ ∈ (0,∞).

Note that if a = (ap)p∈N is regularly varying then it is O-regularly varying. As for regular
variation, O-regularly varying sequences are embeddable as O-regularly varying step function.

Theorem 1.2.44 ([25], Th. 1). Let a = (ap)p∈N be a sequence of positive numbers. The sequence
a is O-regularly varying if and only if the function fa(x) = abxc for x ≥ 1 is O-regularly varying.

From this result, we obtain the Uniform Convergence and Representation Theorems.

Theorem 1.2.45 ([25], Th. 2, Uniform Convergence Theorem for O-regularly varying sequences).
Let a = (ap)p∈N be an O-regularly varying sequence of positive numbers and a, b ∈ (0,∞) with
a ≤ b. Then

lim sup
p→∞

sup
λ∈[a,b]

abλpc

ap
<∞.
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Theorem 1.2.46 ([25], Th. 3, Representation Theorem for O-regularly varying sequences). Let
a = (ap)p∈N be an O-regularly varying sequence of positive numbers. Then there exist bounded
sequences of real numbers (dp)p∈N and (ξp)p∈N such that

ap = exp

dp +

p∑
j=1

ξj
j

 , p ∈ N.

Conversely, such a representation for a sequence (ap)p∈N implies that it is O-regularly varying.

In Section 2.1, the relation between weight functions and ORV sequences is established. In
that context, this Representation Theorem will play a key role in the construction of pathological
examples (see Example 2.2.26).

One may notice the stability of the notion of O-regular variation for sequences under '.

Remark 1.2.47. Let a = (ap)p∈N and b = (bp)p∈N be sequences of positive numbers with a ' b.
It is plain to check that a is O-regularly varying sequence if and only if b also is.

Finally, it naturally arises the question about the possibility of considering the Matuszewska
indices and the orders for sequences. This question was not posed by D. Djur£i¢ and V. Boºin
and will be the main topic of Subsection 2.1.2.
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Chapter 2

Logarithmically convex sequences,

O-regular variation and nonzero

proximate orders

The main objective of this chapter is to describe the connection between weight sequences and
the notions of proximate orders, regular and O-regular variation. In the �rst section, it will be
shown that the growth properties and indices of Section 1.1 can be represented in terms of upper
and lower orders and the Matuszewska indices. In the second section, we will restrict to the
study of those weight sequences which it is possible to associate a nonzero proximate order with,
characterizing this crucial point for the success in putting forward a satisfactory summability
theory in the general context.

2.1 Logarithmically convex sequences and O-regular variation

The results presented below revolve around the notion of O-regular variation. First, basic prop-
erties of weight sequences are described in di�erent ways, for instance, in terms of almost mono-
tonicity properties from which the connection with O-regular variation is inferred. Simultane-
ously in the second subsection, Matuszewska indices, upper and lower orders for sequences are
formalized together with the proof of some distinctive features. In third place, the ingredients
of the previous subsections will be combined, stating this way qualitative growth properties in
terms of quantitative values, orders and indices, which are related to the (independently de�ned)
indices γ(M) and ω(M) (see Subsection 1.1.4), measuring the opening of the regions for which the
Borel map is surjective or injective, respectively (see Chapter 3). In subsection four, the interac-
tion of the preceding concepts with the associated function ωM, considered in Subsection 1.1.3,
is illustrated. Finally, dual and bidual sequences are constructed giving a possible explanation
for some open questions regarding the essence of indices and orders.

2.1.1 Strongly nonquasianalyticity and moderate growth characterizations

This subsection is primarily devoted to the study of (snq) and (mg) conditions. Characterizations
of these properties will be obtained merging slightly improved versions of some classical results
leading, in the forthcoming subsections, to the notion of O-regular variation. For this purpose,
we need to introduce almost increasing and almost decreasing concepts for sequences, analogous
to the ones for functions (see De�nition 1.2.27).
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De�nition 2.1.1. Let a = (ap)p∈N be a sequence of positive numbers. We say that a is almost
increasing if there exists M > 0 such that

ap ≤Maq, for all p, q ∈ N with q ≥ p ≥ 1,

and a is said to be almost decreasing if there exists m > 0 such that

ap ≥ maq, for all p, q ∈ N with q ≥ p ≥ 1.

We directly see that if a = (ap)p∈N is nondecreasing (resp. nonincreasing) then it is almost
increasing (resp. almost decreasing) with M = 1 (resp. m = 1). It is also plain to check that
these notions are stable for '.

The �rst result characterizes (snq) property in �ve di�erent forms. It is obtained by the com-
bination of results of R. Meise and B. A. Taylor [75, Prop. 1.3], K. N. Bari and S. B. Ste£kin [12,
Lemma 2], H.-J. Petszche [77, Prop. 1.1, Coro. 1.3.(a)] and S. Tikhonov [99, Lemma 4.5]. The
proof is included because some implications are not a direct application of their theorems, for
instance some of them were proved for functions and in others it is assumed that the sequence
M is (lc), which is not necessary.

Proposition 2.1.2. Let M be a sequence such that the sequence M̂, given by M̂p := p!Mp,
p ∈ N0, is logarithmically convex. Then, the following statements are equivalent:

(i) the sequence M satis�es (snq), that is, there exists B > 0 such that

∞∑
`=p

1

(`+ 1)m`
≤ B

mp
, p ∈ N0,

(ii) there exists a logarithmically convex sequence H such that h 'm and

inf
p≥1

h2p

hp
> 1,

(iii) we have that lim
k→∞

lim inf
p→∞

mkp

mp
=∞,

(iv) there exists k ∈ N, k ≥ 2, such that

lim inf
p→∞

mkp

mp
> 1, (2.1)

(v) there exists ε > 0 such that (mp/p
ε)p∈N is almost increasing,

(vi) for every θ ∈ (0, 1) there exists k ∈ N, k ≥ 2, such that for every p ∈ N we have that
mp ≤ θmkp.

Proof. (i)⇒(ii) For every p ∈ N0, we de�ne the sequence

tp :=
1

mp
+
∑
`≥p

1

(`+ 1)m`
.
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Since m̂ = (m̂p = (p+ 1)mp)p∈N0 is nondecreasing (see Lemma 1.1.7.(i)), the sequence (tp)p∈N0

is nonincreasing because

tp =
1

mp
+

1

(p+ 1)mp
+

∞∑
`=p+1

1

(`+ 1)m`
=
p+ 2

m̂p
+

∞∑
`=p+1

1

(`+ 1)m`

≥ p+ 2

m̂p+1
+

∞∑
`=p+1

1

(`+ 1)m`
= tp+1, for all p ∈ N0.

Using that M satis�es (i), i.e., (snq), for every p ∈ N0 we observe that

mptp = 1 +mp

∞∑
`=p

1

(`+ 1)m`
≤ 1 +B,

mptp = 1 +mp

∞∑
`=p

1

(`+ 1)m`
≥ 1 + 0.

Hence there exists C := 1 + B > 1 such that C−1mp ≤ (tp)
−1 ≤ mp for each p ∈ N0 and we

de�ne bp := 1/tp for every p ∈ N0. With the conventions in Remark 1.1.3, we have that b 'm,
then, by Proposition 1.1.18, B satis�es (snq) and, since (tp)p∈N0 is nonincreasing, we have that
B is (lc). For every p ∈ N0, we consider

sp :=
1

bp
+
∞∑
`=p

1

(`+ 1)b`
.

Since B is (lc), we have that b̂ = (̂bp := (p + 1)bp)p∈N0 is nondecreasing and, as above, we see
that (sp)p∈N0 is nonincreasing. We de�ne hp := 1/sp for every p ∈ N0, then H is (lc). Since B
satis�es (snq), proceeding as before, we see that h ' b and, consequently, h ' m. Moreover,
since b is nondecreasing, for every p ∈ N we observe that

h2p

hp
=

1/s2p

1/sp
=

(1/bp) +
∑

`≥p(1/(`+ 1)b`)

(1/b2p) +
∑

`≥2p(1/(`+ 1)b`)
≥ 1 +

∑2p−1
`=p (1/(`+ 1)b`)

(1/b2p) +
∑

`≥2p(1/(`+ 1)b`)
.

Applying again that b is nondecreasing, for every p ∈ N we see that

h2p

hp
≥ 1 +

p/(2pb2p)

s2p
= 1 +

1

2b2ps2p
.

Since B satis�es (snq), as we previously did, we can show that there exists D > 0 such that for
every p ∈ N we have bpsp ≤ D and we conclude that

h2p

hp
≥ 1 +

1

2D
.

(ii)⇒(iii) First we will show that

lim
k→∞

lim inf
p→∞

hkp
hp

=∞. (2.2)

By (ii), there exists γ > 1 such that h2p/hp > γ for all p ∈ N and we deduce that h2np/hp > γn

for every p, n ∈ N. Therefore, for every n ∈ N we have that

lim inf
p→∞

h2np

hp
≥ γn.
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Given M > 0, there exists n0 ∈ N such that γn0 > M . Using that H is (lc) (by (ii)), for every
k ≥ 2n0 we see that hkp ≥ h2n0p for every p ∈ N and we deduce that

lim inf
p→∞

hkp
hp
≥ lim inf

p→∞

h2n0p

hp
≥ γn0 > M,

i.e., (2.2) is valid. By (ii), h ' m, that is, there exists c > 1 such that c−1hp ≤ mp ≤ chp for
every p ∈ N0. Then, for every k, p ∈ N we have that

hkp
c2 hp

≤
mkp

mp
.

Since (2.2) holds, we conclude that

lim
k→∞

lim inf
p→∞

mkp

mp
=∞.

(iii)⇒(iv) Immediate.
(iv)⇒(v) We deduce from (iv) that there exists ε > 0 such that

lim inf
p→∞

mkp/mp > kε.

Then, there exists p0 ∈ N such that mkp/k
ε > mp for every p ≥ p0. For every q, ` ∈ N with

q ≥ ` ≥ p0 there exists n ∈ N0 such that kn` ≤ q < kn+1`, so we have that

m`

`ε
≤ mk`

(k`)ε
≤ mkn`

(kn`)ε
.

Since m̂ is nondecreasing, for q ≥ ` ≥ p0 with kn` ≤ q < kn+1` we deduce that

m`

`ε
≤ mkn`

(kn`)ε
≤ (q + 1)mq

(kn`+ 1)(kn`)ε
=
mq

qε
(q + 1)qε

(kn`+ 1)(kn`)ε
≤ mq

qε
kεk.

We denote by

A := max
1≤`≤q≤p0

m`

mq

qε

`ε
> 1, C := Akεk.

If q ≥ ` ≥ p0 or if ` ≤ q ≤ p0, we see that m`q
ε ≤ Cmq`

ε, and if ` ≤ p0 ≤ q we observe that

m`

`ε
≤ Amp0

pε0
≤ Cmq

qε
,

and we conclude that (mp/p
ε)p∈N is almost increasing.

(v)⇒(vi) Since (mp/p
ε)p∈N is almost increasing, there exists C > 1 such that for every q, p ∈ N

with q ≥ p we have that
mp

pε
≤ Cmq

qε
.

We �x θ ∈ (0, 1), we take k ∈ N such that k > (C/θ)1/ε with k ≥ 2 and for every p ∈ N we have
that

mp ≤ C
mkp

kε
< θmkp.

(vi)⇒ (i) For θ = 1/2 there exists k ∈ N, k ≥ 2, such that 2mp ≤ mkp for every n, p ∈ N we
deduce that

2nmp ≤ mknp. (2.3)
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Since m̂ is nondecreasing, for every p ∈ N we have that

∞∑
`=p

1

(`+ 1)m`
=
∞∑
n=0

kn+1p−1∑
`=knp

1

(`+ 1)m`
≤
∞∑
n=0

knp(k − 1)

(knp+ 1)mknp
≤ (k − 1)

∞∑
n=0

1

mknp
.

Applying (2.3), for all p ∈ N we deduce that
∞∑
`=p

1

(`+ 1)m`
≤ k − 1

mp

∞∑
n=0

1

2n
=

2(k − 1)

mp
.

It only remains the case p = 0, by taking B = max(2(k−1), 1+2(k−1)m0/m1), we deduce that
∞∑
`=p

1

(`+ 1)m`
≤ B

mp

for every p ∈ N0. �

If M is (lc), M̂ = (p!Mp)p∈N0 is also (lc). However, the opposite is not true in general. The
ultradi�erentiable classes of functions are frequently de�ned only assuming that M̂ is (lc), for
further details see Remark 3.1.11. This weaker condition for M will be considered along this
dissertation in order to be able to bring our results and the ones in the ultradi�erentiable setting
together.

Applying Lemma 1.1.9, we can give a characterization of (mg) condition in terms of the
sequence of quotients of a sequence M such that M̂ is (lc).

Lemma 2.1.3. Let M be a sequence such that the sequence M̂ is (lc). The following are
equivalent:

(i) M has (mg),

(ii) sup
p∈N0

m2p

mp
<∞,

(iii) there exists γ > 0 and k ∈ N, k ≥ 2, such that

lim sup
p→∞

mkp

mp
< kγ . (2.4)

Proof. (i)⇒(ii) Since M has (mg) and (p+ q)! ≤ 2p+qp!q! for all p, q ∈ N0 we observe that

M̂p+q = (p+ q)!Mp+q ≤ 2p+qp!q!Ap+qMpMq = (2A)p+qM̂qM̂p,

that is, M̂ also is (mg). Using that M̂ is (lc) and Lemma 1.1.9, we obtain that supp∈N0
m̂2p/m̂p

is �nite and we conclude that

sup
p∈N0

m2p

mp
= sup

p∈N0

m̂2p

m̂p

p+ 1

2p+ 1
≤ sup

p∈N0

m̂2p

m̂p
<∞.

(ii)⇒(iii) Immediate, taking k = 2 and γ > log(supp∈N0
(m2p/mp))/ log(2).

(iii)⇒(i) From (iii), it follows that supp∈N0
(mkp/mp) is �nite. Since M̂ is (lc), we see that

sup
p∈N0

m̂2p

m̂p
≤ sup

p∈N0

m̂kp

m̂p
= sup

p∈N0

mkp

mp

kp+ 1

p+ 1
<∞.

Hence, we can apply Lemma 1.1.9 to the (lc) sequence M̂ and we deduce that M̂ has (mg). Since
(p+ q)! ≥ p!q! we conclude that M has also (mg).

�
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Following the ideas in K. N. Bari and S. B. Ste£kin [12, Lemma 3], we can give �ve equivalent
conditions, analogous to the ones for (snq) that, according to the last lemma condition (iii),
are tightly connected to (mg). The limiting value −1 appears because M̂ is (lc), under weaker
conditions a more general version of this result might be given in the same direction of the
auxiliary Lemma 2.1.21 that extends Proposition 2.1.2.

Proposition 2.1.4. Let M be a sequence such that the sequence M̂ is (lc). For every γ > −1,
the following statements are equivalent:

(i) there exists B > 0 such that

p∑
`=0

(`+ 1)γ

(`+ 1)m`
≤ B(p+ 1)γ

mp
for all p ∈ N0,

(ii) there exists a sequence H such that ((p+ 1)−γhp)p∈N0 is nonincreasing, h 'm and

sup
p≥1

h2p

hp
< 2γ , (2.5)

(iii) we have that lim
k→∞

lim sup
p→∞

mkp

kγmp
= 0,

(iv) there exists k ∈ N, k ≥ 2, such that

lim sup
p→∞

mkp

mp
< kγ ,

(v) there exists ε > 0 such that (mp/p
γ−ε)p∈N is almost decreasing,

(vi) For every θ ∈ (0, 1) there exists k ∈ N, k ≥ 2, such that for every p ∈ N we have that
mkp < θkγmp.

Proof. (i)⇒(ii) First, we consider the auxiliary sequence (αp)p∈N0 given by

αp :=
(p+ 2)γ+1 − (p+ 1)γ+1

(p+ 2)γ
, p ∈ N0.

We observe that limp→∞ αp = γ + 1 > 0, we take D > max(2γ+1(γ + 1)/(2γ+1 − 1), supp∈N αp)
and for every p ∈ N0 we de�ne the sequence

tp :=
1

(p+ 1)γ

p∑
`=0

(`+ 1)γ

(`+ 1)m`
− 1

Dmp
.

Using that m satis�es (i), for every p ∈ N0 we have that

mptp =
mp

(p+ 1)γ

p∑
`=0

(`+ 1)γ

(`+ 1)m`
− 1

D
≤ B,

and, since m̂ is nondecreasing and γ > −1, for every p ∈ N we see that

mptp ≥
1

(p+ 1)γ+1

p∑
`=0

(`+ 1)γ − 1

D
≥ 1

(p+ 1)γ+1

∫ p+1

1
xγdx− 1

D

≥ 1

(γ + 1)
− 1

(γ + 1)(p+ 1)γ+1
− 1

D
≥ D(2γ+1 − 1)− (γ + 1)2γ+1

(γ + 1)2γ+1D
> 0.
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Consequently, if bp := 1/tp for every p ∈ N0, we have that b 'm. It follows that b also satis�es
(i) for a constant C ≥ B. We will verify that ((p+ 1)−γbp)p∈N0 is nonincreasing or, equivalently,
that ((p+ 1)γtp)p∈N0 is nondecreasing. Since m̂ is nondecreasing, for all p ∈ N0

(p+ 1)γtp =

p∑
`=0

(`+ 1)γ

(`+ 1)m`
− (p+ 1)γ

Dmp
≤

p+1∑
`=0

(`+ 1)γ

(`+ 1)m`
− (p+ 2)γ

(p+ 2)mp+1
− (p+ 1)γ(p+ 1)

D(p+ 2)mp+1
.

For all p ∈ N0, by the de�nition of D, D ≥ αp which leads to (p+2)γD+(p+1)γ+1 ≥ (p+2)γ+1

and we deduce that

(p+ 1)γtp ≤
p+1∑
`=0

(`+ 1)γ

(`+ 1)m`
− (p+ 2)γD + (p+ 1)γ+1

D(p+ 2)mp+1
≤ (p+ 2)γtp+1,

as desired. From the sequence b, for every p ∈ N0 we construct

sp :=
1

(p+ 1)γ

p∑
`=0

(`+ 1)γ

(`+ 1)b`
+

1

bp
.

Since b also satis�es (i), for every p ∈ N0 we observe that

1 ≤ bpsp = 1 +
bp

(p+ 1)γ

p∑
`=0

(`+ 1)γ

(`+ 1)b`
≤ 1 + C,

then if hp := 1/sp for every p ∈ N0, we have that h ' b ' m. Using that ((p + 1)−γbp)p∈N0 is
nonincreasing, we notice that

(p+ 1)γsp =

p+1∑
`=0

(`+ 1)γ

(`+ 1)b`
− (p+ 2)γ

(p+ 2)bp+1
+

(p+ 1)γ

bp

≤
p+1∑
`=0

(`+ 1)γ

(`+ 1)b`
+

(p+ 2)γ

bp+1

(p+ 1)

p+ 2
≤ (p+ 2)γsp+1, p ∈ N0

Hence ((p + 1)−γhp)p∈N0 is nonincreasing. Finally, we verify that h satis�es (2.5). Applying
again that ((p+ 1)−γbp)p∈N0 is nonincreasing, we see that

h2p

hp
=

1/s2p

1/sp
=

(p+ 1)−γ
∑p

`=0(`+ 1)γ−1(b`)
−1 + (bp)

−1

(2p+ 1)−γ
∑2p

`=0(`+ 1)γ−1(b`)−1 + (b2p)−1

≤(2p+ 1)γ

(p+ 1)γ

(
1−

∑2p
`=p+1(`+ 1)γ−1(b`)

−1∑2p
`=0(`+ 1)γ−1(b`)−1 + (2p+ 1)γ(b2p)−1

)
.

Once more, since ((p+ 1)−γbp)p∈N0 is nonincreasing, for every p ∈ N we have that

2p∑
`=p+1

(`+ 1)−1

(`+ 1)−γ(b`)
≥ (2p+ 1)−1p

(p+ 1)−γ(bp)
,

and, by the de�nition of s2p, we deduce that

h2p

hp
≤ (2p+ 1)γ

(p+ 1)γ

(
1− (p+ 1)γp

bps2p(2p+ 1)γ+1

)
≤ E

(
1− 1

(bp/b2p)b2ps2p3E

)
.
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where E = max(1, 2γ). Using that b ' m and that m̂ is nondecreasing, we know that there
exists a constant a ≥ 1 such that for all p ∈ N

bp
b2p
≤ a2 mp

m2p
≤ a2 2p+ 1

p+ 1
≤ 2a2.

Finally, since bpsp ≤ 1 + C for every p ∈ N and 3E > 1, we conclude that

h2p

hp
≤ E

(
1− 1

2a2(1 + C)3E

)
< E.

(ii)⇒(iii) First, we will show that

lim
k→∞

lim sup
p→∞

hkp
kγhp

= 0. (2.6)

By (ii), there exists ε > 0 such that h2p/hp < 2γ−ε, so we deduce that h2np/hp < 2(γ−ε)n for
every p, n ∈ N. Hence for every n ∈ N we have that

lim sup
p→∞

h2np

hp
≤ 2n(γ−ε).

Given δ > 0, there exists n0 ∈ N such that (2−ε)n0 max(2−γ , 2γ) < δ. We take k ∈ N, k ≥ 2n0 ,
there exists n ≥ n0 such that 2n ≤ k < 2n+1. Using that ((p+ 1)−γhp)p∈N0 is nonincreasing, we
see that

hkp
kγhp

≤ h2np(kp+ 1)γ

kγhp(2np+ 1)γ
≤ h2np

2nγhp
max(2−γ , 2γ).

Consequently, we deduce that

lim sup
p→∞

hkp
kγhp

≤ lim sup
p→∞

h2np

2nγhp
max(2−γ , 2γ) < δ, k ≥ 2n0 ,

so (2.6) is valid. By (ii), h 'm, that is, there exists c > 1 such that c−1hp ≤ mp ≤ chp for every
p ∈ N0. Then, for every k, p ∈ N we have that

mkp

kγmp
≤
c2 hkp
kγhp

.

Since (2.6) holds, we conclude that limk→∞ lim supp→∞mkp/(k
γmp) = 0.

(iii)⇒(iv) Immediate.
(iv)⇒(v) There exists p0 ∈ N and ε > 0 such that mkp < kγ−εmp for every p ≥ p0. By iterating
this inequality, for every j ∈ N we obtain that

mkjp

mp
< kj(γ−ε), p ≥ p0.

For q ≥ p ≥ p0, there exists j ∈ N0 such that kjp ≤ q < kj+1p and, using that m̂ is nondecreasing,
we see that

mq

qγ−ε
≤
mkj+1p(k

j+1p+ 1)

qγ−ε(q + 1)
≤ k(j+1)(γ−ε)

qγ−ε
(kj+1p+ 1)

(q + 1)
mp ≤ max(kγ−ε, 1)k

mp

pγ−ε
.

We de�ne D := sup1≤p≤q≤p0{mqp
γ−ε(qγ−εmp)

−1} ≥ 1 and E := Dkmax(kγ−ε, 1), it follows that

mq

qγ−ε
≤ E mp

pγ−ε
, q ≥ p ≥ 1.
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(v)⇒(vi) Since (mp/p
γ−ε)p∈N is almost decreasing, there exists E > 0 such that for every k, p ∈ N

we have that
mkp

(kp)γ−ε
≤ E mp

pγ−ε
.

Then for every θ ∈ (0, 1) we take k large enough such that E < θkε. Consequently, for every
p ∈ N we see that

mkp ≤
E

kε
kγmp < θkγmp.

(vi)⇒(i) For θ ∈ (0, 1) there exists k ∈ N with k ≥ 2 such that for every q ∈ N we have that
mkq < θkγmq. Then for any s, j ∈ N0 with s ≥ j we see that

mks+1 < (θkγ)s+1−jmkj . (2.7)

For all p ∈ N there exists s ∈ N0 such that ks ≤ p < ks+1. Since m̂ is nondecreasing, for all
p ∈ N we have that

p∑
`=1

(`+ 1)γ

(`+ 1)m`
≤
ks+1−1∑
`=1

(`+ 1)γ

(`+ 1)m`
=

s∑
j=0

kj+1−1∑
`=kj

(`+ 1)γ

(`+ 1)m`

≤
s∑
j=0

1

(kj + 1)mkj

kj+1−1∑
`=kj

(`+ 1)γ ≤
s∑
j=0

kj(k − 1)(kj)γ max(1, kγ)

(kj + 1)mkj
.

Then by (2.7), for every p ∈ N we get

p∑
`=1

(`+ 1)γ

(`+ 1)m`
≤ max(1, kγ)(k − 1)

s∑
j=0

kjγ(θkγ)s+1−j

mks+1

≤ (k − 1) max(1, kγ)k(s+1)γ

mks+1

s∑
j=0

θs+1−j .

Since m̂ is nondecreasing and ks ≤ p < ks+1, we deduce that

p∑
`=1

(`+ 1)γ

(`+ 1)m`
≤ (k − 1) max(1, k2γ)(p+ 1)γ

(1− θ)mp

(ks+1 + 1)

(p+ 1)
≤ C (p+ 1)γ

mp
.

with C := (k − 1) max(1, k2γ)k(1 − θ)−1. We need to add the term for ` = 0. By (2.7), we
see that mks+1 < kγ(s+1)m1 for all s ∈ N0. As before, using that m̂ is nondecreasing, for every
ks ≤ p < ks+1 we obtain that

1

m1
≤ kγ(s+1)

mks+1

≤ kγ(s+1)k

mp
≤ kmax(1, kγ)

(p+ 1)γ

mp
.

Taking M = max{kmax(1, kγ), C}, for all p ∈ N we conclude that

p∑
`=0

(`+ 1)γ

(`+ 1)m`
≤ 1

m0
+M

(p+ 1)γ

mp
≤
(
m1

m0
+ 1

)
M

(p+ 1)γ

mp
.

Since for p = 0 (i) trivially holds, we conclude that (i) is valid for every p ∈ N0. �

Remark 2.1.5. If condition (iv) in Proposition 2.1.4 holds for some γ > −1 then it exists
−1 < γ′ < γ such that (iv) is also true for γ′. Then conditions (i)-(vi) are also valid for γ′ and
the set of γ > −1 such that any of these conditions is satis�ed is open.
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Assume that (2.4) is satis�ed for some k0 ∈ N. Then it is straightforward to check (2.4) is
also satis�ed, suitably enlarging the value of γ, for all k ≥ k0 applying the trivial estimation
deduced for kn0 , with n ∈ N such that kn0 ≥ k. Consequently, since the previous results can also
be applied to a (lc) sequence M, it is possible to characterize strong regularity of a sequence M
in terms of the sequence of quotients using (2.1) and (2.4).

Corollary 2.1.6. Let M be a sequence of positive numbers with M0 = 1. The following are
equivalent:

(i) M is strongly regular,

(ii) m is nondecreasing and there exists k ∈ N, k ≥ 2, such that

1 < lim inf
p→∞

mkp

mp
≤ lim sup

p→∞

mkp

mp
<∞.

This corollary points out the connection between these properties and the notion of O-regular
variation (see De�nition 1.2.20 and De�nition 1.2.43). The study of this relation will be the main
aim of the subsequent subsections.

Remark 2.1.7. Moreover, this characterization allows us to easily verify if a sequence is or not
strongly regular. For example:

(i) We consider the sequences Mα,β = (p!αΠp
m=0 logβ(e + m))p∈N0 , where α > 0 and β ∈ R.

Since m = ((p+ 1)α logβ(e+ p+ 1))p∈N0 for β ≥ 0 is nondecreasing Mα,β is (lc). For β < 0
since mp = (p + 1)α logβ(e + p + 1) is eventually nondecreasing, we can modify the �rst
terms according to Remark 1.1.19 and change the sequence for a (lc) one. We observe that

lim
p→∞

m2p

mp
= 2α.

By Lemma 1.1.9, we deduce that Mα,β has (mg) and, by Proposition 2.1.2, we have that
Mα,β is (snq).

(ii) For the sequence M0,β = (Πp
m=0 logβ(e + m))p∈N0 with β > 0, we also have that it is (lc)

and we see that

lim
p→∞

mkp

mp
= 1 for all k ∈ N, k ≥ 2.

By Lemma 1.1.9 we deduce that M0,β has (mg) and, by Proposition 2.1.2, we have that
M0,β does not satisfy (snq).

(iii) Finally, M = (qp
2
)p∈N0 with q > 1 is (lc) because m = (q2p+1)p∈N0 is nondecreasing. We

have that

lim
p→∞

mkp

mp
= lim

p→∞
q2p(k−1) =∞, for every k ∈ N, k ≥ 2.

By Lemma 1.1.9 we deduce that M has not (mg) and, by Proposition 2.1.2, we have that
M is (snq).
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2.1.2 Orders and Matuszewska indices for sequences

The work of D. Djur£i¢ and V. Boºin [25] deals with the de�nition of O-regularly varying se-
quences and the proof of the fundamental theorems (see Subsection 1.2.5). Even if some infor-
mation can be inferred from their paper, to the best of our knowledge, the notions of orders
and Matuszewska indices for sequences have not been considered. In this subsection, a possi-
ble formalization of these concepts is proposed, providing a simple description, analyzing their
behavior under elementary sequence transformations and showing some stability properties.

The regular variation and the O-regular variation of a sequence a = (ap)p∈N is equivalent
to the regular variation and, respectively, the O-regular variation of the function fa(x) = abxc
which suggests the next de�nition.

De�nition 2.1.8. Let a = (ap)p∈N be a sequence of positive numbers. We de�ne its upper

Matuszewska index α(a), its lower Matuszewska index β(a), its upper order ρ(a) and its lower
order µ(a) by

α(a) := α(fa), β(a) := β(fa), ρ(a) := ρ(fa), µ(a) := µ(fa),

where fa(x) = abxc for all x ≥ 1.

Remark 2.1.9. By Proposition 1.2.32 , it immediately follows that

β(a) ≤ µ(a) ≤ ρ(a) ≤ α(a).

and, using Theorems 1.2.23 and 1.2.44, we see that a is O-regularly varying if and only if
β(a) > −∞ and α(a) <∞.

Thanks to the almost increasing and almost decreasing notions for sequences de�ned in the
previous subsection, it is possible to skip the step function fa and give a simple characterization
of these indices and orders only in terms of the sequence a.

Proposition 2.1.10. Let a = (ap)p∈N be a sequence of positive numbers. We have that

α(a) = inf{α ∈ R; (ap/p
α)p∈N is almost decreasing},

β(a) = sup{β ∈ R; (ap/p
β)p∈N is almost increasing},

ρ(a) = lim sup
p→∞

log(ap)

log(p)
, µ(a) = lim inf

p→∞

log(ap)

log(p)
.

Proof. By Theorem 1.2.28, we have that

α(a) = α(fa) = inf{α ∈ R; x−αabxc almost decreasing},

β(a) = β(fa) = sup{β ∈ R; x−βabxc almost increasing}.

If x−γabxc is almost decreasing or almost increasing, it follows immediately that (p−γap)p∈N is al-
most decreasing or almost increasing, respectively. Conversely, if (p−γap)p∈N is almost decreasing
or almost increasing and we take any y ≥ x ≥ 1, then byc ≥ bxc ≥ 1 and we have that

abxc

xγ
=

(bxc)γ

xγ
abxc

(bxc)γ
≥ m(bxc)γ

xγ
abyc

(byc)γ
≥ m

2

abyc

yγ
,

abxc

xγ
≤

abxc

(bxc)γ
≤M

abyc

(byc)γ
= M

yγ

(byc)γ
abyc

yγ
≤ 2M

abyc

yγ
,
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where M and m are the positive constants of the almost monotonicity of (p−γap)p∈N. Conse-
quently, the equality for the Matuszewska indices holds. On the other hand, we have that

log(abxc)

log(x)
≤

log(abxc)

log(bxc)
≤ log(x)

log(bxc)
log(abxc)

log(x)
, x ≥ 1.

Since limx→∞ log(x)/ log(bxc) = 1, we conclude that

ρ(a) = lim sup
x→∞

log(abxc)

log(x)
= lim sup

x→∞

log(abxc)

log(bxc)
= lim sup

p→∞

log(ap)

log(p)
,

µ(a) = lim inf
x→∞

log(abxc)

log(x)
= lim inf

x→∞

log(abxc)

log(bxc)
= lim inf

p→∞

log(ap)

log(p)
.

�

When applying rami�cation arguments in the classes of functions de�ned in terms of a given
sequence M, transformations of M will appear. Using this last characterization result, the indices
for the transforms and the original sequence can be compared as indicated below.

Proposition 2.1.11. Let a = (ap)p∈N be a sequence of positive numbers. For any r ∈ R\{0},
we have that

α(ar) = rα(a), β(ar) = rβ(a), ρ(ar) = rρ(a), µ(ar) = rµ(a),

where ar := (arp)p∈N and we also obtain that

α(gr · a) = r + α(a), β(gr · a) = r + β(a), ρ(gr · a) = r + ρ(a), µ(gr · a) = r + µ(a),

where gr := (pr)p∈N and gr · a = (prap)p∈N.

Proof. For every α ∈ R, we observe that (app
−γ)p∈N is almost decreasing (resp. almost in-

creasing) if and only if (arpp
−γr)p∈N is almost decreasing (resp. almost increasing). By Proposi-

tion 2.1.10, we deduce that α(ar) = rα(a) and β(ar) = rβ(a). Similarly, (app
−γ)p∈N is almost

decreasing (resp. almost increasing) if and only if (prapp
−γ−r)p∈N is almost decreasing (resp.

almost increasing), then α(gr · a) = r + α(a) and β(gr · a) = r + β(a).

Employing the representation given by Proposition 2.1.10 of µ and ρ, we conclude that

ρ(ar) = lim sup
p→∞

r log(ap)

log p
= rρ(a), ρ(gr · a) = lim sup

p→∞

r log(p) + log(ap)

log p
= r + ρ(a),

µ(ar) = lim inf
p→∞

r log(ap)

log p
= rµ(a), µ(gr · a) = lim inf

p→∞

r log(p) + log(ap)

log p
= r + µ(a).

�

In the context of ultraholomorphic classes, it is always possible to switch M for an equivalent
sequence. Since O-regular variation is stable for ' (see Remark 1.2.47), it is unavoidable to ask
if the same happens for the orders and the Matuszewska indices.

Lemma 2.1.12. Let a = (ap)p∈N and b = (bp)p∈N be sequences of positive numbers with a ' b.
Then, we see that

α(a) = α(b), β(a) = β(b), ρ(a) = ρ(b), µ(a) = µ(b).
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Proof. For every r ∈ R\{0}, we observe that a ' b implies that gra ' grb, where gr = (pr)p∈N.
It is plain to check that almost monotonicity is kept for ' by suitably enlarging the corresponding
constant and we conclude, using Proposition 2.1.10, that α(a) = α(b) and β(a) = β(b). Since
a ' b, there exists c > 1 such that apc−1 ≤ bp ≤ c for every p ∈ N and we have that

log(ap)− log(c)

log(p)
≤ log(bp)

log(p)
≤ log(ap) + log(c)

log(p)
, p ∈ N.

Taking lim sup and lim inf in these inequalities, by Proposition 2.1.10, we get ρ(a) = ρ(b) and
µ(a) = µ(b). �

In the next subsection, these results will be applied for the sequence of quotients m =
(mp−1)p∈N ofM, then the stability of those indices under ' is a �rst approach but the appropriate
question is the stability under ≈. A partial but su�cient solution is given at the end of the current
section (see Remarks 2.1.24 and 2.1.32).

Since the sequencem is de�ned for p ∈ N0, it also naturally arises the question of the stability
of these values and the notion of O-regular variation for index shifts.

Lemma 2.1.13. For any sequence a = (ap)p∈N and the corresponding shifted sequence sa :=
(ap+1)p∈N we have that

α(a) = α(sa), β(a) = β(sa), ρ(a) = ρ(sa), µ(a) = µ(sa).

Consequently, by Remark 2.1.9, a is O-regularly varying if and only if sa also is.

Proof. We observe that for every α ≥ 0 we have that pα ≤ (p+ 1)α ≤ 2αpα, then for any γ ∈ R
we see that (pγap+1)p∈N is almost decreasing (resp. almost increasing) if and only if (pγap)p∈N
is almost decreasing (resp. almost increasing). Hence α(a) = α(sa) and β(a) = β(sa).

We also observe that
log(ap+1)

log(p)
=

log(ap+1)

log(p+ 1)

log(p+ 1)

log(p)

and, since limp→∞ log(p+ 1)/ log(p) = 1, we conclude that ρ(a) = ρ(sa) and µ(a) = µ(sa).
�

Remark 2.1.14. If the sequence a is regularly varying of index ω ∈ R, by Theorem 1.2.37, the
step function fa is also regularly varying of index ω, we deduce that

β(a) = µ(a) = ρ(a) = α(a) = ω.

The opposite is not true in general, see Examples 2.2.22 and 2.2.23 at the end of next section.

2.1.3 Logarithmically convex sequences, growth indices and O-regular vari-

ation

Almost monotonicity notions appear in the last two subsections: characterizing (snq) and (mg)
conditions and in the de�nition of the Matuszewska indices for sequences. This fact is an obvious
hint of the relation between growth properties for weight sequences and O-regular variation which
will be settled in this subsection. Therefore, several equivalent de�nitions of the Matuszewska
indices are deduced. Finally, the true nature of Thilliez's and Sanz's growth indices, γ(M) and
ω(M), is revealed. These growth indices, which were independently de�ned and, as it will be
shown in Chapter 3, characterize the injectivity and surjectivity of the Borel map, coincide with
β(m) and µ(m), respectively.
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The sequence of quotientsm of a sequenceM, with the conventions in Remark 1.1.3, is de�ned
for p ∈ N0, subsequently, a index shift problem appears. Please note that, as some authors [17, 52,
77, 78, 91] have done, it is possible to consider a di�erent de�nition of the sequences of quotients
that will make the results in this section more friendly, but other parts in the forthcoming sections
will become troublesome. Moreover, taking into account Lemma 1.2.40 and Lemma 2.1.13, the
study of the regular variation, O-regular variation, orders and Matuszewska indices of m =
(mp−1)p∈N is equivalent to the study of the same features for the shifted sequence sm = (mp)p∈N.
Hence we will be able to deal with both approaches at once using one or another sequence, as
appropriate.

The central connection between logarithmic convexity and O-regular variation can be formu-
lated as follows.

Proposition 2.1.15. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp−1)p∈N. For any γ ∈ R, we have that

(i) if there exists t = (tp)p∈N0 nondecreasing such that ((p+ 1)−γmp)p∈N0 ' t, then β(m) ≥ γ.

(ii) if β(m) > γ, then there exists t = (tp)p∈N0 nondecreasing such that ((p+ 1)−γmp)p∈N0 ' t.

(iii) if M̂ = (p!Mp)p∈N0 is (lc), then β(m) ≥ −1.

(iv) if M is (lc), then β(m) ≥ 0.

Proof. (i) If there exists t = (tp)p∈N0 nondecreasing such that ((p+ 1)−γmp)p∈N0 ' t, then there
exists c > 1 such that

mp

(p+ 1)γ
≤ ctp ≤ ctq ≤ c2 mq

(q + 1)γ
, q ≥ p, q, p ∈ N0.

Consequently, (p−γmp−1)p∈N is almost increasing then, by Proposition 2.1.10, β(m) ≥ γ.
(ii) By Proposition 2.1.10, (p−γmp−1)p∈N is almost increasing, then there existsM ≥ 1 such that

(p+ 1)−γmp ≤M(q + 1)−γmq, for all q ≥ p, q, p ∈ N0.

We de�ne tp := infs≥p((s+ 1)−γms) for every p ∈ N0. For every q, p ∈ N0 with q ≥ p, we check
that

(1) tp = infs≥p((s+ 1)−γms) ≤ infs≥q((s+ 1)−γms) = tq.

(2) M−1(p+ 1)−γmp ≤ infs≥p((s+ 1)−γms) = tp ≤ (p+ 1)−γmp.

Then t is nondecreasing and ((p+ 1)−γmp)p∈N0 ' t.
Finally, (iii) and (iv) follow immediately from (i). �

According to Lemma 2.1.13 and Proposition 2.1.10, the lower order µ(m) and Sanz's growth
index ω(M), see De�nition 1.1.27, coincide for any sequence M. The relation between γ(M)
and Matuszewska indices can be deduced from the previous result. We have included a weaker
version of it, for strongly regular sequences and γ > 0, in [43, Prop. 4.15] where the connection
with O-regular variation was unknown.

Theorem 2.1.16. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp−1)p∈N. Then

γ(M) = β(m), ω(M) = µ(m).
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Proof. From Lemma 2.1.13 and Proposition 2.1.10, we have that

µ(m) = µ(sm) = lim inf
p→∞

log(mp)

log(p)
= ω(M),

where sm = (mp)p∈N is the shifted sequence.

If γ(M) > γ, we have that M satis�es (Pγ), then there exists a sequence ` such that m '
` and ((p+ 1)−γ`p)p∈N0

is nondecreasing or, equivalently, there exists t = ((p + 1)−γ`p)p∈N0

nondecreasing with ((p+ 1)−γmp)p∈N0 ' t. Then, by Proposition 2.1.15.(i), β(m) ≥ γ.
Conversely, if β(m) > γ, from the relation between ` and t and using Proposition 2.1.15.(ii),

we deduce that γ(M) ≥ γ. �

Remark 2.1.17. The result above shows that the growth index γ(M) can also be de�ned by

γ(M) = sup{γ ∈ R : the sequence
(
(p+ 1)−γmp

)
p∈N0

is almost increasing},

or, as it will be shown in Proposition 2.1.22, using Lemma 2.1.13 by

γ(M) = sup{γ ∈ R : the sequence
(
p−γmp

)
p∈N is almost increasing}.

Combining the previous results with Proposition 2.1.2 and Proposition 2.1.4, a simple con-
nection of (snq) and (mg) with the Matuszewska indices is provided.

Proposition 2.1.18. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp−1)p∈N. Assume that M̂ is (lc), then

(i) M has (mg) if and only if α(m) <∞ if and only if m is O-regularly varying.

(ii) M has (snq) if and only if β(m) > 0.

Proof. (i) By Lemma 2.1.3, M has (mg) if and only if there exists α > 0 and k ∈ N with k ≥ 2
such that lim supp→∞mkp/mp < kα and, by Proposition 2.1.4, this happens if and only if
there exists α > 0 and ε > 0 such that (p−α+εmp)p∈N is almost decreasing, or, equivalently,
α(sm) < ∞ where sm = (mp)p∈N is the shifted sequence that, by Lemma 2.1.13, is the
same as saying that α(m) <∞.

Finally, since M̂ is (lc), by Proposition 2.1.15.(iii), β(m) ≥ −1 > −∞. Consequently, by
Remark 2.1.9, α(m) <∞ if and only if m is ORV.

(ii) By Proposition 2.1.2, M is (snq) if and only if there exists ε > 0 such that (p−εmp)p∈N is
almost increasing or, equivalently by Lemma 2.1.13, β(m) > 0.

�

Remark 2.1.19. From the previous results and taking into account Remark 2.1.9, Lemma 1.1.29
can be generalized. Concretely, we have that if M̂ is (lc), then

−1 ≤ β(m) = γ(M) ≤ µ(m) = ω(M) ≤ ρ(m) ≤ α(m) ≤ ∞,

and if M is (lc), then

0 ≤ β(m) = γ(M) ≤ µ(m) = ω(M) ≤ ρ(m) ≤ α(m) ≤ ∞,

Moreover, we can extend the characterization of strongly regular sequences in Corollary 2.1.6,
i.e., the following are equivalent:
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(i) M is strongly regular,

(iii) m is nondecreasing, α(m) <∞ and β(m) > 0

(iv) m is nondecreasing, O-regularly varying and β(m) > 0.

In particular, for strongly regular sequences, β(m) = γ(M), µ(m) = ω(M), ρ(m), α(m) ∈
(0,∞). In the context of O-regular variation, it is usual to name the class of positive func-
tions having the Matuszewska indices in certain range: if α(f) < ∞, f is said to be of bounded
increase and if β(f) > 0, f is said to be of positive increase. The same terminology can be
adopted for sequences, then a nondecreasing sequence m is strongly regular if and only if it is of
bounded and positive increase.

Example 2.1.20. For all the examples of weight sequences considered until now in this disser-
tation and for most of the ones appearing in the applications the sequence of quotients is either
regularly varying or rapidly varying (see [13, Sect. 2.4, Rapid variation] ). The �rst case occurs
for Mα,β = (n!αΠn

m=0 logβ(e+m))n∈N0 with α > 0 and β ∈ R or α = 0 and β > 0 where for all
λ ∈ (0,∞) we have that

lim
p→∞

mbλpc

mp
= lim

p→∞

(bλpc+ 1)α(log(e+ bλpc+ 1))β

(p+ 1)α(log(e+ p+ 1))β
= λα,

then as it happens for all the regularly varying sequences, by Remark 2.1.14, we deduce that

γ(M) = β(m) = ω(M) = µ(m) = ρ(m) = α(m) = α.

The second case appears when dealing with the q−Gevrey sequence (qp
2
)p∈N0 with q > 1 where

a similar computation leads to β(m) = µ(m) = ρ(m) = α(m) = ∞. Consequently, for these
classical examples the existence of di�erent orders and indices remains hidden.

However, this is not the general case, using the Representation Theorem at the end of this
chapter we construct strongly regular sequences with the following properties:

(i) In Examples 2.2.21, 2.2.22 and 2.2.23 all the indices and orders coincide with 3/2 in the
�rst case in which the sequence is regularly varying and with 1 in the other two where the
sequences are only O-regularly varying.

(ii) For the Example 2.2.24 we have that β(m) = µ(m) = ρ(m) = 1 and α(m) = 2.

(iii) In the Example 2.2.26 we see that β(m) = 2, µ(m) = 5/2, ρ(m) = 11/4 and α(m) = 3.

Regarding other examples we have found in the literature, a careful computation leads to the
following conclusion:

(i) for Example 3.3 in [57], where the sequencesm = (mp)p∈N0 , (ck)k∈N and (dk)k∈N are de�ned
inductively by

mp :=


c3
k, for all ck ≤ p ≤ (ck)

3/2 =: dk − 1,

p4/d2
k, for all dk ≤ p ≤ (dk)

2 =: ck+1 − 1,

taking c1 = 1 andm0 = 1, we can show that β(m) = 0, µ(m) = 2, ρ(m) = 3 and α(m) = 4.

(ii) for Example 21 in [17], Mp := exp(ps) for s ∈ (1, 2] and p ∈ N0 as in the q−Gevrey case,
we have that β(m) = µ(m) = ρ(m) = α(m) =∞.
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(iii) for Example 25 in [17], Mp := ((p + 1) logs(es + p))p for s, p ∈ N where es := exp(es−1),
e0 = 1, logs = log(logs−1(x)) and log0(x) = x, as in the �rst case, the regular variation
entails β(m) = µ(m) = ρ(m) = α(m) = 1.

It is possible to generalize Proposition 2.1.18, that has been stated individually for its rele-
vance, by giving several alternative de�nitions of β(m) and α(m), but for this purpose we need
the next auxiliary lemma that extends Proposition 2.1.2 in the direction of Proposition 2.1.4 but
going one step further.

Lemma 2.1.21. Let m be a sequence such that ((p+ 1)−γmp)p∈N0 is nondecreasing. Then for
every β > γ, the following are equivalent:

(i) lim
k→∞

lim inf
p→∞

mkp

kβmp
=∞,

(ii) there exists k ∈ N, k ≥ 2 such that

lim inf
p→∞

mkp

mp
> kβ,

(iii) there exists ε > 0 such that (p−β−εmp)p∈N is almost increasing,

(iv) there exist δ > 0 and A > 0 such that

∞∑
k=p

(k + 1)β+δ

(k + 1)mk
≤ A(p+ 1)β+δ

mp
, p ∈ N0.

Proof. (i) ⇒ (ii) Immediate. (ii) ⇒ (iii) There exists ε > 0 such that mkp/mp > kβ+ε for every
p ≥ p0 ≥ 1. Then, for every q ≥ p ≥ p0 there exists n ∈ N0 such that knp ≤ q < kn+1p. Using
that ((p+ 1)−γmp)p∈N0 is nondecreasing and iterating the previous inequality we get

mq

qβ+ε
≥

(q + 1)γmknp

qβ+ε(knp+ 1)γ
>

(q + 1)γmpk
n(β+ε)

qβ+ε(knp+ 1)γ
for all q ≥ p ≥ p0.

Since knp ≤ q < kn+1p, we see that 1 ≥ (knp+ 1)/(q + 1) ≥ k−1 and 1 ≥ knp/q ≥ k−1. Then

mq

qβ+ε
≥ min(1, k−β−ε) min(1, kγ)

mp

pβ+ε
for all q ≥ p ≥ p0.

Then, by suitably enlarging the constant as in the proof of Proposition 2.1.2, we see that
(p−β−εmp)p∈N is almost increasing.

(iii) ⇒ (iv) As in the proof of Lemma 2.1.13, one can show that((p + 1)−β−εmp)p∈N0 is almost
increasing. For every p ∈ N0, for suitable M > 0, we see that

∞∑
k=p

(k + 1)β+ε/2

(k + 1)mk
≤M (p+ 1)β+ε

mp

∫ ∞
p+1

dx

x1+ε/2
≤ 2M(p+ 1)β+ε/2

εmp
.

We conclude by choosing δ := ε/2 > 0 and A := 2M/ε.

(iv) ⇒ (i) Using that ((q + 1)−γmq)p∈N0 is nondecreasing, for q, p ∈ N0 with q ≥ p we have that

A
(p+ 1)β+δ

mp
≥
∞∑
k=p

(k + 1)β+δ

(k + 1)mk
≥

q∑
k=p

(k + 1)β−γ+δ−1

(k + 1)−γmk
≥ 1

(q + 1)−γmq

∫ q+1

p+1
xβ−γ+δ−1dx.
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Since β − γ + δ > 0, we get

A
(p+ 1)β+δ

mp
≥ (q + 1)β+δ

(β − γ + δ)mq

(
1−

(
p+ 1

q + 1

)β−γ+δ
)
.

For any k ∈ N, k ≥ 2, taking q = kp we observe that

lim inf
p→∞

mkp

mp
≥ kβ+δ

A(β − γ + δ)

(
1− 1

kβ−γ+δ

)
,

which implies (i). �

From the previous results, concerning the characterizations of (snq) and (mg) and the prop-
erties of the Matuszewska indices, several equivalent representations of α(m) and β(m) are
obtained, similar to the ones in the work of S. Aljan£i¢ and I. D. Arandjelovi¢ [1] for O-regularly
varying functions. Although weaker conditions on M might be assumed, the proposition is stated
in a quite general form which includes the situation when M̂ or M are (lc), providing �exible and
practical conclusions for the applications.

Proposition 2.1.22. Let M be a sequence of positive real numbers with sequence of quotients
m = (mp−1)p∈N. We have that

(i) α(m) = inf{α ∈ R; (mp/p
α)p∈N is almost decreasing},

(ii) β(m) = sup{β ∈ R; (mp/p
β)p∈N is almost increasing},

If there exists γ ∈ R and a nondecreasing sequence ` such that ` ' ((p + 1)−γmp)p∈N0 , then
β(m) ≥ γ and we have that

(iii) α(m) = inf{α > γ; lim
k→∞

lim sup
p→∞

mkp

kαmp
= 0},

(iv) α(m) = inf{α > γ; ∃ k ∈ N, k ≥ 2; lim sup
p→∞

mkp

mp
< kα},

(v) α(m) = inf{α > γ; ∃A > 0;

p∑
`=0

(`+ 1)α

(`+ 1)m`
≤ A(p+ 1)α

mp
, p ∈ N0},

(vi) α(m) = inf{α > γ; ∃A > 0;

p∑
`=0

1

((`+ 1)−γm`)1/(α−γ)
≤ A(p+ 1)

((p+ 1)−γmp)1/(α−γ)
, p ∈ N0},

(vii) β(m) = sup{β > γ; lim
k→∞

lim inf
p→∞

mkp

kβmp
=∞},

(viii) β(m) = sup{β > γ; ∃ k ∈ N, k ≥ 2; lim inf
p→∞

mkp

mp
> kβ},

(ix) β(m) = sup{β > γ;∃A > 0;
∞∑
`=p

(`+ 1)β

(`+ 1)m`
≤ A(p+ 1)β

mp
, p ∈ N0},

(x) β(m) = sup{β > γ;∃A > 0;

∞∑
`=p

1

((`+ 1)−γm`)1/(β−γ)
≤ A(p+ 1)

((p+ 1)−γmp)1/(β−γ)
, p ∈ N0}.
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Proof. The expressions in (i) and (ii) are immediately deduced from Lemma 2.1.13 since β(m) =
β(sm) and α(m) = α(sm) where sm = (mp)p∈N is the shifted sequence.

We observe that γ ≤ β(m) ≤ α(m) < α, then α−γ > 0. By Proposition 2.1.11, we have that
α(m) < α if and only if α(g−γm) < α−γ where g−γ = (p−γ)p∈N and g−γ ·m = ((p+1)−γmp)p∈N0

and, by Lemma 2.1.12, this happens if and only if α(`) < α − γ or, equivalently, if there exists
ε ∈ (0, α − γ) such that α(`) < α − γ − ε. Summarizing and using (i), α(m) < α if and only if
(pγ−α+ε`p)p∈N is almost decreasing. We observe that the sequence

tp := (p+ 1)−1`p, p ∈ N0,

satis�es that ((p + 1)tp)p∈N0 = ` is nondecreasing and (pγ−α+ε+1tp)p∈N is almost decreasing.
Since α− γ − 1 > −1, applying Proposition 2.1.4 for t, the following are equivalent

(1) α(m) < α,

(2) There exists A > 0 such that

p∑
k=0

(k + 1)α−γ

(k + 1)`k
=

p∑
k=0

(k + 1)α−γ−1

(k + 1)tk
≤ A(p+ 1)α−γ−1

tp
=
A(p+ 1)α−γ

`p
p ∈ N0,

(3) lim
k→∞

lim sup
p→∞

`kp
kα−γ`p

= lim
k→∞

lim sup
p→∞

tkp
kα−γ−1tp

= 0,

(4) There exists k ∈ N, k ≥ 2, such that

lim sup
p→∞

`kp
k`p

= lim sup
p→∞

tkp
tp

< kα−γ−1.

Since ` ' g−γm, it follows that (iii) holds and, by suitably enlarging A and k, (iv) and (v) are
also valid.

As before, α(m) < α if and only if there exists ε ∈ (0, α − γ) such that (pγ−α+ε`p)p∈N is
almost decreasing. Equivalently, we observe that the sequence

up := (p+ 1)−1(`p)
1/(α−γ), p ∈ N0,

satis�es that ((p + 1)up)p∈N0 is nondecreasing and there exists δ ∈ (0, 1) such that (pδup)p∈N is
almost decreasing. By Proposition 2.1.4 applied to u, α(m) < α if and only if there exists A > 0
such that

p∑
k=0

1

(`k)1/(α−γ)
=

p∑
k=0

1

(k + 1)uk
≤ A

up
=

A(p+ 1)

(`p)1/(α−γ)

Then, since ` ' g−γm, enlarging A, (vi) holds.

For any β > γ, with the same reasoning, we see that β < β(m) if and only if there exists
ε > 0 such that (pγ−β−ε`p)p∈N is almost increasing. Since β − γ > 0, applying Lemma 2.1.21 to
the nondecreasing sequence ` and then using that ` ' g−γm, the following are equivalent:

(1) lim
k→∞

lim inf
p→∞

mkp

kβmp
=∞,

(2) There exists k ∈ N, k ≥ 2 such that

lim inf
p→∞

mkp

mp
> kβ,
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(3) β < β(m),

(4) There exist δ > 0 and A > 0 such that

∞∑
k=p

(k + 1)β+δ

(k + 1)mk
≤ A(p+ 1)β+δ

mp
, p ∈ N0.

Hence (vii), (viii) and (ix) are true.

Analogous to (vi), we apply Proposition 2.1.2 to the sequence vp := (`p)
1/(β−γ)(p+ 1)−1 for

p ∈ N0, using that ` ' g−γm we obtain (x).

�

Remark 2.1.23. We are specially interested in the (lc) sequence case, particularly when m̂ =
(pmp−1)p∈N or m = (mp−1)p∈N are nondecreasing, then γ = −1 or γ = 0, respectively (see
Remark 3.1.11 for further information about both situations). In the �rst case, (x) can be
expressed as follows

β(m) = sup{β > −1;∃A > 0, s.t.
∞∑
`=p

1

(m̂`)1/(β+1)
≤ A(p+ 1)

(m̂p)1/(β+1)
, p ∈ N0},

The reader may notice the connection with condition (γ1) of H.-J. Petzsche [77] for m̂ by taking
β = 0, that is, if there exists A > 0 such that

(γ1)
∞∑
`=p

1

m̂`
≤ A(p+ 1)

m̂p
, p ∈ N0,

and condition (γβ+1) of J. Schmets, M. Valdivia [91] for m̂ by taking β ∈ N0, that is, if there
exists A > 0 such that

(γβ+1)

∞∑
`=p

1

(m̂`)1/(β+1)
≤ A(p+ 1)

(m̂p)1/(β+1)
, p ∈ N0,

that will be used in Section 3.3 when studying the surjectivity of the Borel map. For m̂ nonde-
creasing, extending this condition for β ∈ R, β > −1, one can, equivalently, write

β(m) = sup{β > −1; m̂ satis�es (γβ+1)},

and for m nondecreasing,

β(m) = sup{β > 0; m satis�es (γβ)}.

It is plain to check that m̂ satis�es (γ1) if and only ifM satis�es (snq). Moreover, from Propo-
sition 2.1.11 we know that β(m̂) = 1 + β(m) and, using Proposition 2.1.18, for a nondecreasing
sequence m̂ we see that

β(m̂) > 1 if and only if m̂ satis�es (γ1).

Assuming again that m̂ is nondecreasing, by Proposition 2.1.22.(viii), we obtain that

β(m̂) > 0 if and only if there exists k ∈ N, k ≥ 2, such that lim infp→∞ m̂kp/m̂p > 1.
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It is worthy to mention that, due to the previously commented index shift, the last condition also
appears in the literature as: there exists k ∈ N, k ≥ 2, such that lim infp→∞ m̂kp−1/m̂p−1 > 1.
Thanks to Lemma 2.1.13, we know both are equivalent.

Finally, using Proposition 2.1.18, α(m̂) = α(m) + 1 and that M has (mg) if and only if M̂
also has (see the proof of Lemma 2.1.3), for a nondecreasing sequence m̂, we obtain that

α(m̂) <∞ if and only if M̂ has (mg).

In particular, the classical result of J. Bonet, R. Meise and S.N. Melikhov [17, Th. 14], stated
in a more general framework in [90, Sect. 6] by G. Schindl, can be translated into the following
form: the ultradi�erentiable space de�ned by a weight sequence M̂ satisfying β(m̂) > 0 can be
de�ned in terms of a weight function ω (see Remark 2.1.33), measuring the decay properties of
the Fourier transform of the functions in the space, if and only if α(m̂) <∞.

Taking into account the stability of (γ1) property under ≈, we can also obtain the stability
of the index γ(M) = β(m) for weight sequences generalizing Lemma 2.1.12 where only stability
for ' was proved.

Remark 2.1.24. LetM and L be sequences such that M̂ and L̂ are weight sequences, i.e., (lc) and
such that m̂ and ̂̀ tend to in�nity, with M̂ ≈ L̂. Then β(m̂), β(̂̀) ≥ 0 and, by Proposition 2.1.11,
we have that β(m̂) > γ > 0 if and only if β(m̂1/γ) > 1 where m̂1/γ = ((mp(p+1))1/γ)p∈N0 . Since
m̂1/γ is nondecreasing, by the previous remark, β(m̂1/γ) > 1 if and only if m̂1/γ satis�es (γ1).
Using that M̂1/γ and L̂1/γ are weight sequences with M̂1/γ ≈ L̂1/γ and that H.-J. Petszche has
proved the stability of (γ1) for weight sequences (see [77, Th. 3.4]), we see that β(m̂) > γ > 0
if and only if ̂̀1/γ satis�es (γ1) which, with the same reasoning, is equivalent to β(̂̀) > γ > 0.
Then

γ(M̂) = β(m̂) = β(̂̀) = γ(L̂).

Moreover, again by Proposition 2.1.11 and Theorem 2.1.16, we deduce that

γ(M) = γ(M̂)− 1 = γ(L̂)− 1 = γ(L).

In particular, if M and L are weight sequences with M ≈ L, the same is true for M̂ and L̂ and
the last equality also holds.

Similarly but more directly, the stability for ≈ of the value α(m) is obtained. Because if M
and L are weight sequences with M ≈ L, by Proposition 2.1.18, α(m) =∞ if and only if M is not
(mg), or equivalently, by Proposition 1.1.17, L is not (mg), that is, α(`) =∞, so α(m) = α(`). If
α(m) <∞ or α(`) <∞, by Proposition 1.1.20 ≈ is equivalent to ', using Proposition 2.1.12 we
conclude that α(m) = α(`). Furthermore, this implies that O-regular variation for the sequence
of quotients of a weight sequences is also stable for ≈.

Recalling the de�nition of exponent of convergence of a sequence and how it may be computed,
a characterization for the lower order µ, similar to (vi) and (x) in Proposition 2.1.22, can be
established, getting as a byproduct the relation with (nq) property.

Proposition 2.1.25 ([37], p. 65). Let a = (ap)p∈N be a nondecreasing sequence of positive real
numbers. The exponent of convergence of a is de�ned as

λ(a) := inf{µ > 0 :

∞∑
p=1

1

aµp
converges}
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(as in Remark 1.1.26, if the previous set is empty, we put λ(a) =∞). Then, one has

λ(a) = lim sup
p→∞

log(p)

log(ap)
.

Proposition 2.1.26. If there exists γ ∈ R and a nondecreasing sequence ` such that ` '
((p+ 1)−γmp)p∈N0 then µ(m) ≥ β(m) ≥ γ and we have that

µ(m) = sup{µ > γ;
∞∑
`=0

1

((`+ 1)−γm`)1/(µ−γ)
<∞}.

In particular, if M̂ is (lc), then γ = −1 and

(i) if M satis�es (nq) (see De�nition 1.1.5), then µ(m) ≥ 0,

(ii) if µ(m) > 0, then M satis�es (nq).

Proof. By Proposition 2.1.25, the inverse of the exponent of convergence of the nondecreasing
sequence ` = (`p−1)p∈N is given by

1

λ(`)
= lim inf

p→∞

log(`p−1)

log(p)
= µ(`) = −γ + µ(m)

applying Proposition 2.1.11 and Lemma 2.1.12 for the last equality, because ` ' g−γm. Then,
using again that ` ' g−γm, we see that

µ(m) = sup{λ > 0;

∞∑
p=0

1/(`p)
1/λ <∞}+ γ = sup{µ > γ;

∞∑
p=0

1/(`p)
1/(µ−γ) <∞}

= sup{µ > γ;

∞∑
p=0

1/((p+ 1)−γmp)
1/(µ−γ) <∞}.

�

There is not a straightforward extension of this characterization, similar to (vi) and (x) in
Proposition 2.1.22, for the upper order ρ(m) (see also Remark 2.1.31).

2.1.4 O-regular variation of the associated function

Departing from a weight sequence M, this subsection is devoted to the study of the properties
of orders and Matuszewska indices of the associated function ωM and the counting function.
As it happens for the sequences, these values characterize several classical properties of these
functions. However, only the necessary statements for our aim will be shown (see Remark 2.1.33).
The connection between the indices of M and ωM (see Theorem 2.1.30, which we have partially
stated in [43, Th. 3.2]) is the central point of this subsection.

We start by recalling the following de�nitions and facts, mainly taken from the book of A.
A. Goldberg and I. V. Ostrovskii [32].

De�nition 2.1.27. Given a weight sequence M, i.e., (lc) and such that m tends to in�nity, we
consider the counting function for the sequence of quotients m, νm : (0,∞)→ N0 given by

νm(t) := #{j ∈ N0 : mj ≤ t} = max{j ∈ N : mj−1 ≤ t}.
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For a weight sequence M, using (1.5) we recover the classical relation, which can be also
found in [72], between νm and the associated function ωM. One has that

ωM(t) =

∫ t

0

νm(r)

r
dr, t > 0, (2.8)

which allows us to write

ωM(t) = νm(t) log(t)− log(Mνm(t)), t > 0; ω′M(t) =
νm(t)

t
, t > 0, t 6= mp, p ∈ N0. (2.9)

The associated function ωM(t) of a weight sequence M is continuous, so measurable, and
positive in [X,∞) with X > m0. Since the counting function νm(t) is nondecreasing, the same
holds. Consequently, we can consider their Matuszewska indices β(ωM), β(νm), α(ωM), α(νm)
and their upper and lower orders µ(ωM), µ(νm), ρ(ωM), ρ(νm). Please note that if ωM (or νm) is
regularly varying of index ρ, the corresponding indices of ωM (or of νm) are all equal to ρ. Using
the monotonicity of these functions, we easily obtain the analogue version of Proposition 2.1.18.

Proposition 2.1.28. Let M be a weight sequence, then

(i) β(ωM), β(νm), α(ωM), α(νm), µ(ωM), µ(νm), ρ(ωM), ρ(νm) ∈ [0,∞].

(ii) νm ∈ ORV if and only if α(νm) <∞ if and only if νm(2t) = O(νm(t)).

(iii) ωM ∈ ORV if and only if α(ωM) <∞ if and only if ωM(2t) = O(ωM(t)).

(iv) β(νm) > 0 if and only if there exists H ≥ 1 such that lim inft→∞ νm(Ht)/νm(t) > 1.

(v) β(ωM) > 0 if and only if there exists H ≥ 1 such that lim inft→∞ ωM(Ht)/ωM(t) > 1.

Proof. (i) By Theorem 1.2.28, since ωM and νm are nondecreasing, β(ωM), β(νm) ∈ [0,∞], from
Proposition 1.2.32, (i) is valid.

(ii) By (i) and by Theorem 1.2.23, νm ∈ ORV if and only if α(νm) <∞.

By Theorem 1.2.28, if α(νm) <∞, then there exists α > 0 such that νm(t)t−α is almost de-
creasing. Hence there exists c > 0 such that νm(t)t−α ≥ cνm(2t)(2t)−α for t ≥ X. Subsequently,
νm(2t) = O(νm(t)).

Conversely, if νm(2t) = O(νm(t)) there exist α, t0 > 0 such that νm(2t) ≤ 2ανm(t) for t ≥ t0.
Then, for s ≥ t ≥ t0 there exists j ∈ N0 such that s ∈ [2jt, 2j+1t] and iterating the last inequality
we see that

νm(s)

sα
≤ νm(2j+1t)

(2jt)α
≤ (2j+1)ανm(t)

(2jt)α
= 2α

νm(t)

tα
.

By suitably choosing A ≥ 2α, we obtain that νm(t)t−α is almost decreasing for t ≥ X.

(iii) Analogous to (ii).

(iv) By Theorem 1.2.28, β(νm) > 0 if and only if there exists ε > 0 such that νm(t)t−ε is almost
increasing. Then, if β(νm) > 0, there exists c > 0 such that for any H ≥ 1 we have that

νm(Ht) ≥ (Ht)εc
νm(t)

tε
= Hεcνm(t), t ≥ X.

We take H such that Hεc > 1, then lim inft→∞ νm(Ht)/νm(t) > 1. Reciprocally, if

lim inf
t→∞

νm(Ht)/νm(t) > 1,
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there exist ε, t0 > 0 such that νm(Ht) ≥ Hενm(t) for t ≥ t0. Reasoning as in (ii), we conclude
that νm(t)t−ε is almost increasing.

(v) Analogous to (iv).

�

Since νm : [m0,∞) → (0,∞) is a locally integrable function, an easy consequence of (2.8)
and Theorem 1.2.34 is the following:

Theorem 2.1.29. Let M be a weight sequence. Then the following are equivalent:

(i) 0 < lim inf
t→∞

νm(t)

ωM(t)
≤ lim sup

t→∞

νm(t)

ωM(t)
<∞,

(ii) β(νm) > 0 and α(νm) <∞,

(iii) β(ωM) > 0 and α(ωM) <∞.

In this case, β(ωM) = β(νm) and α(ωM) = α(νm).

Proof. (i) ⇔ (ii) Immediate from Theorem 1.2.34.

(i) and (ii) ⇒ (iii) Again by Theorem 1.2.34, we have that β(ωM) = β(νm) > 0 and α(ωM) =
α(νm) <∞.

(iii) ⇒ (i) From (2.8) and the monotonicity of νm(t) for every t > 0 we get

ωM(et) =

∫ et

0
νm(u)

du

u
≥
∫ et

t
νm(u)

du

u
≥ νm(t).

Since α(ωM) <∞, by de�nition, this means that

lim sup
t→∞

νm(t)

ωM(t)
≤ lim sup

t→∞

ωM(et)

ωM(t)
<∞.

Using that β(ωM) > 0, again by de�nition, there exist β,C > 0 such that

lim inf
t→∞

ωM(λt)

ωM(t)
≥ Cλβ, for every λ > 0.

Taking λ > (2/C)1/β , we see that 2ωM(t) ≤ ωM(λt) for t ≥ t0. By Lemma 1.1.24, we have that
M has (mg), then, by Lemma 1.1.9, this implies that there exists A > 1 such that

sup
p∈N

mp

M
1/p
p

≤ A <∞.

Hence, for every t ≥ m0, there exists p ∈ N0 such that t ∈ [mp,mp+1) and we have that

ωM(t) ≤ ωM(mp+1) = (p+ 1) log

(
mp+1

M
1/(p+1)
p+1

)
≤ (p+ 1) log(A) = νm(t) log(A).

Consequently, we conclude that

lim inf
t→∞

νm(t)

ωM(t)
≥ (log(A))−1 > 0.

�
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Specially relevant for our purposes, regarding the construction of proximate orders from
weight sequences, is the next result that connects the upper order of ωM and νM with the lower
one of m. In the following subsection, a more general dual relation between m and νm is
established.

Theorem 2.1.30. Let M be a weight sequence, then

ρ(ωM) = lim sup
t→∞

logωM(t)

log t
= ρ(νm) = lim sup

p→∞

log(p)

log(mp)
=

1

µ(m)
=

1

ω(M)

(where the last quotient is understood as 0 if ω(M) =∞, and as ∞ if ω(M) = 0). Moreover,

µ(ωM) = lim inf
t→∞

logωM(t)

log t
= lim inf

t→∞

log νm(t)

log t
= µ(νm).

Proof. The �rst expression for ρ(ωM) came from the very de�nition of the order because for
t > m0, ωM(t) > 0. For the second expression of ρ(ωM), we take into account the link given
in (2.8) between ωM(t) and the counting function νm(t). Since both functions are positive and
nondecreasing for t > m0, one may apply [32, Ch. 2, Th. 1.1], in which the following classical
chain of inequalities is stated

νm(t) ≤ ωM(et) ≤ νm(et) log(et/m0), t > m0, (2.10)

to deduce that the upper order of ωM(t) equals that of νm(t).

Now, from [32, Ch. 2, Th. 1.8] we know that the upper order of νm(t) is in turn the exponent
of convergence of m (see Proposition 2.1.25), we conclude that ρ(νm) = λ(m) = 1/µ(m) using
Proposition 2.1.26, with γ = 0.

The last expression can be obtained as the �rst one, that is, from (2.10) but taking lim inf
instead of lim sup. �

Remark 2.1.31. The main di�culty regarding the connection between µ(ωM), µ(νm) and ρ(m)
is that there is not an extension of the notion of exponent of convergence in order to provide
an analogous result to Proposition 2.1.26 for ρ(m). This problem will be skipped in the next
subsection by passing to a dual sequence (see Theorem 2.1.43).

Remark 2.1.32. We observe that if M and L are weight sequences with M ≈ L then, as in
(1.7), there exists A ≥ 1 such that

ωL(A−1t) ≤ ωM(t) ≤ ωL(At), t > 0,

and we can show that ρ(ωM) = ρ(ωL). As an easy consequence of the last theorem and Theo-
rem 2.1.16, we have that

ω(M) = µ(m) = µ(`) = ω(L).

Together with Remark 2.1.24, this means that one can extend Lemma 2.1.12, that is, we have
stability for ≈, for the two relevant indices γ(M) and ω(M), as it will be shown in the next
chapter, in the study of the asymptotic Borel map.

Remark 2.1.33. Ultraholomorphic and ultradi�erentiable classes can also be de�ned in terms
of a weight function, that is, a function ω : [0,∞) → [0,∞) continuous, nondecreasing with
ω(0) = 0 and limt→∞ ω(t) = ∞. For these functions Matuszewska indices and orders can be
considered, in the same way we have done for the associated and the counting function. These
values characterize growth conditions of the function ω(t), like the ones in Proposition 2.1.28
or others like the strong nonquasianalyticity [75, condition (ε)], that, similarly to the sequence
case, describe elementary properties of the corresponding spaces. Since these classes will be out
of the study in this dissertation, the reader is referred to our works [45, 47].
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2.1.5 Dual sequence

In the next chapter, it will be shown that the value of the index ω(M) characterizes the injectivity
of the Borel map for weight sequences and γ(M) characterizes the surjectivity for strongly regular
sequences. As we have seen, Theorem 2.1.16, these growth indices coincide with the lower order
µ(m) and the lower Matuszewska index β(m), respectively. One may naturally ask what the
upper order ρ(m) or the upper Matuszewska index α(m) stand for. In this subsection, a possible
interpretation of their meaning is given by constructing a dual sequence D of a weight sequence
M such that ω(D) = 1/ρ(m) and γ(D) = 1/α(m). This dual construction will be employed in
Subsection 2.2.3 in order to associate a regularly varying sequence to a proximate order.

In the preceding subsections, it has been shown that the regular variation, the O-regular
variation and the Matuszewska indices of a sequence a are characterized in terms of the step
function fa (see Theorem 1.2.37, Theorem 1.2.44 and Proposition 2.1.10). One might think when
the opposite is true, i.e., when a function f can be described by its values at the natural numbers.
The answer to this question will be used in the construction of the dual sequence through the
counting function and in the examples at the end of the chapter. Starting with a nondecreasing
function f , one can prove the following:

Lemma 2.1.34. Let f : [N,+∞) → (0,+∞), with N ∈ N, be a nondecreasing function. For
p ∈ N0, we de�ne a sequence ap := f(p) for p ≥ N and ap := f(N) for p < N . Then, the
following are equivalent:

(i) there exists C ≥ 1 such that
ap+1 ≤ Cap, p ∈ N0, (2.11)

(ii) the function f satis�es

sup
x≥N

f(x+ 1)

f(x)
< +∞. (2.12)

Whenever any of the previous equivalent conditions holds, we have that there exists a constant
C ≥ 1 such that

C−1fa(x) ≤ f(x) ≤ Cfa(x) x ≥ N, (2.13)

where fa(x) = abxc. Similarly, the following are equivalent:

(iii) lim
p→∞

ap+1

ap
= 1,

(iv) lim
x→∞

f(x+ 1)

f(x)
= 1.

If (iii) or (iv) holds, then fa ∼ f , that is, limx→∞ fa(x)/f(x) = 1. Moreover, if f is continuous
then (2.13) implies (2.11) and (2.12) and fa ∼ f implies (iii) and (iv).

Proof. (i) ⇒ (ii) For x ≥ N , since f is nondecreasing, we have that

f(x+ 1) ≤ f(bxc+ 2) = abxc+2 ≤ C2abxc = C2f(bxc) ≤ C2f(x).

(ii) ⇒ (i) For p < N (i) holds by the de�nition of a and for p ≥ N it is immediate from (ii).

(iii) ⇒ (iv) For x ≥ N , since f is nondecreasing, we see that

1 ≤ f(x+ 1)

f(x)
≤ f(bxc+ 2)

f(bxc+ 1)

f(bxc+ 1)

f(bxc)
,
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and (iv) follows from (iii).

(iv) ⇒ (iii) Immediate.

Furthermore, assuming (i) or, equivalently, (ii), since f is nondecreasing for x ≥ N we have
that

fa(x) = abxc = f(bxc) ≤ f(x) ≤ f(bxc+ 1) = abxc+1 ≤ Cabxc = Cfa(x).

Similarly, for x ≥ N we observe that

1 ≤ f(x)

f(bxc)
≤ f(bxc+ 1)

f(bxc)
,

so, assuming (iii) or (iv), fa ∼ f .
In addition, if f is continuous and satis�es (2.13), for p ≥ N , by the continuity in x = p+1, we

have that for ε = f(N) > 0 there exists δp,ε ∈ (0, 1) such that 0 ≤ f(p+1)−f(p+1−δ) < f(N).
Consequently,

ap+1 = f(p+ 1) ≤ 2f(p+ 1− δ) ≤ 2Cfa(p+ 1− δ) = 2Cap, p ≥ N,

and (i) is satis�ed. Analogously, for f continuous we see that fa ∼ f implies (iii) and (iv). �

From the last result, we can establish an inverse version of the embedding theorems, Theo-
rems 1.2.37 and 1.2.44, for nondecreasing functions.

Corollary 2.1.35. Let f : [N,+∞) → (0,+∞), with N ∈ N, be a nondecreasing function.
Then

f is regularly varying if and only if a also is.

f is O-regularly varying if and only if a also is.

Proof. If f is regularly varying, then limx→∞ f(bxc)/f(x) = 1 and we have that

lim
p→∞

abλpc

ap
= lim

p→∞

f(bλpc)
f(λp)

f(λp)

f(p)
= λρ, λ ∈ (0,∞),

i.e., a also is. Conversely, if a is regularly varying, by Lemma 1.2.40 lim ap+1/ap = 1, using the
previous lemma we deduce that f ∼ fa. Applying Theorem 1.2.37, we know that fa is regularly
varying and by Remark 1.2.6 we conclude that f also is.

Assuming that f is O-regularly varying, we see that

lim sup
p→∞

abλpc

ap
= lim sup

p→∞

f(bλpc)
f(p)

≤ lim sup
p→∞

f(λp)

f(p)
<∞, λ ∈ (0,∞),

then a also is. Reciprocally, if a is O-regularly varying, then

lim sup
p→∞

ap+1

ap
≤ lim sup

p→∞

a2p

ap
<∞,

so (2.11) holds. Consequently, there exists a constant C ≥ 1 such that

C−1fa(x) ≤ f(x) ≤ Cfa(x) x ≥ N,

and, applying Remark 1.2.31, we deduce that f is O-regularly varying because, by Theo-
rem 1.2.44, fa ∈ ORV . �
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In particular, if f(2x) = O(f(x)), or, equivalently, α(f) < ∞ (see the proof of Proposi-
tion 2.1.28.(ii)), then it is plain to check that (2.12) holds, so we can represent our function f
by the sequence a.

Monotonicity hypothesis on f might be replaced by some weaker or di�erent condition but,
in the context of weight sequences and weight functions, this requirement is enough.

Remark 2.1.36. Condition (2.11) also appears in di�erent contexts (see [80, (2.10)]). We know
that if M is (lc) we have the following implications:

(mg)⇒ (2.11)⇒ (dc),

meaning that if M has (mg) then m satis�es (2.11) because, by Proposition 1.1.9, for all p ∈ N
we see that

mp+1 ≤ m2p ≤ Cmp,

and, by a simple computation, if m satis�es (2.11), then M satis�es (dc) since

Mp+1 = m0m1 · · ·mp ≤ m0C
pm0m1 · · ·mp−1 = m0C

pMp, p ∈ N0.

The converse implications fail in general. For the �rst one, we have the q−Gevrey sequences
M = (qp

2
)p∈N0 , q > 1, do not satisfy (mg) but nevertheless (2.11) holds true. For the second

one, we consider
mp := exp(2j), 2j ≤ p < 2j+1, j ∈ N0.

We observe that m is nondecreasing, mp = exp(2j) ≤ exp(p) for p ∈ N, then M satis�es (dc)
and the quotient m2j+1/m2j+1−1 = exp(2j) is not bounded, then (2.11) is violated.

Remark 2.1.37. This is not the �rst approach to go from weight functions to weight sequences.
In [17], where the connection between weight functions and regular variation was mentioned,
from a function g : [0,∞)→ [1,∞) they construct a sequence M = (((p+ 1)g(p))p)p∈N0 . Under
suitable assumptions for g the authors show that the corresponding sequence M is strongly
regular, that is, M is (lc), has (mg) and is (snq). In between these conditions, for a continuously
di�erentiable increasing function g, three are connected to O-regular variation:

(I) g(2x) = O(g(x)) [17, Lemma 22.(1)].

(II) lim supx→∞(g(x+ 1)/g(x))x <∞ [17, Lemma 22.(2)].

(III) supx≥0 xg
′(x)/g(x) <∞ [17, Lemma 24.(i)].

For the construction of Example 25 [17] the function g was directly proved to satisfy (III) that
implies the other two conditions (I) and (II).

It is plain to check that condition (I) is equivalent to α(g) < ∞ (as in the proof of Propo-
sition 2.1.28.(ii)). Regarding condition (III), one may observe that for g : [0,∞) → [1,∞)
continuously di�erentiable and increasing with g(0) = 1, we can write

g(x) = 1 +

∫ x

0
tg′(t)

dt

t
, x ≥ 0,

which leads to Theorem 1.2.34, since h(t) = tg′(t) is a positive locally integrable function. Con-
sequently, from the point of view of O-regular variation, one may alternatively assume that
α(g′) < ∞ then, by using the almost decreasing characterization, α(h) < ∞ and, by Theo-
rem 1.2.34.(i), (III) is satis�ed. Hence also (I) and (II) hold and the corresponding sequence M̂
has also the expected properties.
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Theorem 2.1.30 suggests that one may also �nd relations for the Matuszewska indices of
m, νm and ωM. This connection has been partially studied for functions in a recent work of
D. Djur£i¢, R. Nikoli¢ and A. Torga²ev [26], where they analyze the O-regularly varying duality
between a positive nondecreasing unbounded function f : [X,∞)→ (0,∞) and the function

f←(x) := inf{y ≥ X; f(y) > x} = sup{y ≥ X; f(y) ≤ x}.

for x ≥ f(X). Even if some information can be inferred from their proofs, there is not a explicit
correspondence between the indices. In our situation, we will show the duality between a weight
sequence and its counting function.

Proposition 2.1.38. Let M be a weight sequence. Then

β(m) =
1

α(νm)
, α(m) =

1

β(νm)
,

(with the typical conventions for 0 and ∞). Consequently, we recover the classical equivalence
for the growth conditions of M and νm:

(i) M has (mg) if and only if there exists H ≥ 1 such that lim inft→∞ νm(Ht)/νm(t) > 1 (see
[80, Lemma 2.2]).

(ii) M satis�es (snq) if and only if νm(2t) = O(νm(t)) (see [17, Lemma 12] for one of the
implications).

Proof. First we assume that 0 < γ < β(m), so, by Proposition 2.1.10, (p−γmp)p∈N is almost
increasing, then (p−1mp

1/γ)p∈N is almost increasing with constant D ≥ 1. We have that for
every t ≥ s ≥ m0, there exist p, q ∈ N0 such that q ≥ p, s ∈ [mp,mp+1) and t ∈ [mq,mq+1). If
q = p, we see that

νm(s)

s1/γ
=
νm(t)

s1/γ
≥ νm(t)

t1/γ
,

and if q ≥ p+ 1 ≥ 1, we get

νm(s)

s1/γ
≥ p+ 1

(mp+1)1/γ
≥ q

D(mq)1/γ
≥ q

q + 1

q + 1

Dt1/γ
≥ νm(t)

2Dt1/γ
,

that is, νm(t)/t1/γ is almost decreasing, then 1/γ ≥ α(νm) and 1/β(m) ≥ α(νm).

Correspondingly, if γ > α(m), then ((p+ 1)−1mp
1/γ)p∈N0 is almost decreasing with constant

d ∈ (0, 1). For t ≥ s ≥ m0 taking p, q ∈ N0 as before we see that

νm(s)

s1/γ
≤ p+ 1

(mp)1/γ
≤ q + 2

d(mq+1)1/γ
≤ d−1 q + 2

q + 1

q + 1

(t)1/γ
≤ 2d−1 νm(t)

t1/γ
,

then 1/γ ≤ β(νm) and 1/α(m) ≤ β(νm).

Reciprocally, if γ > α(νm), there exists ε > 0 such that γ − ε > α(νm), so γ − ε > 0, since
α(νm) ≥ 0 by Proposition 2.1.28.(i). Then, νm(t)/tγ−ε is almost decreasing which implies that
there exists d ∈ (0, 1) such that for every λ ≥ 1 and all t ≥ m0 we have that

νm(t) ≥ dνm(λt)/λγ−ε.

We �x Q ∈ N, large enough, such that Q(ε/2)/(γ−ε/2)d ≥ 1 and taking λ = Q1/(γ−ε/2) we see that

νm(t)Q ≥ νm(Q1/(γ−ε/2)t), t ≥ m0. (2.14)
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Using (2.14), for p ∈ N, we observe that

mp = sup{t ≥ m0; νm(t) ≤ p} ≤ sup{t ≥ m0; νm(Q1/(γ−ε/2)t) ≤ Qp}

=Q−1/(γ−ε/2) sup{s ≥ Q1/(γ−ε/2)m0; νm(s) ≤ Qp} ≤
mQp

Q1/(γ−ε/2)
.

Hence we have shown that there exist Q ∈ N, Q ≥ 2 and δ > 0 such that

lim inf
p→∞

mQp

Q1/γmp
≥ Qδ > 1.

By Proposition 2.1.22.(viii), we obtain that 1/γ ≤ β(m) and 1/α(νm) ≤ β(m). Analogously, if
0 < γ < β(νm), there exists ε > 0 with γ + ε < β(νm) and Q ∈ N, large enough, such that

νm(t)Q ≤ νm(Q1/(γ+ε/2)t), t ≥ m0.

For p ∈ N, large enough, we observe that

mp = sup{t ≥ m0; νm(t) ≤ p} ≥ sup{t ≥ m0; νm(Q1/(γ+ε/2)t) ≤ Qp}

=Q−1/(γ+ε/2) sup{s ≥ Q1/(γ+ε/2)m0; νm(s) ≤ Qp} =
mQp

Q1/(γ+ε/2)
.

By Proposition 2.1.22.(iv), we obtain that 1/γ ≥ α(m) and 1/β(νm) ≥ α(m).

Finally, by Proposition 2.1.18, M has (mg) if and only if α(m) <∞ if and only if β(νm) > 0
which, by Proposition 2.1.28, is equivalent to the existence of H ≥ 1, such that

lim inf
t→∞

νm(Ht)/νm(t) > 1.

Similarly, we see that M satis�es (snq) if and only if νm(2t) = O(νm(t)). �

Remark 2.1.39. In particular, for a weight sequence M, by using the previous result and
Proposition 2.1.29, we can increase the list of alternative de�nitions of strong regularity in
Corollary 2.1.6 and Remark 2.1.19, that is, the following are equivalent:

(i) M is strongly regular,

(v) 0 < lim inf
t→∞

νm(t)

ωM(t)
≤ lim sup

t→∞

νm(t)

ωM(t)
<∞,

(vi) α(νm) <∞ and β(νm) > 0,

(vii) α(ωM) <∞ and β(ωM) > 0.

In this case, we also have that α(ωM) = α(νm) <∞ and β(ωM) = β(νm) > 0 and ρ(ωM), µ(ωM),
ρ(νm), µ(νm) ∈ (0,∞).

This suggests a possible explanation, which was also pointed out in [57], of some of the facts
described at the end of Remark 2.1.23, one may assert that νm is a dual function in terms of
O-regularly varying behavior of the sequencem, but if we have strongly regularity we can replace
νm by ωM. More concretely, for a weight sequence M, we have that

(1) α(m) <∞ if and only if β(ωM) > 0 (see [80, Lemma 2.2]).

(2) β(m) > 0 implies α(ωM) <∞ (see [17, Lemma 12]).
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These conditions can be read in terms of growth properties (see Proposition 2.1.18 and Propo-
sition 2.1.28). The fact that the implication in (2) can not be reversed (see our example in [47]
where β(m) = 0 and α(ωM) = 0) might clarify why the weight function approach (see Re-
mark 2.1.33) is more general than the weight sequence case, meaning that, even if α(m) =∞, so
β(ωM) = 0, and β(m) = 0 we may have α(ωM) <∞. In other words ωM might be of O-regular
variation even though m is quite pathological. Whereas if α(ωM) = ∞ and β(ωM) = 0, then
automatically α(m) =∞ and β(m) = 0.

Accordingly, the following notion of the dual sequence is proposed.

De�nition 2.1.40. Let M be a weight sequence. For p ∈ N0, we de�ne its dual sequence D
using the sequence of quotients by

dp := νm(p), p ≥ m0; dp := 1, p < m0.

Correspondingly, D0 := 1 and Dp := d0d1 · · · dp−1 for p ∈ N.

It is plain to check that D is also a weight sequence and we can consider the bidual sequence.

De�nition 2.1.41. Let M be a weight sequence and D its dual sequence. For p ∈ N0, we de�ne
its bidual sequence E, as the dual sequence of D, that is,

ep := νd(p), p ≥ 1 = d0; e0 := 1,

and E0 := 1 and Ep := e0e1 · · · ep−1 for p ∈ N.

Since νm, νd : [0,∞) → N0, d, e are sequences of natural numbers and we can establish the
expected connection between M and E.

Theorem 2.1.42. Let M be a weight sequence and E its bidual. Then, m ' e , i.e., there exists
c > 1 such that

c−1ep ≤ mp ≤ c ep, for all p ∈ N0.

In fact, m ∼ e, that is, limp→∞ ep/mp = 1.

Proof. For p > max(1, νm(bm0c+ 1)), we can ensure that

ep = νd(p) = max{j ∈ N; dj−1 ≤ p} = max{j ∈ N; νm(j − 1) ≤ p}
= max{j ∈ N; max{k ∈ N;mk−1 ≤ j − 1} ≤ p}.

If j − 1 ≥ mp, then max{k ∈ N;mk−1 ≤ j − 1} ≥ p + 1 and j > ep. Conversely, if j − 1 < mp,
then max{k ∈ N;mk−1 ≤ j − 1} < p + 1, then j ≤ ep. For all p > max(1, νm(bm0c + 1)) we
deduce that

ep = max{j ∈ N; j − 1 < mp}.

Consequently, for every p > max(1, νm(bm0c+ 1)) we have shown that

ep − 1 < mp ≤ ep.

and we conclude that
mp ≤ ep < mp + 1 ≤ (1 +m−1

0 )mp.

By suitably choosing a constant c ≥ (1 + m−1
0 ), we can extend these inequalities for p ≤

max(1, νm(bm0c + 1)) and we see that m ' e. Moreover, since limp→∞mp = ∞, we conclude
that m ∼ e. �
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We want to make use of Proposition 2.1.38 to study the O-regularly varying behavior of D
and E, in terms of νm and νd, respectively. Hence, we need to use Lemma 2.1.34 and it seems
reasonable to assume that νm and νd satisfy (2.12). However, since m ' e, m satis�es (2.11) if
and only if e also does, or equivalently, by Lemma 2.1.34, if νd satis�es (2.12). Let us see that
this condition is enough for our purposes.

Theorem 2.1.43. Let M be a weight sequence such that m satis�es (2.11). The following
relation for orders and Matuszewska indices holds

β(m) =
1

α(d)
, µ(m) =

1

ρ(d)
, ρ(m) =

1

µ(d)
, α(m) =

1

β(d)
.

Consequently, we have that some of the growth properties for M and D are re�ected:

(i) M has (mg) if and only if D satis�es (snq),

(ii) M satis�es (snq) if and only if D has (mg).

In particular, if M is strongly regular, all the previous indices are positive real numbers and D
is also strongly regular.

Proof. Since m satis�es (2.11) and m ' e, then e also does. Since ep = νd(p) for p ∈ N, by
Lemma 2.1.34 and Remark 1.2.31, this means that

β(e) = β(fe) = β(νd), ρ(e) = ρ(fe) = ρ(νd), α(e) = α(fe) = α(νd).

By Proposition 2.1.38 applied to D, we get

β(e) = β(νd) =
1

α(d)
, α(e) = α(νd) =

1

β(d)
.

Since e ' m, we conclude that β(m) = 1/α(d) and α(m) = 1/β(d). Moreover, using Theo-
rem 2.1.30 for D, we know that

ρ(m) = ρ(e) = ρ(fe) = ρ(νd) = 1/µ(d).

Finally, for t > max(2,m0 + 1) we observe that

log(t− 1)

log(btc)
log(νm(t− 1))

log(t− 1)
≤ log(νm(btc))

log(btc)
≤ log(νm(t))

log(t)

log(t)

log(btc)
.

then ρ(νm) = ρ(d). Applying Theorem 2.1.30 for M, we deduce that ρ(d) = 1/µ(m). �

Condition (2.11) characterizes (2.13) for continuous nondecreasing functions, but since νm
and νd are only nondecreasing there is some hope that this condition can be skipped by going
directly from the indices of m to the indices of d. However, as commented in Remark 2.1.36,
assuming (2.11) it is not a big restriction and it is enough to illustrate the re�ection between D
and M.

Remark 2.1.44. According to Remark 2.1.39, if M is strongly regular then νm is O-regularly
varying and

0 < lim inf
t→∞

νm(t)

ωM(t)
≤ lim sup

t→∞

νm(t)

ωM(t)
<∞.

Moreover, there exists p0 ∈ N such that ωM(t) ≥ 1 for t ≥ p0, we can consider the sequence:

tp := ωM(p), p ≥ p0; tp := 1, p < p0.

Hence d ' t and

β(m) =
1

α(t)
, µ(m) =

1

ρ(t)
, ρ(m) =

1

µ(t)
, α(m) =

1

β(t)
.
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Example 2.1.45. Thanks to the connection with the associated function given in the previous
remark and the computations in Example 1.1.22 or also by a direct calculation, we can show that
the dual sequence of the Gevrey sequence Mα,0 = (p!α)p∈N0 is equivalent to M1/α,0 = (p!1/α)p∈N0 .

However, since the Gevrey sequences and the sequences Mα,β = (n!αΠn
m=0 logβ(e+m))n∈N0 with

α > 0 and β ∈ R are regularly varying, all the indices are equal (see Example 2.1.20), the duality
is hidden.

For the q−Gevrey sequences M = (qp
2
)p∈N0 , with q > 1, we can consider the sequences D

and T de�ned from νm(t) and ωM(t), respectively. By Example 2.1.20, we know that α(m) =
β(m) = ∞ and since M satis�es (2.11), we obtain that α(d) = β(d) = 0, so the duality is also
concealed. By a simple computation, we can notice the following

d ' (log(p+ e))p∈N, t ' ((log(p+ e))2)p∈N,

in this case, d 6' t as expected by the characterization of strong regularity in Remark 2.1.39.

Remark 2.1.46. It is worthy to mention that the duality is not preserved for ≈ or ', this
means that in general some information is lost when passing to the dual sequence. For example
we consider the sequences M and L de�ned for all k ∈ N in terms of their sequences of quotients:

m0 = m1 = m2 = m3 := 1, mp := k for every 2(2k)k ≤ p < 2(2(k+1))k+1
,

`0 = `1 = `2 = `3 := 1, `p := k + 1 for every 2(2k)k ≤ p < 2(2(k+1))k+1
.

Evidently, M and L are weight sequences of moderate growth with m ' `. We can compute
their duals, for k ≥ 2 we have that

dMk = νm(k) = max{j ∈ N; mj−1 ≤ k} = 2(2(k+1))k+1
,

dLk = max{j ∈ N; `j−1 ≤ k} = 2(2k)k .

For all k ≥ 2, we observe that(
DM
k

DL
k

)1/k

≥
(dMk−1)1/k

dLk−1

=
22kkk−1

22k−1(k−1)k−1 = exp

(
log(2)2k−1(k − 1)k−1

(
2

(
k

k − 1

)k−1

− 1

))
.

Hence DM 6≈ DL, because the left hand side is unbounded as k tends to ∞.

However, if we add some regularity the equivalence is kept. For instance, if M and L are
weight sequences with m ' ` and β(m) > 0, so β(`) > 0, there exists Q ∈ N such that for t
large enough we have that

νm(t) ≤ ν`(Qt), ν`(t) ≤ νm(Qt).

By Proposition 2.1.38, α(νm) <∞ and α(ν`) <∞, so we conclude that dM ' dL. In particular,
this stability holds for strongly regular sequences.

2.2 Log-convex sequences, regular variation and nonzero proxi-
mate orders

The construction of nontrivial `�ne' �at functions belonging to ultraholomorphic classes and
de�ned in sectors of optimal opening, on which is based the M−summability theory developed
in [60, 88] by A. Lastra, J. Sanz and S. Malek, depends on the possibility of associating with the
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weight sequence, that de�nes the class, a nonzero proximate order. The link between proximate
orders (see De�nition 1.2.7) and a weight sequences M, is given by the function

dM(t) :=
log(ωM(t))

log(t)
, for t large enough. (2.15)

The characterization of the sequences for which dM is a nonzero proximate order was an open
question, successfully answered in Theorem 2.2.6 below. As a byproduct of this result, a new
characterization of regularly varying sequences has been obtained.

Example 2.2.22 provides a strongly regular sequence M, equivalent for ' to L = (p!)p∈N0 ,
such that dM(t) is not a proximate order. However, it will be proved in Example 2.2.8 that dL is
a nonzero proximate order (in particular, we deduce that the property of dM being a proximate
order is not stable under equivalence of sequences, neither ≈ nor '). So, we may obtain a
satisfactory summability theory in the Carleman ultraholomorphic class associated with L, which
coincides with that associated with M. This shows that asking for dM to be a nonzero proximate
order is a too demanding restriction and one could ask instead for:

(f) There exists a weight sequence L such that L ≈ M and dL(t) is a nonzero proximate
order.

On the other hand, J. Sanz had already observed [88, Remark 4.11(iii)] that, for the con-
struction of nontrivial �at functions in sectors of optimal opening, dM need not be a nonzero
proximate order, but it is enough that there exist nonzero proximate orders close enough to dM,
in the following sense:

De�nition 2.2.1. Let M = (Mp)p∈N0 be a weight sequence. We say that M admits a proximate

order if there exists a proximate order ρ(t) and constants A and B such that

A ≤ log(t)(ρ(t)− dM(t)) ≤ B, for t large enough,

or, equivalently, if

eA ≤ tρ(t)

ωM(t)
≤ eB, for t large enough.

In Subsection 2.2.4, we will show that the requirement (f) and the admissibility of a nonzero
proximate order are equivalent for a weight sequence M and we provide a Representation The-
orem for such sequences. In order to prove this, we need to construct well-behaved sequences
from proximate orders, employing the duality presented in Subsection 2.1.5. Finally, several
pathological examples of strongly regular sequences, which will be mentioned along the chapter,
are provided.

The results contained in this section are the core of our work [44]. Nevertheless, here some
new information is given, for instance the Representation Theorem 2.2.19, the relation between
the conditions (f), (j), (k) and (`) is clari�ed through some counterexamples (see Remark 2.2.18)
and Subsection 2.2.3, corresponding to Section 4.1 in the paper, has been completely rewritten
with a di�erent and more simple approach.

2.2.1 A new characterization of regular variation

The main aim of this subsection is to provide a new characterization of the regular variation
of the sequence of quotients m of any sequence M of positive real numbers with M0 = 1. This
result, interesting in its own right, will be used in the next subsection, Theorem 2.2.6, to describe,
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in terms of the existence of a limit, when it is possible to construct a proximate order from a
weight sequence.

For convenience, given a sequence M of positive real numbers and the corresponding sequence
of quotients m = (mp)p∈N0 we de�ne the auxiliary sequences

αp := log(mp), p ∈ N0; β0 := α0, βp := log

(
mp

M
1/p
p

)
, p ≥ 1. (2.16)

From the relation between M and m we deduce a elementary connection between (αp)p∈N0

and (βp)p∈N0 .

Lemma 2.2.2. Given a sequence M of positive real numbers with M0 = 1, for all p ∈ N0 we
have

βp =αp −
1

p

p−1∑
k=0

αk, (2.17)

αp =

p−1∑
k=0

βk
k + 1

+ βp. (2.18)

Proof. From the de�nition of (βp)p∈N we have that β0 = α0, and for all p ∈ N

βp = log

(
mp

M
1/p
p

)
= log(mp)−

1

p
log(m0m1 · · ·mp−1) = αp −

1

p

p−1∑
k=0

αk,

then (2.17) holds.

For the proof of (2.18) we apply induction. It immediately holds for p = 0, and if we admit
its validity for some p ∈ N0, then

αp+1 = log(mp+1) = αp + log
(mp+1

mp

)
=

p−1∑
k=0

βk
k + 1

+ βp + log
(mp+1

mp

)
=

p∑
k=0

βk
k + 1

+
p

p+ 1
βp + log

(mp+1

mp

)
.

So, we are done if it holds that

p

p+ 1
βp + log

(mp+1

mp

)
= βp+1,

but this equality can be easily checked by direct manipulation. �

As it has happened in the previous section when dealing with the sequence of quotients m
of M, that is de�ned for p ∈ N0, an index shift inconvenience arises. It can be solved thanks to
Lemma 1.2.40 and we can state the following proposition.

Proposition 2.2.3. Let M = (Mp)p∈N0 be a sequence of positive real numbers. The following
are equivalent:

(i) There exists limp→∞ log
(
mp/M

1/p
p

)
∈ R,

(ii) m = (mp−1)p∈N is regularly varying.
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In case any of these statements holds, the value of the limit in (i) and the index of regular
variation of m are the same.

Proof. (i) ⇒ (ii) We call ω the value of the limit in (i). If we consider the sequences (αp)p∈N0

and (βp)p∈N0 de�ned in (2.16), we will show that

lim
p→∞

(αbλpc − αp) = ω log(λ), λ > 0,

which, by de�nition, shows that the shifted sequence sm = (mp)p∈N is regularly varying and, by
Lemma 1.2.40, this is equivalent to condition (ii). For λ = 1 the result is immediate. Assume
λ > 1, using (2.18), for all p ∈ N0, p ≥ (λ− 1)−1 we see that bλpc > p and we have that

αbλpc − αp =

bλpc−1∑
k=p

βk
k + 1

+ βbλpc − βp.

Condition (i) can be written as limp→∞ βp = ω, so it is su�cient to prove that

lim
p→∞

bλpc−1∑
k=p

βk
k + 1

= ω log(λ).

If we take ε > 0, we �x δ > 0 such that δ log(λ) < ε/6. There exists pδ ∈ N such that |βp−ω| < δ
for p ≥ pδ. We remember that the p−th partial sum Hp =

∑p
k=1 1/k of the harmonic series may

be given as
Hp = log(p) + γ + εp, γ = Euler's constant, lim

p→∞
εp = 0.

Consequently, for p ≥ max(pδ, (λ− 1)−1) we have

bλpc−1∑
k=p

βk
k + 1

≤ (ω + δ)(Hbλpc −Hp) = (ω + δ)

(
log

(
bλpc
λp

)
+ log(λ) + εbλpc − εp

)
.

Using that limp→∞bλpc/(λp) = 1 and that limp→∞ εp = 0, we take p0 ≥ max(pδ, (λ−1)−1) such
that for every p ≥ p0 one has∣∣∣∣ω log

(
bλpc
λp

)∣∣∣∣ < ε/12,

∣∣∣∣δ log

(
bλpc
λp

)∣∣∣∣ < ε/12, |ωεp| < ε/6, |δεp| < ε/6.

Then for p ≥ p0 we see that
bλpc−1∑
k=p

βk
k + 1

< ω log(λ) + ε.

Analogously, for p ≥ p0 we may also get that

ω log(λ)− ε <
bλpc−1∑
k=p

βk
k + 1

,

and we are done.
For λ ∈ (0, 1), the proof is similar and we omit it.
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(ii) ⇒ (i) Let ω ∈ R be the index of regular variation of m = (mp−1)p∈N. By Theorem 1.2.38
one may write

mp = exp

(
cp+1 +

p+1∑
k=1

ηk
k

)
, p ∈ N0,

where (cp)p∈N and (ηp)p∈N are sequences of real numbers converging to c ∈ R and ω, respectively.
Then

Mp = m0m1 · · ·mp−1 = exp

 p∑
j=1

cj +

p−1∑
j=0

j+1∑
k=1

ηk
k

 = exp

 p∑
j=1

cj +

p∑
k=1

(p− k + 1)
ηk
k


= exp

 p∑
j=1

cj + (p+ 1)

p∑
k=1

ηk
k
−

p∑
k=1

ηk

 .

Since limp→∞ ηp/p = 0, limp→∞ ηp = ω and limp→∞ cp = c, for the corresponding arithmetic
means we have that

lim
p→∞

p−1
p∑
j=1

ηj/j = 0, lim
p→∞

p−1
p∑
j=1

ηj = ω and lim
p→∞

p−1
p∑
j=1

cj = c,

and we see that

lim
p→∞

log

(
mp

M
1/p
p

)
= lim

p→∞

[
1

p

(
p∑

k=1

ηk −
p∑

k=1

ηk
k
−

p∑
k=1

ck

)
+ cp+1

]
= ω,

or, equivalently, limp→∞ βp = ω. �

Remark 2.2.4. In fact, we observe that, since M is any sequence of positive real numbers with
M0 = 1, m can be substituted by any sequence a = (ap)p∈N of positive real numbers. We can
consider the sequence of geometric means given by

ap :=

(
p∏

n=1

an

)1/p

, p ∈ N.

By carefully skipping the index shift nuisance, with Lemma 1.2.40, the following are equivalent:

(i) there exists limp→∞ ap/ap ∈ (0,∞),

(ii) a is regularly varying.

The main advantage of this equivalent de�nition of a regularly varying sequence is that we avoid
working with the integer part and the corresponding step function fa(x) = abxc.

Remark 2.2.5. The reader may note that following the same reasoning a new characterization
of O-regular variation for sequences in terms of the geometric means can be provided. With the
same notation as in the previous remark, the following are equivalent:

(i) 0 < lim infp→∞ ap/ap ≤ lim supp→∞ ap/ap <∞,

(ii) a is O-regularly varying.

The proof has been omitted because we will not employ it in the forthcoming sections.
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2.2.2 Proximate order associated with a weight sequence

The principal result, gathered in this subsection, characterizes those sequences for which one can
de�ne, in a straightforward and natural way, a nonzero proximate order. In addition, we will
show how these sequences interact with the notions considered in the previous sections such as
strong regularity, regular variation and the associated functions.

The function dM(t) = log(ωM(t))/ log(t), presented in the introduction of the section, is
immediately shown to be continuous and piecewise continuously di�erentiable in its domain
(meaning that it is di�erentiable except at a sequence of points, tending to in�nity, at any of which
it is continuous and has distinct �nite lateral derivatives) and nonnegative for t large enough.
Then dM(t) always veri�es conditions (A) and (B) of proximate orders (see De�nition 1.2.7).
Hence we only need to deal with conditions (C) and (D).

In the proof of the principal theorem, we will use the theorem of L. de Haan, Theorem 1.2.42,
which for monotone sequences shows that regular variation can be expressed in a much more
nicer form and that is the case of m = (mp−1)p∈N when M is (lc).

Theorem 2.2.6. Let M = (Mp)p∈N0 be a weight sequence. The following are equivalent:

(a) dM(t) is a proximate order with limt→∞ dM(t) ∈ (0,∞),

(b) There exists ω > 0 such that ωνm(t) ∼ ωM(t), that is, limt→∞ ωνm(t)/ωM(t) = 1,

(c) There exists ω > 0 such that for every natural number ` ≥ 2,

lim
p→∞

m`p

mp
= `ω,

(d) m is regularly varying with a positive index of regular variation,

(e) There exists limp→∞ log
(
mp/M

1/p
p

)
∈ (0,∞).

In case any of these statements holds, the value of the limit mentioned in (e), that of the index
mentioned in (d), and that of the constant ω in (b) and (c) is ω(M) and the limit in (a) is
1/ω(M).

Proof. (a) ⇒ (b) According to (2.9) and (2.15), we have that

d′M(t) =
ω′M(t)

log(t)ωM(t)
− dM(t)

t log(t)
=

1

t log(t)

(
νm(t)

ωM(t)
− dM(t)

)
,

for t 6= mp large enough. Observe that (D) in De�nition 1.2.7 amounts then to

lim
t→∞
t6=mp

(νm(t)

ωM(t)
− dM(t)

)
= 0. (2.19)

By Theorem 2.1.30 and condition (C) in De�nition 1.2.7, we know that limt→∞ dM(t) = 1/ω(M),
and so

lim
t→∞
t 6=mp

νm(t)

ωM(t)
=

1

ω(M)
.

By Lemma 1.2.12, we know that ωM ∈ R1/ω(M), so limt→∞ ωM(t + 1)/ωM(t) = 1. For every
p ∈ N0 large enough, we take εp ∈ (0, 1) such that mp + εp, mp− εp, mp + εp− 1 and mp− εp + 1
are not elements of the sequence m. By the monotonicity of νm and ωM, we have that

ωM(mp − εp)
ωM(mp − εp)

νm(mp − εp)
ωM(mp − εp + 1)

≤ νm(mp)

ωM(mp)
≤ νm(mp + εp)

ωM(mp + εp − 1)

ωM(mp + εp)

ωM(mp + εp)
,
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for all p large enough and we conclude that limp→∞ νm(mp)/ωM(mp) = 1/ω(M).

(b) ⇒ (c) We rede�ne ω′M(mp) := ω(mp)/(mpω) for all p ∈ N0. Since limt→∞ ωM(t) =∞, there
exists N ∈ N such that ωM(t) > 0 for t ≥ mN , we can write

ωM(t) = ωM(mN ) exp

(∫ t

mN

uω′M(u)

ωM(u)

du

u

)
, t ≥ mN .

By (b) and the de�nition of ω′M(mp), we have that

lim
t→∞

tω′M(t)

ωM(t)
= lim

t→∞

νm(t)

ωM(t)
=

1

ω
.

Then by the Representation Theorem 1.2.4, we have that ωM(t) is regularly varying of index 1/ω
and, again by (b) and Remark 1.2.6, we have that νm(t) is regularly varying of index 1/ω.

For any ` ∈ N with ` ≥ 2, for every ε ∈ (0, 1) we take λ1(`, ε) := (`/(1 + ε))ω and λ2(`, ε) :=
(`/(1− ε))ω then, using the regular variation of νm(t), there exists t0 > 0 such that

λ
1/ω
j (1− ε) ≤ νm(λjt)

νm(t)
≤ λ1/ω

j (1 + ε), for all t ≥ t0,

for j = 1, 2. Since limp→∞mp = ∞, there exists p0 ∈ N such that mp0−1 > max(λ1t0, λ2t0, t0),
then νm(t0) < p0. So for p ≥ p0 we have that

mp = sup{t ≥ m0; νm(t) ≤ p} = sup{t ≥ t0; νm(t) ≤ p}.

Consequently, since νm(λ1t) ≤ `νm(t) ≤ νm(λ2t) for every t ≥ t0, for every p ≥ p0 we see that

sup{t ≥ t0; νm(λ2t) ≤ `p} ≤ mp ≤ sup{t ≥ t0; νm(λ1t) ≤ `p}.

Since `p ≥ p ≥ p0, for j = 1, 2 we have that νm(λjt0) < p0 and for all p ≥ p0 we observe that

sup{t ≥ t0; νm(λjt) ≤ `p} = (λj)
−1 sup{s ≥ λjt0; νm(s) ≤ `p} = (λj)

−1m`p.

Finally, for every p ≥ p0 we conclude that

`ω

(1 + ε)ω
= λ1 ≤

m`p

mp
≤ λ2 =

`ω

(1− ε)ω
.

(c) ⇒ (d) Since sm = (mp)p∈N is nondecreasing, by Theorem 1.2.42 we see that sm is regularly
varying of index ω > 0. Then it su�ces to apply Lemma 1.2.40 to ensure that m = (mp−1)p∈N0

is regularly varying of index ω > 0.

(d) ⇔ (e) Apply Proposition 2.2.3.

(e) ⇒ (a) According to (2.16), condition (e) can be written as

lim
p→∞

βp = ω ∈ (0,∞). (2.20)

By using (2.18), we see that

lim
p→∞

(αp+1 − βp+1)− (αp − βp)
log(p+ 1)− log(p)

= lim
p→∞

βp/(p+ 1)

1/p
= ω,
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and then we deduce by Stolz's criterion that

lim
p→∞

αp − βp
log(p)

= ω.

Since βp = O(1) (and αp = log(mp)), we get

lim
p→∞

log(mp)

log(p)
= ω. (2.21)

On the other hand from (e), there exist a,A > 0 and p0 ∈ N such that

a < log
(
mp/M

1/p
p

)
< A, p ≥ p0,

what, by (1.6) and taking logarithms, amounts to

log(a) + log(p) < log(ωM(mp)) < log(p) + log(A), p ≥ p0.

Subsequently, we see that

lim
p→∞

log(ωM(mp))

log(p)
= 1. (2.22)

Observe that ωM(t) is nondecreasing, so for every t ∈ [mp−1,mp) we have

p

ωM(mp)
≤ νm(t)

ωM(t)
≤ p

ωM(mp−1)
,

log(ωM(mp−1))

log(mp)
≤ log(ωM(t))

log(t)
≤ log(ωM(mp))

log(mp−1)
.

By (1.6) we know that ωM(mp) = pβp for every p ∈ N, so from (2.20) and the �rst inequalities
we see that limt→∞ νm(t)/ωM(t) = 1/ω. Now, using (2.21) and (2.22) we conclude from the
second inequalities that limt→∞ dM(t) = 1/ω, and also that (2.19) is satis�ed. So, (C) and (D)
in De�nition 1.2.7 are valid and dM is a proximate order. Moreover, by Theorem 2.1.30 we deduce
that ω = ω(M).

The value of the di�erent limits or indices involved in the statements is deduced in the course
of the proof. �

Remark 2.2.7. We can easily deduce some necessary conditions for dM being a nonzero prox-
imate order. By Remark 2.1.14 and Remark 2.1.19, if M is a weight sequence such that m is
regularly varying of positive index, the following holds:

(j) m is nondecreasing and we have that

β(m) = γ(M) = µ(m) = ω(M) = ρ(m) = α(m) ∈ (0,∞),

(k) M is strongly regular and

lim
p→∞

log(mp)

log(p)
= ω(M), (2.23)

(`) M is strongly regular.
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Condition (k) trivially implies (`) and, by Remark 2.1.19 we deduce that, if (j) is valid, M is
strongly regular and, using Proposition 2.1.10, we see that (2.23) holds, then (j) implies (k). The
converse implications do not hold, see Example 2.2.24 for (j) and (k) and Example 2.2.26 for (k)
and (`).

It is plain to check that (j), (k) and (`) are stable for '. Moreover, if M is a weight se-
quence satisfying any of these conditions and L is another weight sequence with L ≈ M, by
Proposition 1.1.20, we have that ` 'm, consequently, L also satis�es the same condition.

In some sense, Theorem 2.2.6 can be seen as the analogous version of the equivalent de�nitions
for strongly regular sequences in Corollary 2.1.6, Remarks 2.1.19 and 2.1.39 for the case of
regularly varying sequences.

Example 2.2.8. For the sequences in the Example 1.1.4 we have shown that ω(Mα,β) = α and
ω(Mq) = ∞ for the considered values of α, β and q (see Example 2.1.20). So, Theorem 2.2.6
shows that for the sequences M0,β and Mq the function dM is not a nonzero proximate order.
On the contrary, one may easily check that (c) or (e) in that theorem hold for Mα,β whenever
α > 0 and, consequently, dMα,β

is indeed a nonzero proximate order, although its handling will
be di�cult in general (in this sense, see Remark 2.2.16).

Among the examples at the end of the chapter, only the �rst one Example 2.2.21 satis�es the
theorem. For the second one, Example 2.2.22, even if dM is not a nonzero proximate order, we are
still able to apply the results from the generalized summability theory, presented in Section 4.1,
whereas the others are examples of pathological strongly regular sequences for which this theory
is not available, but nevertheless the properties of the asymptotic Borel map can be analyzed,
as it will be done in the next chapter.

2.2.3 Regularly varying sequences de�ned from proximate orders

In the previous subsection it has been shown how to go from weight sequences to nonzero prox-
imate orders. Now, departing from a nonzero proximate order, and for every element V in the
class MF (γ, ρ(t)) given by L.S. Maergoiz [65] (see Theorem 1.2.16 and De�nition 1.2.17), we
will construct a well-behaved sequence V. This procedure is closely related to the one described
in Subsection 2.1.5.

De�nition 2.2.9. Let ρ(t) be a nonzero proximate order, γ > 0 and V ∈ MF (γ, ρ(t)). We
de�ne its associated sequence by

vp := V (p), p ∈ N, v0 := V (1).

Then Vp := v0v1 · · · vp−1 for all p ∈ N and V0 = 1.

Using Remark 1.2.8, Theorem 1.2.16.(I), (III) and (VI), we see that V is a weight sequence and
that v is regularly varying of positive index ρ := limt→∞ ρ(t). In particular, by Theorem 2.2.6,
dV is a nonzero proximate order and, by Remark 2.2.7, V is strongly regular.

We have the following relation between V and the dual sequence DM (see De�nition 2.1.40)
of a weight sequence M admitting ρ(t) as a nonzero proximate order (see De�nition 2.2.1).

Lemma 2.2.10. Let M be a weight sequence admitting ρ(t) as a nonzero proximate order. Then
for any γ > 0 and every V ∈MF (γ, ρ(t)) we have that v ' dM.

Proof. Since M admits ρ(t) as a nonzero proximate order, there exist A,B > 0 such that

B ≤ tρ(t)

ωM(t)
≤ A, for t large enough.
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By Theorem 1.2.16.(VI), there exist C,D > 0 such that

D ≤ V (t)

ωM(t)
≤ C, for t large enough.

Then, by Theorem 1.2.16.(I) and Remark 1.2.31, ωM ∈ ORV and α(ωM) = β(ωM) ∈ (0,∞).
Applying Theorem 2.1.29, we have that there exist E,F > 0 such that

F ≤ V (t)

νm(t)
≤ E, for t large enough.

then, evaluating in the natural numbers, v ' dM. �

Using the notion of conjugate proximate order, de�ned in Subsection 1.2.2, we can associate
with a nonzero proximate order a conjugate sequence.

De�nition 2.2.11. Let ρ(t) be a nonzero proximate order, γ > 0 and V ∈ MF (γ, ρ(t)). We
de�ne its associated conjugate sequence by

up := U(p), p ∈ N, u0 := U(1),

where U(s) is the inverse of the function V (t) (see Remark 1.2.18) and Up := u0u1 · · ·up−1 for
every p ∈ N and U0 = 1.

By Theorem 1.2.19, U is a weight sequence and u is regularly varying of positive index 1/ρ,
where ρ = limt→∞ ρ(t). Naturally arises the question of the relation between U and the dual
sequence DV of V de�ned by

dVp := νv(p), p ≥ m0, dVp := 1, p < m0

and DV
0 := 1 and DV

p := dV0 d
V
1 · · · dVp−1 for all p ∈ N.

Lemma 2.2.12. Let ρ(t) be a nonzero proximate order, γ > 0 and V ∈MF (γ, ρ(t)). Then we
have that

νv(s) = bU(s)c+ 1, s ≥ V (1),

where U(s) is the inverse of the function V (t), and dV ' u.

Proof. For s ≥ V (1) we have that

νv(s) = max{j ∈ N; V (j − 1) ≤ s} = max{j ∈ N; j − 1 ≤ U(s)} = bU(s)c+ 1.

We see that for s large enough U(s) ≥ 1 and

1 ≤ νv(s)

U(s)
=
bU(s)c+ 1

U(s)
≤ U(s) + 1

U(s)
≤ 2.

Hence we conclude that dV ' u. �

Remark 2.2.13. By carefully combining the results in Subsections 2.1.5 and 2.1.4, for t large
enough it is also possible to show that there exist positive constants A and B such that

A ≤ ωU(t)

V (t)
≤ B,

con�rming what was expected for the conjugate sequence U.
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Finally, Lemmas 2.2.10 and 2.2.12 suggest the next connection between the sequence U, a
weight sequence M admitting ρ(t) as a nonzero proximate order and its bidual sequence EM (see
De�nition 2.1.41).

Theorem 2.2.14. Let M be a weight function admitting ρ(t) as a nonzero proximate order.
Then u ' eM and u 'm.

Proof. By Lemma 2.2.10, v ' dM then it exists a > 1 such that

νv(a−1t) ≤ νdM(t) ≤ νv(at), t > 0.

Consequently, as in the proof of Lemma 2.2.12, for t large enough we have that

U(a−1t) ≤ bU(a−1t)c+ 1 ≤ νd(t) ≤ bU(at)c+ 1 ≤ 2U(at).

Using the regular variation of U(t), we observe that

lim
t→∞

U(at)

U(t)
= a1/ρ, lim

t→∞

U(a−1t)

U(t)
= a−1/ρ,

then we see that there exist A,B > 0 such that U(at) ≤ AU(t) and U(a−1t) ≥ BU(t) for t large
enough. Hence

BU(t) ≤ νd(t) ≤ 2AU(t) for t large enough.

We deduce that for p ∈ N large enough

Bup ≤ eMp = νdM(p) ≤ 2Aup,

which implies eM ' u and we deduce that u 'm by Theorem 2.1.42. �

Remark 2.2.15. Other procedures for going from functions to sequences in this context have
been considered, as the one by J. Bonet, R. Meise and S.N. Melikhov [17] decribed in Re-
mark 2.1.37.

In our work [44, Sect. 4.1], inspired by the argument by S. Mandelbrojt [72] and H. Ko-
matsu [52] to recover a sequence from its associated function ωM(t), given a nonzero proximate
order ρ(t), γ > 0 and V ∈MF (γ, ρ(t)) we de�ne the sequence

MV
p := sup

t>0

tp

eV (t)
, p ∈ N0.

We show that MV is strongly regular, making use of the Young conjugate we see that ωMV (t) ∼
V (t), �nally, we prove that MV ≈ U. Since the previous proofs are simpler than the ones in the
paper, this new equivalent approach has been included in the dissertation.

2.2.4 Sequences admitting a nonzero proximate order

Before proving that the weaker conditions (f) and (g) in Theorem 2.2.17 introduced at the begin-
ning of the section, which are su�cient for the construction of nontrivial `�ne' �at functions in
sectors of optimal opening, are indeed the same, some worthy remarks regarding the admissibility
condition (see De�nition 2.2.1) are presented.

First, note that the notion of equivalent proximate orders (see De�nition 1.2.9) is more
demanding (apart from the fact that here dM need not be a proximate order). If M admits a
proximate order, dM veri�es all the properties of proximate orders except possibly (D), since
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from the de�nition of admissibility limt→∞ dM(t) = limt→∞ ρ(t) exists and, by Theorem 2.1.30,
equals 1/ω(M). Moreover, from the relation between regular variation, O-regular variation and
proximate orders (see Lemma 1.2.12 and Remark 1.2.31), we deduce that ifM admits a proximate
order, then ωM(t) ∈ ORV .

Remark 2.2.16. The admissibility condition is interesting even if dM is a proximate order. For
instance, if we consider the sequences Mα,β in Example 1.1.4, with α > 0, for large t we have

c2t
1/α log−β/α(t) ≤ ωMα,β

(t) ≤ c1t
1/α log−β/α(t)

for suitable constants c1, c2 > 0 (see [98, Example 1.2.2]), then

log(c2) ≤ log(t)(dMα,β
(t)− ρα,β(t)) ≤ log(c1) for t large enough

(see Example 1.2.11 for the de�nition of ρα,β). This shows that the proximate order ρα,β(t) is
admissible for Mα,β , and therefore, for our purposes, it may substitute dMα,β

(t) whenever it is
convenient. In particular, when working with Gevrey ultraholomorphic classes one may consider
the constant order ρα,0(t) ≡ 1/α, as expected.

As a consequence of the results in the previous subsection, we can show that the weaker
conditions are equivalent.

Theorem 2.2.17. Let M be a weight sequence, then the following conditions are equivalent:

(f) There exists a weight sequence L such that L ≈M and dL(t) is a nonzero proximate order,

(g) M admits a nonzero proximate order.

Proof. (f) ⇒ (g) Since L ≈ M, there exist positive constants A and B such that for every
t ∈ (0,∞) one has

ωL(At) ≤ ωM(t) ≤ ωL(Bt).

Since dL(t) is a nonzero proximate order, ωL(t) = tdL(t) is regularly varying by Lemma 1.2.12,
and we deduce that there exist positive constants C and D such that

C ≤ ωM(t)

ωL(t)
≤ D for t large enough.

Finally, taking logarithms, we conclude that M admits dL as a nonzero proximate order.

(g) ⇒ (f) Let ρ(t) be the nonzero proximate order that M admits. By Theorem 2.2.14, for any
γ > 0 and every V ∈ MF (γ, ρ(t)), we have that m ' u where u is the regularly varying (of
positive index) nondecreasing sequence de�ned in terms of the inverse function U(s) of V (t) (see
De�nition 2.2.11).

Applying Theorem 2.2.6, we know that dU is a nonzero proximate order and, by Proposi-
tion 1.1.15, we deduce that U ≈M. �

Remark 2.2.18. The implication (a) ⇒ (f) (see Theorems 2.2.6 and 2.2.17) is obvious, while
Example 2.2.22 shows that the converse fails.

It is also immediate that (f) ⇒ (j) in Remark 2.2.7 because, with the notation of (f), if
dL is a proximate order, then L satis�es (j) and so M also satis�es (j) since it is stable for ≈.
Again, the converse implication (j) ⇒ (f) fails, as Example 2.2.23 illustrates. Consequently,
the sequences Mq and M0,β do not admit a nonzero proximate order, since they are not strongly
regular. Among the strongly regular ones, for those appearing in applications (f) and even (a) are
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valid, but extremely pathological examples (see Examples 2.2.23, 2.2.24 and 2.2.26) of strongly
regular sequences not satisfying (f) will be constructed below.

Adding the information in Remark 2.2.7, (a) ⇒ (f) ⇒ (j) ⇒ (k) ⇒ (`), and the arrows can
not be reversed.

The next representation result, analogous to Theorems 1.2.38 and 1.2.46, provides a char-
acterization of the weight sequences that satisfy (f), only in terms of their structure, i.e., not
depending on the existence of another weight sequence L or a nonzero proximate order ρ(t),
closing an open question set in [44, Remark 4.15].

Theorem 2.2.19. Let M be a weight sequence, then the following conditions are equivalent:

(f) There exists a weight sequence L such that L ≈M and dL(t) is a nonzero proximate order,

(g) M admits a nonzero proximate order,

(h) There exist ω ∈ (0,∞) and bounded sequences of real numbers (bp)p∈N, (ηp)p∈N such that
(ηp)p∈N converges to ω and we can write

mp = exp

bp+1 +

p+1∑
j=1

ηj
j

 , p ∈ N0.

In case the previous holds, limt→∞ dL(t) = 1/ω = 1/ω(M).

Proof. (f) ⇔ (g) Theorem 2.2.17.

(f) ⇒ (h) Applying Theorem 2.2.6, we know that ` = (`p−1)p∈N is regularly varying of index
ω = ω(L) = ω(M). Then by the Representation Theorem 1.2.38, there exist sequences of real
numbers (cp)p∈N and (ηp)p∈N, converging to c ∈ R and ω, respectively, such that

`p = exp

cp+1 +

p+1∑
j=1

ηj
j

 , p ∈ N0.

By Remark 2.2.7, L satis�es (j), then it has (mg) and, by Proposition 1.1.20, we deduce that
m ' `. This means that there exists a bounded sequence (hp)p∈N such that

mp = exp(hp+1)`p = exp

hp+1 + cp+1 +

p+1∑
j=1

ηj
j

 , p ∈ N0.

Writing bp := hp + cp for p ∈ N, we conclude that (h) holds.
(h) ⇒ (f) We de�ne the sequence

tp := exp

p+1∑
j=1

ηj
j

 , p ∈ N0.

Since limp→∞ ηp = ω ∈ (0,∞), we �x ε ∈ (0, ω) and we get p0 ∈ N such that ηp > ω − ε > 0 for
p ≥ p0, this implies that

tp+1

tp
= exp(ηp+2/(p+ 2)) ≥ 1.
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We consider
`p := tp p ≥ p0, `p = tp0 , p < p0.

Then by the Representation Theorem 1.2.38, we know that t is regularly varying of index ω.
Hence, by Lemma 1.2.40, then ` also is. Moreover, by construction, ` is nondecreasing and, from
the regular variation of positive index, one can easily deduce that limp→∞ `p = ∞, so L is a
weight sequence and, by Theorem 2.2.6, dL is a proximate order of index 1/ω.

Finally, we observe that

mp

`p
=
mp

tp
= exp(bp+1), p ≥ p0,

and we conclude that m ' ` because (bp)p∈N is bounded, then L ≈M by Proposition 1.1.15. �

Remark 2.2.20. If M is a weight sequence satisfying (h), we can obtain more information from
the representation formula, concretely, since m is nondecreasing for every p ∈ N0 we have that
bp+1 − bp + ηp+1/(p+ 1) ≥ 0 should hold. Moreover, as we already know by Remark 2.2.18, but
now directly from Theorem 1.2.46, we have that m is O-regularly varying and

ω = β(m) = γ(M) = µ(m) = ω(M) = ρ(m) = α(m) ∈ (0,∞).

2.2.5 Examples

In this subsection �ve examples of pathological regularly varying and O-regularly varying se-
quences are provided. Hence, by the connections to weight sequences described in this chapter,
we can infer some properties for M when these sequences are assumed to be the corresponding
sequence of quotients m = (mp−1)p∈N, clarifying several open questions. We have presented
some of these examples in our papers [43, 44], where most of the computations, included here,
were skipped.

The examples below, ordered attending to their regularity, are constructed by means of dif-
ferent techniques. Specially relevant is the one employed in Examples 2.2.21, 2.2.23 and 2.2.26
inspired by the Representation Theorems 1.2.38 and 1.2.46. If m has the appropriate struc-
ture provided by these theorems several conditions can be automatically checked, systematically
producing new examples (see Remark 2.2.27).

In these representations, the partial sums of the harmonic series play a fundamental role, one
may write the p−th partial sum by Hp :=

∑p
k=1 1/k, and we know that

Hp = log(p) + γ + εp, γ = Euler's constant, lim
p→∞

εp = 0. (2.24)

Before knowing Theorem 2.2.6, J. Sanz suggests in [88, Corollary 4.10] that the existence of

lim
p→∞

p log

(
mp+1

mp

)
, (2.25)

which implies Theorem 2.2.6.(e), could be equivalent to dM being a nonzero proximate order.
This �rst example shows this su�cient condition is not necessary.

Example 2.2.21. We consider the sequence M de�ned by the sequence of its quotients as
m0 = 1, m1 = e and for all p ∈ N

m2p = e1/pm2p−1, m2p+1 = e1/(2p+1)m2p.

The following are valid:
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(i) M is a strongly regular sequence,

(ii) m is regularly varying of index ω = 3/2 and, by Theorem 2.2.6, dM is a proximate order,

(iii) m is not `smooth' in the sense of Theorem 1.2.41, that is, it does not satisfy

mp+1

mp
= 1 +

3/2

p
+ o

(
1

p

)
as p→∞,

(iv) m does not satisfy (2.25).

Proof. The sequence (mp)p∈N0 is nondecreasing, then M is (lc). We can write

log(m2p) =
1

2
Hp +H2p, log(m2p+1) =

1

2p+ 1
+

1

2
Hp +H2p, p ∈ N.

Thanks to the well-known behavior of the partial sums of the harmonic series, we show that

lim
p→∞

m`p

mp
= `3/2,

for every ` ∈ N and ` ≥ 2, which, by Theorem 2.2.6, implies that m is regularly varying and by
Corollary 2.1.6, that M is strongly regular. However, we observe that

m2p+1

m2p
= e1/2p+1 = 1 +

1

2p+ 1
+ o

(
1

p

)
, as p→∞,

m2p

m2p−1
= e1/p = 1 +

2

2p
+ o

(
1

p

)
, as p→∞,

then (iii) is true. With a similar computation, we see that

lim
p→∞

2p log

(
m2p+1

m2p

)
= lim

p→∞
2p log

(
e1/2p+1

)
= 1,

lim
p→∞

(2p− 1) log

(
m2p

m2p−1

)
= lim

p→∞
(2p− 1) log

(
e1/p

)
= 2,

and (2.25) does not hold. �

The second example shows that the equivalent conditions in Theorem 2.2.6 are stronger than
the ones in Theorem 2.2.17 (see Remark 2.2.18), that is, (f) does not imply (a) in general. The
idea is to construct a nondecreasing O-regularly varying sequence that is not regularly varying
but that is equivalent for ' to (p!)p∈N0 .

Example 2.2.22. Let M be de�ned using the sequence of quotients m. We put m0 = m1 = 1,
m2 = m3 = 2 and m4 = m5 = m6 = m7 = 6; for every k ∈ N and 22k+1 ≤ p < 22k+1+1 we de�ne
mp as follows:

mp = 22k3

(
22k

3

) j−1

2k−1

, 22k+j ≤ p ≤ 22k+j+1 − 1, j = 1, 2, . . . , 2k.

The following are valid:

(i) M is a weight sequence,

Universidad de Valladolid



98 CHAPTER 2. LOG-CONVEX SEQUENCES, O-REGULAR VARIATION AND PROXIMATE ORDERS

(ii) m is not regularly varying and dM is not a nonzero proximate order,

(iii) There exists ` nondecreasing and regularly varying of index ω = 1 such that ` ' m.
Consequently, from Theorem 2.2.6, dL is a nonzero proximate order and, by Theorem 2.2.17,
M admits dL as a nonzero proximate order,

(iv) m is O-regularly varying, with

β(m) = γ(M) = µ(m) = ω(M) = ρ(m) = α(m) = 1,

so it is also strongly regular.

Proof. (i) Since m8 = 12, in order to obtain the property (lc) it is enough to show that (mp)p≥8

is nondecreasing. For every k ∈ N there are three possibilities:

1. If 22k+j ≤ p ≤ p+ 1 ≤ 22k+j+1 − 1 for j = 1, . . . , 2k, we have that mp+1/mp = 1.

2. If p = 22k+j+1− 1 for j = 1, . . . , 2k − 1, we have that mp+1/mp = (22k/3)1/(2k−1), which is
greater than 1 since k ∈ N.

3. If p = 22k+1+1 − 1, we have that mp+1/mp = 22k+1
3/22k+1

= 3.

Moreover, we deduce that for 22k+1 ≤ p < 22k+1+1, mp ≥ m22k+1 = 22k3, so limp→∞mp =∞.

(ii) Next we analyze the quotients m2p/mp. By de�nition, for any 22k+j ≤ p ≤ 22k+j+1 − 1 we
have that 22k+j+1 ≤ 2p ≤ 22k+j+2 − 1. We distinguish two cases:

1. If 22k ≤ p ≤ 22k+1 − 1, we have that m2p/mp = 3.

2. If 22k+j ≤ p ≤ 22k+j+1 − 1 for j = 1, . . . , 2k − 1, we have that m2p/mp = (22k/3)1/(2k−1).

We observe that

lim
k→∞

22k/(2k−1)

31/(2k−1)
= 2.

From both cases, we have that

1 < 2 = lim inf
p→∞

m2p

mp
≤ lim sup

p→∞

m2p

mp
= 3 <∞.

Since the limit limp→∞m2p/mp does not exist, condition (c) in Theorem 2.2.6 is violated, so m
is not regularly varying and dM(t) is not a nonzero proximate order.

(iii) Next, we are going to see that m ' l, where the sequence l = (`p)p∈N0 , with `p = p+ 1 for
every p ∈ N0, corresponds to the sequence of quotients of the Gevrey sequence of order 1, i.e.,
(p!)p∈N0 , which is nondecreasing and regularly varying. For every p ≥ 8 and there exist k ∈ N
and j ∈ {1, 2, . . . , 2k} such that 22k+j ≤ p ≤ 22k+j+1 − 1 and we have that

22k3
(

22k/3
) j−1

2k−1

22k+j+1
≤ mp

p
≤

22k3
(

22k/3
) j−1

2k−1

22k+j
.

Then

3
2k−j
2k−1 2

j−2k

2k−1
−1 ≤ mp

p
≤ 3

2k−j
2k−1 2

j−2k

2k−1 .
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Since j ∈ {1, 2, . . . , 2k}, we see that
2−2 ≤ mp

p
≤ 3,

from where we conclude that m ' `.
(iv) This follows immediately by the stability of orders, Matuszewska indices, O-regular variation
and strong regularity for '.

�

The third example shows that condition (j) in Remark 2.2.7 is weaker than the equivalent
conditions (f), (g) and (h) in Theorem 2.2.19. The construction is based on Example 1.2.33 from
which it is possible to build a nondecreasing O-regularly varying function with its Matuszewska
indices equal to 1 that is not equivalent in the sense of Remark 1.2.31 to any regularly varying
function.

Example 2.2.23. We consider the function f : [1,∞) → (0,∞) in Example 1.2.33, we de�ne
g(x) := xf(x). From the properties of f , we observe that g satis�es the analogous ones:

(i) g is nondecreasing and continuous,

(ii) λ ≤ glow(λ) ≤ gup(λ) = λ exp((log(λ))1/2) for every λ > 1,

(iii) g ∈ ORV and β(g) = µ(g) = ρ(g) = α(g) = 1,

(iv) There do not exist A ≥ a and measurable and bounded functions d, ξ : [A,∞) → R with
limx→∞ ξ(x) = 1 such that

g(x) = exp

(
d(x) +

∫ x

A
ξ(u)

du

u

)
, x ≥ A,

what implies, by Theorem 1.2.4, that g is not regularly varying. Furthermore, it does not
exist h ∈ RV and C ≥ 1 such that

C−1h(x) ≤ g(x) ≤ Ch(x), x ≥ 1.

We can consider the sequence mp := g(p) for p ∈ N and m0 = g(1). Then

(i) m is nondecreasing, so M is (lc),

(ii) m is O-regularly varying and β(m) = µ(m) = ρ(m) = α(m) = 1, so M satis�es (j),

(iii) It does not exist ` with ` 'm such that ` is regularly varying, which, by Theorem 2.2.17
and Proposition 1.1.20, implies that M does not satisfy (f).

Proof. (i) Immediate.

(ii) Since g is nondecreasing and g ∈ ORV , by Lemma 2.1.34, we see that there exists C ≥ 1
such that for all x ≥ 1, C−1g(bxc) ≤ g(x) ≤ Cg(bxc). Using that g ∈ ORV , β(g) = µ(g) =
ρ(g) = α(g) = 1, Remark 1.2.31, Theorem 1.2.44 and the de�nition of indices and orders for
sequences, we conclude that (ii) is valid.

(iii) Assuming that the contrary is true, by Theorem 1.2.37 and Lemma 2.1.12, this would mean
that f`(x) = `bxc is regularly varying of index ρ = 1 and that there exists D ≥ 1 with

(DC)−1f`(x) ≤ C−1fm(x) ≤ g(x) ≤ Cfm(x) ≤ CDf`(x), x ≥ 1,

which contradicts property (iv) of g.
�
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In the fourth place, we present an example of a sequence that is strongly regular for which
the lower Matuszewska index and the upper and lower orders coincide (then (k) holds) but the
upper Matuszewska index takes a di�erent value ((j) is violated).

Example 2.2.24. Let M be de�ned using the sequence of quotients m. The construction is
similar to the one in Example 2.2.22. We set m0 = m1 = 1 and m2 = 2. For each k ∈ N0,
we consider the intervals Ak := (22k , 22k+1

] which we divide in 2k subintervals. We put Ikj :=

(22k+j , 22k+j+1] ∩ N for 0 ≤ j ≤ 2k − 1. For all 0 ≤ j ≤ k − 1 we de�ne mp as follows:

mp := 4m
22k+j

= 4j+122k , p ∈ Ikj ;

for every k ≤ j ≤ 2k − 1 we write τk = (2k − 2k)/(2k − k) ≥ 0 and we set

mp := 2τkm
22
k+j = 2(j−k+1)τk22k+k, p ∈ Ikj .

For all k ∈ N, we observe that

m
22k

= 22k and m
22k+k

= 22k+2k.

In some sense, one may say that the sequence is oscillating between M1,0 and M1,1. We can show
that

(i) M is strongly regular,

(ii) µ(m) = ρ(m) = 1, so (k) holds,

(iii) β(m) ∈ (0, 1] and α(m) ≥ 2, then (j) is violated.

Proof. (i) The sequence M is a weight sequence, since m is nondecreasing, and limp→∞mp =∞.
By de�nition, for any p ∈ Ikj we have that 2p belongs to the adjacent interval. We distinguish
two cases:

1. If p ∈ Ikj for 0 ≤ j ≤ k − 2 or j = 2k − 1, we have that m2p/mp = 4.

2. If p ∈ Ikj for k − 1 ≤ j ≤ 2k − 2, we have that m2p/mp = 2τk .

We observe that limk→∞ τk = 1. From both cases, we have that

1 < 2 = lim inf
p→∞

m2p

mp
≤ lim sup

p→∞

m2p

mp
= 4 <∞.

Applying Corollary 2.1.6, we see that M is (mg) and (snq).

(ii) We are going to show that

lim
p→∞

log(mp)

log(p)
= 1,

which implies that µ(m) = ρ(m) = 1. For all 0 ≤ j ≤ k − 1, if p ∈ Ikj we get

(j + 1) log(4) + 2k log(2)

(2k + j + 1) log(2)
≤ log(mp)

log(p)
≤ (j + 1) log(4) + 2k log(2)

(2k + j) log(2)
.

Since 0 ≤ j ≤ k − 1 we have that

2 + 2k

2k + k
≤ log(mp)

log(p)
≤ 2k + 2k

2k
. (2.26)
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For every 0 ≤ j ≤ 2k − k − 1, if p ∈ Ikk+j then

(j + 1) · τk · log(2) + (2k + 2k) log(2)

(2k + k + j + 1) log(2)
≤ log(mp)

log(p)
≤ (j + 1) · τk · log(2) + (2k + 2k) log(2)

(2k + k + j) log(2)
,

or, equivalently, we see that

1 +
k(2k − k − j − 1)

(2k + k + j + 1)(2k − k)
≤ log(mp)

log(p)
≤ 1 +

k(2k − k − j − 2) + 2k

(2k + k + j)(2k − k)
.

Since 0 ≤ j ≤ 2k − k − 1, we deduce that

1 ≤ log(mp)

log(p)
≤ 1 +

k(2k − k − 2) + 2k

22k − k2
. (2.27)

By (2.26) and (2.27), we conclude that limp→∞ log(mp)/ log(p) = 1.

(iii) By Remark 2.1.9 and Proposition 2.1.18, we can show that

0 < β(m) ≤ 1 = µ(m) = ρ(m) ≤ α(m) <∞,

hence only α(m) ≥ 2 needs to be veri�ed. If α < 2, we take p = 22k and q = 22k+k:

m
22k

m
22k+k

(22k+k)α

(22k)α
=

22k

22k+2k

(22k+k)α

(22k)α
= 2(α−2)k.

Therefore, since limk→∞(α− 2)k = −∞, we deduce that mp/p
α is not almost decreasing for all

α < 2 and we conclude, by using Proposition 2.1.10 that α(m) ≥ 2.

Moreover, a tedious but simple computation, using the almost increasing and almost decreas-
ing characterization of β(m) and α(m), leads to β(m) = 1 and α(m) = 2.

�

Our last example is a strongly regular sequence for which the values β(m) = γ(M), µ(m) =
ω(M), ρ(m), α(m) are mutually distinct. Regarding the implications for the corresponding
ultraholomorphic class presented in the next chapter, this will mean that the asymptotic Borel
map is neither surjective nor injective for sectors whose opening is πγ with γ ∈ (γ(M), ω(M)).
The Representation Theorem for O-regularly varying sequence plays a key role and, related to
it, appears the notion of Riesz summability.

De�nition 2.2.25. [18, Sect. 3.2] A numerical sequence (sk)k∈N of complex numbers is said to
be logarithmic summable or Riesz summable of order 1, if there exists some A ∈ C such that

lim
p→∞

1

Hp

p∑
k=1

sk
k

= A, where Hp =

p∑
k=1

1

k
. (2.28)

This method is regular, that is, if the ordinary limit exists, then the limit in (2.28) also exists
and with the same value. The base of the example is the construction of a sequence of positive
real numbers bounded away from 0 and ∞ that is not Riesz summable of order 1. We were not
able to �nd such an example in the classical literature and the reader is referred to the book
of J. Boos [18] for further details regarding the summability methods. In Example 2.2.21, it is
hidden the use of a sequence that is 2 on the even positions and 1 in the odd ones, which was
proved to be Riesz summable with sum 3/2. Hence the next example requires more elaboration
to make the logarithmic means divergent.
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Example 2.2.26. We de�ne M by the sequence of its quotients,

m0 := 1, mp := eξp/pmp−1 = exp

(
p∑

k=1

ξk
k

)
, p ∈ N.

We consider the sequences of subindices

kn := 23n < qn := k2
n = 23n2 < kn+1 = 23n+1

, n ∈ N0,

and we choose the sequence (ξk)
∞
k=1 as follows:

ξ1 = ξ2 = 2,

ξk = 3, if k ∈ {kn + 1, . . . , qn}, n ∈ N0,

ξk = 2, if k ∈ {qn + 1, . . . , kn+1}, n ∈ N0.

The following hold:

(i) M is strongly regular, that is, (`) is valid.

(ii) M does not satisfy (k), i.e., the limit in (2.23),

lim
p→∞

log(mp)/ log(p),

does not exist. Consequently, neither (j), nor (f), nor (a) holds.

(iii) β(m) = γ(M) = 2, µ(m) = ω(M) = 5/2, ρ(m) = 11/4 and α(m) = 3.

Proof. (i) From the de�nition we deduce immediately that mp+1 > mp for p ∈ N0, then M is
(lc). For all p ∈ N we have that

exp

2

2p∑
k=p+1

1

k

 ≤ m2p

mp
= exp

 2p∑
k=p+1

ξk
k

 ≤ exp

3

2p∑
k=p+1

1

k

 .

Using the asymptotic expression (2.24) for the partial sums of the harmonic series, for every
p ∈ N we have that

exp (2 log(2) + 2ε2p − 2εp) ≤
m2p

mp
≤ exp (3 log(2) + 3ε2p − 3εp) .

From these inequalities and using Corollary 2.1.6, we deduce that M satis�es (mg) and (snq),
therefore M is strongly regular, which can be also alternatively shown from Theorem 1.2.46 and
Remark 2.1.19.

(ii) Observe that M veri�es (2.23) if and only if the sequence

tp :=
1

log(p)

p∑
k=1

ξk
k
, p ∈ N,

is convergent (in other words, precisely when the sequence (ξk)
∞
k=1 is Riesz summable, see De�-

nition 2.2.25). We will see that (ξk)
∞
k=1 is not Riesz summable, more precisely we will show that

lim
n→∞

tkn =
5

2
, lim

n→∞
tqn =

11

4
. (2.29)
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We have the following relations:

tqn =
log(kn)

log(qn)
tkn + 3

Hqn −Hkn

log(qn)
=
tkn
2

+
3

2
+ 3

εqn − εkn
log(qn)

, (2.30)

tkn+1 =
2tqn

3
+

2

3
+ 2

εkn+1 − εqn
log(kn+1)

. (2.31)

Using (2.30) and (2.31), we see that

tkn+1 =
tkn
3

+ 1 + 2
εqn − εkn
log(qn)

+
2

3
+ 2

εkn+1 − εqn
log(kn+1)

=
tkn
3

+
5

3
+ ε̃n, (2.32)

where ε̃n := (2εkn+1 + εqn − 3εkn)/ log(kn+1) noting that limn→∞ ε̃n = 0. Given ε > 0, there
exists n0 ∈ N such that |ε̃n| < ε for every n ≥ n0. We consider the sequences (sn)n≥n0 and
(un)n≥n0 recursively de�ned by{

sn+1 = sn/3 + 5/3 + ε
sn0 = tkn0

{
un+1 = un/3 + 5/3− ε
un0 = tkn0

If tkn0 ≤ 5/2 + 3ε/2 (resp. tkn0 ≥ 5/2 + 3ε/2 ) using induction, for every n ≥ n0, we deduce that
sn ≤ 5/2 + 3ε/2 (resp. sn ≥ 5/2 + 3ε/2). Then, (sn)n≥n0 is nondecreasing (resp. nonincreasing)
and in both cases we prove that limn→∞ sn = 5/2 + 3ε/2.

Analogously, we see that limn→∞ un = 5/2−3ε/2. Since sn0 = un0 = tkn0 , using that |ε̃n| < ε
for every n ≥ n0 we prove by induction employing (2.32) that

un ≤ tkn ≤ sn, n ≥ n0.

Taking limits, we get
5

2
− 3ε

2
≤ lim inf

n→∞
tkn ≤ lim sup

n→∞
tkn ≤

5

2
+

3ε

2
.

Since ε > 0 is arbitrary, we conclude that limn→∞ tkn = 5/2. In a similar way, we also can show
that limn→∞ tqn = 11/4. Using (2.30) and (2.31), we see that

tqn+1 =
tqn
3

+
1

3
+
εkn+1 − εqn
log(kn+1)

+
3

2
+ 3

εqn+1 − εkn+1

log(qn+1)
=
tqn
3

+
11

6
+ ˜̃εn,

where ˜̃εn := (3εqn+1 − εkn+1 − 2εqn)/ log(qn+1) and we conclude, reasoning as before.

(iii) Studying the monotonicity of the sequence (tp)p≥1, we will show that

ω(M) = µ(m) = lim inf
p→∞

tp = lim
n→∞

tkn =
5

2
, ρ(m) = lim sup

p→∞
tp = lim

n→∞
tqn =

11

4
. (2.33)

If we show, for n large enough, that tp ≤ tp+1 for p ∈ {kn, . . . , qn − 1} and tp ≥ tp+1 for
p ∈ {qn, . . . , kn+1 − 1}, using (2.29), we obtain (2.33) . We observe that

tp+1 =
log(p)

log(p+ 1)
tp +

ξp+1

(p+ 1) log(p+ 1)
=
ξp+1 + (p+ 1) log(p)tp

log(p+ 1)(p+ 1)
. (2.34)

Then

tp+1 − tp =
1

log(p+ 1)(p+ 1)
(ξp+1 − (p+ 1) log(1 + 1/p)tp) . (2.35)
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First we will show that there exists n1 ∈ N such that for every n ≥ n1, we have that

tp < 3− 3

2p
for all p ∈ {kn, . . . , qn − 1}. (2.36)

Since limn→∞ tkn = 5/2, there is n1 ∈ N such that for every n ≥ n1 we have tkn < 5/2 + 5/16 =
45/16. Since k1 = 8, for every n ≥ n1 we have that

tkn < 45/16 = 3− 3/(2k1) < 3− 3/(2kn).

Reasoning by induction if we assume that tp < 3 − 3/(2p) for a certain n ≥ n1 and a certain
p ∈ {kn, . . . , qn − 1}, so ξp+1 = 3, and using (2.34) we see that

log(p+ 1)(p+ 1)tp+1 = 3 + (p+ 1) log(p)tp < 3 + (p+ 1) log(p)

(
3− 3

2p

)
.

Hence it su�ces to prove that

3 + (p+ 1) log(p)

(
3− 3

2p

)
≤ log(p+ 1)(p+ 1)

(
3− 3

2(p+ 1)

)
.

This happens if and only if

2p+ (p+ 1) log(p)(2p− 1) ≤ p log(p+ 1) (2p+ 1) ,

or, equivalently, if
2p ≤ (2p2 + p) log(1 + 1/p) + log(p).

Since x/(1 + x) ≤ log(1 + x) for every x > 0, we see that the last inequality holds for every p
large enough which proves (2.36). Using (2.35), we see that tp < tp+1 if and only if

ξp+1 > (p+ 1) log(1 + 1/p)tp.

We observe that

(p+ 1) log(1 + 1/p) = 1 +
1

2p
− 1

6p2
+ o(1/p2).

Consequently, there exists n2 ∈ N such that for every p ≥ kn2 , we have that

(p+ 1) log(1 + 1/p) ≤ 1 +
1

2p
− 1

12p2
.

By (2.36) for every n ≥ n0 := max(n1, n2) and p ∈ {kn, . . . , qn − 1} we have that

tp(p+ 1) log

(
1 +

1

p

)
<

(
3− 3

2p

)(
1 +

1

2p
− 1

12p2

)
= 3− 1

p2
+

1

8p3
< 3 = ξp+1.

Consequently, tp ≤ tp+1 for every n ≥ n0 and p ∈ {kn, . . . , qn − 1}. Analogously, we will show
that for n large enough, and p ∈ {qn, . . . , kn+1 − 1} we have that

tp > 2 +
1

p
. (2.37)

Since limn→∞ tqn = 11/4 there exists n3 ∈ N such that tqn > 2 + 1/64 = 2 + 1/q1 > 2 + 1/qn for
every n ≥ n3. Assume tp > 2 + 1/p for a certain n ≥ n3 and a certain p ∈ {qn, . . . , kn+1 − 1}
by (2.34) we have that

log(p+ 1)(p+ 1)tp+1 = 2 + (p+ 1) log(p)tp > 2 + (2 + 1/p)(p+ 1) log(p).
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Then it is enough to prove that

2 + (2 + 1/p)(p+ 1) log(p) ≥ log(p+ 1)(p+ 1)

(
2 +

1

p+ 1

)
,

or, equivalently,
2p ≥ (2p2 + 3p) log(1 + 1/p)− log(p).

Since log(1+1/p) ≤ 1/p, the last inequality is always true for p large enough, which proves (2.37).
We observe that for n ≥ n4 ≥ n3 and p ∈ {qn, . . . , kn+1 − 1} we have that

tp(p+ 1) log(p+ 1) > (2 + 1/p)(p+ 1) log(p+ 1) ≥ (2 + 1/p)(1 + 1/(3p)) > 2 = ξp+1.

We conclude that tp ≥ tp+1 for n large enough and p ∈ {qn, . . . , kn+1 − 1}. Using these mono-
tonicity properties of the sequence (tp)p≥1 we conclude that

µ(m) =
5

2
= lim

n→∞
tkn = lim inf

p→∞
tp ≤ lim sup

p→∞
tp = lim

n→∞
tqn =

11

4
= ρ(m).

Finally, let us see that we have β(m) = γ(M) = 2. We will show that mp/p
α is almost increasing

if and only if α ∈ (0, 2]. We have that mp/p
α is almost increasing if and only if there exists

M ≥ 1 such that for every p ∈ N and all ` ≥ p we have that

mp

m`

`α

pα
≤M,

or, equivalently, using (2.24),

mp

m`
exp(α(H` −Hp)− α(ε` − εp)) ≤M.

Since limp→∞ εp = 0, using the de�nition of mp, we have that mp/p
α is almost increasing if and

only if, there exists M ≥ 1 such that for every p ∈ N and all ` ≥ p we have that

exp

 ∑̀
k=p+1

α− ξk
k

 ≤M.

If α ∈ (0, 2], we observe that, for every k ∈ N, α − ξk ≤ 0. Then for every p ∈ N and all ` ≥ p
we see that

exp

 ∑̀
k=p+1

α− ξk
k

 ≤ 1 =: M.

If α > 2, we see that for every n ∈ N and every k ∈ {qn + 1, . . . , kn+1} we have that α − ξk =
α− 2 > 0. Then taking p = qn = 23n2 and ` = kn+1 = 23n+1

and using again (2.24) we see that

exp

 kn+1∑
k=qn+1

α− ξk
k

 = exp((α− 2)(3n log(2)− εkn+1 − εqn)),

but the right hand side is unbounded as n → ∞, then mp/p
α is not almost increasing. Conse-

quently, mp/p
α is almost increasing if and only if α ∈ (0, 2] and, by Proposition 2.1.10, it means

that β(m) = 2. Similarly, we see that α(m) = 3.
�
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Remark 2.2.27. In a more general framework, given ξ : [1,∞) → (0,∞) locally integrable we
can consider the function

ω(x) = exp

(∫ x

1
ξ(u)

du

u

)
, t > 1,

that is a nondecreasing function.

If ξ is bounded, then ω is automatically O-regularly varying, by Theorem 1.2.25. In particular,
given four mutually distinct positive values 0 < β < µ < ρ < α <∞, for all a > b > 1 we de�ne

ξ(t) :=

{
α, for t ∈ [2a

n
, 2ba

n
).

β, for t ∈ [2ba
n
, 2a

n+1
).

With a technique similar to the one employed in the last example, in which α = a = 3 and
β = b = 2, one can prove that

µ(m) =
(b− 1)α+ (a− b)β

a− 1
, ρ(m) =

a(b− 1)α+ (a− b)β
b(a− 1)

,

then taking

b :=
α− µ
α− ρ

, a := b
ρ− β
µ− β

=
α− µ
α− ρ

ρ− β
µ− β

we obtain
β(ω) = β, µ(ω) = µ, ρ(ω) = ρ, α(ω) = α.

Finally, for the corresponding nondecreasing sequence, that is, mp := ω(p) for p large enough,
since ω ∈ ORV , by Lemma 2.1.34, we know that

β(m) = β, µ(m) = µ, ρ(m) = ρ, α(m) = α.

In a similar way, one can construct sequences for which γ(M) = β(m), ω(M) = µ(m) ∈
(0,∞), but that α(m) =∞. For instance, for all t ≥ 4 and n ≥ 2 we can de�ne

ξ(t) :=

{
2, for t ∈ [22((n−1)!)2 , 2(n!)2).

n, for t ∈ [2(n!)2 , 22(n!)2).

The corresponding sequence M is a (dc) weight sequence with γ(M) = 2, ω(M) ∈ (0,∞) and
α(m) =∞.

Such an example can also be constructed indirectly by considering the dual sequence of the
sequence M in [57, Example 3.3] introduced before in Example 2.1.20. For this sequence, we
have that β(m) = 0, µ(m) = 2, ρ(m) = 3 and α(m) = 4, so since m is O-regularly varying by
Theorem 2.1.43 for the dual sequence DM we have that β(d) = 1/4, µ(d) = 1/3, ρ(d) = 1/2 and
α(d) =∞.

These sequences are not strongly regular (see Remark 2.1.19), but nevertheless the values
γ(M) and ω(M) are meaningful, as it will be explained in the next chapter. Unfortunately, as it
will be mentioned in the following chapter, not much information is available for the surjectivity
of the asymptotic Borel map in these kind of situations.
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Chapter 3

Injectivity and surjectivity of the

asymptotic Borel map

From the sequences of positive real numbers considered in the previous chapters we will de�ne
classes of holomorphic functions in unbounded sectors of the Riemann surface of the logarithm.
In this context, the study of properties of the asymptotic Borel map, sending a function f into its
asymptotic expansion, appears as a natural problem. The injectivity and surjectivity of the Borel
map will be examined in three instances: in Roumieu-Carleman ultraholomorphic classes and in
classes of functions admitting (uniform or nonuniform) asymptotic expansion at the origin. It
will be shown that the solution depends on the opening of the sector, injectivity is possible if
the sector is wide enough whereas surjectivity is only attainable in narrow regions. This issue is
closely related with the summability theory presented in the next chapter: injectivity provides
uniqueness and surjectivity existence of the sum of a formal power series.

Injectivity had been solved in two cases by S. Mandelbrojt and B. Rodríguez-Salinas in the
1950's, respectively, and we completely solve the third one by means of the theory of proximate
orders (see Theorem 3.2.15). Sanz's growth index ω(M) turns out to put apart the values
of the opening of the sector for which injectivity holds or not. The �rst section ends with
Theorem 3.2.16 in which it is proved that the Borel map is never bijective as an outcome of the
injectivity theorems.

In the case of surjectivity, only some partial results were available by J. Schmets and M.
Valdivia and by V. Thilliez at the very beginning of this century, resting on results from the
ultradi�erentiable setting and disregarding questions about the optimality of the opening of
the sector, that was only established for the Gevrey case Mα = (p!α)p∈N0 . This last author
introduced the growth index γ(M) for this problem. We considerably extend here their results,
proving that γ(M) is indeed optimal in some standard situations, for instance for strongly regular
sequences, putting now apart the values of the opening of the sector for which surjectivity holds
or not.

From the information in Section 2.1, we know that for strongly regular sequences the value of
theses indices ω(M) and γ(M) is generally di�erent. However they coincide for a large class, the
ones admitting a nonzero proximate order (see Section 2.2), which contains most of the sequences
appearing in the applications.

The results gathered in this chapter can be found in [48].
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3.1 Asymptotic expansions and ultraholomorphic classes

In this section, we introduce three di�erent classes of ultaholomorphic functions. We will study
their relations and their elementary properties. Next the asymptotic Borel map will be de�ned
from these classes into the algebra of formal power series. Finally, some helpful notation regarding
the injectivity and surjectivity of the Borel map will be considered.

3.1.1 Basic de�nitions

The functions appearing below are de�ned in regions of the Riemann surface of the logarithm
R, some of them already introduced in the �rst chapter. We consider bounded sectors

S(d, γ, r) := {z ∈ R : |arg(z)− d| < γ π

2
, |z| < r},

respectively unbounded sectors

S(d, γ) := {z ∈ R : |arg(z)− d| < γ π

2
},

with bisecting direction d ∈ R, opening γ π (γ > 0) and (in the �rst case) radius r ∈ (0,∞). For
unbounded sectors of opening γ π bisected by direction 0, we write Sγ := S(0, γ).

In some cases, it will also be convenient to considered more general domains. A sectorial region

G(d, γ) with bisecting direction d ∈ R and opening γ π will be an open connected set in R such
that G(d, γ) ⊆ S(d, γ), and for every β ∈ (0, γ) there exists ρ = ρ(β) > 0 with S(d, β, ρ) ⊆
G(d, γ). In particular, sectors are sectorial regions. If d = 0 we just write Gγ .
A bounded (respectively, unbounded) sector T is said to be a proper subsector of a sectorial
region G (resp. of an unbounded sector S) , and we write T � G (resp. T ≺≺ S), if T ⊂ G
(where the closure of T is taken in R, and so the vertex of the sector is not under consideration).

For an open set U ⊂ R, the set of all holomorphic functions in U will be denoted by H(U).
Finally, C[[z]] stands for the set of formal power series in z with complex coe�cients.

As in the previous chapters, M = (Mp)p∈N0 is a sequence of positive real numbers with
M0 = 1. We consider the following three classes of functions de�ned for arbitrary sectorial
regions, so also for sectors.

De�nition 3.1.1. Given a sectorial region G, we say f ∈ H(G) admits the formal power series
f̂ =

∑∞
n=0 anz

n ∈ C[[z]] as its M−asymptotic expansion in G (when the variable tends to 0) if
for every T � G there exist CT , AT > 0 such that for every p ∈ N0 one has∣∣∣f(z)−

p−1∑
n=0

anz
n
∣∣∣ ≤ CTApTMp|z|p, z ∈ T.

We will write f ∼M f̂ in G, and ÃM(G) will stand for the space of functions admitting
M−asymptotic expansion in G.

De�nition 3.1.2. Given a sectorial region G, we say f ∈ H(G) admits f̂ =
∑∞

n=0 anz
n ∈ C[[z]]

as its uniform M−asymptotic expansion in G (of type 1/A for some A > 0) if there exists C > 0
such that for every p ∈ N0 one has∣∣∣f(z)−

p−1∑
n=0

anz
n
∣∣∣ ≤ CApMp|z|p, z ∈ G.

We will write f ∼uM f̂ in G, and ÃuM(G) stands for the space of functions admitting uniform
M−asymptotic expansion in G (of some type).
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De�nition 3.1.3. Given a constant A > 0 and a sectorial region G, we de�ne

AM,A(G) =
{
f ∈ H(G) : ‖f‖M,A := sup

z∈G,p∈N0

|f (p)(z)|
App!Mp

<∞
}
.

(AM,A(G), ‖ ‖M,A) is a Banach space, and AM(G) := ∪A>0AM,A(G) is called a Carleman ultra-

holomorphic class of of Roumieu type in the sectorial region G.

The functions considered in this chapter are complex-valued, but most of the following results
are also valid if they take values in a complex Banach algebra. From the conditions introduced
in Chapter 1 for the sequence M we obtain some elementary properties of the classes.

Remark 3.1.4. For any sequence M, the classes AM(G), ÃuM(G) and ÃM(G) are complex vector
spaces. If M is (lc), they are algebras and if M is (dc), they are stable under taking derivatives.

Moreover, if M ≈ L the corresponding classes coincide.

In our results we will mainly consider sectors but some of them can be extended to sectorial
regions, specially when dealing with the class ÃM(G). For a sector S, bounded or not, since the
derivatives of f ∈ AM,A(S) are Lipschitzian, for every n ∈ N0 one may de�ne

f (p)(0) := lim
z∈S,z→0

f (p)(z) ∈ C. (3.1)

We recall now the relation between this Roumieu-Carleman ultraholomorphic class and the
concept of asymptotic expansion. that is obtained as a consequence of Taylor's formula and
Cauchy's integral formula for the derivatives (see [7, 31] for a proof in the Gevrey case, which
may be easily adapted to this more general situation).

Proposition 3.1.5. Let M be a sequence, S a sector and G a sectorial region. Then,

(i) if f ∈ AM,A(S) then f admits f̂ :=
∑

p∈N0

1
p!f

(p)(0)zp as its uniform M−asymptotic ex-

pansion in S of type 1/A where (f (p)(0))p∈N0 is given by (3.1). Consequently, we have
that

AM(S) ⊆ ÃuM(S) ⊆ ÃM(S).

(ii) f ∈ ÃM(G) if and only if for every T � G there exists AT > 0 such that f |T ∈ AM,AT (T ).
In case any of the previous holds and f ∼M

∑∞
p=0 apz

p, it is plain to check that for every
bounded proper subsector T of G and every p ∈ N0 one has

ap = lim
z→0
z∈T

f (p)(z)

p!
,

and we can set f (p)(0) := p!ap.

(iii) if S is unbounded and T ≺≺ S, then there exists a constant c = c(T, S) > 0 such that
the restriction to T , fT , of functions f de�ned on S and admitting uniform M−asymptotic
expansion in S of type 1/A > 0, belongs to AM,cA(T ).

(iv) if f ∈ ÃM(G) its M−asymptotic expansion f̂ is unique.
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3.1.2 The asymptotic Borel map

In this context, it is natural to consider the following map.

De�nition 3.1.6. Given a sectorial region G and f ∈ ÃM(G), we de�ne the asymptotic Borel

map as the map sending a function f ∈ ÃM(G) into its M−asymptotic expansion f̂ and we write
B̃(f) := f̂ .

One may accordingly de�ne classes of formal power series

C[[z]]M,A =
{
f̂ =

∞∑
n=0

anz
n ∈ C[[z]] : |a |M,A := sup

p∈N0

|ap|
ApMp

<∞
}
.

(C[[z]]M,A, | |M,A) is a Banach space and we put C[[z]]M := ∪A>0C[[z]]M,A.

Remark 3.1.7. Given f ∈ ÃM(G) it is straightforward that B̃(f) ∈ C[[z]]M, so

B̃ : ÃM(G) −→ C[[z]]M.

If G = S is a sector, using Proposition 3.1.5.(i) we see that the asymptotic Borel map is also
well de�ned on AM(S) and ÃuM(S).

If M is (lc), B̃ is a homomorphism of algebras; if M is (dc), B̃ is a homomorphism of di�erential
algebras. Finally, note that if M ≈ L, then C[[z]]M = C[[z]]L.

A fundamental role in the discussion about the injectivity and surjectivity of the asymptotic
Borel map gathered in this chapter will be played by the �at functions.

De�nition 3.1.8. A function f in any of the previous classes is said to be �at if B̃(f) is the
null power series, in other words, f ∼M 0̂.

One may express �atness in ÃM(G) by means of the associated functions de�ned in Sec-
tion 1.1.3.

Proposition 3.1.9 ([97], Proposition 4). Given a sequence M, a sectorial region G and f ∈
H(G), the following are equivalent:

(i) f ∈ ÃM(G) and f is �at,

(ii) For every bounded proper subsector T of G there exist c1, c2 > 0 with

|f(z)| ≤ c1e
−ωM(1/(c2|z|)) = c1hM(c2|z|), z ∈ T.

In the Gevrey case of order α, thanks to the estimates in Example 1.1.22, we recover the
classical result that characterizes �atness in terms of exponential decrease bounds of order 1/α,
that is, in terms of e−|z|

−1/α
.

Remark 3.1.10. In the results gathered in the next sections we will only deal with weight
sequences, that is, (lc) such that limp→∞mp =∞. The requirement of (lc) condition is justi�ed
in Remarks 3.1.4 and 3.1.7. Moreover, A. Gorny and H. Cartan proved that this is not a
restriction in the ultradi�erentiable setting (see [53, p. 104]).

For a (lc) sequence M, since m is not decreasing, if limp→∞mp 6=∞, then limp→∞mp <∞
and also limp→∞(Mp)

1/p <∞ (see Lemma 1.1.7). Then there exists A > 0 such that the function
hM(t) = 0 for all t ∈ [0, A]. Hence by Proposition 3.1.9, if f ∈ ÃM(G) and f is �at, we have
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that f(t) = 0 for every t ∈ (0, A] which, by the identity principle, implies that f(z) identically
vanishes in G. Consequently, the Borel map is always injective.

On the other hand, in the same situation, the Borel map is never surjective: we consider
a holomorphic function at the origin L(z) whose Taylor expansion at 0 is given by a lacunary
series L̂ ∈ C{z} ⊆ C[[z]]M, whose domain of convergence is a disc of radius R where R < |z|
for some z ∈ G. We have that L ∼M L̂ on a region G′ ⊆ G, so by the injectivity of the Borel
map it cannot exist another function E ∈ ÃM(G) ⊆ ÃM(G′) with E ∼M L̂. Since L cannot be
analytically continued to G, the Borel map is not surjective, which justi�es the consideration of
the limit condition for m.

By using a simple rotation, we see that the injectivity and the surjectivity of the Borel map
in any of the previously considered classes do not depend on the bisecting direction d of the
sectorial region G, so we limit ourselves to the case d = 0. Moreover, in this dissertation we will
restrict our study to the unbounded sectors Sγ , and include comments on what can be said, to
our knowledge, for more general sectorial regions. So, we de�ne

IM :={γ > 0; B̃ : AM(Sγ) −→ C[[z]]M is injective},
ĨuM :={γ > 0; B̃ : ÃuM(Sγ) −→ C[[z]]M is injective},
ĨM :={γ > 0; B̃ : ÃM(Sγ) −→ C[[z]]M is injective}.

Whenever γ > 0 belongs to any of these sets, we say that the corresponding class is quasianalytic.
Hence, nonquasianalyticity amounts to the existence of nontrivial �at functions in the class.

We easily observe that, by restriction and the identity principle, if γ > 0 is in any of those
sets then every γ′ > γ also is. Consequently, IM, ĨuM and ĨM are either empty or unbounded
intervals contained in (0,∞), which we call quasianalyticity or injectivity intervals.
Similarly, we de�ne

SM :={γ > 0; B̃ : AM(Sγ) −→ C[[z]]M is surjective},
S̃uM :={γ > 0; B̃ : ÃuM(Sγ) −→ C[[z]]M is surjective},
S̃M :={γ > 0; B̃ : ÃM(Sγ) −→ C[[z]]M is surjective}.

It is also plain to check that if γ > 0 is in any of those sets then every 0 < γ′ < γ also is, so
SM, S̃uM and S̃M are either empty or left-open intervals having 0 as endpoint, called surjectivity

intervals. Using Proposition 3.1.5.(i), we easily see that

IM ⊇ ĨuM ⊇ ĨM, (3.2)

SM ⊆ S̃uM ⊆ S̃M. (3.3)

Remark 3.1.11. In the literature, a set of conditions di�erent from those presented in the
previous chapters appears when dealing with ultraholomorphic or ultradi�erentiable classes of
functions, specially if they are given in terms of bounds for the derivatives. In particular, some
authors (H. Komatsu [52], H.-J. Petzsche [77], J. Bonet, R. Meise and S.N. Melikhov [17] and
others) de�ne the classes replacing the sequence M by M̂ := (p!Mp)p∈N0 in the estimates of
De�nitions 3.1.1, 3.1.2 and 3.1.3, that is,

sup
z∈G,p∈N0

|f (p)(z)|
ApM̂p

<∞, or
∣∣∣f(z)−

p−1∑
n=0

anz
n
∣∣∣ ≤ CAp M̂p

p!
|z|p,

for z in the corresponding region. In this situation, the following conditions, with the notation
of H. Komatsu, are considered for M̂:
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(M.1) L2
p ≤ Lp−1Lp for every p ∈ N,

(M.2) There exists A > 0 such that

Lp+k ≤ Ap+kLpLk, k, p ∈ N0,

(M.3) There exists B > 0 such that

∞∑
k=p

Lk
Lk+1

≤ Bp Lp
Lp+1

, p ∈ N.

Note that L satis�es (M.3) if and only if ` has (γ1) of H. -J. Petzsche (see Remark 2.1.23). Let
us clarify the relation between these two approaches: If M is (lc), then M̂ satis�es (M.1), if M
has (mg), then M̂ satis�es (M.2) and if M is (snq), then M̂ satis�es (M.3). On the other hand, if

M satis�es (M.2) or (M.3), then the sequence M̂ := (Mp/p!)p∈N0 has (mg) or (snq), respectively.

However, if M is (M.1), M̂ is not necessarily (lc). If this is the case, we say that M is strongly
logarithmically convex, for short (slc).

In this same context, instead of considering the class of formal power series C[[z]]M, some authors
considered the classes of sequences

ΛM,A =
{
µ = (µn)n∈N0 ∈ CN0 : |µ|M,A := sup

n∈N0

|µn|
Ann!Mn

<∞
}
.

(ΛM,A, | |M,A) is again a Banach space, and we put ΛM := ∪A>0ΛM,A. There is a bijection

between them sending a formal power series f̂ =
∑∞

n=0 anz
n into the sequence of derivatives at

the origin, (app!)p∈N0 (see Proposition 3.1.5.(ii)). This map is an isomorphism of Banach algebras
if M is (lc). Due to the fact that the product considered in these algebras is the classical for
formal power series, we have found reasonable the choice of the notation C[[z]]M.

Even if the relation between the sequences M, M̂ and M̂ is known, we need to impose certain
conditions in order to establish the connection between the associated functions ωM(t), ωM̂(t)
and ωM̂(t). This is one of the major concerns when mixing the results from the two di�erent
approaches.

3.2 Injectivity of the asymptotic Borel map. Impossibility of bi-
jectivity

In 1912, G.N. Watson [105] determined the injectivity interval ĨuMα
for the Gevrey sequence

Mα = (p!α)p∈N0 by proving that if a function f has global exponential decrease bounds of order
1/α on a sector Sα, the function f is too �at and must be 0. The modern proof, contained in
most of the books, is a smart but easy consequence of Phragmén-Lindelöf principle. Extensions
of these results were obtained by S. Mandelbrojt and B. Rodríguez-Salinas (see Theorems 3.2.1
and 3.2.3).

In this section, these classical results which deal with the classes AM and ÃuM will be presented
and we will reformulate them in terms of the growth index ω(M) thanks to its relation with
the exponent of convergence of m. Finally, the problem for the class ÃM will be solved by
constructing, via proximate orders, �at functions in sectors of optimal opening. As a consequence,
we will obtain the �rst surjectivity result stating that the Borel map is never bijective.
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3.2.1 Classical injectivity results

The quasianalyticity intervals IM and ĨuM were determined in the literature in the 1950's. We will
rephrase the corresponding results by means of Sanz's growth index ω(M) (see Subection 1.1.4).
This index was proved to coincide with the lower order of the sequence µ(m) which is closely
related to the exponent of convergence ofm (see Theorem 2.1.16 and Proposition 2.1.26). Hence,
if M is (lc), then m and m̂ = ((p+ 1)mp)p∈N0 are nondecreasing and, by the results we have just
mentioned, we see that

ω(M) = µ(m) = sup{µ > 0;
∞∑
`=0

1

(m`)1/µ
<∞},

ω(M) = µ(m) = sup{µ > 0;
∞∑
`=0

1

((`+ 1)m`)1/(µ+1)
<∞}.

In order to simplify some statements and to avoid trivial situations (see Remark 3.1.10), we will
frequently assume that M is a weight sequence, i.e., is (lc) with limp→∞mp =∞. The �rst result
we recall is due to S. Mandelbrojt in 1952.

Theorem 3.2.1 ([72], Section 2.4.III). Let M be a weight sequence, c ≥ 0, H(c) := {z ∈ C :
Re(z) > c} and γ > 0. The following statements are equivalent:

(i)
∞∑
p=0

(
1

mp

)1/γ

diverges,

(ii) If f ∈ H(H(c)) and there exist A,C > 0 such that

|f(z)| ≤ CApMp

|z|γp
, z ∈ H(c), p ∈ N0, (3.4)

then f identically vanishes.

Observe that a function f is holomorphic in H := H(0) and veri�es the estimates (3.4) if
and only if the function g given by g(z) := f(1/z1/γ) belongs to ÃuM(Sγ) and is �at. Hence,
the interval IM is determined by the following equivalence (i)⇔ (ii), as an easy consequence of
Theorem 3.2.1, and (iii) is a consequence of the above mentioned properties of ω(M).

Theorem 3.2.2 ([72]). Let M be a weight sequence and γ > 0. The following statements are
equivalent:

(i) B̃ : ÃuM(Sγ) −→ C[[z]]M is injective,

(ii)
∑∞

p=0(mp)
−1/γ =∞,

(iii) Either γ > ω(M), or γ = ω(M) and
∑∞

p=0(mp)
−1/ω(M) =∞.

Quasianalyticity for the classes of functions with uniformly bounded derivatives in an un-
bounded sector was characterized in 1955 using Theorem 3.2.1 by Rodríguez-Salinas [87], al-
though it is frequently attributed to B. I. Korenbljum [54].

Theorem 3.2.3 ([87], Th. 12). Let M be a weight sequence and γ > 0 be given. The following
statements are equivalent:

(i) The class AM(Sγ) is quasianalytic,
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(ii)
∞∑
p=0

( 1

(p+ 1)mp

)1/(γ+1)
diverges.

Similarly, by Proposition 2.1.26, we deduce that Theorem 3.2.3 may be stated as follows.

Theorem 3.2.4. Let M be a weight sequence and γ > 0 be given. The following statements are
equivalent:

(i) The class AM(Sγ) is quasianalytic,

(ii)
∑∞

p=0((p+ 1)mp)
−1/(γ+1) =∞,

(ii) γ > ω(M), or γ = ω(M) and
∞∑
p=0

(
(p+ 1)mp

)−1/(ω(M)+1)
diverges.

Finally, regarding ÃM a partial version of Watson's Lemma can be easily obtained as a
consequence of Theorem 3.2.2.

Theorem 3.2.5. Let M be a weight sequence, γ > 0 be given and Gγ a sectorial region. The
following statements hold:

(i) If γ > ω(M), then ÃM(Gγ) is quasianalytic.

(ii) If γ < ω(M), then ÃM(Gγ) is nonquasianalytic.

Proof. (i) Assume that γ > ω(M). We take f ∈ ÃM(Gγ) with f ∼M 0̂, and consider a proper
bounded sector T � G, where T = S(0, β, r) with γ > β > ω(M). By the de�nition of
M−asymptotic expansion, there exist CT , AT > 0 such that

|f(z)| ≤ CTApTMp|z|p, z ∈ T, p ∈ N0.

We consider the transformation z(w) = 1/(w+ (1/r)1/β)β , which maps the right half-plane H =
H(0) into a region D ⊆ T , and the holomorphic function g : H → C de�ned by g(w) := f(z(w)).
As for every w ∈ H we have |w + (1/r)1/β| > |w|, we deduce that

|g(w)| = |f(z(w))| ≤
CTA

p
TMp

|(w + (1/r)1/β)β|p
≤
CTA

p
TMp

|w|βp
, w ∈ H, p ∈ N0.

Hence g veri�es the bounds in Theorem 3.2.1.(ii). Since β > ω(M), by the properties of the
growth index

∞∑
p=0

(
1

mp

)1/β

=∞.

Consequently, by Theorem 3.2.1 we obtain that g ≡ 0 and by the identity principle f ≡ 0, so
ÃM(Gγ) is quasianalytic.
(ii) Assume that γ < ω(M), what implies, by the properties of the growth index, that

∞∑
p=0

(
1

mp

)1/γ

<∞.

Then, by Theorem 3.2.1, there exist f ∈ H(H), not identically zero and constants A,C > 0 with

|f(z)| ≤ CApMp

|z|γp
, z ∈ H, p ∈ N0.
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The function w → w−1/γ maps the sector Sγ into H. We consider the function g(w) = f(w−1/γ),
holomorphic in Sγ , and we have that

|g(w)| = |f(w−1/γ)| ≤ CApMp|w|p, w ∈ Sγ , p ∈ N0.

Consequently, g 6≡ 0 and g ∼M 0̂ in Sγ . We observe that the restriction of g to Gγ ⊆ Sγ is a
nontrivial �at function, and we deduce that ÃM(Gγ) is nonquasianalytic. �

Remark 3.2.6. From Theorem 3.2.2 or 3.2.4, we deduce that if M and L are weight sequences
with M ≈ L then ω(M) = ω(L), what we have already proved directly (see Remark 2.1.32).

Remark 3.2.7. For any weight sequence M, the information from the previous results can be
summarized as follows:

(i) If ω(M) =∞, by Theorem 3.2.4, we see that IM = ∅ and (3.2) implies IM = ĨuM = ĨM = ∅.

(ii) If ω(M) = 0, by Theorem 3.2.5 we observe that ĨM = (0,∞) and, by (3.2), we have that
IM = ĨuM = ĨM = (0,∞).

(iii) If ω(M) ∈ (0,∞), we have the situation described in Table 3.1, where
∑∞

p=0 σp denotes

the series
∑∞

p=0 ((p+ 1)mp)
−1/(ω(M)+1) and

∑∞
p=0 (mp)

−1/ω(M) is abbreviated to
∑∞

p=0 µp
(note that

∑∞
p=0 σp <∞ implies

∑∞
p=0 µp <∞ by applying Theorems 3.2.2 and 3.2.4 and

using that AM(Sγ) ⊆ ÃuM(Sγ) ).

∑∞
p=0 σp =∞

∑∞
p=0 σp =∞

∑∞
p=0 σp <∞∑∞

p=0 µp =∞
∑∞

p=0 µp <∞
∑∞

p=0 µp <∞

IM [ω(M),∞) [ω(M),∞) (ω(M),∞)

ĨuM [ω(M),∞) (ω(M),∞) (ω(M),∞)

ĨM (ω(M),∞) or [ω(M),∞)? (ω(M),∞) (ω(M),∞)

Table 3.1: Injectivity intervals for a weight sequence with ω(M) ∈ (0,∞).

In conclusion, we see that the only injectivity interval not determined by the previous results is
ĨM, and only when ω(M) ∈ (0,∞) and

∑∞
p=0 (mp)

−1/ω(M) = ∞. Indeed, it only rests to decide

whether ω(M) ∈ ĨM or not. In the next subsection, we will show the existence of nontrivial �at
functions in the class ÃM(Sω(M)), and so one always has ω(M) /∈ ĨM and ĨM = (ω(M),∞).

Example 3.2.8. We consider the sequence Mα,β =
(
p!α
∏p
m=0 logβ(e+m)

)
p∈N0

, α > 0, β ∈ R,
we have that ω(Mα,β) = α (See Example 2.1.20). Hence, Table 3.2 contains all the information
about the injectivity intervals deduced from the classical results for the sequences Mα,β .

Please note that even if the Gevrey case Mα =
(
p!α
)
p∈N0

belongs to the �rst column of

Table 3.2, all the information is known because the function f(z) := exp(−1/z1/α) ∼Mα 0̂ and
f ∈ ÃMα(Gα), so ĨMα = (α,∞). As mentioned before, we will �nd such functions for any
sequence M using proximate orders.

Watson's Lemma is proved below for the class ÃM for arbitrary sectorial regions, regarding
the other two classes the following information is available.
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β ≤ α α < β ≤ α+ 1 β > α+ 1

IMα,β
[α,∞) [α,∞) (α,∞)

ĨuMα,β
[α,∞) (α,∞) (α,∞)

ĨMα,β
(α,∞) or [α,∞)? (α,∞) (α,∞)

Table 3.2: Injectivity intervals for the sequence Mα,β with α > 0, β ∈ R.

Remark 3.2.9. Theorem 3.2.2 holds true for bounded sectors S(0, γ, r) with similar arguments.
If
∑∞

p=0 (mp)
−1/γ < ∞ the restriction to S(0, γ, r) of the nontrivial �at function de�ned in Sγ

given by Theorem 3.2.2 solves the problem. Hence, we only need to modify the proof of (ii)⇒(i).
We proceed as in Theorem 3.2.5, by considering the transformation z(w) = 1/(w + (1/r)1/γ)γ ,
which maps H into a region D contained in S(0, γ, r): given a �at function g ∈ ÃuM(S(0, γ, r)),
the function f(w) := g(z(w)) is de�ned in H and, by Mandelbrojt's theorem, it identically
vanishes.

For more general regions, including sectorial regions, the solution was also given by Mandel-
brojt [72, Sect. 2.4.I] and the answer depends on the way the boundary of the region approaches
the origin.

Remark 3.2.10. The problem of quasianalyticity for classes of functions with uniformly bounded
derivatives in bounded regions has also been treated. In the works of K. V. Trunov and R. S.
Yulmukhametov [101, 108] a characterization is given, for a convex bounded region containing
0 in its boundary, in terms of the sequence M and also of the way the boundary approaches 0.
In particular, for bounded sectors, if γ ≤ 1, d ∈ R and r > 0, it turns out that the class
AM(S(d, γ, r)) is quasianalytic precisely when condition (ii) in Theorem 3.2.4 is satis�ed.

3.2.2 New injectivity results

In [88], J. Sanz shows how one can construct nontrivial �at functions in the class ÃM(Sω(M))
for strongly regular sequences M (see De�nition 1.1.1) such that dM(t) is a proximate order
(see (2.15)) using a function V ∈ MF (γ, dM(t)) (see De�nition 1.2.17). Under these conditions
for M, by Theorem 2.1.30 and Remark 2.1.19, we know that dM(t) is a nonzero proximate order.
Moreover, by Remark 2.2.7, we know that one may equivalently assume that M is a weight
sequence and dM(t) is a nonzero proximate order

Theorem 3.2.11 (Watson's Lemma, Coro. 4.12 [88]). Suppose M is a strongly regular such
that dM(t) is a nonzero proximate order, and let γ > 0 be given. The following statements are
equivalent:

(i) ÃM(Sγ) is quasianalytic, i.e., it does not contain nontrivial �at functions (in other words,
the Borel map is injective in this class).

(ii) γ > ω(M).

At it was pointed out in [88, Remark 4.11], it is enough to ask that M admits a nonzero
proximate order and, by Remark 2.2.18, it su�ces to verify that M, originally strongly regular,
is a weight sequence admitting a nonzero proximate order.

A better understanding of the connection between proximate orders and sequences has been
achieved (see Section 2.2) allowing us to extend this last result for arbitrary weight sequence.
In fact, the admissibility of a proximate order ρ(t) guarantees that the associated function ωM
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is bounded above and below by a constant times the function tρ(t) (see De�nition 2.2.1). These
bounds are needed for most of the results in [60, 88], but by suitably using the notion of regular
variation we will see that the upper bounds are enough for the construction of �at functions.
The existence of a proximate order such that we have the upper bounds is guaranteed for each
nonnegative, nondecreasing continuous function of �nite upper order (see De�nition 1.2.30) by
the following classical result.

Theorem 3.2.12 ([32], Ch. 2, Th. 2.1). Let ω : (a,∞)→ (0,∞) be a nonnegative, nondecreasing
continuous function with ρ(ω) = lim supt→∞ log(ω(t))/ log(t) <∞. Then, it exists a proximate
order ρ(t) with limt→∞ ρ(t) = ρ(ω) such that

lim sup
t→∞

ω(t)

tρ(t)
∈ (0,∞). (3.5)

It was a particular version of this last result which motivates the introduction of the notion
of proximate order for the study of the growth of entire functions. In that version, ω(t) =
max(0, log(max|z|=t |f(z)|)) and the converse is also available, that is, given a proximate order
it is possible to construct an entire function such that (3.5) is valid for the previous choice of ω
(see [63, Th. 25, Th. 26]).

The next property, easily deduced from the regular variation of the functions in the class
MF (γ, dM(t)), will be employed.

Proposition 3.2.13 ([65], Property 2.9). Let ρ(t) be a proximate order with limt→∞ ρ(t) = ρ >
0, γ ≥ 2/ρ and V ∈ MF (γ, ρ(t)). Then, for every α ∈ (0, 1/ρ) there exist constants b > 0 and
R0 > 0 such that

Re(V (z)) ≥ bV (|z|), z ∈ Sα, |z| ≥ R0,

where Re stands for the real part.

We have all the ingredients for the main result in this section.

Theorem 3.2.14. Suppose M is a weight sequence with ω(M) ∈ (0,∞). Then, ω(M) does not
belong to ĨM.

Proof. For brevity, put ω := ω(M). By Theorem 2.1.30, the associated function ωM(t) is of �nite
order ρ := ρ(ωM) = 1/ω > 0, and by Theorem 3.2.12, there exist a nonzero proximate order ρ(t)
with limt→∞ ρ(t) = ρ = 1/ω > 0, A1 > 0 and t1 > 0 such that

ωM(t) ≤ A1t
ρ(t), t ≥ t1. (3.6)

Take now a function V ∈ MF (2ω, ρ(t)). The proof will be complete if we show that G(z) :=
exp(−V (1/z)), which is well de�ned and holomorphic in the sector Sω, belongs to ÃM(Sω)
and it is �at, for what we will apply Proposition 3.1.9. It is enough to work in subsectors
S(0, β, r0)� Sω, where 0 < β < ω and r0 > 0. If z ∈ S(0, β, r0), we have 1/z ∈ Sβ . On the one
hand, according to (VI) in Theorem 1.2.16, combined with (3.6), there exist A2 > 0 and t2 > 0
such that

ωM(t) ≤ A2V (t), t ≥ t2. (3.7)

On the other hand, Proposition 3.2.13 provides us with constants b > 0 and R0 > 0 such that

Re(V (ζ)) ≥ bV (|ζ|), ζ ∈ Sβ, |ζ| ≥ R0. (3.8)
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Choose a positive constant c such that c > (A2/b)
ω. By property (I) in Theorem 1.2.16, we have

lim
t→∞

V (t/c)

V (t)
=

(
1

c

)1/ω

<
b

A2
,

so there exists R1 > 0 such that

bV (t) > A2V (t/c), t ≥ R1. (3.9)

Let R2 := max(R0, R1, ct2) and r := R−1
2 . Then, using (3.8), (3.9) and (3.7), for z ∈ S(0, β, r)

we have
−Re(V (1/z)) ≤ −bV (1/|z|) < −A2V (1/(c|z|)) ≤ −ωM(1/(c|z|)),

and so
|G(z)| = e−Re(V (1/z)) ≤ e−ωM(1/(c|z|)).

We are done whenever r ≥ r0. If r ≤ r0, by compactness there exists K > 0 such that the
inequality

|G(z)| ≤ Ke−ωM(1/(c|z|))

is valid throughout S(0, β, r0). �

Combining this with the partial version of Watson's Lemma, Theorem 3.2.5, obtained before,
we have the following �nal statement in this respect.

Theorem 3.2.15 (Watson's Lemma). Let M be a weight sequence, γ > 0 and Gγ a sectorial
region. The following statements are equivalent:

(i) ÃM(Gγ) is quasianalytic.

(ii) γ > ω(M).

Hence, the question mark in Table 3.1 can be deleted and the answer for that cell is ĨM =
(ω(M),∞), what completes the study of injectivity for unbounded sectors.

3.2.3 Impossibility of bijectivity

Our �rst surjectivity result is a consequence of the injectivity Theorems 3.2.2, 3.2.4 and 3.2.5.
It answers in the negative whether bijectivity is possible.

Theorem 3.2.16. Let M be a weight sequence. Then,

SM ∩ IM = S̃uM ∩ ĨuM = S̃M ∩ ĨM = ∅.

In other words, the Borel map is never bijective.

Proof. In all three cases we will show that surjectivity for any γ > 0 implies noninjectivity.
(i) Let us see that S̃M ∩ ĨM = ∅. Suppose B̃ : ÃM(Sγ) −→ C[[z]]M is surjective. Since the

geometric series
∑∞

n=0 z
n ∈ C[[z]]M, then there exists f ∈ ÃM(Sγ) such that f(z) ∼M

∑∞
n=0 z

n.
The function g(z) := f(z)−

∑∞
n=0 z

n = f(z)− 1/(1− z) is holomorphic in Sγ \ {1} and, by the
identity principle, cannot vanish identically. Moreover, g ∈ ÃM(S(0, γ, 1/2)) and g(z) ∼M 0̂, and
so the Borel map is not injective in ÃM(S(0, γ, 1/2)) and, by Theorem 3.2.15, γ ≤ ω(M). Again
by Theorem 3.2.15, we conclude that B̃ : ÃM(Sγ) −→ C[[z]]M is not injective.

(ii) Let us see that S̃uM ∩ ĨuM = ∅. Suppose B̃ : ÃuM(Sγ) −→ C[[z]]M is surjective. Since
z ∈ C[[z]]M, there exists f ∈ ÃuM(Sγ) such that f(z) ∼M z uniformly in Sγ . The function
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g(z) := f(z)−z is holomorphic in Sγ and, since f is bounded in Sγ and z is not, g cannot vanish
identically. Furthermore, g(z) ∼M 0̂ uniformly in S(0, γ, 1), so there exist C,A > 0 such that for
every z ∈ S(0, γ, 1) one has

|g(z)| ≤ CApMp|z|p, p ∈ N0.

Hence, the holomorphic function ψ : {z ∈ C : Re(z) > 0} → C, de�ned by ψ(u) = g(1/uγ), is
not identically 0 and

|ψ(u)| ≤ CApMp

|u|γp
, p ∈ N0, Re(u) > 1.

Now, we can apply Theorem 3.2.1 in H(1) and we deduce that
∑∞

p=0m
−1/γ
p < ∞. By Theo-

rem 3.2.2, we conclude that B̃ : ÃuM(Sγ) −→ C[[z]]M is not injective.
(iii) Let us show that SM ∩ IM = ∅. Finally, if B̃ : AM(Sγ) −→ C[[z]]M is surjective there

exists f ∈ AM(Sγ) such that f (p)(0) = δ1,p (see (3.1)) for every p ∈ N0, where δ1,p is Kronecker's
delta. By de�nition of the class, there exist C,A > 0 (without loss of generality, we may assume
that C ≥ 1 and CAM1 ≥ 1) such that

|f (p)(z)| ≤ CApp!Mp, z ∈ Sγ , p ∈ N0. (3.10)

We consider the Laplace transform of the function f(z)− z,

g(z) :=

∫ ∞(ϕ)

0
e−zt(f(t)− t) dt, z ∈ Sγ+1, (3.11)

where the integration is over the half-line parametrized by r ∈ (0,∞) 7→ reiϕ, whose argument
is a real number

ϕ ∈
(
−πγ

2
,
πγ

2

)
such that arg(z) + ϕ ∈

(
−π

2
,
π

2

)
. (3.12)

This last condition guarantees the exponential decrease at in�nity of the factor e−zt which,
together with the linear growth of f(t) − t, ascertains that the function g is well de�ned and
holomorphic in Sγ+1. We proceed now to estimate |g(z)|. Firstly, parametrizing we have that

|g(z)| ≤
∣∣∣∣∫ ∞

0
e−re

iϕzf(reiϕ)eiϕ dr −
∫ ∞

0
e−re

iϕzreiϕeiϕ dr

∣∣∣∣
≤
∫ ∞

0
e−rRe(eiϕz)|f(reiϕ)| dr +

∣∣∣∣∫ ∞
0

e−re
iϕzr dr

∣∣∣∣ .
In the �rst integral we use (3.10) for p = 0 and compute the remaining integral, and in the
second one we integrate by parts, and get that

|g(z)| ≤ C

Re(eiϕz)
+

∣∣∣∣ 1

eiϕz

∫ ∞
0

e−re
iϕz dr

∣∣∣∣ ≤ C

Re(eiϕz)
+

1

|z|Re(eiϕz)
. (3.13)

for every z ∈ Sγ+1. A di�erent estimation is obtained by integration by parts in (3.11), taking
into account that f(0) = 0:

g(z) =
1

z

∫ ∞(ϕ)

0
e−zt(f ′(t)− 1) dt, z ∈ Sγ+1. (3.14)

Now we parametrize and split the integral as before, and use (3.10) for p = 1 to obtain that

|g(z)| ≤ CAM1

|z|Re(eiϕz)
+

1

|z|Re(eiϕz)
≤ 2CAM1

|z|Re(eiϕz)
. (3.15)
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Finally, if we iterate the integration by parts in (3.14) and use that f (p)(0) = δ1,p, we get for
every p ≥ 2 the identity

g(z) =
1

zp

∫ ∞(ϕ)

0
e−ztf (p)(t) dt, z ∈ Sγ+1.

Using again (3.10) for p ≥ 2, we deduce that

|g(z)| ≤ CApp!Mp

|z|p Re(eiϕz)
. (3.16)

Our aim is to apply Theorem 3.2.1 to the function h given by h(w) = g(wγ+1), w ∈ S1, when
restricted to the half-plane {w : Re(w) > 1}. Note that the estimates in (3.13) imply for
Re(w) > 1 (and so |w| > 1) that

|h(w)| ≤ C

Re(eiϕwγ+1)
+

1

|wγ+1|Re(eiϕwγ+1)
≤ 2C

Re(eiϕwγ+1)
.

These last estimates and the ones in (3.15) and (3.16) can now be summed up for h as

|h(w)| ≤ 2CApp!Mp

|w|p(γ+1) Re(eiϕwγ+1)
, Re(w) > 1, p ∈ N0.

Now we choose ϕ in order to minimize the value Re(eiϕwγ+1). We study two cases:

(1) If | arg(w)| < γπ/(2(γ + 1)), then | arg(wγ+1)| < γπ/2 and, according to (3.12), we may
choose ϕ = − arg(wγ+1), and we deduce that Re(eiϕwγ+1) = |w|γ+1 > 1. So, for such w
we get

|h(w)| ≤ 2CApp!Mp

|w|p(γ+1)
, p ∈ N0. (3.17)

(2) If | arg(w)| ∈ [γπ/(2(γ + 1)), π/2), the previous choice is not possible, and we choose

ϕε =

−
γπ
2 + ε if arg(w) ∈

(
−π

2 ,−
πγ

2(γ+1)

]
,

γπ
2 − ε if arg(w) ∈

[
πγ

2(γ+1) ,
π
2

)
,

for any ε ∈ (0, γπ/2). Hence, Re(eiϕεwγ+1) = |w|γ+1 cos((γ + 1)| arg(w)| − γπ/2 + ε), and
making ε tend to 0 we obtain that

|h(w)| ≤ 2CApp!Mp

|w|p(γ+1)|w|γ+1 cos((γ + 1)| arg(w)| − γπ/2)
, p ∈ N0. (3.18)

We observe that in this case

0 <
π

2
− | arg(w)| ≤ (γ + 1)(

π

2
− | arg(w)|) ≤ π

2
,

and so

|w| cos
(

(γ + 1)| arg(w)| − γπ

2

)
= |w| sin

(
(γ + 1)

(π
2
− | arg(w)|

))
≥ |w| sin

(π
2
− | arg(w)|

)
= |w| cos(arg(w)) = Re(w) > 1.

Since we also have |w|γ > 1, from (3.18) we obtain the same estimates (3.17) given in the
�rst case.

Since h is not identically 0, by Theorem 3.2.1 we deduce that the series
∑∞

p=0((p+1)mp)
−1/(γ+1)

converges, and Theorem 3.2.4 implies that B̃ : AM(Sγ) −→ C[[z]]M is not injective. �

Remark 3.2.17. As an easy consequence we have that if ω(M) <∞, then

SM ⊆ S̃uM ⊆ S̃M ⊆ (0, ω(M)].
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3.3 Surjectivity of the asymptotic Borel map

In 1895, É. Borel showed that B̃ : C∞(R) −→ C[[z]] sending a smooth function f in R into the
formal power series f̂ =

∑∞
p=0(fp(0)/p!)zp is surjective and in 1916, J. F. Ritt extended this

result for Ãu(S), the class of analytic functions in a sector S with uniform asymptotic expansion
at the origin, i.e., B̃ : Ãu(S) −→ C[[z]] is also surjective. Several proofs of these results are known,
in [71, Th. 1.1.4.1, Coro. 1.1.4.2] the reader can �nd a simple one given by B. Malgrange. In
between their generalizations, it is worthy to mention that for an arbitrary closed set F ⊆ RN
H. Whitney showed that we can construct a function f ∈ C∞(RN ), real analytic in RN \F , such
that its value at F is determined by a given jet (see [106, 107]).

As it was pointed out before, if f ∼M f̂ , then f̂ ∈ C[[z]]M and it is quite natural to restrict
ourselves to study the surjectivity for the case the coe�cients of the series have a prescribed
growth in terms of M. Compared to injectivity, very little is known about this situation for the
classes AM(S), ÃuM(S) and ÃM(S). The �rst result in this direction is the Borel-Ritt-Gevrey
theorem where J. P. Ramis, using the technique of the truncated Laplace transform for the
Gevrey sequence Mα = (p!α)p∈N0 , proved the following:

Theorem 3.3.1 ([81, 82]). Let α > 0. Then B̃ : ÃMα(Sγ) −→ C[[z]]Mα is surjective if and only
if γ ≤ α.

In 1995, V. Thilliez [93, (1.3)] gave a linear and continuous extension from C[[z]]Mα,A to
AMα,dA(Sγ) for γ < α for every A > 0, where d > 0 depends only on α and γ, employing results
of continuous extension from the ultradi�erentiable setting. The �rst results for arbitrary weight
sequences satisfying (dc) (see De�nition 1.1.5) were given by J. Schmets and M. Valdivia in [91],
their approach is based on the consideration of some nonclassical ultradi�erentiable classes, Er,M,
Nr,M and Lr,M de�ned below for r ∈ N, in which the interpolation is done only for a subsequence
(f (pr)(0))p∈N0 of their derivatives at 0. They obtain results for the Roumieu and the Beurling
case, this last one will be not be considered below. In that paper, although surjectivity is
studied, the main focus is on the existence of linear and continuous global extension between
the corresponding (LB)-spaces, which is much more demanding, and their main theorem, in the
Roumieu case, is only for sequences with γ(M) =∞. In 2003, V. Thilliez proved the following:

Theorem 3.3.2 ([95], Theorem 3.2.1). Let M be a strongly regular sequence and 0 < γ < γ(M).
Then there exists d ≥ 1 such that for every A > 0 there is a linear continuous operator

TM,A,γ : C[[z]]M,A → AM,dA(Sγ)

such that B̃ ◦ TM,A,γ = IdC[[z]]M,A , the identity map in C[[z]]M,A. Hence, B̃ : AM(Sγ) −→ C[[z]]M
is surjective.

This theorem was reproved by A. Lastra, S. Malek, J. Sanz [58] using the technique of
the truncated Laplace transform for a suitable kernel. Finally, in [88, Theorem 6.1] J. Sanz
generalized the Borel�Ritt�Gevrey theorem for strongly regular sequences such that the function
dM (see (2.15)) is a proximate order (see also Theorem 3.3.21). As it has been shown in the
preceding chapter, although this condition is satis�ed for most of the sequences appearing in the
applications, it might be too restrictive (see Remark 2.2.18). These works are the departing point
of this subsection whose main objective, partially but satisfactorily accomplished in the strongly
regular case (see Table 3.4), is providing necessary and su�cient conditions for the surjectivity
of the Borel map.

In the previous section, it has been shown that the appropriate value for characterizing the
injectivity of the Borel map is the index ω(M) which equals the lower order of the sequence of
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quotients m. We will show that for the surjectivity problem the suitable one is Thilliez's growth
index γ(M) which has been proved to coincide with the lower Matuszewska index of m, β(m)
(see Theorem 2.1.16). Please note that we always have γ(M) ≤ ω(M) (see Proposition 1.1.28).
For a strongly regular sequence such that the function dM is a proximate order we have that
γ(M) = ω(M) (see Remark 2.2.7), then this di�erence was hidden. In Subsection 2.2.5, we have
constructed strongly regular sequences for which γ(M) < ω(M) (see Remark 3.3.20 below for the
implications of this fact concerning B̃).

We recall some convenient properties obtained in Section 2.1 for γ(M). For any sequence M
and every s > 0 one has

γ((p!sMp)p∈N0) = γ(M) + s, γ((M s
p )p∈N0) = sγ(M).

(see Proposition 2.1.11). We also recall some of the information given in Proposition 2.1.22 and
Remark 2.1.23, for any β > 0 we say that m satis�es (γβ) if there exists A > 0 such that

(γβ)
∞∑
`=p

1

(m`)1/β
≤ A(p+ 1)

(mp)1/β
, p ∈ N0.

If M is (lc), γ(M) ≥ 0 and using this condition we can state an alternative de�nition of the index:

γ(M) = sup{β > 0; m satis�es (γβ)}.

In addition, the next equivalences will be used several times if: M̂ = (p!Mp)p∈N0 is (lc) and β > 0
we have that

(i) γ(M) > 0 if and only if M is (snq) (see Proposition 2.1.18).

(ii) γ(M̂) > 1 if and only if m̂ satis�es (γ1) (see Remark 2.1.23).

(iii) γ(M̂) > β if and only if m̂ satis�es (γβ) (using (ii) and Proposition 2.1.11).

We will start with an arbitrary weight sequence M for which we will obtain some necessary
conditions for the surjectivity of the Borel map. Subsequently, imposing (dc) (see De�nition 1.1.5)
we will get some improvements on that conditions for the classes AM and ÃuM (see Table 3.3).
For strongly regular sequences, after applying the su�cient condition provided by Thilliez and
some rami�cation arguments, we will prove that the surjectivity intervals are either (0, γ(M)) or
(0, γ(M)] (see Table 3.4). Finally, in case γ(M) = ω(M) or if, furthermore, M admits a nonzero
proximate order we will apply the theorems from the previous section to analyze if the value
γ(M) belongs to these intervals or not (see Table 3.5).

3.3.1 Weight sequences

Our �rst result is based on a theorem by H.-J. Petzsche in the ultradi�erentiable setting and we
need to consider the following space.

De�nition 3.3.3. We say that f ∈ EM([−1, 1]) if f ∈ C∞([−1, 1]) and there exists a constant
A > 0 for which

sup
p∈N0, x∈[−1,1]

|f (p)(x)|
App!Mp

<∞.
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Correspondingly, we consider the Borel map B : EM([−1, 1]) −→ C[[z]]M sending f into
the formal power series

∑∞
p=0(f (p)(0)/p!)zp (we warn the reader our notations di�er from those

in [77], see Remark 3.1.11).

All over the paper [77], H.-J. Petszche assumes that M̂ is a weight sequence and that M
satis�es (nq). However, condition (nq) can be suppressed in the statement of the following
theorem, since, if m̂ = ((p + 1)mp)p∈N0 satis�es (γ1) then M satis�es (snq) and, consequently,
(nq), and there is only one direction that needs to be checked. This can be done by carefully
inspecting his proof.

Theorem 3.3.4 ([77], Th. 3.5). Let M be a sequence such that M̂ is weight sequence. Then,
the Borel map B : EM([−1, 1]) −→ C[[z]]M is surjective if and only if m̂ satis�es (γ1).

We are ready to give the �rst connection between the growth index γ(M) with the surjectivity
intervals which holds for arbitrary weight sequences.

Lemma 3.3.5. Let M be a weight sequence. If S̃M 6= ∅, then M has (snq) or, equivalently,
γ(M) > 0.

Proof. Let f̂ =
∑∞

p=0 apz
p ∈ C[[z]]M. Since there exists γ > 0 such that B̃ : ÃM(Sγ) −→ C[[z]]M

is surjective, we may take a function f1 ∈ ÃM(Sγ) such that B̃(f1) = f̂ . A suitable rotation shows
that also B̃ : ÃM(S(π, γ)) −→ C[[z]]M is surjective and so there exists a function f2 ∈ ÃM(S(π, γ))
such that B̃(f2) = f̂ . It is plain to check (by a recursive application of the Mean Value Theorem)
that the function

h(x) = f1(x), x ∈ (0, 1]; h(x) = f2(x), x ∈ [−1, 0); h(0) = a0,

belongs to C∞([−1, 1]) and h(p)(0) = p!ap for every p ∈ N (see Proposition 3.1.5). Moreover,
considering suitable subsectors of Sγ (respectively, S(π, γ)) containing (0, 1] (resp., [−1, 0)), and
again by a double application of Proposition 3.1.5.(ii), one obtains a constant A > 0 such that

sup
p∈N0, x∈[−1,1]

|h(p)(x)|
App!Mp

<∞.

Hence, we deduce that the Borel map B : EM([−1, 1]) −→ C[[z]]M is also surjective. Since M
is a weight sequence, M̂ also is, so by Theorem 3.3.4 this surjectivity amounts to the fact that
the sequence of quotients of M̂ = (p!Mp)p∈N0 , namely m̂, satis�es the condition (γ1), which is
precisely condition (snq) for M (see Remark 2.1.23). �

No other result concerning the surjectivity of the Borel map is present in the literature
without adding some additional condition on the weight sequence M in this ultraholomorphic
setting.

Our next results, Theorem 3.3.10 and Theorem 3.3.14, are inspired by statements of J.
Schmets and M. Valdivia [91, Section 4] in the Beurling case. Although we do not treat this case
here, some of their proofs can be adapted to, or suitably modi�ed for, our Roumieu-like spaces.

While the aforementioned authors impose condition (dc) on the sequence M, i.e., there exists
A > 0 such that Mp+1 ≤ ApMp for every p ∈ N0, we will show that, in some cases, one can
obtain some information without it.

In the course of our arguments we will need to introduce suitable ultradi�erentiable classes
(the notations again di�er from those in [91]):

For a natural number r ∈ N and a sequenceM, we consider the spaceNr,M([0,∞)) of functions
f ∈ C∞([0,∞)) such that
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(a) f (pr+j)(0) = 0 for every p ∈ N0 and j ∈ {1, . . . , r− 1} (this condition is empty when r = 1),

(b) there exists a constant A > 0 for which

sup
p∈N0, x∈[0,∞)

|f (pr)(x)|
App!Mp

<∞.

The subspace of Nr,M([0,∞)) consisting of those functions with support contained in [0, 1] will be
denoted by Lr,M([0,∞)). Similarly, we introduce the space Er,M([0, 1]) of functions f ∈ C∞([0, 1])
such that

(a) f (pr+j)(0) = 0 for every p ∈ N0 and j ∈ {1, . . . , r− 1} (this condition is empty when r = 1),

(b) there exists a constant A > 0 for which

sup
p∈N0, x∈[0,1]

|f (pr)(x)|
App!Mp

<∞.

Note that these spaces coincide with the classical ones for r = 1. In this context, it is natural
to consider the next auxiliary sequence.

De�nition 3.3.6. Given a sequence M and r ∈ N, its r−interpolating sequence Pr,M = P =
(Pn)n∈N0 is de�ned by

Pkr+j =
(
M r−j
k M j

k+1

)1/r
, k ∈ N0, j ∈ {0, . . . , r}.

Note that with j = r for k and j = 0 for k + 1 we obtain the same value. As it was pointed out
in [91], a simple computation leads to

(i) P1,M = M,

(ii) Pkr = Mk for every k ∈ N0,

(iii) pkr+j = (mk)
1/r for all k ∈ N0 and j ∈ {0, . . . , r − 1},

(iv) If M is a weight sequence, then P also is.

We also deduce the following relation for their injectivity indices.

Lemma 3.3.7. Let M be a sequence and r ∈ N. Then

ω(M) = rω(P).

Proof. Fix j ∈ {0, . . . , r − 1} , the lemma is deduce from the next calculation

ω(M) = lim inf
k→∞

logmk

log k
= r lim inf

k→∞

log(mk)
1/r

log k
= r lim inf

k→∞

log pkr+j
log(kr + j)

log(kr + j)

log(k)

= r lim inf
k→∞

log pkr+j
log(kr + j)

.

�

The introduction of this r−interpolating sequence is motivated by the following estimates,
independently obtained by A. Gorny and H. Cartan (see [72, Sect. 6.4.IV]).
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Lemma 3.3.8. If f ∈ Cr([−1, 1]) for some r ∈ N and

Q0 := sup
x∈[−1,1]

|f(x)|, and Qr := sup
x∈[−1,1]

|f (r)(x)|,

then
sup

x∈[−1,1]
|f (j)(x)| ≤ (8er/j)j max(Q

1−j/r
0 , Qj/rr , (r/2)jQ0).

for every j ∈ {1, . . . , r − 1}.

We will employ the integral representation for the reciprocal Gamma function, usually referred
to as Hankel's formula (see [7, p. 228]):

1

Γ(z)
=

1

2πi

∫
γφ

w−zewdw

for all z ∈ C where γφ is a path consisting of a half-line in direction −φπ/2 (for any φ ∈ (1, 2))
with end point w0 on the ray arg(w) = −φπ/2 then the circular arc |w| = |w0| from w0 to the
point w1 on the ray arg(w) = φπ/2 (traversed anticlockwise), and �nally the half-line starting
at w1 in direction φπ/2. Now, for every β ∈ (1, 3/2) and any t ∈ S(β−1)/2, we de�ne

φβ,t := β + 2 arg(t)/π ∈ ((β + 1)/2, (3β − 1)/2) ⊆ (1, 7/4).

Hence, the change of variables u = t/w maps γφβ,t into δβ which is a path consisting of a segment
from the origin to a point u0 with arg(u0) = βπ/2, then the circular arc |u| = |u0| from u0 to
the point u1 on the ray arg(u) = −βπ/2 (traversed clockwise), and �nally the segment from u1

to the origin. Therefore, for every z ∈ C and all t ∈ S(β−1)/2 we have that

tz−1

Γ(z)
=
−1

2πi

∫
δβ

uz−1et/u
du

u
. (3.19)

Our �rst result is obtained as a consequence of the next proposition and the proof is inspired
by Theorem 4.6 in [91].

Proposition 3.3.9 ([91], Prop. 5.1). Let M be a sequence such that M̂ is a weight sequence and
r ∈ N. If the restriction map

Br : Lr,M([0,∞)) −→ C[[z]]M

sending f to the formal power series
∑∞

p=0(f (pr)(0)/p!)zp is surjective, then m̂ satis�es (γr).

Theorem 3.3.10. Let M be a weight sequence.

(i) Let α > 0, α /∈ N, be such that B̃ : ÃM(Sα)→ C[[z]]M is surjective. Then, γ(M) > bαc.

(ii) If we have that S̃M = (0,∞), then γ(M) =∞.

Proof. (i) Consider �rst the case α ∈ (0, 1). Then, it su�ces to apply Lemma 3.3.5 to obtain
that M has (snq), or equivalently γ(M) > 0 = bαc, as desired.

Suppose now that α > 1 and put r = bαc, a positive natural number. Firstly, for M̂ =
(Mp/p!)p∈N0 we will prove that the restriction map Br : E

r,M̂([0, 1]) −→ C[[z]]M̂ is surjective.

Since α /∈ N, we may choose two numbers β1, β2 with

1 < β1 < β2 < min{α
r
,
3

2
}.
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Given ĝ =
∑∞

p=0 apz
p ∈ C[[z]]M̂, we write bp := app! for all p ∈ N0, and there exist C0, A0 > 0

such that
|bp| ≤ C0A

p
0p!M̂p = C0A

p
0Mp, p ∈ N0.

Hence, the formal Laplace transform of ĝ, de�ned by f̂ := L̂ĝ =
∑∞

p=0 bpz
p belongs to C[[z]]M.

By hypothesis, there exists ψ ∈ ÃM(Sα) such that B̃(ψ) = f̂ . Hence, given β2 and R > 1, there
exist C,A > 0 such that for every p ∈ N0 one has

∣∣∣ψ(z)−
p−1∑
k=0

bkz
k
∣∣∣ ≤ CApMp|z|p, z ∈ S(0, rβ2, R

r). (3.20)

The function ϕ : Sα/r → C given by ϕ(u) = ψ(ur), is well de�ned and holomorphic in Sα/r,
which contains Sβ2 as a proper unbounded subsector. Moreover, according to (3.20) for p = 0,
for every w ∈ S(0, β2, R) one has

|ϕ(u)| = |ψ(ur)| ≤ CM0. (3.21)

We consider now a path δβ1 in S(0, β2, R) like the ones used in the classical Borel transform,
made up of a segment δ1 from the origin to a point u0 with |u0| = R0 < R and arg(u0) = πβ1/2,
then the circular arc δ2, traversed clockwise on the circumference |u| = R0 and going from u0 to
the point u1 on the ray arg(u1) = −πβ1/2, and �nally the segment δ3 from u1 to the origin.

De�ne the function f : S(β1−1)/2 → C given by

f(t) =
−1

2πi

∫
δβ1

et/uϕ(u)
du

u
.

Observe that ϕ(u) is holomorphic and bounded at 0 in S(0, β2, R), and for every t ∈ S(β1−1)/2

one may easily check that t/u runs over a half-line in the open left half-plane and tends to in�nity
as u runs over any of the segments δ1 or δ3 and tends to 0. Hence, f is holomorphic in the sector
S(β1−1)/2. We note that, by virtue of Cauchy's theorem, the value assigned to R0 in the de�nition
of δβ1 is irrelevant for the value of f .

Let us �x in the following estimations some t ∈ S(0, (β1− 1)/2, R) and some natural number
p ∈ N. Hankel's formula (3.19) for z = kr + 1 allows us to write

f(t)−
p−1∑
k=0

bk
tkr

(kr)!
= − 1

2πi

∫
δβ1

et/u

(
ϕ(u)−

p−1∑
k=0

bku
kr

)
du

u

= − 1

2πi

3∑
j=1

∫
δj

et/u

(
ϕ(u)−

p−1∑
k=0

bku
kr

)
du

u
. (3.22)

Taking into account (3.20), for every u ∈ S(0, β2, R) we have∣∣∣∣∣ϕ(u)−
p−1∑
k=0

bku
kr

∣∣∣∣∣ =

∣∣∣∣∣ψ(ur)−
p−1∑
k=0

bk(u
r)k

∣∣∣∣∣ ≤ CApMp|u|pr. (3.23)

So, if we choose R0 = |t|/p < R, we may apply (3.23) and see that∣∣∣∣∣
∫
δ2

et/u

(
ϕ(u)−

p−1∑
k=0

bku
kr

)
du

u

∣∣∣∣∣ ≤ πβ1e
pCApMp

(
|t|
p

)pr
. (3.24)
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On the other hand, by the same estimates (3.23) and by the choice made for R0, for j = 1, 3 we
have ∣∣∣∣∣

∫
δj

et/u

(
ϕ(u)−

p−1∑
k=0

bku
kr

)
du

u

∣∣∣∣∣ ≤ CApMp

∫ |t|/p
0

spr|et/(se±iπβ1/2)| ds
s

≤ CC1A
pMp

(
|t|
p

)pr
, (3.25)

where C1 is a constant, independent of both t and p, given by

C1 = sup
t∈S(0,(β1−1)/2,R), p∈N

∫ |t|/p
0

|et/(se±iπβ1/2)| ds
s

= sup
t∈S(0,(β1−1)/2,R), p∈N

∫ |t|/p
0

e|t| cos(arg(t)∓πβ1/2)/s ds

s

≤ sup
|t|<R, p∈N

∫ |t|/p
0

e−|t| cos(π(β1−1)/4)/s ds

s
= sup

p∈N

∫ 1/p

0
e− cos(π(β1−1)/4)/u du

u

≤
∫ 1

0
e− cos(π(β1−1)/4)/u du

u
<∞.

According to (3.22), (3.24) and (3.25), and using Stirling's formula, we �nd that there exist
constants C2, A2 > 0 such that for every p ∈ N and t ∈ S(0, (β1 − 1)/2, R) one has∣∣∣∣∣f(t)−

p−1∑
k=0

bk
tkr

(kr)!

∣∣∣∣∣ ≤ C2A
p
2

Mp

(pr)!
|t|pr. (3.26)

This last estimation also holds for p = 0, in a similar way, taking R0 = |t| and using the de�nition
of f and (3.21). Hence one can show that f admits the series

∑∞
p=0 bpt

pr/(pr)! as its asymptotic
expansion as t tends to 0 in the sector (if r ≥ 2 observe that for (p− 1)r + 1 ≤ n < pr we have
|t|pr ≤ |t|n whenever |t| ≤ 1). It is then a standard fact that for every m ∈ N0 and every proper
subsector T of S(0, (β1 − 1)/2, R) there exists

lim
t→0, t∈T

f (m)(t) =

{
bp if m = pr for some natural number p ∈ N0,

0 otherwise.
(3.27)

Finally, we de�ne the function F : [0, 1] → C given by F (t) = f(t) for t ∈ (0, 1], F (0) = b0.
Since f is holomorphic in S(0, (β1− 1)/2, R) and we have (3.27), we immediately deduce that F
belongs to C∞([0, 1]) and

F (m)(0) =

{
bp if m = pr for some p ∈ N0,

0 otherwise.

Moreover, we may take ε > 0 such that for every t ∈ (0, 1] the disk D(t, εt) is contained in
S(0, (β1 − 1)/2, R). Then, Cauchy's integral formula together with (3.26) allow us to deduce
that for every p ∈ N0,

|F (pr)(t)| =

∣∣∣∣∣∣
(
f(t)−

p−1∑
k=1

bk
tkr

(kr)!

)(pr)
∣∣∣∣∣∣ ≤ (pr)!

(
1 + ε

ε

)pr C2A
p
2Mp

(pr)!
= C3A

p
3Mp.
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In conclusion, F ∈ E
r,M̂([0, 1]) and Br(F ) = ĝ. So, S is surjective.

Secondly, according to Theorem 3.2.16 the map B̃ : ÃM(Sα) → C[[z]]M is not injective, this
means by Theorem 3.2.15 that α ≤ ω(M), then r = bαc < ω(M) because α /∈ N. By Lemma 3.3.7
and Proposition 2.1.11, if P = Pr,M we have that

ω(P̂) = ω(Pr,M)− 1 = ω(M)/r − 1 > 0.

Hence, since P is (lc), by Proposition 2.1.26.(ii), P̂ has (nq) (see De�nition 1.1.5), so by the
Denjoy-Carleman theorem (see [38, Ch. 1]) there exists a C∞ nonnegative function ϕ in R with
support contained in [−1, 1] and which takes the value 1 in a neighborhood of 0, such that there
exists A > 0 with

sup
t∈R, n∈N0

|ϕ(n)(t)|
AnPn

<∞.

Applying the Gorny-Cartan estimates of Lemma 3.3.8, for every h ∈ E
r,M̂([0, 1]) one can check

that the product ϕh belongs to L
r,M̂([0,∞)) and, moreover, (ϕh)(p)(0) = h(p)(0) for every p ∈ N0.

Since Br : E
r,M̂([0, 1]) → C[[z]]M̂ is surjective, we deduce that Br : L

r,M̂([0,∞)) −→ C[[z]]M̂
also is. By Proposition 3.3.9, we conclude thatm satis�es (γr), what amounts to γ(M) > r = bαc.

(ii) It is an immediate consequence of (i). �

Corollary 3.3.11. Whenever M is a weight sequence, if γ(M) <∞ one always has

S̃M ⊆ (0, bγ(M)c+ 1].

In case γ(M) ∈ N, then S̃M ⊆ (0, γ(M) + 1). Note that if γ(M) =∞, the previous theorem does
not provide any relevant information.

Proof. The case S̃M = ∅ is trivial. So, we treat the case in which the surjectivity interval is not
empty, what according to Lemma 3.3.5 implies γ(M) > 0.

Let α ∈ S̃M. On one hand, if α /∈ N, by Theorem 3.3.10 we have bαc < γ(M), and so
α − 1 < bαc ≤ bγ(M)c, from where α < bγ(M)c + 1. On the other hand, if α ∈ N then
we can apply Theorem 3.3.10 for any β ∈ (α − 1, α) (since β ∈ S̃M too) and deduce that
α − 1 = bβc < γ(M), hence α < γ(M) + 1. We deduce that α ≤ bγ(M) + 1c = bγ(M)c + 1,
except in case γ(M) ∈ N, where moreover α cannot coincide with γ(M) + 1. The conclusion
easily follows. �

Remark 3.3.12. Summing up, for a weight sequence M and taking into account (3.3) and
Theorem 3.2.16 we see that:

(i) if γ(M) = 0 (equivalently, if M has not (snq)) then SM = S̃uM = S̃M = ∅.

(ii) if γ(M) ∈ (0,∞) and

(a) γ(M) /∈ N, then SM ⊆ S̃uM ⊆ S̃M ⊆ (0, bγ(M)c+ 1] ∩ (0, ω(M)],

(b) γ(M) ∈ N, then SM ⊆ S̃uM ⊆ S̃M ⊆ (0, γ(M) + 1) ∩ (0, ω(M)].

If ω(M) =∞, the second interval in these intersections should be taken as (0,∞).
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3.3.2 Weight sequences satisfying derivation closedness condition

As it has been pointed out in Remark 3.3.12, Corollary 3.3.11 provides also information about
S̃uM. In order to slightly improve it, one needs to impose (dc), which is a natural condition
on the sequence M, in the sense that it guarantees that the ultraholomorphic classes under
consideration, consisting of holomorphic functions, are closed with respect to taking derivatives
(see Remarks 3.1.4 and 3.1.7). We will also need the next result.

Proposition 3.3.13 ([91], Prop. 5.2). Let r ∈ N andM be a sequence such that M̂ = (p!Mp)p∈N0

is a weight sequence. If the map Br : Nr,M([0,∞)) −→ C[[z]]M sending f to the formal power
series

∑∞
p=0(f (pr)(0)/p!)zp is surjective, then the sequence m̂ = ((p + 1)mp)p∈N0 satis�es the

condition (γr).

Following the ideas in the proof of Proposition 4.6 in [91], we will be able to deal also with
the case α ∈ N whenever B̃ : ÃuM(Sα)→ C[[z]]M is surjective.

Theorem 3.3.14. Let M be a weight sequence satisfying (dc).

(i) Let α > 0 be such that B̃ : ÃuM(Sα)→ C[[z]]M is surjective. Then, γ(M) > bαc.

(ii) If we have that S̃uM = (0,∞), then SM = S̃uM = S̃M = (0,∞) and γ(M) =∞.

Proof. (i) Consider �rst the case α ∈ (0, 1), then α ∈ S̃uM ⊆ S̃M and α /∈ N, so by Theorem 3.3.10
we conclude that γ(M) > 0. Note that in this case no use has been made of (dc).

Suppose now that α ≥ 1 and put r = bαc, a positive natural number (note that, by Theo-
rem 3.3.10, we only would need to consider the case α = r ∈ N but the proof works anyway).
Our aim is to show that Br : N

r,M̂([0,∞)) −→ C[[z]]M̂ is surjective.

Given ĝ =
∑∞

p=0 apz
p ∈ C[[z]]M̂, we write bp := app! for all p ∈ N0 and we see that there exist

C0, A0 > 0 such that

|bp| ≤ C0A
p
0p!M̂p = C0A

p
0Mp, p ∈ N0. (3.28)

Consider the formal power series f̂ =
∑∞

p=0(−1)prbpz
p ∈ C[[z]]M. By hypothesis, there exists

ψ ∈ ÃuM(Sα) such that B̃(ψ) = f̂ , and so there exist C,A > 0 such that for every p ∈ N0 one has

∣∣∣ψ(z)−
p−1∑
k=0

(−1)krbkz
k
∣∣∣ ≤ CApMp|z|p, z ∈ Sα. (3.29)

The function ϕ : Sα/r → C given by ϕ(w) = ψ(w−r) − b0, is well de�ned and holomorphic in
Sα/r ⊇ S1. Moreover, according to (3.29) for p = 1, for every w ∈ S1 one has∣∣∣∣ϕ(w)

w

∣∣∣∣ =
1

|w|
|ψ(w−r)− b0| ≤

CAM1

|w|r+1
. (3.30)

So, the function f : R→ C given by

f(t) =
1

2πi

∫ 1+∞ i

1−∞ i
etu

ϕ(u)

u
du

is well de�ned and continuous on R. By the classical Hankel formula for the reciprocal Gamma
function 3.19, for every natural number p ≥ 2 and every t ∈ R we may write

f(t)−
p−1∑
k=1

(−1)krbk
tkr

(kr)!
=

1

2πi

∫ 1+∞ i

1−∞ i
etu

(
ϕ(u)

u
−

p−1∑
k=1

(−1)krbk
ukr+1

)
du. (3.31)
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Since, again by (3.29), we have∣∣∣∣∣ϕ(u)

u
−

p−1∑
k=1

(−1)krbk
1

ukr+1

∣∣∣∣∣ =
1

|u|

∣∣∣∣∣ψ(u−r)−
p−1∑
k=0

(−1)krbk(u
−r)k

∣∣∣∣∣ ≤ CApMp

|u|pr+1
(3.32)

for every u ∈ S1, we can apply Leibniz's theorem for parametric integrals and deduce that the
function

f(t)−
p−1∑
k=1

(−1)krbk
tkr

(kr)!

belongs to Cpr−1(R). Moreover, all of its derivatives of order m ≤ pr − 1 at t = 0 vanish. This
fact can be checked by di�erentiating the right-hand side of (3.31) m times under the integral
sign, evaluating at t = 0, and then computing the integral by means of Cauchy's theorem. For
that, consider the paths Γs, s > 0, consisting of the arc of circumference centered at 1, joining
1 + si and 1− si and passing through 1 + s, and the segment [1− si, 1 + si]. It is plain to check
that

∫
Γs
um−1(ϕ(u) −

∑p−1
k=1(−1)krbku

−kr)du = 0, and applying (3.32) a limiting process when
s→∞ leads to the conclusion.

As p is arbitrary, we have that f ∈ C∞(R) and, moreover,

f (m)(0) =

{
(−1)prbp if m = pr for some p ≥ 1,

0 otherwise.

Finally, we de�ne the function

F (t) = b0 + f(−t), t ≥ 0.

Obviously, F ∈ C∞([0,∞)) and F (pr)(0) = bp, p ∈ N0; F (m)(0) = 0 otherwise. In order to
conclude, we estimate the derivatives of F of order pr for some p ∈ N0. For p = 0 and t ≥ 0, we
take into account (3.28) and (3.30) in order to obtain that

|F (0)(t)| ≤ |b0|+
1

2π

∫ ∞
−∞

e−t
CAM1

|1 + yi|r+1
dy ≤ C0 +

CAM1

2π

∫ ∞
−∞

1

(1 + y2)(r+1)/2
dy, (3.33)

and so F is bounded. For p ≥ 1 we may write formula (3.31) evaluated at −t as

f(−t)−
p∑

k=1

bk
tkr

(kr)!
=

1

2πi

∫ 1+∞ i

1−∞ i
e−tz

(
ϕ(z)

z
−

p∑
k=1

(−1)krbk
zkr+1

)
dz.

Then,

F (pr)(t) = bp +

(
f(−t)−

p∑
k=1

bk
tkr

(kr)!

)(pr)

(t)

= bp +
1

2πi

∫ 1+∞ i

1−∞ i
e−tz(−z)pr

(
ϕ(z)

z
−

p∑
k=1

(−1)krbk
zkr+1

)
dz,

and we may apply (3.28), and (3.32) in order to obtain

|F (pr)(t)| ≤ C0A
p
0Mp +

CAp+1Mp+1

2π

∫ ∞
−∞

1

(1 + y2)(r+1)/2
dy. (3.34)
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From (3.33) and (3.34), and since M satis�es (dc), we deduce that there exist C1, A1 > 0 such
that for every p ∈ N0 one has

|F (pr)(t)| ≤ C1A
p
1Mp = C1A

p
1p!M̂p, t ≥ 0,

and so F ∈ N
r,M̂([0,∞)) and Br(F ) = ĝ. In conclusion, Br is surjective as desired, and by

Proposition 3.3.13 we deduce that m satis�es (γr), what amounts to γ(M) > r = bαc.
(ii) The fact that all the intervals of surjectivity are (0,∞) is an easy consequence of (3.3)

and Proposition 3.1.5.(iii), while γ(M) =∞ stems from (i). �

Corollary 3.3.15. Whenever M is a weight sequence satisfying (dc), one has

SM ⊆ S̃uM ⊆ (0, bγ(M)c+ 1).

If moreover γ(M) ∈ N, then SM ⊆ S̃uM ⊆ (0, γ(M)).

Proof. The arguments are similar to those in the proof of Corollary 3.3.11. The case S̃uM = ∅ is
trivial. Otherwise, S̃M 6= ∅ and, by Lemma 3.3.5, γ(M) > 0.

Let α ∈ S̃uM. By Theorem 3.3.14 we have bαc < γ(M), and so α < bαc + 1 ≤ bγ(M)c + 1,
which is the �rst statement. In case γ(M) ∈ N, the condition bγ(M)c < γ(M) does not hold,
and so γ(M) /∈ S̃uM and the interval S̃uM has to be contained in (0, γ(M)). �

Recall that if M has not (snq) the problem is solved (see Remark 3.3.12). Let M be (lc),
(snq) and (dc) (by Lemma 1.1.7, the �rst two conditions imply that M is a weight sequence).
Then γ(M) ∈ (0,∞], and we have the situation described in Table 3.3, with the corresponding
conventions if γ(M) = ∞ or ω(M) = ∞. With the same assumptions, one might be able to at
show least that S̃M ⊆ S̃uM ⊆ (0, γ(M)) and S̃M ⊆ (0, γ(M)] but it seems that a technique that
only employs the properties of the spaces Er,M, Nr,M and Lr,M is not su�cient.

As it was mentioned in Remark 2.2.27, there exist sequences that are not strongly regular
such that γ(M), ω(M) ∈ (0,∞), so these values refer to some concrete openings in the injectivity
and surjectivity problems.

γ(M) ∈ N γ(M) ∈ R\N

SM ⊆ (0, γ(M)) SM ⊆ (0, bγ(M)c+ 1) ∩ (0, ω(M)]

S̃uM ⊆ (0, γ(M)) S̃uM ⊆ (0, bγ(M)c+ 1) ∩ (0, ω(M)]

S̃M ⊆ (0, γ(M) + 1) ∩ (0, ω(M)] S̃M ⊆ (0, bγ(M)c+ 1] ∩ (0, ω(M)]

Table 3.3: Surjectivity intervals when M is (lc), (snq) and (dc).

3.3.3 Strongly regular sequences

We need to impose more conditions on the sequence M in order to get extra information about
surjectivity. We recall that M is said to be strongly regular if is (lc), (snq) and (mg). As
commented before, the �rst two conditions are natural in this context and moderate growth
condition (mg), which is stronger than (dc), is our additional assumption. A quite complete
study of strong regularity has been presented in Section 2.1, we just remember that for these
sequences 0 < γ(M) ≤ ω(M) <∞ (see Remark 2.1.19).

The main known result regarding surjectivity for strongly regular sequences was provided by
V. Thilliez (see Theorem 3.3.2). Except in the classical Gevrey classes, no information about

Universidad de Valladolid



132 CHAPTER 3. INJECTIVITY AND SURJECTIVITY OF THE ASYMPTOTIC BOREL MAP

the optimality of γ(M) was provided. Our next attempt will be to obtain as much information
as possible in this direction. The following result rests on Theorem 3.3.14 and a rami�cation
argument. As usual, Q denotes the rational numbers and I the irrationals.

Theorem 3.3.16. Let M be a strongly regular sequence, and let r ∈ Q, r > 0 be given. The
following assertions are equivalent:

(i) r < γ(M),

(ii) there exists d ≥ 1 such that for every A > 0 there is a linear continuous operator

TM,A,r : C[[z]]M,A → AM,dA(Sr)

such that B̃ ◦ TM,A,γ = IdC[[z]]M,A the identity map in C[[z]]M,A,

(iii) the Borel map B̃ : AM(Sr)→ C[[z]]M is surjective,

(iv) the Borel map B̃ : ÃuM(Sr)→ C[[z]]M is surjective.

Proof. (i) =⇒ (ii) =⇒ (iii) This is Theorem 3.3.2.
(iii) =⇒ (iv) Trivial by contention.
(iv) =⇒ (i) In case r ∈ N, we use Theorem 3.3.14.(i) and we conclude.
Otherwise, we write r = p/q with p, q ∈ N relatively prime, q ≥ 2. Consider the sequence

Mq = (M q
n)n∈N0 , which also turns out to be strongly regular (see [95, Lemma 1.3.4] or, alter-

natively, Proposition 2.1.11 and Remark 2.1.19). We will prove that B̃ : ÃuMq(Sp) → C[[z]]Mq

is surjective, so, again by Theorem 3.3.14.(i), we see that p < γ(Mq). Hence, we get that
r = p/q < γ(M), as desired.

Let us prove the aforementioned surjectivity. Given f̂ =
∑∞

j=0 ajz
j ∈ C[[z]]Mq , there exist

C,A > 0 such that |aj | ≤ CAjM q
j for every j ∈ N0. Let us de�ne a new formal power series

ĝ =
∑∞

j=0 bjz
j with coe�cients

bqj = aj , j ∈ N0; bm = 0 otherwise.

The log-convexity of M implies that M q
j ≤Mqj for every j, so we have that

|bqj | ≤ CAjM q
j ≤ C(A1/q)qjMqj ,

and consequently, ĝ ∈ C[[z]]M. By hypothesis, there exists a function g ∈ ÃuM(Sr) such that
B̃(g) = ĝ, and so there exist C1, A1 > 0 such that for every z ∈ Sr and n ∈ N0 one has∣∣∣∣∣∣g(z)−

n−1∑
j=0

bjz
j

∣∣∣∣∣∣ ≤ C1A
n
1Mn|z|n. (3.35)

Consequently, the function f : Sp → C given by f(w) = g(w1/q) is well-de�ned and holomorphic
in Sp. Moreover, for every w ∈ Sp and n ∈ N0 one deduces from (3.35) that∣∣∣∣∣∣f(w)−

n−1∑
j=0

ajw
j

∣∣∣∣∣∣ =

∣∣∣∣∣∣g(w1/q)−
n−1∑
j=0

bqj(w
1/q)qj

∣∣∣∣∣∣ =

∣∣∣∣∣g(w1/q)−
qn−1∑
k=0

bk(w
1/q)k

∣∣∣∣∣
≤ C1A

qn
1 Mqn|w1/q|qn. (3.36)
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We apply now the property (mg) of M: by Remark 1.1.10, there exists A0 > 0 such that for all
n ∈ N0 we have Mqn ≤ An0M

q
n. We may use this fact in (3.36) and obtain that∣∣∣∣∣∣f(w)−

n−1∑
j=0

ajw
j

∣∣∣∣∣∣ ≤ C1(A0A
q
1)nM q

n|w|n.

So, f ∈ ÃuMq(Sp) and B̃(f) = f̂ , what shows the surjectivity as intended. �

This result has several important consequences.

Corollary 3.3.17. Let M be a strongly regular sequence with γ(M) ∈ Q. Then, SM = S̃uM =
(0, γ(M)).

Proof. By Theorem 3.3.2 and (3.3), we have (0, γ(M)) ⊆ SM ⊆ S̃uM, while (iii) =⇒ (i) in The-
orem 3.3.16 ensures that, γ(M) being rational, it cannot be the case that γ(M) ∈ S̃uM, and so
S̃uM ⊆ (0, γ(M)). �

Corollary 3.3.18. Let M be a strongly regular sequence, and let t ∈ R, t > 0 be given. Each
assertion implies the following one:

(i) t < γ(M),

(ii) the Borel map B̃ : AM(St)→ C[[z]]M is surjective,

(iii) the Borel map B̃ : ÃuM(St)→ C[[z]]M is surjective,

(iv) the Borel map B̃ : ÃM(St)→ C[[z]]M is surjective,

(v) for every ξ ∈ I with ξ < t, the Borel map B̃ : ÃM(Sξ)→ C[[z]]M is surjective,

(vi) t ≤ γ(M).

Hence, (0, γ(M)) ⊆ SM ⊆ S̃uM ⊆ S̃M ⊆ (0, γ(M)].

Proof. Only (v) =⇒ (vi) needs a short proof. For every q ∈ N we have that ζ = ξq /∈ N,
we will show that B̃ : ÃMq(Sζ) → C[[z]]Mq is surjective so, by Theorem 3.3.10.(i), we see that
bζc < γ(Mq). Then γ(M) > bξqc/q > ξ − 1/q. Since q is arbitrary, making q tend to ∞ we
deduce that ξ ≤ γ(M) for every irrational ξ < t, so t ≤ γ(M).

The proof of the surjectivity follows the same rami�cation argument used in (iv) =⇒ (i)
of Theorem 3.3.16, where the asymptotic relations obtained for bounded subsectors of Sξ are
transformed into the analogous ones for the corresponding bounded subsectors of Sζ . �

Remark 3.3.19. The situation for strongly regular sequences is summed up in Table 3.4. The
conjecture is that, at least for strongly regular sequences, one always has S̃M = (0, γ(M)] and
SM = S̃uM = (0, γ(M)). The main di�erence with the injectivity problem, in which the belonging
of the value ω(M) to the injectivity interval depends on the convergence of a series, might lie in
the fact that the value of γ(M) completely characterized (snq) condition, that is, γ(M) > 0 if
and only if M has (snq), whereas for ω(M) we remember that if ω(M) > 0 then M is (nq), but
if M is (nq) then only ω(M) ≥ 0 is known.
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γ(M) ∈ Q γ(M) ∈ I

SM (0, γ(M)) (0, γ(M)) or (0, γ(M)]

S̃uM (0, γ(M)) (0, γ(M)) or (0, γ(M)]

S̃M (0, γ(M)) or (0, γ(M)]

Table 3.4: Surjectivity intervals for strongly regular sequences

Remark 3.3.20. A question which was open for some time is: Are γ(M) and ω(M) always equal
for strongly regular sequences? After some trial and error, a strongly regular sequence has been
constructed with γ(M) = 2 < ω(M) = 5/2 (see Example 2.2.26). In fact, given any pair of values
0 < γ < ω < ∞ we are able to provide a strongly regular sequence M such that γ(M) = γ and
ω(M) = ω (see Remark 2.2.27). This means that for opening απ with α in the interval (γ, ω), the
Borel map is neither injective nor surjective and the corresponding injectivity and surjectivity
intervals for this sequence are either [ω,∞) or (ω,∞) and (0, γ) or (0, γ], respectively.

3.3.4 Sequences admitting a nonzero proximate order

In this �nal subsection, taking into account that the Borel map is never bijective, Theorem 3.2.16,
we will deduce more information regarding the surjectivity intervals. In order to be able to infer
from that result whether or not γ(M) belongs to SM and S̃uM, strongly regularity is not enough
and we need to assume γ(M) = ω(M). Then,

(i) If
∑∞

p=0 (mp)
−1/ω(M) =∞, we know that ĨuM = IM = [ω(M),∞) = [γ(M),∞), and then

SM = S̃uM = (0, γ(M)), (0, γ(M)) ⊆ S̃M ⊆ (0, γ(M)].

(ii) If
∑∞

p=0 (mp)
−1/ω(M) < ∞ and

∑∞
p=0 ((p+ 1)mp)

−1/(ω(M)+1) = ∞, we know that IM =

[γ(M),∞) and ĨuM = (γ(M),∞), and so

SM = (0, γ(M)), (0, γ(M)) ⊆ S̃uM ⊆ S̃M ⊆ (0, γ(M)].

Hence, the information we have for strongly regular sequences with γ(M) = ω(M) is summarized
in the �rst two rows of Table 3.5. Note that for nonuniform asymptotics this assumption does
not produce any improvements and we will need to go one step further.

Our �nal result was given by J. Sanz, Theorem 6.1 in [88] for strongly regular sequences M
such that dM is a proximate order. For nonuniform asymptotics, he proved that S̃M = (0, γ(M)]
employing the truncated Laplace transform technique where the classical exponential kernel was
replaced by a function eV (see Remark 4.1.4) which is constructed using proximate orders and
Maerogiz's functions. As it is deduced from [88, Remark 4.11.(iii)] and Remark 2.2.18, this
construction is also available whenever M is a weight sequence admitting a nonzero proximate
order. We recall that if M admits a nonzero proximate order then it is strongly regular and
γ(M) = ω(M) ∈ (0,∞) but, as explained in the previous chapter, the converse does not hold, so
this is the most regular situation we will consider.

Theorem 3.3.21 (Generalized Borel�Ritt�Gevrey theorem). Let M be a weight sequence ad-
mitting a nonzero proximate order and γ > 0 be given. The following statements are equivalent:

(i) γ ≤ ω(M) = γ(M),

JAVIER JIMÉNEZ GARRIDO



3.3. SURJECTIVITY OF THE ASYMPTOTIC BOREL MAP 135

(ii) For every f̂ =
∑

p∈N0
apz

p ∈ C[[z]]M there exists a function f ∈ ÃM(Sγ) such that

f ∼M f̂ ,

i.e., B̃(f) = f̂ . In other words, the Borel map B̃ : ÃM(Sγ) −→ C[[z]]M is surjective.

Hence, S̃M = (0, γ(M)] = (0, ω(M)].

Table 3.5 gathers the information about surjectivity in case M admits a nonzero proximate
order. For the sequence Mα,β =

(
p!α
∏p
m=0 logβ(e + m)

)
p∈N0

, α > 0, β ∈ R, the information is
summarized in Table 3.6, note that the Gevrey case always belongs to the �rst column.

γ(M) ∈ I

γ(M) ∈ Q
∞∑
p=0

(
1

mp

) 1
ω(M)

=∞
∞∑
p=0

(
1

(p+ 1)mp

) 1
ω(M)+1

=∞
∞∑
p=0

(
1

(p+ 1)mp

) 1
ω(M)+1

<∞

SM (0, γ(M))

S̃uM (0, γ(M)) or (0, γ(M)]

S̃M (0, γ(M)]

Table 3.5: Surjectivity intervals for weight sequences admitting a nonzero proximate order.

β ≤ α α < β ≤ α+ 1 β > α+ 1

SMα,β
(0, α) (0, α) (0, α) or (0, α]

S̃uMα,β
(0, α) (0, α) or (0, α] (0, α) or (0, α]

S̃Mα,β
(0, α] (0, α] (0, α]

Table 3.6: Surjectivity intervals for the sequences Mα,β , α > 0, β ∈ R.
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Chapter 4

Multisummability via proximate orders

The method of summation of formal power series by means of Borel and Laplace operators was
introduced by É. Borel in the `simplest' case of level 1, and the extension of the method to any
level k is quite straightforward but technical. In 1981 multisummability notion was created in
a somewhat di�erent and more general form by J. Écalle [27], using what he called acceleration
operators. In 1992, W. Balser [5] reformulated this method for the Gevrey case by means of the
iterated Laplace integrals. This iteration of a �nite number of k−summability procedures, which
has been proved to be stronger than any of them, is based on the fact that a convenient Borel
transform of the series is itself summable. Six di�erent approaches to multisummability can be
found in the book of M. Loday [64].

The technique of multisummability (in Balser's sense) has been successfully applied to the
study of formal power series solutions at a singular point of linear and nonlinear (systems of)
meromorphic ordinary di�erential equations in the complex domain (see, to cite but a few, the
works [6, 7, 9, 19, 73, 85]), of partial di�erential equations (for example, [8, 10, 36, 69, 76]), as
well as of singular perturbation problems (see [11, 23, 59], among others).

Nevertheless, it is known that nonGevrey formal power series solutions may appear for dif-
ferent kinds of equations. For example, V. Thilliez has proven some results on solutions within
these general classes for algebraic equations in [97]. Also, G. K. Immink in [40, 41] has obtained
some results on summability for solutions of di�erence equations whose coe�cients grow at an
intermediate rate between Gevrey classes, called of 1+ level, that is governed by a strongly regu-
lar sequence. More recently, S. Malek [70] has studied some singularly perturbed small step size
di�erence-di�erential nonlinear equations whose formal solutions with respect to the perturba-
tion parameter can be decomposed as sums of two formal series, one with Gevrey order 1, the
other of 1+ level, a phenomenon already observed for di�erence equations [20].

All these results invite one to try to generate summability tools so they are able to deal with
formal power series whose coe�cients' growth is controlled by a general strongly regular sequence,
so including Gevrey, 1+ level and other interesting examples. These generalized summability
methods have been developed by A. Lastra, S. Malek, J. Sanz in [60, 88, 89] and will be brie�y
presented in the �rst section.

The aim of this chapter is to put forward the corresponding multisummability theory, in
Balser's sense, in this context by suitably combining the methods created from di�erent sequences
M1,M2, . . . ,Mn instead of di�erent Gevrey levels k1, k2, . . . , kn. In the second section, we will
analyze the main di�culties of this general approach, such as the comparability of di�erent
sequences, the properties of the product and quotient sequences and the extension of the classical
tauberian theorems. The de�nition of a meaningful multisummability notion depends on the
existence of these tauberian results that will be valid if the growth indices ω(Mj) of the sequences
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are mutually distinct. In this situation, supplementary summability kernels will be constructed
from some given kernel ej for Mj−summability in the third section. They will provide Laplace
and Borel-like transforms for the quotient and the product of two moment sequences mej ,mek

allowing us to recover the multisum of a formal power series.

4.1 M−summability

For a given sectorial region G of wide opening and a weight sequence M, i.e., (lc) with quotients
tending to in�nity, Watson's Lemma in ÃM(G), Theorem 3.2.15, ensures that every function f
in such a class is determined by its asymptotic expansion f̂ . This fact motivates the concept,
developed by A. Lastra, S. Malek, J. Sanz in [60, 88, 89], of summability of formal (i.e. divergent
in general) power series with controlled growth in their coe�cients in the framework of general
Carleman ultraholomorphic classes in sectors, described in the preceding chapter, so general-
izing the by-now classical and powerful tool of k−summability of formal Gevrey power series,
introduced by J.-P. Ramis [81, 82].

De�nition 4.1.1. Let d ∈ R and M be a weight sequence. We say f̂ =
∑

p≥0 apz
p ∈ C[[z]] is

M−summable in direction d if there exist a sectorial region G = G(d, γ), with γ > ω(M), and a
function f ∈ ÃM(G) such that f ∼M f̂ .

By Remark 3.1.7, we have that f̂ ∈ C[[z]]M, according to Theorem 3.2.15, f is unique with
the property stated, and will be denoted f = SM,df̂ , the M−sum of f̂ in direction d.

The aim of this section is to brie�y recall the suitable tools developed in [60, 88, 89], where
the ideas in the theory of general moment summability methods put forward W. Balser in [7]
were followed, in order to recover f from f̂ by means of formal and analytic transforms, in the
same vein as in the classical theory for Gevrey case, so-called k−summability.

4.1.1 M−summability kernels

Balser's moment summability methods, equivalent in a sense to k−summability, rely on the
determination of a pair of kernel functions e and E with suitable asymptotic and growth prop-
erties, in terms of which to de�ne formal and analytic Laplace- and Borel-like transforms. The
de�nition of k−summability kernels in [7, Section 5.5] is extended for strongly regular sequences
as follows, where the case ω(M) < 2 is mainly treated and indications will be given below on
how to work in the opposite situation.

De�nition 4.1.2. Let M be a strongly regular sequence with ω(M) < 2. A pair of complex
functions e, E are said to be kernel functions for M−summability if:

(i) e is holomorphic in Sω(M).

(ii) z−1e(z) is locally uniformly integrable at the origin, i.e., there exists t0 > 0, and for
every z0 ∈ Sω(M) there exists a neighborhood U of z0, U ⊆ Sω(M), such that the integral∫ t0

0 t−1 supz∈U |e(t/z)|dt is �nite.

(iii) For every ε > 0 there exist c, k > 0 such that

|e(z)| ≤ chM
(
k

|z|

)
= c e−ωM(|z|/k), z ∈ Sω(M)−ε, (4.1)

where hM and ωM are the functions associated with M de�ned Subsection 1.1.3.
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(iv) For x ∈ R, x > 0, the values of e(x) are positive real.

(v) If we de�ne the moment function associated with e,

me(λ) :=

∫ ∞
0

tλ−1e(t)dt, Re(λ) ≥ 0,

from (I)− (IV ) we see that me is continuous in {Re(λ) ≥ 0}, holomorphic in {Re(λ) > 0},
and me(x) > 0 for every x ≥ 0. Then, the function E given by

E(z) =
∞∑
n=0

zn

me(n)
, z ∈ C,

is entire, and there exist C,K > 0 such that

|E(z)| ≤ C

hM(K/|z|)
= CeωM(|z|/K), z ∈ C. (4.2)

(vi) z−1E(1/z) is locally uniformly integrable at the origin in the sector S(π, 2−ω(M)), in the
sense that there exists t0 > 0, and for every z0 ∈ S(π, 2−ω(M)) there exist a neighborhood
U of z0, U ⊆ S(π, 2− ω(M)), such that the integral

∫ t0
0 t−1 supz∈U |E(z/t)|dt is �nite.

We recall that if M is strongly regular ω(M) ∈ (0,∞) (see Remark 2.1.19) and the sectors in
the above de�nition are meaningful.

Remark 4.1.3. (i) According to De�nition 4.1.2(v), the knowledge of e is enough to deter-
mine the pair of kernel functions. So, in the sequel we will frequently omit the function E
in our statements.

(ii) In case ω(M) ≥ 2, condition (vi) in De�nition 4.1.2 does not make sense. However, we note

that for a positive real number s > 0 the sequence of 1/s−powers M(1/s) := (M
1/s
p )p∈N0 is

also a strongly regular, ω(M(1/s)) = ω(M)/s (see Proposition 2.1.11 and Theorem 2.1.16
and Remark 2.1.19) and, as it is easy to check,

hM(1/s)(t) =
(
hM(ts)

)1/s
, t ≥ 0.

So, following the ideas of Section 5.6 in [7, p.90], we will say that a complex function e is a
kernel ofM−summability if there exist s > 0 with ω(M)/s < 2, and a kernel ẽ : Sω(M)/s → C
for M(1/s)−summability such that

e(z) := ẽ(z1/s)/s, z ∈ Sω(M).

If one de�nes the moment function me as before, it is plain to see that me(λ) = mẽ(sλ),
Re(λ) ≥ 0. The properties veri�ed by ẽ and mẽ are easily translated into similar ones for e,
but in this case the function

E(z) =

∞∑
n=0

zn

me(n)
=

∞∑
n=0

zn

mẽ(sn)

does not have the same properties as before, and one rather pays attention to the kernel
associated with ẽ,

Ẽ(z) =

∞∑
n=0

zn

mẽ(n)
=

∞∑
n=0

zn

me(n/s)
, (4.3)
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which will behave as indicated in (v) and (vi) of De�nition 4.1.2 for such a kernel of
M(1/s)−summability.

It is worth remarking that, once such s and ẽ as in the de�nition exist, one easily checks
that for any real number t > ω(M)/2 a kernel e for M(1/t)−summability exists with e(z) =
e(z1/t)/t.

Remark 4.1.4. (i) Note that De�nition 4.1.2 can be given for arbitrary weight sequences
with ω(M) ∈ (0, 2). If, moreover, M is (dc) and there exists an M−summability kernel,
one can show, following the ideas in [58, 88], that M satis�es (snq), so this condition is
obtained automatically and, furthermore, γ(M) = ω(M).

However, (mg) seems not to be deduced from the de�nition of the kernels but it turns
out that for the proofs below (mg) is essential. In any case, since the existence of such
kernels is only guaranteed for a subfamily of strongly regular sequences, the ones admitting
a nonzero proximate order (see (ii) in this remark), the de�nition in [60] has been kept.

(ii) The existence of such kernels have been proved in [60], by taking into account the construc-
tion of nontrivial �at functions in ÃM(Sω(M)) accomplished by J. Sanz in [88], whenever the
function dM(t) is a nonzero proximate order (see (2.15) and Theorem 2.2.6) which can be
extended whenever the sequence M admits a nonzero proximate order. In Remark 2.2.18,
we have explained that this condition holds for the strongly regular sequences appearing
in the applications but it is strictly stronger. We recall that a weight sequence M admits
a nonzero proximate order if there exists a nonzero proximate order ρ(t) and constants A
and B such that

A ≤ log(t)(ρ(t)− dM(t)) ≤ B, for t large enough,

or, equivalently, if

eA ≤ tρ(t)

ωM(t)
≤ eB, for t large enough.

In this situation we know that limt→∞ dM(t) = limt→∞ ρ(t) = 1/ω(M) (see Subsec-
tion 2.2.4). Then, for such a sequence and for every V ∈ MF (2ω(M), ρ(t)) they consider
the function eV de�ned in Sω(M) by

eV (z) = z exp(−V (z)).

Since V is holomorphic in S2ω(M) and real in (0,∞), the same is true for eV , so (i) and (iv) in
De�nition 4.1.2 hold. Property (ii) in that De�nition has been obtained, as in [88, Lemma
5.3], as a consequence of Proposition 3.2.13 which ensures that for every ε ∈ (0, ω(M))
there exists b > 0 such that for any z ∈ Sω(M)−ε,

|eV (z)| ≤ |z| exp(−Re(V (z))) ≤ |z| exp(−bV (|z|)) ≤ |z| exp(−AbωM(|z|)) ≤ |z|, (4.4)

because ωM(|z|) ≥ 0. Similarly for (iii), using in addition Lemma 1.1.24, also as in [88,
Lemma 5.3], we see that there exist constants c, k > 0 such that

|eV (z)| ≤ |z| exp(−AbωM(|z|)) ≤ c exp(−ωM(|z|/k))

for every z ∈ Sω(M)−ε. Then, the moment function associated with eV ,

mV (λ) :=

∫ ∞
0

tλ−1eV (t)dt =

∫ ∞
0

tλe−V (t)dt,

is well de�ned in {Re(λ) ≥ 0}, continuous in its domain, holomorphic in {Re(λ) > 0} and
mV (x) > 0 for every x ≥ 0. Moreover, we have the following result of L.S. Maergoiz.
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Proposition 4.1.5 ([65], Th. 3.3). The function

EV (z) =
∞∑
n=0

zn

mV (n)
, z ∈ C,

is entire and there exist constants C1,K1 > 0 such that for every z ∈ C one has

|EV (z)| ≤ C1 exp(K1V (|z|)).

Consequently, by the admissibility condition, for every z ∈ C and suitably large constants
C̃, K̃ > 0, we have that

|EV (z)| ≤ C̃ exp(K̃ωM(|z|))
and so condition (v) in De�nition 4.1.2 is satis�ed. Finally, we take into account the
following.

Proposition 4.1.6 ([65], (3.25)). Let ρ(t) be a proximate order with ρ > 1/2, γ ≥ 2/ρ
and V ∈MF (γ, ρ(t)). Then, for every ε > 0 such that ε < π/2(2−1/ρ) we have, uniformly
as |z| → ∞, that (in Landau's notation)

EV (z) = O

(
1

|z|

)
,

π

2ρ
+ ε ≤ | arg z| ≤ π. (4.5)

In this case ρ = 1/ω(M) and this information easily implies that also condition (vi) in
De�nition 4.1.2 is ful�lled, so eV is a kernel of M−summability.

(iii) In Balser's theory for Gevrey sequences M1/k = (p!1/k)p∈N0 (see [7, Sect. 5.5]), the classical
example of kernels is given by ek(z) = kzk exp(−zk), the moment function is Γ(1 + λ/k)
and the Borel kernel E is a Mittag-Le�er function.

Next, we recall the following key result by H. Komatsu that characterizes the growth of a
entire function in terms of its Taylor coe�cients and it was useful in the proof of Proposition 4.1.8
and will be employed afterwards.

Proposition 4.1.7 ([52], Prop. 4.5). Let ωM(t) be the function associated with a weight se-
quence M. Given an entire function F (z) =

∑∞
n=0 anz

n, z ∈ C, the following statements are
equivalent:

(i) There exist C,K > 0 such that |F (z)| ≤ CeωM(K|z|), z ∈ C.

(ii) There exist c, k > 0 such that for every n ∈ N0, |an| ≤ ckn/Mn.

The following result is key for the development of a satisfactory summability theory because
it ensures that the classes of functions and formal power series de�ned from M and me coincide.
In the proof, the estimates, for the kernels e and E appearing in (4.1) and (4.2), respectively,
are crucial

Proposition 4.1.8 ([88], Prop. 5.7). Let e be a kernel function for M−summability, and me =
(me(p))p∈N0 the sequence of moments associated with e. Then M ≈ me.

Remark 4.1.9. (i) As mentioned in Remark 4.1.4, in the Gevrey case of order α > 0, Mα =
(p!α)p∈N0 , it is usual to choose the kernel

e1/α(z) =
1

α
z1/α exp(−z1/α), z ∈ Sα.

Then we obtain that meα(λ) = Γ(1 +αλ) for Re(λ) ≥ 0. Of course, the sequences Mα and
meα = (mα(p))p∈N0 are equivalent.

Universidad de Valladolid



142 CHAPTER 4. MULTISUMMABILITY VIA PROXIMATE ORDERS

(ii) Indeed, for any kernel e for M−summability, up to multiplication by a constant scaling
factor, one may always suppose that me(0) = 1. One may also prove that the sequence
of moments me = (me(p))p∈N0 is also (lc), which is a consequence of Hölder's inequal-
ity. Then the strong regularity is deduced from the equivalence between M and me (see
Proposition 1.1.20).

Bearing this fact in mind, in De�nition 4.1.2 one could depart not from a weight sequence
M, but from a kernel e, initially de�ned and positive in direction d = 0, whose moment
function me(λ) is supposed to be well-de�ned for λ ≥ 0, and such that the sequence me

is strongly regular. With this approach, ω(M) will be replaced by ω(me) and the function
ωM(t) by ωme(t) in the de�nition of the kernels.

(iii) In a more general framework (see O. Blasco [15]), departing from a continuous and piecewise
continuously di�erentiable nondecreasing function φ : [0,∞)→ [0,∞) with log(t) = o(φ(t))
as t→∞, we can construct two sequences:

(i) the moment sequence Mp(φ) =

∫ ∞
0

tpe−φ(t)dt, so e(t) = te−φ(t) for all p ∈ N0.

(ii) the Legendre sequence: Lp(φ) = supt>0 t
pe−φ(t) for all p ∈ N0 (compare with the

log-convex minorant in Proposition 1.1.23).

We have that both sequences are (lc) and we have that

Lp+1

p+ 1
≤Mp ≤

√
L1

p

√
L2p+1, p ∈ N.

Hence, if the lower Matuszewska index of φ is positive, β(φ) > 0, we deduce that it exists
H ≥ 1 such that φ(t) ≤ φ(Ht) + H and, as in the proof of Lemma 1.1.24, we see that L
has (mg) and we conclude that M ≈ L.

4.1.2 Generalized Laplace and Borel transforms

In this subsection, it will be shown how Laplace- and Borel-like transforms are de�ned from the
M−summability kernels, summarizing their main properties. The �rst de�nition resembles that
of functions of exponential growth of order 1/k, playing a fundamental role when dealing with
Laplace and Borel transforms in k−summability for Gevrey classes. For convenience, we will say
a holomorphic function f in a sector S is continuous at the origin if limz→0, z∈T f(z) exists for
every T � S.

De�nition 4.1.10. Let M be a weight sequence, and consider an unbounded sector S in R.
The set OM(S) consists of the holomorphic functions f in S, continuous at the origin and having
M−growth in S, i.e. such that for every unbounded proper subsector T of S, we write T ≺≺ S,
there exist r, c, k > 0 such that for every z ∈ T with |z| ≥ r one has

|f(z)| ≤ c

hM(k/|z|)
= ceωM(|z|/k). (4.6)

Remark 4.1.11. Since continuity at 0 has been asked for, f ∈ OM(S) implies that for every
T ≺≺ S there exist c, k > 0 such that for every z ∈ T with |z| < r one has (4.6).

We are ready for the introduction of the e−Laplace transform. Given a sector S = S(d, α),
a kernel e for M−summability and f ∈ OM(S), for any direction τ in S we de�ne the operator
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Te,τ sending f to its e−Laplace transform in direction τ , de�ned as

(Te,τf)(z) :=

∫ ∞(τ)

0
e(u/z)f(u)

du

u
, | arg(z)− τ | < ω(M)π/2, |z| small enough, (4.7)

where the integral is taken along the half-line parametrized by t ∈ (0,∞) 7→ teiτ . We have the
following result.

Proposition 4.1.12 ([60], Prop. 3.11). For a sector S = S(d, α) and f ∈ OM(S), the family
{Te,τf}τ inS de�nes a holomorphic function Tef in a sectorial region G(d, α+ ω(M)).

We now de�ne the generalized Borel transforms.

De�nition 4.1.13. Suppose ω(M) < 2, and letG = G(d, α) be a sectorial region with α > ω(M),
and f : G → C be holomorphic in G and continuous at 0. For τ ∈ R such that |τ − d| <
(α − ω(M))π/2 we may consider a path δω(M)(τ) in G like the ones used in the classical Borel
transform, consisting of a segment from the origin to a point z0 with arg(z0) = τ+ω(M)(π+ε)/2
(for some suitably small ε ∈ (0, π)), then the circular arc |z| = |z0| from z0 to the point z1 on
the ray arg(z) = τ − ω(M)(π + ε)/2 (traversed clockwise), and �nally the segment from z1 to
the origin.

Given kernels e, E for M−summability, we de�ne the operator T−e,τ sending f to its e−Borel
transform in direction τ , de�ned as

(T−e,τf)(u) :=
−1

2πi

∫
δω(M)(τ)

E(u/z)f(z)
dz

z
, u ∈ S(τ, ε0), ε0 small enough.

Proposition 4.1.14 ([60], Prop. 3.12). For G = G(d, α) and f : G→ C as above, the family

{T−e,τf}τ ,

where τ is a real number such that |τ − d| < (α − ω(M))π/2, de�nes a holomorphic function
T−e f in the sector S = S(d, α− ω(M)). Moreover, T−e f is of M−growth in S.

Remark 4.1.15. In case ω(M) ≥ 2, choose s > 0 and a kernel ẽ for M(1/s)−summability as in
Remark 4.1.3.(ii), and let T−ẽ,τ be de�ned as before, where the kernel under the integral sign is

the function Ẽ given in (4.3). Then, if φs is the operator sending a function f to the function
f(zs), we de�ne T−e,τ by the identity

φs ◦ T−e,τ = T−ẽ,τ ◦ φs,

in the same way as in [7, p. 90].

One can compute the e−transforms of a monomial.

Proposition 4.1.16 ([60], p. 1187). Given λ ∈ C with Re(λ) ≥ 0, the function fλ(z) = zλ

belongs to the space OM(S) and we have that

Tefλ(z) =

∫ ∞
0

e(t)zλ−1tλ−1zdt = me(λ)zλ,

T−e fλ(u) =
uλ

me(λ)
.

Universidad de Valladolid



144 CHAPTER 4. MULTISUMMABILITY VIA PROXIMATE ORDERS

The last proposition justi�es the forthcoming de�nition of formal Laplace and Borel trans-
forms.

De�nition 4.1.17. Given a sequenceM and a kernel ofM−summability e, the formal e−Laplace
transform T̂e : C[[z]]→ C[[z]] is given by

T̂e
( ∞∑
p=0

apz
p
)

:=
∞∑
p=0

me(p)apz
p.

Accordingly, we de�ne the formal e−Borel transform T̂−e : C[[z]]→ C[[z]] by

T̂−e
( ∞∑
p=0

apz
p
)

:=
∞∑
p=0

ap
me(p)

zp.

The operators T̂e and T̂−e are inverse to each other.
The next result lets us know how these analytic and formal transforms interact with general

asymptotic expansions. Given two sequences of positive real numbers M = (Mp)p∈N0 and M′ =
(M ′p)p∈N0 , we consider the sequences M ·M′ = (MpM

′
p)n∈N0 and M′/M = (M ′p/Mp)p∈N0 .

Theorem 4.1.18 ([60], Th. 3.16). SupposeM is a sequence and e is a kernel ofM−summability.
For any sequence M′ of positive real numbers the following hold:

(i) If f ∈ OM(S(d, α)) and f ∼M′ f̂ , then Tef ∼M·M′ T̂ef̂ in a sectorial region G(d, α+ω(M)).

(ii) If f ∼M′ f̂ in a sectorial region G(d, α) with α > ω(M), then T−e f ∼M′/M T̂−e f̂ in the sector
S(d, α− ω(M)).

Note that if both sequences are weight sequences, M ·M′ is again a weight sequence, but
M′/M might not be. This last theorem motivates the study of the quotient and the product
sequence achieved in Subsection 4.2.2.

4.1.3 M−summability and e−summability

With the tools presented in the previous subsections, we are ready to give a de�nition of summa-
bility in a direction with respect to a kernel e of M−summability. We recall that me is also
strongly regular and equivalent to M (see Proposition 4.1.8 and Remark 4.1.9), so, on one hand,
C[[z]]M = C[[z]]me and, on the other hand, it makes sense to consider the space Ome(S) for any
unbounded sector S and, moreover, Ome(S) = OM(S) (see (1.7)).

De�nition 4.1.19. Let e be a kernel of M−summability. We say f̂ =
∑

p≥0 apz
p is e−summable

in direction d ∈ R if:

(i) f̂ ∈ C[[z]]me , so g := T̂−e f̂ =
∑
p≥0

ap
me(p)

zp converges in a disc and

(ii) g admits analytic continuation in a sector S = S(d, ε) for some ε > 0, and g ∈ Ome(S).

The next result states the equivalence between M−summability and e−summability in a
direction, and provides a way to recover the M−sum in a direction of a summable power series
by means of the formal and analytic transforms previously introduced.

Theorem 4.1.20 ([60], Th. 3.18). Given a weight sequence M, a direction d ∈ R and a formal
power series f̂ =

∑
p≥0 apz

p, the following are equivalent:
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(i) f̂ is M−summable in direction d.

(ii) For every kernel e of M−summability, f̂ is e−summable in direction d.

(iii) For some kernel e of M−summability, f̂ is e−summable in direction d.

In case any of the previous holds, we deduce from the Watson's Lemma that we have (after
analytic continuation)

SM,df̂ = Te(T̂
−
e f̂) (4.8)

for any kernel e of M−summability.

Remark 4.1.21. In case M = M1/k, the summability methods described are just the classical
k−summability and e−summability (in a direction) for kernels e of order k > 0, as de�ned by
W. Balser.

Finally, we will present some basic properties of M−summable series. As a consequence of
Watson's Lemma and the basic properties of asymptotics, we have that:

Lemma 4.1.22. Let M be a weight sequence, the following holds:

(i) Let f̂ be convergent. Then for every d, the series f̂ is M−summable in direction d and
SM,df̂(z) = S f̂(z) for every z where both sides are de�ned, where S maps each convergent
power series to its natural sum.

(ii) If f̂ is M−summable in direction d for every d ∈ (α, β) with α < β, then

SM,d1 f̂(z) = SM,d2 f̂(z), d1, d2 ∈ (α, β)

where both functions are de�ned.

(iii) Let f̂ be M−summable in direction d, there exists ε > 0 such that f̂ is M−summable in
all directions d̃ with |d̃− d| < ε.

(iv) For d̃ = d+2π, the M−summability of f̂ in direction d is equivalent to the M−summability
of f̂ in direction d̃. Moreover, we have that

SM,d̃f̂(z) = SM,df̂(ze−2πi),

where both functions are de�ned.

Remark 4.1.23. In particular (i) in the last Lemma says that our summability method is
regular, that is, if the ordinary sum exists, then the sum in (4.8) also exists and with the same
value.

From Lemma 4.1.22.(iv), we know that we can identify directions d that di�er by integer
multiples of 2π. By Lemma 4.1.22.(iii), we know that the set of directions for which the formal
power series is not M−summable is closed, specially interesting is the case in which this set is
�nite (mod 2π).

De�nition 4.1.24. Let C{z}M,d be the set of formal power series f̂ which areM−summable in di-
rection d. Let C{z}M be the set ofM−summable formal power series f̂ which areM−summable in
every direction except for a �nite set of directions (mod 2π), denoted by sing(f̂) = {d1, . . . , dm}.

Please note that C{z} ⊆ C{z}M,d ⊆ C[[z]]M. We have the following properties of these sets.
Only the proof of (i) is indicated due to its importance in the proof of the tauberian results.
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Proposition 4.1.25. Let M be a weight sequence. Then,

(i) If f̂ ∈ C{z}M and sing(f̂) = ∅, then f̂ is convergent.

(ii) C{z}M,d, C{z}M are algebras. Moreover, if M is (dc) they are di�erential algebras.

Proof. (i) Using Lemma 4.1.22.(ii), we know that f(z) := SM,df̂(z) is well-de�ned (indepen-
dent from direction d). By Lemma 4.1.22.(iv) we know that f is single-valued, then f can
be expanded into a convergent power series about the origin. By the uniqueness of the
asymptotic expansion, we deduce that f̂ coincides with this convergent power series.

�

4.2 Tauberian theorems

Classical Tauberian theorems ([71, Th. 2.2.4.2] and [7, Th. 37]) serve to compare the processes
of k−summability for various k; these theorems are strongly related to multisummability. In
this section, we will see what can be said about the connection between the algebras C{z}M
and C{z}L for two given sequences M and L. For this purpose in the �rst subsection we will
thoroughly examine the comparability notion introduce at the beginning of the dissertation.
Secondly, we will analyze the properties of the quotient and the product sequences of M and L.
Finally, with all these tools, we will formulate our main results, generalizing the Gevrey case if
ω(M) < ω(L), and if ω(M) = ω(L) showing that such a generalization is not possible for our
de�nition of summability. The results in this section are stated for a couple of sequences but can
be easily extended for a �nite set of sequences M1,M2, . . . ,Mk.

4.2.1 Comparison of sequences

In this subsection, we want to see whether or not it is possible to compare two di�erent sequences
in such a way that the Tauberian theorems are available, so a multisummability notion, that
generalizes the Gevrey situation, can be formulated. The example at the end of the subsection
will show that, in general, we can not always determine which of two given weight sequences,
i.e., (lc) with quotients tending to in�nity, M and L is greater, not even for sequences whose
quotients are regularly varying which implies the admissibility of a nonzero proximate order (see
Remark 2.2.18). Hence, it will be natural to impose some comparability condition between M
and L in the forthcoming results.

Let M and L be sequences, we recall (see De�nition 1.1.12) that M - L if there exists some
positive constant A > 0 such that

Mp ≤ ApLp, for all p ∈ N0.

We say that M and L are comparable if M - L or L - M holds. If both conditions hold,
we say that M is equivalent to L, and we write M ≈ L. We also remind that if M ≈ L then
the corresponding classes of functions are the same (see Remark 3.1.4) and ω(M) = ω(L) (see
Remark 2.1.32). Since equivalent sequences de�ne the same classes, we are particularly interested
in comparable but not equivalent sequences, i.e., L -M and L 6≈M, which is true if and only if

inf
p∈N

(
Lp
Mp

)1/p

= 0, and sup
p∈N

(
Lp
Mp

)1/p

<∞,
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or, equivalently, if

lim inf
p→∞

(
Lp
Mp

)1/p

= 0, and lim sup
p→∞

(
Lp
Mp

)1/p

<∞.

In other words, we want to avoid noncomparable sequences, that is,

lim inf
p→∞

(
Mp

Lp

)1/p

= 0, and lim sup
p→∞

(
Mp

Lp

)1/p

=∞. (4.9)

For the construction of our example of noncomparable sequences, we need to characterize
(4.9) in terms of the corresponding associated functions (see (1.4)). For any weight sequence M
admitting a nonzero proximate order, by Lemma 1.2.12 and Remark 1.2.31, we know that the
associated function ωM(t) is O-regularly varying with all the Matuszewska indices and the orders
coinciding with 1/ω(M) ∈ (0,∞) and we deduce the next Lemma.

Lemma 4.2.1. Let M be a weight sequence admitting a nonzero proximate order. Then for any
A > 0 there exist tA, E, F > 0 such that

ωM(Et) < AωM(t) < ωM(Ft), t > tA,

and for any B > 0 there exist constants tB, G,H > 0 such that

GωM(t) < ωM(Bt) < HωM(t), t > tB.

The characterization of comparability in terms of the associated function is stated below in
the most regular case, i.e., for a sequence M admitting a nonzero proximate order, because these
are the ones used to develop the summability theory, but Lemma 4.2.1 is still valid if weaker
conditions are satis�ed byM (see [90, Lemmma 3.18] by G. Schindl). Hence, the next proposition
also holds for simpler but less regular sequences, for instance strongly regular, and examples of
noncomparability can be constructed in a similar way.

Proposition 4.2.2. Let M and L be two weight sequences such that M admits a nonzero
proximate order. We have that

lim inf
p→∞

(
Mp

Lp

)1/p

= 0 if and only if lim inf
t→∞

ωL(t)

ωM(t)
= 0,

and

lim sup
p→∞

(
Mp

Lp

)1/p

=∞ if and only if lim sup
t→∞

ωL(t)

ωM(t)
=∞.

Proof. If we suppose that lim inft→∞ ωL(t)/ωM(t) > 0, then there exists A > 0 such that ωL(t) ≥
AωM(t) for every t ≥ t0. By Proposition 1.1.23, we have that

lim inf
p→∞

(
Mp

Lp

)1/p

= lim inf
p→∞

(
Mp

supt>0(tp/eωL(t))

)1/p

≥ lim inf
p→∞

(
Mp

supt>0(tp/eAωM(t))

)1/p

.

By Lemma 4.2.1, there exists E > 0 such that AωM(t) > ωM(Et) for t large enough. It is
easy to check that the supremum for t > 0 of the function fp,M(t) = tpe−AωM(t) is attained in
[mbp/Ac,∞), so for p large enough we have that

sup
t>0

(tp/eAωM(t)) < sup
t>0

(tp/eωM(Et)),
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and we deduce that

lim inf
p→∞

(
Mp

Lp

)1/p

> E > 0.

Now, if we suppose that lim infp→∞ (Mp/Lp)
1/p > 0, then there exists B > 0 such that

Mp ≥ BpLp for every p ∈ N. Consequently, ωL(t) ≥ ωM(Bt) for every t > m0 and, using
Lemma 4.2.1, we have that

lim inf
t→∞

ωL(t)

ωM(t)
≥ lim inf

t→∞

ωM(Bt)

ωM(t)
≥ G > 0.

The same arguments lead to the other equivalence. �

We will use the construction of sequences from proximate orders, described in Subsec-
tion 2.2.3, in order to build noncomparable sequences from noncomparable proximate orders.
The main advantage of this procedure is that it may be more suitable to work with proximate
orders rather than directly with sequences.

De�nition 4.2.3. Two proximate orders ρ1(t) and ρ2(t) are said to be noncomparable if the
functions V1(t) = tρ1(t) and V2(t) = tρ2(t) satisfy that

lim inf
t→∞

V1(t)

V2(t)
= 0 and lim sup

p→∞

V1(t)

V2(t)
=∞.

If ρ1, ρ2 > 0 are the corresponding values of their limit at in�nity and ρ1 6= ρ2, using the
property (C) of proximate orders (see Remark 1.2.8), one can show that the proximate orders
are comparable.

Example 4.2.4. We consider the following functions

ρ1(t) = 1, t ∈ (0,∞),

ρ2(t) = 1 +
sin(log2(t))

log2(t)
, t ∈ (e,∞), log2(t) := log(log(t)).

The function ρ1(t) is evidently a nonzero proximate order and it is easy to check that ρ2(t)
veri�es conditions (A), (B) and (C). Since

ρ′2(t) =
cos(log2(t)) log2(t)− sin(log2(t))

t log(t)(log2(t))2
,

we see that

lim
t→∞

ρ′2(t)t log(t) = lim
t→∞

(
cos(log2(t))

log2(t)
− sin(log2(t))

(log2(t))2

)
= 0,

so ρ2(t) is a nonzero proximate order. We consider the sequences

rn = exp(exp(π/2 + 2πn)), sn = exp(exp(3π/2 + 2πn)), n ∈ N.

We write V1(t) = tρ1(t) and V2(t) = tρ2(t) and we observe that

lim
n→∞

V2(sn)

V1(sn)
= 0, lim

n→∞

V2(rn)

V1(rn)
=∞.

Hence, the proximate orders ρ1(t) and ρ2(t) are noncomparable.
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We �x γ > 0, Ṽ1 ∈ MF (γ, ρ1(t)) and Ṽ2 ∈ MF (γ, ρ2(t)) and we consider the sequences U1

and U2 (see De�nition 2.2.11) de�ned from the corresponding inverse functions Ũ1(t) and Ũ2(t).
These sequences U1 and U2 are regularly varying of index 1, so the functions dUj (t) are nonzero
proximate orders. According to Theorem 1.2.16.(VI) and Remark 2.2.13 for j = 1, 2 we see that

0 < lim inf
t→∞

ωUj (t)

Vj(t)
≤ lim sup

t→∞

ωUj (t)

Vj(t)
<∞.

Since ρ1(t) and ρ2(t) are noncomparable, we deduce that

lim inf
t→∞

ωU2(t)

ωU1(t)
= 0, and lim sup

p→∞

ωU2(t)

ωU1(t)
=∞.

Finally, by Proposition 4.2.2, we conclude that U1 and U2 are noncomparable.

4.2.2 Product and quotient of sequences

In the study of multisummability in this general context there naturally appear the product se-
quenceM·L := (MpLp)p∈N0 and the quotient sequenceM/L := (Mp/Lp)p∈N0 of two sequencesM
and L. In this subsection, some elementary properties of these sequences will be obtained and the
connection with the comparability notion in the last subsection will be established. Since many
of these properties are stated in terms of the sequence of quotients, note that the corresponding
ones for M · L and M/L are m · ` = (mp`p)p∈N0 and m/` = (mp/`p)p∈N0 , respectively.

Proposition 4.2.5. Suppose given two weight sequencesM and L, each one admitting a nonzero
proximate order. Then, M · L is a weight sequence and it admits a nonzero proximate order. In
this situation, we have that ω(M · L) = ω(M) + ω(L).

Proof. This is immediate using Theorems 2.2.6 and 2.2.17 and the stability of (lc), regular
variation and the index of regular variation for the product. �

Recall that, for sequences admitting a nonzero proximate order, the orders and the Ma-
tuszewska indices are all equal to ω(M) ∈ (0,∞) (see Remark 2.2.18).

Remark 4.2.6. We observe that the product sequence of two sequences also preserves some
weaker properties. In particular, if M and L are strongly regular sequences then M ·L is strongly
regular and ω(M)+ω(L) ≤ ω(M·L). However, the equality ω(M·L) = ω(M)+ω(L) is not always
valid, such an example can be constructed with the techniques described in Remark 2.2.27.

Remark 4.2.7. If there exists a > 0 such that the sequences of quotients associated with Mp

and Lp satisfy
a−1`p ≤ mp ≤ a`p, p ∈ N0,

then M ≈ L. Consequently, if (`p)p∈N0 and (mp)p∈N0 are equivalent in the classical sense, that
is, limp→∞ `p/mp = 1, then we also have that M ≈ L.

The main di�culty when dealing with the quotient sequence is to ensure that it satis�es
(lc). Applying Theorem 1.2.41 of R. Bojanic and E. Seneta, we will solve this problem, if the
sequences considered are regular enough, by switching M/L for an equivalent sequence.

Proposition 4.2.8. Given two weight sequences M and L, each one admitting a nonzero prox-
imate order, assume that ω(L) < ω(M). Then it exists a weight sequence A equivalent to M/L
whose sequence of quotients is regularly varying with index ω(M)− ω(L).
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Proof. By Theorem 2.2.6 and 2.2.17, we know that there exist weight sequences L′ and M′
equivalent to L and M, respectively, whose sequences of quotients (`′p)p∈N0 and (m′p)p∈N0 are
regularly varying with indices ω(L) and ω(M).

Applying Theorem 1.2.41 there exist sequences of positive real numbers (`′′p)p∈N0 and (m′′p)p∈N0

equivalent in the classical sense to (`′p)p∈N0 and (m′p)p∈N0 , respectively, i.e, limp→∞ `
′
p/`
′′
p = 1

and limp→∞m
′
p/m

′′
p = 1, and satisfying (1.15). It is plain to check that the sequence b = (bp :=

m′′p/`
′′
p)p∈N0 is regularly varying of index ω(M)− ω(L). By (1.15), we observe that

bp+1

bp
=
m′′p+1

m′′p

`′′p
`′′p+1

=

(
1 +

ω(M)

p
+ o

(
1

p

))
1

1 + ω(L)/p+ o(1/p)
.

We take α ∈ (ω(L), ω(M)), then there exists p0 ∈ N such that

bp+1

bp
>

(
1 +

α

p

)
1

(1 + α/p)
= 1, p ≥ p0.

We de�ne the sequence ap := bp0 for p < p0 and ap := bp for p ≥ p0. The sequence a is
nondecreasing and regularly varying of index ω(M)− ω(L) and a ' b.

Consequently, the corresponding sequence A is a weight sequence with A ≈ B = M′′/L′′ (see
Proposition 1.1.15). Since m′/`′ ∼m′′/`′′, we have that m′/`′ 'm′′/`′′, so A ≈M′/L′. Finally,
using that L′ and M′ are equivalent to L and M, we conclude that the proposition holds.

�

Remark 4.2.9. If ω(L) < ω(M), using the above proposition, we change M for the equivalent
sequence A · L which is (lc) and admits a nonzero proximate order. Without loss of generality,
we can always assume that M/L is (lc) and that its sequence of quotients is regularly varying of
positive index.

Some information about the behavior of these sequences can be obtained even if the conditions
on M and L are relaxed. In particular, we observe that the indices ω(M ·L) and ω(M/L) can be
computed from ω(M) and ω(L).

Remark 4.2.10. Assume that M and L are weight sequences, such that L satis�es (2.23), which
is guaranteed in case L admits a nonzero proximate order (see Remark 2.2.18), then

ω(M · L) = lim inf
p→∞

log(mp`p)

log(p)
= lim inf

p→∞

log(mp)

log(p)
+ lim
p→∞

log(`p)

log(p)
= ω(M) + ω(L) ∈ [0,∞],

ω(M/L) = lim inf
p→∞

log(mp/`p)

log(p)
= lim inf

p→∞

log(mp)

log(p)
+ lim
p→∞

− log(`p)

log(p)
= ω(M)− ω(L) ∈ R.

Finally, the following proposition shows that L - M and L 6≈ M (comparability but not
equivalence) can be characterized in terms of the quotient sequence.

Proposition 4.2.11. Given two sequences M and L, we have that

(i) if the sequence of quotients of M/L tends to in�nity, then limp→∞(Mp/Lp)
1/p = ∞ and

L -M and L 6≈M.

(ii) Assume that M/L is (lc). Then

(ii.a) L -M and L 6≈M if and only if limp→∞(Mp/Lp)
1/p =∞.

(ii.b) L -M and L 6≈M if and only if the sequence of quotients of M/L tends to in�nity.
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(iii) Assume that L is a weight sequence satisfying (2.23), i.e., ω(L) = µ(`) = ρ(`) and that
ω(L) < ω(M). Then the sequence of quotients of M/L tends to in�nity, L -M and L 6≈M
and limp→∞(Mp/Lp)

1/p =∞.

Proof. (i) If m/` tends to in�nity, then for any K > 0 it exists p0 ∈ N such that mp/`p ≥ K
for every p ≥ p0. Hence, we deduce that(

Mp

Lp

)1/p

≥
(
Kp−p0Mp0

Lp0

)1/p

, p ≥ p0.

Taking limit inferior in both sides we see that lim infp→∞(Mp/Lp)
1/p ≥ K. Since this is

true for any K > 0 we conclude that

lim
p→∞

(
Mp

Lp

)1/p

= lim inf
p→∞

(
Mp

Lp

)1/p

=∞

which implies that L -M and L 6≈M.

(ii.a) If limp→∞(Mp/Lp)
1/p =∞, we immediately get that L -M and L 6≈M.

Conversely, using Lemma 1.1.7.(vi), if M/L is (lc), we obtain that ((Mp/Lp)
1/p)p∈N is

nondecreasing. Hence, from the fact that L -M and L 6≈M we show that ((Mp/Lp)
1/p)p∈N

tends ∞.

(ii.b) Since M/L is (lc), it is immediate from (ii.a) and Lemma 1.1.7.(vii).

(iii) We have that

lim inf
p→∞

log(mp)

log(p)
= ω(M), lim

p→∞

log(`p)

log(p)
= ω(L).

Since ω(L) < ω(M) we can �x 0 < ε < (ω(M) − ω(L))/2 and we observe that it exists
p0 ∈ N such that for every p ≥ p0 we get that

mp

`p
≥ pω(M)−ε

pω(L)+ε
= pω(M)−ω(L)−2ε,

then limp→∞mp/`p = ∞. From (i), we see that limp→∞(Mp/Lp)
1/p = ∞, L - M and

L 6≈M.
�

Remark 4.2.12. By the previous proposition, if L satis�es (2.23), which is valid whenever L
admits a nonzero proximate order, we have seen that if ω(L) < ω(M), M and L are comparable
but not equivalent.

Consequently, in our framework, comparability conditions need only to be assumed when
ω(M) = ω(L). In this situation, according to the last result, it is natural to assume that M/L
is a weight sequence or, equivalently, that M/L is (lc) and L - M and L 6≈ M, which can not
be deduced from the regularity of M and L (see Example 4.2.4). Note that this is not a weird
condition.
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4.2.3 Tauberian theorems

Assuming a basic comparability hypothesis, justi�ed in the previous subsections, and that one
of the sequences is regular enough in order to employ summability techniques, we are ready to
clarify the relation between C{z}M and C{z}L. First, we observe that if a formal power series
is summable for two di�erent sequences, then its sums agree, extending what was proved for
k−summability by J.-P. Ramis and J. Martinet [83, Ch. 2, Prop. 4.3] (see also [7, Lemma 8]
and [64, Coro. 5.3.15]).

Proposition 4.2.13. Let L and M be weight sequences such that L admits a nonzero proximate
order and M/L is (lc). If ω(L) < ω(M), or if ω(L) = ω(M) assuming in addition that L - M
and L 6≈M, then for every f̂ ∈ C{z}M ∩ C[[z]]L, we have that

(i) singL(f̂) ⊆ singM(f̂) and f̂ ∈ C{z}M ∩ C{z}L.

(ii) For every d 6∈ singM(f̂), (SL,df̂)(z) ∼L f̂ on G(d, α) with α > ω(M),

(iii) (SL,df̂)(z) = (SM,df̂)(z) for every z where both functions are de�ned.

Proof. By Proposition 4.2.11, from the hypothesis in both situations ω(L) < ω(M) or ω(L) =
ω(M), we deduce that M/L is a weight sequence. Then, Watson's Lemma is available.

(i) Since f̂ ∈ C{z}M, we have that singM(f̂) is �nite. Let d be a nonsingular direction of
M−summability. We write f(z) := SM,df̂(z). We choose a kernel of L−summability, that
exists by Remark 4.1.4, and we consider g := T−L f . Since f is de�ned on a sectorial
region G(d, α) with α > ω(M) ≥ ω(L), by Proposition 4.1.14, g is holomorphic in a sector
S(d, α− ω(L)) with L−growth on this sector.

On the other hand, f̂ ∈ C[[z]]L, hence we have that ĝ := T̂−L f̂ ∈ C{z}. By Theo-
rem 4.1.18.(ii), we have that g ∼M/L ĝ on S(d, α − ω(L)) and, since ĝ ∈ C{z}, S ĝ ∼M/L ĝ
in a disc, and then in a sectorial region of opening π(α− ω(L)). By the Watson's Lemma,
Theorem 3.2.15, we have that

B̃ : ÃM/L(Gγ) −→ C[[z]]M/L

is injective for every γ > ω(M/L) = ω(M)−ω(L) (see Remark 4.2.10). Since g is holomor-
phic in a sector of opening π(α− ω(L)) > π(ω(M)− ω(L)), g is unique and, consequently,
it is an analytic extension of ĝ := T̂−L f̂ with L−growth in the sector S(d, α − ω(L)).
Using Theorem 4.1.20, we see that f̂ is L−summable in direction d. We conclude that
singL(f̂) ⊆ singM(f̂), then f̂ ∈ C{z}L.

(ii) From (i), we know that ĝ = T̂−L f̂ converges in a disc and admits analytic continuation
g in a sector S = S(d, α − ω(L)), g ∈ OL(S) and we have that S ĝ ∼M′ T̂

−
L f̂ in S with

M′ = (1)n∈N0 . Then, in Theorem 4.1.18.(i), we obtain that the function f := SL,df̂ = TLg

is holomorphic in a sectorial region G(d, α) and f ∼L f̂ there.

(iii) With the notation in (i), we have that

(SL,df̂)(z) = (TLg)(z) = (TLT
−
L f)(z) = f(z) = (SM,df̂)(z)

for every z where these functions are de�ned.

�
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As a consequence of the last proposition, a generalization of the classical Tauberian result
for k−summability of J.-P. Ramis (see [84, Th. 3.8.1], [7, Th. 37] and [64, Coro. 5.3.16]) can be
stated when the indices ω(L) and ω(M) are distinct.

Theorem 4.2.14. Let L and M be weight sequences such that L admits a nonzero proximate
order, M/L is (lc) and ω(L) < ω(M). If f̂ ∈ C{z}M ∩ C[[z]]L, then f̂ is convergent.

Proof. Using Proposition 4.2.13, we know that f̂ ∈ C{z}M ∩ C{z}L and

(SL,df̂)(z) = (SM,df̂)(z),

for every z where both functions are de�ned. Given θ ∈ singM(f̂) = {θ1, θ2, . . . , θm}, we can
take d 6∈ singM(f̂) such that |d − θ| < δ := π(ω(M) − ω(L)). Then (SM,df̂)(z) = (SL,df̂)(z) is
de�ned in a sectorial region G of opening πα > πω(M) bisected by direction d. We observe that
f = (SL,df̂)(z) is a holomorphic function de�ned in a sectorial region G̃ contained in G, bisected
by direction θ, and of opening

απ − |d− θ| > απ − δ = απ − πω(M) + πω(L) > πω(L).

By Proposition 4.2.13.(ii), we have that f ∼L f̂ in this region, then f̂ ∈ C{z}L,θ. Since singL(f̂) ⊆
singM(f̂), we deduce that singL(f̂) = ∅ and, by Proposition 4.1.25, we conclude that f̂ ∈ C{z}.

�

Remark 4.2.15. Regarding the last two results, in the case ω(L) < ω(M), if M also admits a
nonzero proximate order, the logarithmic convexity of the sequence M/L does not need to be
assumed since it is automatically guaranteed (see Remark 4.2.9).

Finally, we will show that this theorem is not valid when the indices coincide.

Theorem 4.2.16. Let L and M be weight sequences with L -M and ω(L) = ω(M). Then

C{z}M ∩ C{z}L = C{z}L.

Moreover, if L admits a nonzero proximate order, L 6≈M and M/L is (lc) we have that

C{z}M ∩ C[[z]]L = C{z}M ∩ C{z}L = C{z}L.

Proof. If f̂ is L−summable in direction d, then it exists α > ω(L) = ω(M) and f holomorphic
in G = G(d, α) such that f ∼L f̂ in G. Since L - M, we deduce that f ∼M f̂ in G, and we
conclude that f̂ is M−summable in direction d. Then, C{z}L,d ⊆ C{z}M,d and, consequently,
C{z}L ⊆ C{z}M. The last statement is obtained immediately using Proposition 4.2.13. �

Example 4.2.17. With the notation and computations in Examples 1.1.4 and 1.1.30, we deduce
that C{z}Mα,β

∩ C[[z]]Mα,β′ = C{z}Mα,β′ , but C{z}Mα,β
∩ C[[z]]Mα′,β = C{z} for any α > α′ > 0

and every β > β′.

Remark 4.2.18. In order to generalize this result and to put forward a satisfactory multisumma-
bility theory when the indices coincide we would need to rede�ne the notion of M−summability
according to the classical theorem of S. Mandelbrojt [72, Sect. 2.4.I]. In this new tentative de�ni-
tion, as it will be speci�ed in the conclusions of the dissertation, the sectorial regions are replaced
by regions of uniqueness whose boundary is tangent to the boundary of the sector Sω(M) near 0.
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4.3 Multisummability

Whenever the Tauberian Theorem 4.2.14 is available it makes sense to give a de�nition of mul-
tisummability in this context. In the recent book of M. Loday-Richaud [64, Ch. 7], several
equivalent de�nitions of multisummability are provided together with a careful study of their
peculiarities. In this dissertation, since the M−summability tools are de�ned using moment
summability methods, the approach of W. Balser [7, Ch. 10] has been chosen, that is, the de-
composition into sums. Due to a rami�cation inconvenience, this splitting de�nition is only
compatible with the others if the corresponding indices ω(Mj) are all smaller than 2.

De�nition 4.3.1. Let M1 and M2 be weight sequences, i.e., (lc) with quotients tending to
in�nity, admitting a nonzero proximate order (see De�nition 2.2.1) such that ω(M1) < ω(M2) < 2
and d1, d2 ∈ R such that |d1 − d2| < π(ω(M2) − ω(M1))/2. A formal power series f̂(z) =∑

p≥0 apz
p ∈ C[[z]] is said to be (M1,M2)−summable in the multidirection (d1, d2), if there exist

a formal series f̂1(z) which is M1−summable in d1 with M1−sum f1 and a formal series f̂2(z)
which is M2−summable in d2 with M2−sum f2 such that

f̂ = f̂1 + f̂2.

Furthermore, the holomorphic function f(z) = f1(z) + f2(z) de�ned on G(d1, α1) for some
α1 > ω(M1) is called the (M1,M2)−sum of f̂ in the multidirection (d1, d2) and we write f(z) =
(S(M1,M2),(d1,d2)f̂)(z) and f̂ ∈ C{z}(M1,M2),(d1,d2).

Remark 4.3.2. In the conditions of the previous de�nition, there always exists a sectorial region
G = G(d1, α1) with α1 > ω(M1) such that

f ∼M2 f̂ on G. (4.10)

However, since the region is not wide enough, f is not the sole function in between the ones
satisfying (4.10). Hence, this condition is weaker than the multisummability notion, because the
next proposition shows that the multisum is unique and the splittings are essentially unique.

Proposition 4.3.3. In the conditions of De�nition 4.3.1, assume that there exist two pairs of
formal power series f̂1, f̂2 and ĝ1, ĝ2 such that

f̂ = f̂1 + f̂2 = ĝ1 + ĝ2.

Then there exist α2 > ω(M2) and û1 ∈ C[[z]] such that u1 is M1−summable on a sectorial region
G(d2, α2) and

ĝ1 = f̂1 − û1, and ĝ2 = û1 + f̂2.

Moreover, we have that the (M1,M2)−sum of f̂ is unique, that is,

f1(z) + f2(z) = f(z) = g1(z) + g2(z),

in a sectorial region G(d1, α1) with α1 > ω(M1).

Proof. We de�ne û1 := f̂1− ĝ1, so û1 ∈ C{z}M1,d1 , in particular û1 ∈ C[[z]]M1 . We observe that
ĝ2− f̂2 = û1, then û1 ∈ C{z}M2,d2 . By Proposition 4.2.13.(ii), there exists α2 > ω(M2) such that
û1 is M1−summable in G(d2, α2).

Furthermore, by Lemma 4.1.22.(ii), (SM1,d1 û1)(z) = (SM1,d2 û1)(z) on a sectorial region G =
G(d1, α1) with α1 > ω(M1) and, using Proposition 4.2.13.(iii), for all z ∈ G we conclude that

f1(z)− g1(z) = (SM1,d1(f̂1 − ĝ1))(z) = (SM1,d2 û1)(z)

= (SM2,d2 û1)(z) = (SM2,d2(ĝ2 − f̂2))(z) = g2(z)− f2(z).

�
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Remark 4.3.4. Similarly to the classical situation, this de�nition can be recursively extended
for a �nite set of sequences M1,M2, . . . ,Mk with ω(M1) < ω(M2) < · · · < ω(Mk) < 2 (see [7,
Ch. 10] and [64, Ch. 7]).

The rest of this section is devoted to recover the multisum by means of some suitable integral
transform.

4.3.1 Moment-kernel duality

The main aim of this subsection is to prove that a kernel e of M−summability is uniquely
determined by its sequence of moments me, similarly to the result of W. Balser for the moment
summability methods [7, Sect. 5.8].

For bounded functions on sectors, the following auxiliary lemma shows that the domain of
holomorphy of their e−Laplace transform is not an arbitrary sectorial region, as it is shown in
Proposition 4.1.12, but an unbounded sector.

Lemma 4.3.5. Let a kernel function e(z) of M−summability with corresponding operator T =
Te be given. Given f a function de�ned in a sector S = S(d, α), assume that for every 0 < β < α,
there exists a constant Cβ > 0 such that we have that

|f(u)| ≤ Cβ, u ∈ S(d, β).

Then g = Tf is holomorphic in S(d, α+ ω(M)).

Proof. We have that f ∈ OM(S) with S = S(d, α). Let τ ∈ R be a direction in S, i.e., such that
|τ − d| < πα/2. For every u, z ∈ R with arg(u) = τ and |τ − arg(z)| < ω(M)π/2 we have that
u/z ∈ Sω(M), so the expression under the integral sign in (4.7) makes sense. We �x a > 0, and
write

g(z) =

∫ ∞(τ)

0
e(u/z)f(u)

du

u
=

∫ aeiτ

0
e(u/z)f(u)

du

u
+

∫ ∞(τ)

aeiτ
e(u/z)f(u)

du

u
.

Since f is bounded at the origin following direction τ and by De�nition 4.1.2.(ii), it is straight-
forward to apply Leibniz's rule for parametric integrals and deduce that the �rst integral in the
right-hand side de�nes a holomorphic function in S(τ, ω(M)). Regarding the second integral, we
take β < α such that |τ − d| < βπ/2 and we �x 0 < γ < ω(M). We have that u/z ∈ Sγ , for
arg(u) = τ and z such that |τ − arg(z)| < γπ/2. The property in De�nition 4.1.2.(iii) provides
us with constants c, k > 0 such that

|e(u/z)| ≤ chM(k|z|/|u|), arg(u) = τ, z ∈ S(τ, γ),

then ∣∣1
u
e(u/z)f(u)

∣∣ ≤ cCβ
|u|

hM(k|z|/|u|), arg(u) = τ, z ∈ S(τ, γ).

For any z0 ∈ S(τ, γ) we �x a bounded neighborhood U of z0 contained in S(τ, γ). We have that
|z| < r for every z ∈ U , and from the monotonicity of hM we deduce that∣∣1

u
e(u/z)f(u)

∣∣ ≤ cCβ
|u|

hM(kr/|u|).

By the de�nition of hM, we have that hM(kr/|u|) ≤M1kr/|u|, so the right-hand side of the last
inequality is an integrable function of |u| in (a,∞), and again Leibniz's rule allows us to conclude
the desired analyticity for the second integral.

Consequently, g is holomorphic in S(τ, γ) for every |τ − d| < πα and every 0 < γ < ω(M).
As in the proof of Proposition 4.1.12, we see that the value of g(z) is the same in the intersection
of these regions and we have that g is holomorphic in S(d, α+ ω(M)). �

Universidad de Valladolid



156 CHAPTER 4. MULTISUMMABILITY VIA PROXIMATE ORDERS

Remark 4.3.6. Moreover, if f(z) ∼M′
∑∞

n=0 anz
n, by Theorem 4.1.18.(i), we deduce that g =

Tef ∼MM′
∑∞

n=0 anme(n)zn on a sectorial region G(d, α+ω(M)). Since the notion of asymptotic
expansion only depends on the behavior of the function on bounded subsectors, we can say that
g ∼MM′

∑∞
n=0 anme(n)zn on S(d, α+ ω(M)), whenever g is holomorphic in S(d, α+ ω(M)).

As it happens in the Gevrey case, since the moment function me(λ) is the Mellin transform of
e(z) (see [100, Sect. 1.29]), there is a duality betweenme(λ) and e and the next lemma shows how
one can recover e(z) from its moment sequence me, thanks to the inversion formula. However,
observe that, as it was mentioned in [7], we shall not be concerned with the harder question
of how to characterize such m to which a kernel e(z) exists. The following lemma generalizes
Lemma 7 in [7].

Lemma 4.3.7. Let a kernel function e(z) of M−summability with corresponding operator T =
Te be given. For f(u) := (1 − u)−1, we have that g = Tf is holomorphic in S(π, 2 + ω(M)),
is M−asymptotic to ĝ(z) =

∑∞
0 m(n)zn there and g(z) → 0 as |z| → ∞ uniformly for z ∈

S(π, 2 + γ) for every γ < ω(M). Moreover,

g(z)− g(ze2πi) = 2πie(1/z), z ∈ Sω(M). (4.11)

Proof. The function f(u) is de�ned in the sector S(π, 2) and continuous at the origin. For every
1 < β < 2, we have that

|f(u)| ≤ 1

|1− u|
≤ 1

sin(π − βπ/2)
, u ∈ S(π, β).

Hence, by Lemma 4.3.5, we have that g is holomorphic in S(π, 2 +ω(M)). Since f is convergent
at 0, we have that f(z) ∼M′

∑∞
n=0 z

n with M′ = (1)n∈N0 and, by Remark 4.3.6, we deduce that
g ∼M

∑∞
n=0m(n)zn on S(π, 2 + ω(M)).

The behavior at in�nity can be again read o� from the integral representation as follows. We
�x a direction τ ∈ (0, 2π), τ 6= π, and we consider a direction θ ∈ (−πω(M)/2, 2π + πω(M)/2)
such that |τ − θ| < πγ/2 < πω(M)/2. For every z ∈ S(τ, γ) with arg(z) = θ, we have that

g(z) =

∫ ∞
0

e

(
r

|z|
ei(τ−θ)

)
dr

r(1− reiτ )
=

∫ ∞
0

e(sei(τ−θ))
ds

s(1− s|z|eiτ )
.

We split the integral into two parts and we see that∣∣∣∣∣
∫ 1/|z|1/2

0
e(sei(τ−θ))

ds

s(1− s|z|eiτ )

∣∣∣∣∣ ≤ 1

inf0<s<∞{|1− s|z|eiτ |}

∫ 1/|z|1/2

0

|e(sei(τ−θ))|
s

ds.

If τ ∈ (0, π/2) ∪ (3π/2, 2π), we have that

inf
0<s<∞

{|1− s|z|eiτ |} = | sin(τ)| 6= 0,

and if τ ∈ [π/2, 3π/2] (τ 6= π), we observe that

inf
0<s<∞

{|1− s|z|eiτ |} = 1 ≥ | sin(τ)| 6= 0.

Consequently, we have shown that∣∣∣∣∣
∫ 1/|z|1/2

0
e(sei(τ−θ))

ds

s(1− s|z|eiτ )

∣∣∣∣∣ ≤ 1

| sin(τ)|

∫ 1/|z|1/2

0
sup

|φ|<πγ/2
|e(seiφ)|ds

s
. (4.12)
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Using De�nition 4.1.2.(ii), we see that the integral in the right hand side is convergent. Subse-
quently, it tends to 0, uniformly as |z| goes to in�nity in S(τ, γ).

On the other hand, since the function e is uniformly bounded in Sγ for every |τ − θ| < πγ/2,
there exists c > 0 such that∣∣∣∣∣

∫ ∞
1/|z|1/2

e(sei(τ−θ))
ds

s(1− s|z|eiτ )

∣∣∣∣∣ ≤ c
∫ ∞

1/|z|1/2

ds

s|1− s|z|eiτ |
.

We have that |1− s|z|eiτ | ≥ |s|z| − 1| = |s|z|1/2|z|1/2 − 1|. Since always s|z|1/2 ≥ 1, if |z|1/2 ≥ 1
we see that |1 − s|z|eiτ | ≥ s|z| − 1. We observe that if |z| > 4, we have that 1/|z|1/2 > 2/|z|,
then s > 2/|z|, and consequently, s|z| − 1 ≥ s|z|/2. Hence, for every z ∈ S(τ, γ) with |z| > 4 we
see that ∣∣∣∣∣

∫ ∞
1/|z|1/2

e(sei(τ−θ))
ds

s(1− s|z|eiτ )

∣∣∣∣∣ ≤ 2c

|z|

∫ ∞
1/|z|1/2

ds

s2
=

2c

|z|1/2
. (4.13)

The right hand side of this inequality tends to 0 as |z| goes to in�nity. By (4.12) and (4.13), we
see that g(z) → 0 as |z| → ∞ uniformly for z ∈ S(τ, γ). By a compactness argument, we see
that g(z)→ 0 as |z| → ∞ whenever z ∈ S(π, 2 + ω(M)) uniformly for z ∈ S(π, 2 + γ).

Let θ ∈ R be a direction such that |θ| < πω(M)/2 and z ∈ R with arg(z) = θ. There exists
ε ∈ (0, πω(M)/2) such that:

1. For every u ∈ R with arg(u) = ε we have that u/z ∈ Sω(M).

2. For every u ∈ R with arg(u) = 2π − ε we have that u/ze2πi ∈ Sω(M).

Then, since f is single-valued, we have that

g(z)− g(ze2πi) =

∫ ∞(ε)

0

e(u/z)du

(1− u)u
−
∫ ∞(2π−ε)

0

e(u/(ze2πi))du

(1− u)u

=

∫ ∞(ε)

0

e(u/z)du

(1− u)u
−
∫ ∞(−ε)

0

e(w/z)dw

(1− w)w
.

We denote by γr the arc of radius r > 1 from reiε to re−iε clockwise. We observe that∣∣∣∣∫
γr

e(u/z)du

(1− u)u

∣∣∣∣ =

∣∣∣∣∫ ε

−ε

e(reiθ/z)idθ

(1− reiθ)

∣∣∣∣ ≤ ∫ ε

−ε

|e(reiθ/z)|dθ
|r − 1|

≤ 2εc
hM(k|z|/r)
r − 1

≤ 2εc

r − 1
.

Hence, we deduce that

lim
r→∞

|
∫
γr

e(u/z)du

(1− u)u
| = 0.

If we compute the residue of hz(u) = e(u/z)/(u(1− u)) at u = 1, we see that

lim
u→1

e(u/z)

(1− u)u
(u− 1) = −e(1/z).

According to the Residue theorem, we conclude that

g(z)− g(ze2πi) = 2πie(1/z).

�
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Remark 4.3.8. Let e and e be two M−summability kernels whose moment sequence m =
(m(n))n∈N0 is the same. By the above lemma, for f(z) = 1/(1 − z), we have that Tef ∼M∑∞

n=0m(n)zn and Tef ∼M
∑∞

n=0m(n)zn on S(π, 2+ω(M)). Observe that, according to Watson's
Lemma, Theorem 3.2.15, Tef = Tef . By (4.11), we deduce that e(z) = e(z).

Remark 4.3.9. Since g(z) → 0 as |z| → ∞ uniformly for z ∈ S(π, 2 + γ) for every γ < ω(M),
by (4.11) we also deduce that e(z)→ 0, |z| → 0, uniformly for z ∈ Sγ for every γ < ω(M), which
does not follow immediately from De�nition 4.1.2.

4.3.2 Strong kernels of M−summability

In order to recover the multisum of a formal power series, we need to combine a kernel e1 of
M1−summability with a kernel e2 of M2−summability. The idea is to de�ne new kernels e1 ∗ e2

and e1/e2 whose sequences of moments are me1 ·me2 and me2/me1 , respectively. This construction
is based on the one given in the Gevrey case by W. Balser [7, Sect. 5.8]. Nevertheless, in this
general situation, a stronger notion of summability kernel should be considered which will not
suppose a signi�cant restriction (see Remark 4.3.13).

De�nition 4.3.10. Let M be a strongly regular sequence with ω(M) < 2. A pair of complex
functions e, E are said to be strong kernel functions for M−summability if:

(i) e is holomorphic in Sω(M).

(ii.b) It exists α > 0 such that for every τ ∈ (0, ω(M)), there exist Cτ , ετ > 0 such that

|e(z)| ≤ Cτ |z|α, for all z ∈ Sτ , with |z| ≤ ετ .

(iii) For every ε > 0 there exist c, k > 0 such that

|e(z)| ≤ chM
(
k

|z|

)
= c e−ωM(|z|/k), for all z ∈ Sω(M)−ε,

where hM and ωM are the functions associated with M de�ned by (1.4).

(iv) For x ∈ R, x > 0, the values of e(x) are positive real.

(v) If we de�ne the moment function associated with e,

me(λ) :=

∫ ∞
0

tλ−1e(t)dt, Re(λ) ≥ 0,

from (I)− (IV ) we see that me(λ) is continuous in {Re(λ) ≥ 0}, holomorphic in {Re(λ) >
0}, and me(x) > 0 for every x ≥ 0. Then, the function E given by

E(z) =

∞∑
n=0

zn

me(n)
, z ∈ C,

is entire, and there exist C,K > 0 such that

|E(z)| ≤ C

hM(K/|z|)
= CeM(|z|/K), for all z ∈ C.
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(vi.b) It exists β > 0 such that for every τ ∈ (0, 2− ω(M)), there exist Kτ ,Mτ > 0 such that

|E(z)| ≤ Kτ

|z|β
, for all z ∈ S(π, τ), with |z| ≥Mτ .

Remark 4.3.11. In case ω(M) ≥ 2, condition (vi.b) makes no sense and, in the same way as
in [7, p. 90] and in Remark 4.1.3, suitable adaptations should be made. For simplicity, we will
omit this situation from now on.

Lemma 4.3.12. Let M be a strongly regular sequence with ω(M) < 2. Let e and E be a pair of
complex function satisfying De�nition 4.3.10, then they ful�ll the conditions in De�nition 4.1.2.

Proof. We only have to check that e and E satisfy conditions (ii) and (vi) in De�nition 4.1.2,
respectively. We take z0 ∈ Sω(M), we �x r0 > 0 and τ0 ∈ (0, ω(M)) such that U := B(z0, r0) ⊆
Sτ0 . By condition (ii.b), we have that

|e(z)| ≤ C0|z|α, z ∈ Sτ0 , |z| ≤ ε0.

For t ∈ (0, ε0(|z0| − r0)) and for every z ∈ U we observe that t/z ∈ Sτ0 and |t/z| ≤ ε0. Then∫ ε0(|z0|−r0)

0
sup
z∈U
|e(t/z)|dt

t
≤
∫ ε0(|z0|−r0)

0

C0t
α−1dt

(|z0| − r0)α
≤ C0ε

α
0

α
.

We �x T > 0, if ε0(|z0| − r0) ≥ T condition (ii) is immediately satis�ed. If ε0(|z0| − r0) < T we
de�ne D0 := {t/z; z ∈ U, t ∈ [ε0(|z0| − r0), T ]} ⊆ Sτ0 , by condition (i), e is continuous on Sτ0
and, since D0 is contained on a compact subset of Sτ0 , we have that supw∈D0

|e(w)| = K0 <∞.
Then ∫ T

0
sup
z∈U
|e(t/z)|dt

t
≤ C0ε

α
0

α
+

TK0

ε0(|z0| − r0)
<∞.

Analogously, we will verify condition (vi). We take z0 ∈ S(π, 2 − ω(M)), we �x r0 > 0 and
τ0 ∈ (0, 2− ω(M)) such that U := B(z0, r0) ⊆ S(π, τ0). By condition (vi.b), we have that

|E(z)| ≤ K0

|z|β
, z ∈ S(π, τ0), |z| ≥M0.

For 0 < t ≤ (|z0| − r0)/M0 and for every z ∈ U we observe that z/t ∈ S(π, τ0) and |z/t| ≥ M0.
Then ∫ (|z0|−r0)/M0

0
sup
z∈U
|E(z/t)|dt

t
≤
∫ (|z0|−r0)/M0

0

K0dt

(|z0| − r0)βt1−β
≤ K0

Mβ
0 β

,

and, since E is entire, we conclude as before. �

Remark 4.3.13. In general, thanks to Remark 4.3.9 one can only guarantee that e tends to 0 in
the regions considered in (ii.b) but it seems not possible to ensure that it has power-like growth,
likewise for E.

However, either the classical kernels in the Gevrey theory ek(z) = kzk exp(−zk) (see [7]), or
the new ones eV (z) = z exp(−V (z)), constructed for sequences admitting a nonzero proximate
order (see Remark 4.1.4), using the functions V de�ned in [65] (see [60, Th. 4.8, Prop. 4.11]),
satisfy conditions (ii.b) and (vi.b) (see (4.4), (4.5)).

Moreover, if we want to proof the integrability conditions (ii) or (vi) in some concrete exam-
ple, we end up showing estimates similar to those appearing in (ii.b) and (vi.b).
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Remark 4.3.14. This stronger notion need to be considered to assure that the convolution and
the acceleration kernels, de�ned in the forthcoming subsections from two given kernels e1 and
e2, also satisfy adequate integrability properties which seem not to be preserved in the standard
situation.

Remark 4.3.15. We observe that once condition (ii.b) or (vi.b) is satis�ed for some values
α and β, it is possible to replace α for any 0 < α′ < α and β for any 0 < β′ < β and the
corresponding conditions hold.

4.3.3 Convolution kernels

In this subsection, we consider two strong kernels e1 and e2 satisfying the properties in De�-
nition 4.3.10 for two sequences M1 and M2 with corresponding operators Tej , T

−
ej and moment

functions mej (λ) for j = 1, 2. We will �nd a pair of operators T, T− such that T coincides with
Te1 ◦ Te2 for a suitable class of functions containing the monomials. Hence, we will deduce that
the moment function m(λ) associated with T equals me1(λ)me2(λ). The kernel that de�nes the
operator T will be obtained as a Mellin convolution of the kernels e1 and e2, which justi�es its
name.

First, we prove an auxiliary lemma that connects the associated function of two weight
sequences M1 and M2 with the associated function of their product sequence M1 ·M2. This will
be essential when dealing with functions in the classes OM1 , OM2 and OM1·M2 .

Lemma 4.3.16. Let Mj , j = 1, 2, be weight sequences, for every s, r > 0 we have that

eωM1·M2
(r) ≤ eωM1

(s)eωM2
(r/s). (4.14)

Proof. We write M1 = (M1,p)p∈N0 and M2 = (M2,p)p∈N0 . For every s, r > 0, we observe that

eωM1·M2
(r) = sup

p∈N0

rp

M1,pM2,p
= sup

p∈N0

sp

M1,p

(r/s)p

M2,p
≤ sup

p∈N0

sp

M1,p
sup
p∈N0

(r/s)p

M2,p
= eωM1

(s)eωM2
(r/s).

�

Remark 4.3.17. We say that a weight sequence M is normalized if m0 = M1 = 1, which by
log-convexity implies that mp ≥ 1, Mp ≤Mp+1 and Mp ≥ 1 for all p ∈ N0.

Given two normalized weight sequences L and M, then

min(ωL(t), ωM(t)) ≥ ωL·M(t) for t > 0. (4.15)

which follows directly from the de�nition of the associated functions since Lp ≤ LpMp and
Mp ≤ LpMp for all p ∈ N0.

For arbitrary weight sequences, (4.15) is satis�ed for t large enough. However, normalization
is not a signi�cant restriction since mp ≥ 1 for p large and we can modify the �rst terms of a
sequence according to Remark 1.1.19 getting a normalized weight sequence M′ with m′ ' m.
This assumption simpli�es in a considerable way the proofs of the forthcoming results.

Remark 4.3.18. The results until the end of the chapter might be valid for normalized strongly
regular sequences such that we can associate with them a strong kernel. Nevertheless, the
existence of such kernels has only been proved for sequences admitting a nonzero proximate
order which, as it was pointed out in Remark 2.2.18, are the ones appearing in the applications.
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In the second place, the following proposition shows the convergence of the double inte-
gral (4.16) that will ensure that the operators T and Te1 ◦ Te2 coincide.

Proposition 4.3.19. Let Mj , j = 1, 2, be normalized weight sequences admitting a nonzero
proximate order. We consider strong kernels ej for Mj−summability, its moment function mej

and Tej the corresponding Laplace-like operators. If f ∈ OM1·M2(S(d, γ)), then it exists a
sectorial region G(d, γ+ω(M1)+ω(M2)) such that for every z0 ∈ G(d, γ+ω(M1)+ω(M2)) there
exist a neighborhood U0 ⊆ G(d, γ+ω(M1) +ω(M2)) of z0 and directions θ and φ (depending on
z0) such that we have ∫ ∞(θ+φ)

0

∫ ∞(θ)

0

∣∣∣∣e1

(v
z

)
e2

(u
v

)
f(u)

du

u

dv

v

∣∣∣∣ <∞, (4.16)

for every z ∈ U0. Consequently, Te1 ◦ Te2(f)(z) is holomorphic in the sectorial region G(d, γ +
ω(M1) + ω(M2)) and we observe that

Te1 ◦ Te2(f)(z) =

∫ ∞(θ)

0
f(u)

(∫ ∞(φ)

0
e1(wu/z)e2(1/w)

dw

w

)
du

u
.

Proof. We write M1 = (M1,p)p∈N0 and M2 = (M2,p)p∈N0 and, for simplicity, ω1 = ω(M1) and
ω2 = ω(M2).

We �x ψ0 ∈ (d− (ω1 + ω2 + γ)π/2, d+ (γ + ω1 + ω2)π/2), we choose directions τ1 ∈ (0, ω1),
τ2 ∈ (0, ω2), τ3 ∈ (0, γ), θ and φ with |θ − d| < τ3π/2 and |φ| ≤ πτ2/2 such that

|θ + φ− ψ0| < πτ1/2. (4.17)

Then, it exists ε > 0, such that [ψ0 − ε, ψ0 + ε] ⊆ (d − (ω1 + ω2 + γ)π/2, d + (γ + ω1 +
ω2)π/2) and (4.17) remains true if we replace ψ0 by ψ for every ψ ∈ (ψ0 − ε, ψ0 + ε). By
De�nition 4.3.10 (ii.b), for e1 and e2 we know that there exist α1, α2 > 0 (not depending on τ1

and τ2), and constants C1, C2 > 0, ε1, ε2 ∈ (0, 1) such that

|e1(w)| ≤C1|w|α1 , w ∈ Sτ1 , |w| ≤ ε1, (4.18)

|e2(w)| ≤C2|w|α2 , w ∈ Sτ2 , |w| ≤ ε2. (4.19)

Using condition (iii), for e1 and e2, there exist d1, d2, k1, k2 > 0 such that

|e1(w)| ≤ d1 e
−ωM1

(k1|w|), w ∈ Sτ1 , (4.20)

|e2(w)| ≤ d2 e
−ωM2

(k2|w|), u ∈ Sτ2 . (4.21)

Since f ∈ OM1·M2(S(d, γ)), we see that there exist d3, k3 > 0 such that

|f(w)| ≤ d3 e
ωM1·M2

(k3|w|), w ∈ S(d, τ3). (4.22)

Now, we de�ne k4 := max(ε2, A2/k2) where A2 is the constant appearing in (1.8) for M2 and
s = 2. We �x z0 ∈ S(d, γ + ω1 + ω2), with arg(z0) ∈ (ψ0 − ε, ψ0 + ε) and |z0| < k1/(k3k4A1),
where A1 is the constant appearing in (1.8) for M1 and s = 1. We consider U0 := B(z0, ρ0)
centered in z0 such that U0 ⊆ S(ψ0, ε, k1/(k3k4A1)).

In order to prove (4.16), parametrizing the integral and using Tonelli's Theorem, it is enough
to show that ∫ ∞

0

∣∣∣∣∣e1

(
sei(θ+φ)

z

)∣∣∣∣∣
(∫ ∞

0

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r

)
ds

s
<∞,
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for every z ∈ U0. We �x α < min(α1, 1) and

s0 = min(1, k2/(k3A1,2), ε1(|z0| − ρ0)),

where A1,2 is the constant appearing in (1.8) for M1 ·M2 and s = 2. For all s < s0, we observe
that

I(s) :=

∫ ∞
0

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r

=

(∫ ε2s

0
+

∫ ε2sα

ε2s
+

∫ ∞
ε2sα

) ∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r
.

We split the integral into three parts Ij(s) for j = 1, 2, 3 de�ned below. Since r/(seiφ) ∈ Sτ2 and
|r/(seiφ)| ≤ ε2 for all r ∈ (0, ε2s), by (4.19) and (4.22), we have that

I1(s) :=

∫ ε2s

0

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r
≤ C2d3

sα2

∫ ε2s

0
rα2eωM1·M2

(k3r)dr

r
.

Using that ωM1M2(k3r) is nondecreasing we see that

I1(s) ≤ C2d3ε
α2
2

α2
exp(ωM1·M2(k3ε2s)). (4.23)

By (4.21) and (4.22), we see that

I2(s) :=

∫ ε2sα

ε2s

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r
≤ d2d3

∫ ε2sα

ε2s
e−ωM2

(k2r/s)eωM1·M2
(k3r)dr

r
.

Using again that ωM1·M2(k3r) is nondecreasing and that

exp(−ωM2(k2r/s)) = hM2(s/(k2r)) = inf
p∈N0

M2,p
sp

(k2r)p
≤M2,1

s

k2r
, (4.24)

we get that

I2(s) ≤ d2d3M2,1

k2
s exp(ωM1·M2(k3ε2s

α))

∫ ε2sα

ε2s

dr

r2
≤ d2d3M2,1

k2ε2
exp(ωM1·M2(k3ε2s

α)). (4.25)

By (4.21) and (4.22) again, we can see that

I3(s) :=

∫ ∞
ε2sα

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r
≤ d2d3

∫ ∞
ε2sα

e−ωM2
(k2r/s)eωM1·M2

(k3r)dr

r
.

Using (4.15) and Lemma 1.1.24 for ωM1·M2 , we see that

I3(s) ≤ d2d3

∫ ∞
ε2sα

e−ωM1·M2
(k2r/s)eωM1·M2

(k3r)dr

r
≤ d2d3

∫ ∞
ε2sα

e−2ωM1·M2
((k2r)/(sA1,2))+ωM1·M2

(k3r)dr

r
.

Since ωM1·M2(t) is nondecreasing and s < s0 ≤ k2/(k3A1,2), we have that

I3(s) ≤ d2d3

∫ ∞
ε2sα

e−ωM1·M2
(k3r)dr

r
.

Finally, by the de�nition of ωM1·M2(t) we obtain

I3(s) ≤ d2d3

∫ ∞
ε2sα

M1,1M2,1

k3r2
dr =

d2d3M1,1M2,1

k3ε2sα
. (4.26)
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Consequently, by (4.23), (4.25) and (4.26), for all s < s0 we see that

I(s) ≤ C2d3ε
α2
2

α2
exp(ωM1·M2(k3ε2s0)) +

d2d3M2,1

k2ε2
exp(ωM1·M2(k3ε2s

α
0 )) +

d2d3M1,1M2,1

k3ε2sα

= a1 +
a2

sα
. (4.27)

Now, for every s ≥ s0 we split the integral into two parts Ĩj(s) for j = 1, 2. Since r/(seiφ) ∈ Sτ2
and |r/(seiφ)| ≤ ε2 for all r ∈ (0, ε2s), by (4.19) and (4.22), as before we get that

Ĩ1(s) :=

∫ ε2s

0

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r
≤ C2d3

sα2

∫ ε2s

0
rα2eωM1·M2

(k3r)dr

r
.

Using (4.15) and the monotonicity of ωM1(t), we see that

Ĩ1(s) ≤ C2d3ε
α2
2

α2
exp(ωM1(k3ε2s)). (4.28)

By (4.21) and (4.22) again, we can see that

Ĩ2(s) :=

∫ ∞
ε2s

∣∣∣e2

( r

seiφ

)∣∣∣ |f(reiθ)|dr
r
≤ d2d3

∫ ∞
ε2s

e−ωM2
(k2r/s)eωM1·M2

(k3r)dr

r
.

Applying Lemma 1.1.24 to ωM2 and by (4.14) we can show that

Ĩ2(s) ≤ d2d3

∫ ∞
ε2s

e−2ωM2
(k2r/(sA2))eωM1

(k3A2s/k2)eωM2
(k2r/(sA2))dr

r
.

Using the de�nition of ωM2(t), as in (4.24), we deduce that

Ĩ2(s) ≤ d2d3e
ωM1

(k3A2s/k2)

∫ ∞
ε2s

e−ωM2
(k2r/(sA2))dr

r
≤ d2d3A2M2,1

k2ε2
eωM1

(k3A2s/k2).

Together with (4.28), for all s ≥ s0 we get that

I(s) ≤ C2d3ε
α2
2

α2
exp(ωM1(k3ε2s)) +

d2d3A2M2,1

k2ε2
exp(ωM1(k3A2s/k2)).

Since k4 = max(ε2, A2/k2) and ωM1(t) is nondecreasing, for every s ≥ s0 we have shown that

I(s) ≤ b1 exp(ωM1(k3k4s)). (4.29)

Consequently, for any z ∈ U0 and any s ∈ (0, s0) we have that sei(θ+φ)/z ∈ Sτ1 and s/|z| ≤
s0/|z| ≤ ε1 and, by (4.18) and (4.27), we deduce that

J1(z) :=

∫ s0

0

∣∣∣∣∣e1

(
sei(θ+φ)

z

)∣∣∣∣∣ I(s)
ds

s
≤ C1

|z|α1

∫ s0

0
(a1s

α1 + a2s
α1−α)

ds

s
.

Since α < α1, for every z ∈ U0 we see that∫ s0

0

∣∣∣∣∣e1

(
sei(θ+φ)

z

)∣∣∣∣∣ I(s)
ds

s
≤ C1a1s

α1
0

α1(|z0| − ρ0)α1
+

C1a2s
α1−α
0

(α1 − α)(|z0| − ρ0)α1
. (4.30)
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In the same way, applying (4.20) and (4.29), we get that

J2(z) :=

∫ ∞
s0

∣∣∣∣∣e1

(
sei(θ+φ)

z

)∣∣∣∣∣ I(s)
ds

s
≤d1b1

∫ ∞
s0

exp(−ωM1(sk1/|z|) + ωM1(k3k4s))
ds

s
.

By Lemma 1.1.24 for ωM1 and since |z| < k1/(k3k4A1) for every z ∈ U0, we deduce that

J2(z) ≤ d1b1

∫ ∞
s0

exp(−2ωM1(sk1/(|z|A1)) + ωM1(k3k4s))
ds

s
≤ d1b1

∫ ∞
s0

exp(−ωM1(k3k4s))
ds

s
,

Using the de�nition of ωM1(t), as in (4.24), we get that

J2(z) ≤ M1,1

k3k4s0
. (4.31)

From (4.30) and (4.31), we see that (4.16) holds.
Hence, by the Leibniz's rule we deduce that the double integral∫ ∞(θ+φ)

0

∫ ∞(θ)

0
e1

(v
z

)
e2

(u
v

)
f(u)

du

u

dv

v
(4.32)

de�nes a holomorphic function in U0. One can easily show, as in the proof of Proposition 4.1.12,
that the value of such function does not depend on the directions φ and θ, so it de�nes a
holomorphic function in a sectorial region G(d, γ + ω1 + ω2) and we observe that

Te1 ◦ Te2(f)(z) =

∫ ∞(θ+φ)

0
e1(v/z)(Te2f)(v)

dv

v
=

∫ ∞(θ+φ)

0

∫ ∞(θ)

0
e1

(v
z

)
e2

(u
v

)
f(u)

du

u

dv

v
,

where θ and φ (depending on z) are chosen as in the beginning of the proof. Finally, since the
double integral in (4.32) converges for any z ∈ G(d, γ+ω1 +ω2), applying Fubini's Theorem and
making the change of variables v = wu, we see that

Te1 ◦ Te2(f)(z) =

∫ ∞(θ)

0
f(u)

(∫ ∞(φ)

0
e1(wu/z)e2(1/w)

dw

w

)
du

u
.

�

Remark 4.3.20. In the proof of the last proposition, we have shown that for any f ∈ OM1·M2(S)
we have Te2(f) ∈ OM1(S(d, γ + ω(M2))) (see (4.27)+(4.29)), which extends the classical Gevrey
result.

Finally, we construct the convolution kernel of two strong kernels and we prove that it is also
a strong kernel of M1 ·M2−summability.

Proposition 4.3.21. Let Mj , j = 1, 2, be normalized weight sequences admitting a nonzero
proximate order. Assume ω(M1)+ω(M2) < 2 and consider strong kernels ej ofMj−summability,
its moment function mej and Tej , T

−
ej the corresponding Laplace or Borel operators.

1. We de�ne the convolution of e1 and e2, denoted e1 ∗ e2, by

e1 ∗ e2(z) := Te1(e2(1/u))(1/z).

Then, e1 ∗ e2 is a strong kernel of M1 ·M2−summability whose moment function is m(λ) =
me1(λ)me2(λ). Moreover if E1 and E are the kernels associated by De�nition 4.3.10.(v)
with e1 and e1 ∗ e2, respectively, we have that

E(z) = T−e2E1(z).
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2. The function e1 ∗ e2 is the unique moment summability kernel with moment sequence
(m(p) = me1(p)me2(p))p∈N0 .

3. Let Te1 ∗ Te2 denote the Laplace-like integral operator associated with e1 ∗ e2. If S is an
unbounded sector and f ∈ OM1·M2(S), then

(Te1 ∗ Te2)f = Te1 ◦ Te2(f).

4. We consider f(u) = (1− u)−1. We de�ne g(z) := ((Te1 ◦ Te2)f)(z) and

e(1/z) :=
g(z)− g(ze2πi)

2πi
.

Then, e is well de�ned in Sω(M1)+ω(M2) and e(z) = e1 ∗ e2(z).

Proof. For simplicity we write ω1 = ω(M1) and ω2 = ω(M2). We observe that ω(M1 ·M2) =
ω1 + ω2 (see Remark 4.2.10).

1. Let us show that the function e1 ∗ e2(z) = Te1(e2(1/u))(1/z) has the necessary properties
for a strong kernel function ofM1 ·M2−summability, as listed in De�nition 4.3.10. Since the
function e2(1/u) is holomorphic in Sω2 and bounded on every sector Sβ with 0 < β < ω2,
by Lemma 4.3.5, we have that Te1(e2(1/u))(z) is holomorphic in Sω1+ω2 which proves (i).

Regarding the integrability condition (ii.b), we �x τ ∈ (0, ω1 +ω2) and we take τ1 ∈ (0, ω1)
and τ2 ∈ (0, ω2) such that τ < τ1 + τ2. By De�nition 4.3.10 (ii.b) for e1 and e2 we
know that there exist α1, α2 > 0 (not depending on τ1 and τ2), and constants C1, C2 > 0,
ε1, ε2 ∈ (0, 1) such that

|e1(z)| ≤C1|z|α1 , z ∈ Sτ1 , |z| ≤ ε1, (4.33)

|e2(z)| ≤C2|z|α2 , z ∈ Sτ2 , |z| ≤ ε2. (4.34)

We �x z ∈ Sτ with |z| ≤ (ε1ε2)2 and we choose |θ| < πτ2/2, such that zeiθ ∈ Sτ1 . We have
that

|e1 ∗ e2(z)| =

∣∣∣∣∣
∫ ∞(θ)

0
e1(uz)e2

(
1

u

)
du

u

∣∣∣∣∣
≤
∫ ε1/|z|1/2

0

∣∣∣∣e1(reiθz)e2

(
1

reiθ

)∣∣∣∣ drr +

∫ ∞
ε1/|z|1/2

∣∣∣∣e1(reiθz)e2

(
1

reiθ

)∣∣∣∣ drr .
If r ≤ ε1/|z|1/2, we have that |reiθz| ≤ ε1|z|1/2 ≤ ε2

1ε2 ≤ ε1, and if r ≥ ε1/|z|1/2, we see
that |1/(reiθ)| ≤ |z|1/2/ε1 ≤ ε2. Applying (4.33) and (4.34), we obtain

|e1 ∗ e2(z)| ≤ C1|z|α1

∫ ε1/|z|1/2

0

∣∣∣∣e2

(
1

reiθ

)∣∣∣∣ dr

r1−α1
+ C2

∫ ∞
ε1/|z|1/2

∣∣∣e1(reiθz)
∣∣∣ dr

r1+α2
.

By condition (iii) for e1 and e2, we know that there exist constants D1, D2 such that
|e1(w)| ≤ D1 for every w ∈ Sτ1 and |e2(w)| ≤ D2 for every w ∈ Sτ2 . We deduce that

|e1 ∗ e2(z)| ≤ C1D2ε
α1
1

α1
|z|α1/2 +

C2D1

εα2
1 α2

|z|α2/2.

Consequently, condition (ii.b) is satis�ed with α = min(α1/2, α2/2).
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By condition (iii) for e2, for every ε > 0, there exist c, k > 0 such that

|e2(1/u)| ≤ c e−ωM2
(k/|u|), u ∈ Sω2−ε.

Then, by Proposition 3.1.9, we have that e2(1/u) ∼M2 0̂ in Sω2 . By Remark 4.3.6, we see
that e1 ∗ e2(1/z) = Te1(e2(1/u))(z) ∼M1M2 0̂ in Sω1+ω2 which implies, again by Proposi-
tion 3.1.9, that for every ε > 0 there exist c, k, r > 0 such that

|e1 ∗ e2(z)| ≤ c e−ωM1·M2
(|z|/k), z ∈ Sω1+ω2−ε, |z| > r. (4.35)

By condition (ii.b) for e1 ∗ e2, we know that |e1 ∗ e2(z)| ≤ C for z ∈ Sω1+ω2−ε with |z| ≤ δ.
Since e1 ∗ e2(z) is continuous, (4.35) holds for every z ∈ Sω1+ω2−ε and we conclude that
condition (iii) is satis�ed.

Condition (iv) holds immediately because for x > 0 we have that

e1 ∗ e2(x) =

∫ ∞
0

e1(xy)e2(1/y)
dy

y
.

Since e1 and e2 are positive real over the positive real axis, we deduce e1 ∗ e2(x) also is.
Let us show that

me1∗e2(λ) = me1(λ)me2(λ). (4.36)

We have that

me1∗e2(λ) =

∫ ∞
0

xλ−1(e1 ∗ e2)(x)dx =

∫ ∞
0

∫ ∞
0

xλ−1e1(xy)e2(1/y)
dy

y
dx.

We make the change of variables t = xy and s = 1/y and we get

me1∗e2(λ) =

∫ ∞
0

∫ ∞
0

(st)λ−1e1(t)e2(s)dtds = me1(λ)me2(λ).

Consequently, using property (v) of e1 and e2, we deduce that me1∗e2(λ) is continuous in
{Re(λ) ≥ 0}, holomorphic in {Re(λ) > 0} and me(x) > 0 for every x ≥ 0.

We de�ne the function E by

E(z) :=
∞∑
n=0

zn

me1∗e2(n)
, z ∈ C.

If we compute the radius of convergence of this series, using (4.36), we see that

r = lim inf
n→∞

n
√
me1∗e2(n) = lim inf

n→∞
n
√
me1(n)me2(n) =∞

hence E is entire. We see that (me1∗e2(p))p∈N0 , again by (4.36), is equivalent to the
sequence M1 ·M2, then, by Proposition 4.1.7, we see that there exist C,K > 0 such that
|E(z)| ≤ CeωM1·M2

(K|z|), z ∈ C, then (v) holds.

Finally, regarding condition (vi.b), we need �rst to show that

E(u) = (T−e2E1)(u), u ∈ C∗. (4.37)

We �x u ∈ C∗, write τ = arg(u) and consider a path δω2(τ) (see De�nition 4.1.13). Since
E1 is entire and δω2(τ) compact, we have that

|
N∑
n=0

zn/me1(n)| ≤ E1(|z|) ≤ Cτ , z ∈ δω2(τ), N ∈ N0,
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and by condition (vi.b) for E2, |E2(u/z)z−1| is integrable on δω2(τ), so we can apply
Dominated Convergence Theorem. Therefore, we can exchange integral and sum and, by
Proposition 4.1.16, we see that

(T−e2E1)(u) =
∞∑
n=0

(T−e2(zn/me1(n)))(u) =
∞∑
n=0

un

me1∗e2(n)
= E(u).

We �x τ ∈ (0, 2 − (ω1 + ω2)), we take τ1 ∈ (0, 2 − ω1) and τ2 ∈ (0, 2 − ω2) such that
τ + 2 ∈ (0, τ1 + τ2− (2−ω2− τ2)) and we can choose ε ∈ (2−ω2− τ2, τ1 + τ2− 2− τ). By
(vi.b) for E1 and E2, we know that there exist β1, β2 > 0 (not depending on τ1 and τ2),
and constants K1,K2 > 0, M1,M2 ≥ 1 such that

|E1(z)| ≤ K1

|z|β1
, z ∈ S(π, τ1), |z| ≥M1, (4.38)

|E2(z)| ≤ K2

|z|β2
, z ∈ S(π, τ2), |z| ≥M2. (4.39)

We �x u ∈ S(π, τ) with |u| ≥M1M2. We write φ = arg(u) ∈ (0, 2π) and we may consider
a path δω2(φ) (see De�nition 4.1.13). We can write δω2(φ) = δ1 + δ2 + δ3 (δ1 and δ3 are
segments in directions θ1 = φ+ (π/2)(ω2 + ε) and θ3 = φ− (π/2)(ω2 + ε), respectively, and
δ2 is a circular arc with radius R = |u|/M2, that can be chosen in this way because E1 is
entire). Then, using (4.37), we see that

E(u) =
−1

2πi

∫
δω2 (φ)

E2

(u
z

)
E1 (z)

dz

z
.

We have that

|E(u)| ≤ 1

2π

(∫ |u|/M2

0

∣∣∣E2

( u

reiθ1

)
E1

(
reiθ1

)∣∣∣ dr
r

+

∫ θ1

θ3

∣∣∣∣E2

(
uM2

|u|eiθ

)
E1

(
|u|eiθ

M2

)∣∣∣∣ dθ
+

∫ |u|/M2

0

∣∣∣E2

( u

reiθ3

)
E1

(
reiθ3

)∣∣∣ dr
r

)
. (4.40)

First, we study the second integral in (4.40). By condition (v) for E2, we know that there
exists a constant H2 such that |E2(z)| ≤ H2 for every z ∈ D(0,M2 + 1) and we deduce
that ∫ θ1

θ3

∣∣∣∣E2

(
M2e

i(φ−θ)
)
E1

(
|u|eiθ

M2

)∣∣∣∣ dθ ≤ H2

∫ θ1

θ3

∣∣∣∣E1

(
|u|eiθ

M2

)∣∣∣∣ dθ.
Using the upper bounds of ε we see that 2− τ −ω2− ε > 2− τ1 and 2 + τ +ω2 + ε < 2 + τ1,
then [θ3, θ1] ⊆ ((π/2)(2− τ − ω2 − ε), (π/2)(2 + τ + ω2 + ε)) and we get that

|u|eiθ/M2 ∈ S(π, τ1), if θ ∈ [θ3, θ1]. (4.41)

Since |u| ≥M1M2 we have that |ueiθ|/M2 ≥M1 and by (4.38), we deduce that

H2

∫ θ1

θ3

∣∣∣∣E1

(
|u|eiθ

M2

)∣∣∣∣ dθ ≤ H2K1M
β1
2

|u|β1
πτ1, |u| ≥M1M2. (4.42)

We study now the �rst and the last integral in (4.40). If r ∈ (0, |u|/M2), we observe that
|u/reiθj | ≥ M2. Since ω2 + τ2 < 2 and τ1 − 2− τ < −ω1 − τ < 0, using the bounds for ε,
we have that

ω2 + ε ∈ (2− τ2, τ2 + ω2 + τ1 − 2− τ) ⊆ (2− τ2, 2)
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and we deduce that arg(u/reiθ3) = (π/2)(ω2 + ε) ∈ ((π/2)(2 − τ2), π) and arg(u/reiθ1) ∈
(−π,−(π/2)(2 − τ2)). Then for j = 1, 3 we see that u/reiθj ∈ S(π, τ2) and, by (4.39), we
show that∫ |u|/M2

0

∣∣∣E2

( u

reiθj

)
E1

(
reiθj

)∣∣∣ dr
r
≤ K2

|u|β2

∫ |u|/M2

0
rβ2
∣∣∣E1

(
reiθj

)∣∣∣ dr
r
.

Since |u| ≥ M1M2, we can write (0, |u|/M2) as the disjoint union of the intervals (0,M1)
and [M1, |u|/M2). By condition (v) for E1, we know that there exists a constant H1 such
that |E1(z)| ≤ H1 for every z ∈ D(0,M1 + 1), then

K2

|u|β2

∫ |u|/M2

0
rβ2
∣∣∣E1

(
reiθj

)∣∣∣ dr
r
≤ K2H1M

β2
1

|u|β2β2
+

K2

|u|β2

∫ |u|/M2

M1

rβ2
∣∣∣E1

(
reiθj

)∣∣∣ dr
r
.

If r ≥M1, by (4.41), we can use (4.38) and we obtain

K2H1M
β2
1

|u|β2β2
+

K2

|u|β2

∫ |u|/M2

M1

rβ2
∣∣∣E1

(
reiθj

)∣∣∣ dr
r
≤ K2H1M

β2
1

|u|β2β2
+
K1K2

|u|β2

∫ |u|/M2

M1

rβ2−β1
dr

r
.

According to Remark 4.3.15, we may assume that β1 < β2, and we conclude that

K2H1M
β2
1

|u|β2β2
+
K1K2

|u|β2

∫ |u|/M2

M1

rβ2−β1
dr

r
≤ K2H1M

β2
1

|u|β2β2
+

K1K2

|u|β1(β2 − β1)Mβ2−β1
2

.

Then for j = 1, 3 and for every u ∈ S(π, τ) with |u| ≥M1M2 we have that∫ |u|/M2

0

∣∣∣E2

( u

reiθj

)
E1

(
reiθj

)∣∣∣ dr
r
≤ K2H1M

β2
1

|u|β2β2
+

K1K2

|u|β1(β2 − β1)Mβ2−β1
2

. (4.43)

Consequently, by (4.42) and (4.43), condition (vi.b) is satis�ed with β = min(β1, β2), for
every u ∈ S(π, τ) with |u| ≥M1M2.

2. Uniqueness follows from Remark 4.3.8.

3. We take f ∈ OM1·M2(S(d, α)). Since e1 ∗ e2 is a kernel of M1Ṁ2−summability, by Proposi-
tion 4.1.12 we know that Te1 ∗Te2(f) is holomorphic in a sectorial region G(d, α+ω1 +ω2).
We �x z ∈ G(d, α + ω1 + ω2), there exists θ with |θ − d| < πα/2 such that if arg(u) = θ,
then u/z ∈ Sω1+ω2 and there exists φ with |φ| < πω2/2 such that if arg(w) = φ, then
wu/z ∈ Sω1 . We have that

Te1 ∗ Te2(f)(z) =

∫ ∞(θ)

0
e1 ∗ e2(u/z)f(u)

du

u

=

∫ ∞(θ)

0
f(u)

(∫ ∞(φ)

0
e1(wu/z)e2(1/w)

dw

w

)
du

u
.

We conclude, using Proposition 4.3.19, that this last expression is equal to Te1 ◦ Te2(f)(z).

4. We consider f(u) = (1−u)−1 and we de�ne g(z) := ((Te1 ◦Te2)f)(z). By Lemma 4.3.7, we
know that Te2f is holomorphic in S(π, 2 + ω2) and Te2f(z) → 0 as z → ∞ uniformly on
every sector S(π, 2 + γ) with γ < ω2. Moreover, Te2f ∼M2

∑∞
n=0m2(n)zn on S(π, 2 +ω2).

Then we deduce that Te2f is bounded on every sector S(π, 2+γ) with γ < ω2. We can apply
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the Te1 transform to Te2f and, by Lemma 4.3.5, we have that g = Te1Te2f is holomorphic
in S = S(π, 2 + ω1 + ω2). Then, the function

e(1/z) :=
g(z)− g(ze2πi)

2πi
,

is holomorphic in Sω1+ω2 . Since f ∈ OM1·M2(Sω1+ω2), then, by statement 3, (Te1∗Te2)(f) =
(Te1 ◦ Te2)(f) and, by Lemmma 4.3.7, we deduce that

e(1/z) =
g(z)− g(ze2πi)

2πi
=

(Te1 ∗ Te2)(f)(z)− ((Te1 ∗ Te2)f)(ze2πi)

2πi
= e1 ∗ e2(1/z).

�

Remark 4.3.22. We know that M1 ·M2 is a weight sequence with quotients tending to in�nity
admitting nonzero proximate order (see Proposition 4.2.5). Consequently, we can construct a
kernel e of M1 ·M2−summability (see Remark 4.1.4). However, we do not have any control on the
corresponding moment sequence of e apart from being equivalent to M1 ·M2. Last proposition
guarantees that the moment sequence associated with e1 ∗ e2 is (me1(n)me2(n))n∈N0 , which is
important because it ensures good behavior of formal and analytic Borel-Laplace operators for
asymptotics.

Remark 4.3.23. Note that OM1·M2(S) ⊂ OM2(S). Consequently, Te1 ◦Te2 extends the operator
Te1 ∗ Te2 . The opposite situation occurs for the acceleration operator that will be presented in
the next subsection, whose main advantage is that it extends the composition operator.

4.3.4 Acceleration kernels

In the same conditions as in the previous subsection, assuming in addition that ω(M1) < ω(M2),
we will construct a pair of operators T, T− such that T extends T−e1 ◦Te2 . This new operator will
be called the acceleration operator from e2 to e1 because it will send a function f ∈ OM2(S) into
a function with greater growth Tf ∈ OM1(S̃). According to this property, the kernel associated
with T will be called acceleration kernel and its corresponding sequence of moments will be
me2(λ)/me1(λ).

Our �rst result is the analogous version of Proposition 4.3.19 that guarantees that the oper-
ators T and T−e1 ◦ Te2 coincide for a large enough class of functions.

Proposition 4.3.24. LetMj , j = 1, 2, be weight sequence admitting a nonzero proximate order.
We consider strong kernels ej of Mj−summability. Let Tej T

−1
ej be the corresponding integral

operators. Assume that ω(M1) < ω(M2) < 2.

If f ∈ OM2(S(d, γ)), then for every z0 ∈ S(d, γ+ω(M2)−ω(M1)) there exist a neighborhood
U0 ⊆ S(d, γ + ω(M2) − ω(M1)) of z0 and a direction φ with |d − φ| < πγ/2 (depending on z0)
such that we have ∫

δω1 (arg(z0))

∫ ∞(φ)

0

∣∣∣∣E1(z/v)e2(u/v)f(u)
du

u

dv

v

∣∣∣∣ <∞ (4.44)

for every z ∈ U0, where δω1(arg(z0)) is a path as considered in De�nition 4.1.13. Moreover, the
function

F (z) :=

∫
δω1 (arg(z))

∫ ∞(φ)

0
E1(z/v)e2(u/v)f(u)

du

u

dv

v
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is holomorphic in S(d, α+ ω(M2)− ω(M1)) and

T−e1 ◦ Te2(f)(z) =

∫ ∞(φ)

0
f(u)

(
−1

2πi

∫
δω1 (arg(z)−φ)

E1(z/wu)e2 (1/w)
dw

w

)
du

u
.

Proof. For simplicity we write ω1 = ω(M1) and ω2 = ω(M2), M1 = (M1,p)p∈N0 and M2 =
(M2,p)p∈N0 . We observe that ω(M2/M1) = ω2 − ω1 (see Remark 4.2.10).

We �x z0 ∈ S(d, α+ ω2 − ω1), since ω2 − ω1 > 0 we can consider directions τ1 ∈ (0, 2− ω1),
τ2 ∈ (0, ω2), τ3 ∈ (0, γ) with 2− τ1 − ω1 < τ2 + τ1 − 2 + τ3 − γ. Then, we can choose

ε ∈ (2− τ1 − ω1, τ2 + τ1 − 2 + τ3 − γ) ⊆ (0, ω2 − ω1),

and φ > 0 with |φ− d| < τ3π/2 such that

| arg(z0)− φ| < (τ2 + τ1 − 2− ε+ τ3 − γ)π/2. (4.45)

We observe that we can take ρ0 > 0 small enough such that B(z0, ρ0) ⊆ S(d, γ + ω2 − ω1) and
the inequality (4.45) remains valid if we replace arg(z0) by arg(z) for every z ∈ B(z0, ρ0). We
write θ1 = arg(z0) + (ω1 + ε)π/2 and θ3 = arg(z0) − (ω1 + ε)π/2, since τ2 < 2 we observe that
the value of ε guarantees that 2−ω1− ε > 0 and ω1 + τ1−2 + ε > 0. Then, by suitably reducing
the radius ρ0, we also have that

| arg(z)− arg(z0)| < δ := min((2− ω1 − ε)π/2, (ω1 + τ1 − 2 + ε)π/2)/2, (4.46)

for every z ∈ U0 = B(z0, ρ1) with ρ1 ≤ ρ0, which implies

−π < arg(z)− θ1 < (τ1 − 2)π/2, (2− τ1)π/2 < arg(z)− θ3 < π. (4.47)

Moreover, from (4.45) we deduce that

|θ − φ| ≤ |θ − arg(z0)|+ | arg(z0)− φ| < (ω1 + τ1 − 2 + τ2 + τ3 − γ)π/2 ≤ τ2π/2 (4.48)

for every θ ∈ [θ3, θ1].

By De�nition 4.3.10.(vi.b) for E1 and (ii.b) for e2 we know that there exist β1, α2 > 0 (not
depending on τ1 and τ2), and constants K1, C2 > 0, M ≥ 1, ε2 ∈ (0, 1) such that

|E1(z)| ≤ K1

|z|β1
, z ∈ S(π, τ1), |z| ≥M, (4.49)

|e2(z)| ≤C2|z|α2 , z ∈ Sτ2 , |z| ≤ ε2. (4.50)

By condition (iii) for e2, there exist d2, k2 > 0 such that

|e2(w)| ≤ d2 e
−ωM2

(k2|w|), u ∈ Sτ2 ,

and since f ∈ OM2(S(d, γ)), we see that there exist d3, k3 > 0 such that

|f(w)| ≤ d3 e
ωM2

(k3|w|), w ∈ S(d, τ3). (4.51)

We �x s0 = min(1, k2/(k3A2), (|z0 − ρ1|/M)) and β < min(β1, 1), where A2 is the constant
appearing in (1.8) for M2 and s = 2. We consider a path δω1(arg(z0)) (see De�nition 4.1.13). We
can write δω1(arg(z0)) = δ1+δ2+δ3 (δ1 and δ3 are segments in directions θ1 = arg(z0)+(ω1+ε)π/2
and θ3 = arg(z0)− (ω1 + ε)π/2, respectively, and δ2 is a circular arc with radius R = s0).
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In order to prove (4.44), parametrizing the integral and using Tonelli's Theorem, it is enough
to show that

Ji(z) =

∫ s0

0
|E1(z/seiθi)|

∫ ∞
0
|e2(reiφ−θi/s)f(reiφ)|dr

r

ds

s
<∞, i = 1, 3,

J2(z) =

∫ θ1

θ3

|E1(z/s0e
iθ)|
∫ ∞

0
|e2(reiφ−θ/s0)f(reiφ)|dr

r
dθ <∞,

for every z ∈ U0. For s ≤ s0 and θ ∈ [θ3, θ1] we consider

I(s, θ) :=

∫ ∞
0
|e2(reiφ−θ/s)f(reiφ)|dr

r
.

By (4.48) we show that reiφ−iθ/s ∈ Sτ2 for all θ ∈ [θ3, θ1] and every s ≤ s0. Then, splitting the
interval into three parts (0, ε2s), (ε2s, ε2s

β), (ε2s
β,∞) as in the proof of Proposition 4.3.19 and

using (4.50), (4.51), Lemma 1.1.24 and that ωM2(t) is nondecreasing, we get that

I(s, θ) ≤ C2d3ε
α2
2

α2
exp(ωM2(k3ε2s0))+

d2d3M2,1

k2ε2
exp(ωM2(k3ε2s

β
0 ))+

d2d3M2,1

k3ε2sβ
=: a1+

a2

sβ
. (4.52)

Applying (4.47), we see that z/seiθi ∈ S(π, τ1) for i = 1, 3 and every z ∈ U0 and since |z/s| ≥
|z|/s0 ≥M , we can apply (4.49) and (4.52) and we see that

Ji(z) ≤ K1

∫ s0

0

sβ1

|z|β1
(
a1 +

a2

sβ

) ds
s
≤ K1a1s

β1
0

β1(|z0| − ρ1)β1
+

K1a2s
β1−β
0

(β1 − β)(|z0| − ρ1)β1
, (4.53)

for i = 1, 3 and every z ∈ U0. Using that E1 is entire we have that |E1(w)| ≤ H1 for every
w ∈ B(0, (|z0|+ ρ1 + 1)/s0), and (4.52) shows that

J2(z) ≤

(
a1 +

a2

sβ0

)
(θ1 − θ3)H1 (4.54)

for every z ∈ U0. Using (4.53) and (4.54) we see that (4.44) holds. Hence, by the Leibniz's rule
the double integral ∫

δω1 (arg(z0))

∫ ∞(φ)

0
E1(z/v)e2(u/v)f(u)

du

u

dv

v

is a holomorphic function in the neighborhood U0 of z0 for every z0 ∈ S(d, α + ω2 − ω1). If
z ∈ U0∩U1, with U1 the corresponding neighborhood of z1, the choice of δ > 0 in (4.46) guarantees
that lims→0 |E1(z/seiθ)|I(s, θ) = 0, uniformly for θ between θi and θ′i = arg(z1)± (ω1 +ε)π/2 for
i = 1, 3. This fact ensures that we can apply Cauchy's theorem to deform the path of integration
from δω1(arg(z0)) to δω1(arg(z1)), and we deduce that∫

δω1 (arg(z))

∫ ∞(φ)

0
E1(z/v)e2(u/v)f(u)

du

u

dv

v
(4.55)

de�nes a holomorphic in the sector S(d, α+ ω2 − ω1). We observe that

T−e1 ◦ Te2(f)(z) =
−1

2πi

∫
δω1 (arg(z))

E1(z/v)(Te2f)(v)
dv

v

=
−1

2πi

∫
δω1 (arg(z))

∫ ∞(φ)

0
E1(z/v)e2

(u
v

)
f(u)

du

u

dv

v
,
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where φ and δω1(arg(z)) are chosen as in the beginning of the proof. We write η = arg(z) − φ
and we make the change of variables v = wu. Then the path δω1(arg(z)) is transformed into
the path δω1(η). We can write δω1(η) = γ1 + γ2 + γ3 (γ1 and γ3 are segments in directions
θ′′1 = η + (π/2)(ω1 + ε) and θ′′3 = η − (π/2)(ω1 + ε), respectively, and γ2 is a circular arc with
radius R = s0/|u|, the path δω1(η) stays inside Sω2 . We have that

T−e1 ◦ Te2(f)(z) =
−1

2πi

∫
δω1 (η)

∫ ∞(φ)

0
E1(z/wu)e2 (1/w) f(u)

du

u

dw

w
.

Finally, since the double integral in (4.55) converges for any z ∈ S(d, α+ω2−ω1), we can apply
Fubini's theorem and we can interchange the integration order, then we see that

T−e1 ◦ Te2(f)(z) =

∫ ∞(φ)

0
f(u)

(
−1

2πi

∫
γω1 (arg(z)−φ)

E1(z/wu)e2 (1/w)
dw

w

)
du

u
.

�

We are ready to prove the main result, essential for the construction of the multisum.

Proposition 4.3.25. LetMj , ej , mej , and Tej , T
−
ej , j = 1, 2, be as in Proposition 4.3.21. Assume

that ω(M1) < ω(M2) < 2.

1. We de�ne the acceleration from e2 to e1, denoted e1 / e2, by

(e1 / e2)(z) = T−e1(e2(1/u))(1/z).

Then, e1 /e2 is a strong kernel of M2/M1− summability whose moment function is m(λ) =
me2(λ)/me1(λ). Moreover, if E2 and E are the functions associated by De�nition 4.3.10.(v)
with e2 and e1 / e2, respectively, we have that

E(u) = Te1(E2(u)).

2. The function e1 / e2 is the unique moment summability kernel with moment sequence
(m(p) = me2(p)/me1(p))p∈N0 .

3. Let Ae1,e2 denote the Laplace-like integral operator associated with e1 / e2. If S is an
unbounded sector and f ∈ OM2(S), then

Ae1,e2f = T−e1 ◦ Te2(f).

4. We de�ne g(z) := ((T−1 ◦ Te2)f)(z) with f(u) = (1− u)−1 and

e(1/z) :=
g(z)− g(ze2πi)

2πi
.

Then, e is well de�ned in Sω(M2)−ω(M1) and e(z) = e1 / e2(z).

Proof. For simplicity we write ω1 = ω(M1) and ω2 = ω(M2). We observe that ω(M2/M1) =
ω2 − ω1 (see Remark 4.2.10).
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1. Let us show that the function (e1 /e2)(z) = T−e1(e2(1/u))(1/z) has the necessary properties
for a strong kernel function of M2/M1−summability, as listed in De�nition 4.3.10.

Since the function e2(1/u) is holomorphic in Sω2 , continuous at the origin and ω2 > ω1,
by Proposition 4.1.14 we have that T−e1(e2(1/u))(z) is holomorphic in Sω2−ω1 which proves
requirement (i).

Regarding the integrability condition (ii.b), we �x τ ∈ (0, ω2 − ω1) and we take τ1 ∈
(0, 2−ω1) and τ2 ∈ (0, ω2) such that 2 + τ ∈ (0, τ1 + τ2− (2−ω1− τ1)) and we can choose
ε ∈ (2 − ω1 − τ1, τ1 + τ2 − 2 − τ). By De�nition 4.3.10.(vi.b) for E1 and (ii.b) for e2 we
know that there exist β1, α2 > 0 (not depending on τ1 and τ2), and contants K1, C2 > 0,
M1 ≥ 1, ε2 ∈ (0, 1) such that

|E1(z)| ≤ K1

|z|β1
, z ∈ S(π, τ1), |z| ≥M1, (4.56)

|e2(z)| ≤C2|z|α2 , z ∈ Sτ2 , |z| ≤ ε2. (4.57)

We �x z ∈ Sτ with |z| ≤ ε2
2/M

2
1 , then |z| ≤ 1. We write φ = arg(z) ∈ (−πτ/2, πτ/2) and

we may consider a path δω1(−φ) (see De�nition 4.1.13). We can write δω1(−φ) = δ1+δ2+δ3

(δ1 and δ3 are segments in directions θ1 = −φ+(π/2)(ω1 +ε) and θ3 = −φ− (π/2)(ω1 +ε),
respectively, and δ2 is a circular arc with radius R = 1/(|z|M1), that can be chosen in
this way because e2 is holomorphic in Sω2 , that is unbounded, and the path δω1(−φ) stays
inside Sτ2). Then, by de�nition, we see that

e1 / e2(z) =
−1

2πi

∫
δω1 (−φ)

E1

(
1

uz

)
e2 (1/u)

du

u
.

We have that

|e1 / e2(z)| ≤ 1

2π

(∫ 1/(|z|M1)

0

∣∣∣∣E1

(
1

zreiθ1

)
e2

(
1

reiθ1

)∣∣∣∣ drr
+

∫ θ1

θ3

∣∣∣∣E1

(
|z|M1

zeiθ

)
e2

(
|z|M1

eiθ

)∣∣∣∣ dθ
+

∫ 1/(|z|M1)

0

∣∣∣∣E1

(
1

zreiθ3

)
e2

(
1

reiθ3

)∣∣∣∣ drr
)
. (4.58)

First, we study the second integral in (4.58). By condition (v) for E1, we know that there
exists a constant H1 such that |E1(w)| ≤ H1 for every w ∈ D(0,M1 +1). Using the bounds
for φ, we see that

[θ3, θ1] ⊆ ((π/2)(−τ − ω1 − ε), (π/2)(τ + ω1 + ε)).

Employing the upper bound for ε, we obtain that τ + ω1 + ε < τ2 − (2− ω1 − τ1), then we
deduce that

|z|M1e
−iθ ∈ Sτ2 , θ ∈ [θ3, θ1]. (4.59)

Since |z| ≤ |z|1/2 ≤ ε2/M1, we have that |ze−iθM1| ≤ ε2 and, by (4.57), we conclude that∫ θ1

θ3

∣∣∣∣E1

(
|z|M1

zeiθ

)
e2

(
|z|M1

eiθ

)∣∣∣∣ dθ ≤ H1C2|z|α2Mα2
1 πτ2. (4.60)
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We study now the �rst and the last integral in (4.58). If r ∈ (0, 1/(|z|M1)), we observe
that |1/(zreiθj )| ≥M1. Since ω1 + τ1 < 2 and τ2 < 2, using the bounds for ε, we have that

ω1 + ε ∈ (2− τ1, τ2 + ω1 + τ1 − 2− τ) ⊆ (2− τ1, 2)

and we deduce that arg(1/(zreiθ3)) = (π/2)(ω1 + ε) ∈ ((π/2)(2 − τ1), π) and also that
arg(1/(zreiθ1)) ∈ (−π,−(π/2)(2− τ1)). Then for j = 1, 3 we see that 1/(zreiθj ) ∈ S(π, τ1)
and, by (4.56), we show that∫ (|z|M1)−1

0

∣∣∣∣E1

(
1

zreiθj

)
e2

(
1

reiθj

)∣∣∣∣ drr ≤ K1|z|β1
∫ (|z|M1)−1

0
rβ1
∣∣∣∣e2

(
1

reiθj

)∣∣∣∣ drr .
Since |z| ≤ 1, we can split (0, 1/(|z|M1)) as the union of the intervals (0, 1/(|z|1/2M1)) and
[1/(|z|1/2M1), 1/(|z|M1)). By condition (iii) for e2, we know that there exists a constant
D2 such that |e2(w)| ≤ D2 for every w ∈ Sτ2 . If r ≥ 1/(|z|1/2M1), then 1/r ≤ ε2, by (4.59),
we can apply (4.57) and we obtain∫ (|z|M1)−1

0

∣∣∣∣E1

(
1

zreiθj

)
e2

(
1

reiθj

)∣∣∣∣ drr ≤ K1|z|β1/2D2

Mβ1
1 β1

+K1C2|z|β1
∫ (|z|M1)−1

(|z|1/2M1)−1

rβ1−α2
dr

r
.

According to Remark 4.3.15, we may assume that α2 < β1. Then for j = 1, 3 and for every
u ∈ Sτ with |z| ≤ ε2

2/M
2
1 we have that∫ (|z|M1)−1

0

∣∣∣∣E1

(
1

zreiθj

)
e2

(
1

reiθj

)∣∣∣∣ drr ≤ K1D2|z|β1/2

Mβ1
1 β1

+
K1C2|z|α2

(β1 − α2)Mβ1−α2
1

. (4.61)

Consequently, by (4.60) and (4.61), condition (ii.b) is satis�ed with α = min(β1/2, α2).

By condition (iii) for e2, for every ε > 0 there exist c, k > 0 such that

|e2(1/u)| ≤ c e−ωM2
(k/|u|), u ∈ Sω2−ε.

Then, by Proposition 3.1.9, we have that e2(1/u) ∼M2 0̂ in Sω2 .

By Theorem 4.1.18, we see that e1 / e2(1/z) = T−e1(e2(1/u))(z) ∼M2/M1
0̂ in Sω2−ω1 which

implies, again by Proposition 3.1.9, that for every ε > 0 there exist c, k, r > 0 such that

|e1 / e2(z)| ≤ c e−ωM2/M1
(|z|/k), z ∈ Sω2−ω1−ε, |z| > r. (4.62)

By condition (ii.b) for e1 / e2, we know that |e1 / e2(z)| ≤ C for z ∈ Sω2−ω1−ε with |z| ≤ δ.
Since e1 / e2(z) is continuous, (4.62) holds for every z ∈ Sω2−ω1−ε and we conclude that
condition (iii) is satis�ed.

For x > 0 we have that

e1 / e2(x) =
1

2πi

(∫ R

0
E1

(
1

xreiθ1

)
e2

(
1

reiθ1

)
dr

r

−
∫ θ3

θ1

E1

(
1

xReiθ

)
e2

(
1

Reiθ

)
idθ +

∫ 0

R
E1

(
1

xreiθ3

)
e2

(
1

reiθ3

)
dr

r

)
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with θ1 = (π/2)(ω1 + ε) and θ3 = −(π/2)(ω1 + ε). Since E1 and e2 are positive real over
the positive real axis and holomorphic in Sω2 , we deduce that

e1 / e2(x) =
1

2πi

(∫ R

0
E1

(
1

xre−iθ1

)
e2

(
1

re−iθ1

)
dr

r

−
∫ θ3

θ1

E1

(
1

xRe−iθ

)
e2

(
1

Re−iθ

)
idθ +

∫ 0

R
E1

(
1

xre−iθ3

)
e2

(
1

re−iθ3

)
dr

r

)
.

Since θ1 = −θ3, we observe that e1 / e2(x) = e1 / e2(x), then (iv) holds.

Let us show that
me1/e2(λ) = me2(λ)/me1(λ) (4.63)

for Re(λ) ≥ 0. We have that

me1/e2(λ) =

∫ ∞
0

xλ−1(e1 / e2)(x)dx

=
−1

2πi

∫ ∞
0

xλ−1

∫
δω1 (0)

E1

(
1

ux

)
e2 (1/u)

du

u
dx.

We make the change of variables t = 1/(xu). Then the path δω1(0) (with radius R = 1/x,
that can be chosen in this way because e2 is holomorphic in Sω2) stays inside Sω2 and
it is transformed into ∆ω1(0), with ∆ω1(0) = ∆3 + ∆2 + ∆1 (∆3 is the line in direction
θ3 = −(π/2)(ω1 + ε) from in�nity to eiθ3 , ∆2 is a circular arc with radius R = 1, and ∆1

is the line from eiθ1 in direction θ1 = (π/2)(ω1 + ε) to in�nity) and we get

me1/e2(λ) =
1

2πi

∫ ∞
0

xλ
∫

∆ω1 (0)
E1 (t) e2 (xt)

dt

t

dx

x
.

We make the change of variables xt = s, we see that

me1/e2(λ) =
1

2πi

∫ ∞
0

sλe2 (s)

∫
∆ω1 (0)

E1 (t)
dt

tλ+1

ds

s
.

Using condition (vi.b) for E1 and Cauchy's theorem to deform the path of integration and
replace ∆ω1(0) by the disc D(0, 1), we obtain

me1/e2(λ) =

∫ ∞
0

sλe2 (s)

(
1

2πi

∫
D(0,1)

E1 (t)
dt

tλ+1

)
ds

s
.

By Cauchy's formula for E1, we see that

me1/e2(λ) =

∫ ∞
0

sλe2 (s)
1

me1(λ)

ds

s
.

Finally, by condition (v) for e2 we show that (4.63) is satis�ed.

We deduce that me1/e2(λ) is continuous in {Re(λ) ≥ 0}, holomorphic in {Re(λ) > 0} and
me1/e2(x) > 0 for every x ≥ 0. We de�ne the function E/ by

E/(z) :=

∞∑
p=0

zn

me1/e2(p)
, z ∈ C.
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If we compute the radius of convergence of this series, using (4.63) and that ω1 < ω2 (see
Proposition 4.2.11.(iii)) we show that

r = lim inf
p→∞

n
√
me1/e2(p) = lim inf

p→∞
p

√
me2(p)

me1(p)
=∞,

hence E/ is entire. We see that (me1/e2(p))p∈N0 , again by (4.63), is equivalent to the
sequence M2/M1. Then, by Proposition 4.1.7, we see that there exist C,K > 0 such that
|E/(z)| ≤ C exp(ωM2/M1

(K|z|)), for all z ∈ C, then (v) holds.

Finally, regarding condition (vi.b), we need �rst to show that

E/(u) = (Te1E2)(u), u ∈ C∗. (4.64)

We prove this equality for u ∈ (0,∞), and we conclude using the identity principle since
E/(u) is entire and, by Proposition 4.1.12, (Te1E2)(u) is holomorphic in a sectorial region
G(0, 2 + ω1).

We �x u ∈ (0,∞), we have that

(Te1E2)(u) =

∫ ∞
0

e1

( z
u

)
E2(z)

dz

z
.

Since e1 and E2 are positive over (0,∞), then we can exchange integral and sum and
applying (4.63) we see that

(Te1E2)(u) =

∫ ∞
0

e1

( z
u

)
E2(z)

dz

z
=

∫ ∞
0

e1

( z
u

) ∞∑
n=0

zn

me2(n)

dz

z

=
∞∑
n=0

(Te1(zn/me2(n)))(u) =
∞∑
n=0

un

me1/e2(n)
= E/(u).

Now, we �x τ ∈ (0, 2 − ω2 + ω1), and we take τ1 ∈ (0, ω1) and τ2 ∈ (0, 2 − ω2) such that
τ2 < τ < τ1 + τ2. By De�nition 4.3.10.(ii.b) for e1 and (vi.b) for E2 we know that there
exist α1, β2 > 0 (not depending on τ1 and τ2), and constants C1,K2 > 0, ε1 ∈ (0, 1),
M2 ≥ 1 such that

|e1(z)| ≤C1|z|α1 , z ∈ Sτ1 , |z| ≤ ε1, (4.65)

|E2(z)| ≤ K2

|z|β2
, z ∈ S(π, τ2), |z| ≥M2. (4.66)

We �x u ∈ S(π, τ) with |u| ≥ M2/ε1. If u ∈ S(π, τ2), we de�ne θu := arg(u) so we have
that

eiθu

u
∈ Sτ1 , eiθu ∈ S(π, τ2). (4.67)

If arg(u) ∈ ((π/2)(2− τ), (π/2)(2− τ2)], we de�ne θu := arg(u) + εu with

εu ∈ ((π/2)(2− τ2)− arg(u),min((π/2)(2 + τ2)− arg(u), (π/2)τ1)).

This interval is not empty since arg(u)(2/π) > 2 − τ > 2 − τ2 − τ1, then (π/2)(2 − τ2) −
arg(u) < τ1π/2. We observe that arg(eiθu/u) = εu ∈ [0, (π/2)τ1) and we also have that
eiθu ∈ S(π, τ2) and we deduce (4.67).
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Analogously, if arg(u) ∈ [(π/2)(2 + τ2), (π/2)(2 + τ)) we choose θu := arg(u)− εu with

εu ∈ (−(π/2)(2 + τ2) + arg(u),min(−(π/2)(2− τ2) + arg(u), (π/2)τ1)),

and we also obtain (4.67) for this choice of θu. By (4.64), since |u| ≥M2/ε1 we have that

|E/(u)| =

∣∣∣∣∣
∫ ∞(θu)

0
e1

( z
u

)
E2(z)

dz

z

∣∣∣∣∣ ≤
∫ M2

0

∣∣∣∣e1

(
reiθu

u

)
E2(reiθu)

∣∣∣∣ drr
+

∫ |u|ε1
M2

∣∣∣∣e1

(
reiθu

u

)
E2(reiθu)

∣∣∣∣ drr +

∫ ∞
|u|ε1

∣∣∣∣e1

(
reiθu

u

)
E2(reiθu)

∣∣∣∣ drr .
If r ≤ |u|ε1, we have that |reiθu/u| ≤ ε1, by (4.67) we can apply (4.65) and we obtain

|E/(u)| ≤ C1

|u|α1

(∫ M2

0
rα1

∣∣∣E2(reiθu)
∣∣∣ dr
r

+

∫ |u|ε1
M2

rα1

∣∣∣E2(reiθu)
∣∣∣ dr
r

)

+

∫ ∞
|u|ε1

∣∣∣∣e1

(
reiθu

u

)
E2(reiθu)

∣∣∣∣ drr .
By condition (iii) for e1, and (v) for E2 we know that there exist constants D1, H2 such
that |e1(w)| ≤ D1 for every w ∈ Sτ1 and |E2(w)| ≤ H2 for every w ∈ D(0,M2 + 1). We
deduce that

|E/(u)| ≤C1H2M
α1
2

α1|u|α1
+

C1

|u|α1

∫ |u|ε1
M2

rα1

∣∣∣E2(reiθu)
∣∣∣ dr
r

+D1

∫ ∞
|u|ε1

∣∣∣E2(reiθu)
∣∣∣ dr
r
.

If r ≥M2, by (4.67) we can apply (4.66) and we have

|E/(u)| ≤C1H2M
α1
2

α1|u|α1
+
C1K2

|u|α1

∫ |u|ε1
M2

rα1−β2 dr

r
+

D1K2

β2|u|β2εβ21

.

According to Remark 4.3.15, we may assume that α1 > β2, then

|E/(u)| ≤C1H2M
α1
2

α1|u|α1
+

C1K2ε
α1−β2
1

(α1 − β2)|u|β2
+

D1K2

β2|u|β2εβ21

.

Consequently, condition (vi.b) is satis�ed with β = min(α1, β2).

2. Uniqueness follows from Remark 4.3.8.

3. We take f ∈ OM2(S(d, α)) ⊆ OM2/M1(S(d, α)). Since e1 / e2 is a kernel of M2/M1−
summability, by Proposition 4.1.12 we know that Ae1,e2(f) is holomorphic in a sectorial
region G(d, α+ω2−ω1). We �x z ∈ G(d, α+ω2−ω1), there exists φ with |d−φ| < πα/2,
such that if arg(u) = φ, then u/z ∈ Sω2−ω1 . We write η = arg(z/u) = arg(z) − φ and
we consider a path δω1(η) chosen as in Proposition 4.3.24, what is possible because e2 is
holomorphic in Sω2 and the path δω1(η) stays inside Sω2 . We have that

Ae1,e2(f)(z) =

∫ ∞(φ)

0
f(u)

(
−1

2πi

∫
δω1 (η)

E1

( z

wu

)
e2(1/w)

dw

w

)
du

u
.

We conclude, using Proposition 4.3.24, that this last expression equals T−e1 ◦ Te2(f)(z).
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4. We consider f(u) = (1 − u)−1 and we de�ne g(z) := ((T−e1 ◦ Te2)f)(z). By Lemma 4.3.7,
we know that Te2f is holomorphic in S(π, 2 + ω2). Moreover, Te2f ∼M2

∑∞
n=0m2(n)zn on

S(π, 2 + ω2), then it is continuous at the origin. We can apply the T−e1 transform to Te2f
and, by Proposition 4.1.14, we have that g is holomorphic in S = S(π, 2 +ω2−ω1). Then,
the function

e(1/z) :=
g(z)− g(ze2πi)

2πi
,

is holomorphic in Sω2−ω1 . Since f ∈ OM2(Sω2−ω1), by statement 3 we have Ae1,e2(f) =
(T−e1 ◦ Te2)(f) and, by Lemma 4.3.7, we deduce that

e(1/z) =
g(z)− g(ze2πi)

2πi
=
Ae1,e2(f)(z)−Ae1,e2(f)(ze2πi)

2πi
= e1 / e2(1/z).

�

Remark 4.3.26. Note that OM2(S) ⊆ OM2/M1(S). Consequently, Ae1,e2 extends the op-
erator T−1

e1 ◦ Te2 . Moreover, by the Proposition 4.3.25.3 and Proposition 4.1.14, for every
f ∈ OM2(S(d, γ)) we deduce Ae1,e2f ∈ OM1(S(d, γ + ω(M2)− ω(M1))) which justi�es the name
of the operator.

Remark 4.3.27. We know that M2/M1 is equivalent to a weight sequence admitting nonzero
proximate order (see Proposition 4.2.8). As indicated in Remark 4.3.22, a strong kernel of
M2/M1−summability, according to Remark 4.1.4, can be constructed but it may not behave
well for the asymptotic relations.

Remark 4.3.28. From the uniqueness of the convolution and the acceleration kernels we deduce
some basic properties:

e1 ∗ e2 = e2 ∗ e1, e1 ∗ (e1 / e2) = e2, e1 / (e1 ∗ e2) = e2, e2 / (e1 ∗ e2) = e1.

4.3.5 Multisummability through acceleration

In order to describe the procedure to recover the multisum of a formal power series presented
below, we need to analyze the behavior of asymptotics under the operator Ae1,e2 de�ned in
Proposition 4.3.25 and to extend what was known for the Gevrey case (see [7, Th. 55 and 56]).

Theorem 4.3.29. Let Mj , ej , mej , and Tej , T
−
ej , j = 1, 2, be as in Proposition 4.3.21. Assume

ω(M1) < ω(M2) < 2 . Let Ae1,e2 denote the Laplace-like integral operator associated with e1 /e2

(see Proposition 4.3.25) and M′ be any sequence of positive real numbers. Then,

(i) If f ∈ OM2/M1(S(d, α)) and f ∼M′ f̂ , then Ae1,e2f ∼M′·(M2/M1) Âe1,e2 f̂ in a sectorial region
G(d, α+ ω(M2/M1)), where

Âe1,e2

 ∞∑
p=0

apz
p

 :=

∞∑
p=0

apme2(p)

me1(p)
zp.

(ii) If, moreover, f ∈ OM2(S(d, α)), then Ae1,e2f ∈ OM1(S(d, α+ ω(M2/M1))) and

Te1(Ae1,e2f) = Te2f.

Proof. (i) By Proposition 4.3.25, e1 / e2 is a strong kernel of M2/M1− summability. Then, the
conclusion follows applying Theorem 4.1.18.
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(ii) By Proposition 4.3.25.3, we know that

Ae1,e2f = (T−e1 ◦ Te2)f.

By Proposition 4.1.12, Te2f is holomorphic in a sectorial region G(d, α + ω(M2)). Since
ω(M2) > ω(M1), by Proposition 4.1.14 (T−e1 ◦ Te2)f is holomorphic in the unbounded
sector S = S(d, α + ω(M2) − ω(M1)) and it is of M1−growth in S. We observe that
ω(M2/M1) = ω(M2)− ω(M1) (see Remark 4.2.10), then Ae1,e2f = (T−e1 ◦ Te2)f ∈ OM1(S).
We can apply Te1 to Ae1,e2f , and we get

Te1(Ae1,e2f) = Te1T
−
e1Te2f = Te2f.

�

In a natural way, we de�ne Â−e1,e2

(∑∞
p=0 apz

p
)

:=
∑∞

p=0(apme1(p)/me2(p))zp.With the tools

presented in the previous subsections and in the conditions of Proposition 4.3.25, we are ready
for giving a de�nition of multisummability in a multidirection with respect to the multikernel
(e1, e2).

De�nition 4.3.30. In the conditions of Proposition 4.3.25, we say that f̂ =
∑

p≥0 apz
p is

(e1, e2)−summable in the multidirection (d1, d2) with |d1 − d2| < π(ω(M2) − ω(M1))/2 and
d1, d2 ∈ R if:

(i) ĝ := T̂−e1 f̂ =
∑
p≥0

ap
me1(p)

zp is M2/M1−summable in direction d2.

(ii) The sum SM2/M1,d2 ĝ admits analytic continuation g in a sector S = S(d1, ε) for some ε > 0,
and g ∈ OM1(S).

In this situation we can de�ne the corresponding multisum by:

S(e1,e2),(d1,d2)f̂ := Te1 ◦Ae1,e2 ◦ Â−e1,e2 ◦ T̂
−
e1 f̂ .

The next result states the equivalence between (M1,M2)−multisummability and (e1, e2)−
multisummability in a multidirection, and provides a way to recover the multisum by means
of the formal and analytic acceleration operators previously introduced (see [7, Ch. 10] for the
Gevrey case).

Theorem 4.3.31. Given M1,M2 weight sequences admitting a nonzero proximate order with
ω(M1) < ω(M2) < 2, directions d1, d2 ∈ R with |d1 − d2| < π(ω(M2) − ω(M1))/2 and a formal
power series f̂ , the following are equivalent:

(i) f̂ ∈ C{z}(M1,M2),(d1,d2).

(ii) For every pair of strong kernels, e1 of M1−summability and e2 of M2−summability, f̂ is
(e1, e2)−multisummable in multidirection (d1, d2).

(iii) For some pair of strong kernels, e1 of M1−summability and e2 of M2−summability, f̂ is
(e1, e2)−multisummable in multidirection (d1, d2).

In case any of the previous holds, we deduce that the (M1,M2)−sum of f̂ on the multidirection
(d1, d2) is given by

S(M1,M2),(d1,d2)f̂ = Te1 ◦Ae1,e2 ◦ T̂−e2 f̂ .

for any pair of kernels e1, e2.
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Proof. For simplicity we write ω1 = ω(M1) and ω2 = ω(M2). We observe that ω(M2/M1) =
ω2 − ω1 (see Remark 4.2.10).

(i) =⇒ (ii) With the notation in De�nition 4.3.1, we write f̂ = f̂1 + f̂2. We put ĝ := T̂−e1 f̂

and we observe that Â−e1,e2 ĝ = Â−e1,e2 T̂
−
e1 f̂ = T̂−e2 f̂ . By Theorem 4.1.20, we know ĥ2 := T̂−e2 f̂2

converges in a disc, admits analytic continuation h2 in a sector S2 = S(d2, ε2) for some ε2 > 0,
and h2 ∈ OM2(S2). Since f̂1 ∈ C[[z]]M1 , we see that ĥ1 = T̂−e2 f̂1 de�nes an entire function h1

and, by Proposition 4.1.7, we have that h1 is of M2/M1−growth on S2.

Hence, ĥ := T̂−e2 f̂ converges in a disc, admits analytic continuation h in the sector S2 where
h is of M2/M1−growth there because OM2(S2) ⊆ OM2/M1(S2). By Theorem 4.1.20, this means
that the formal power series Âe1,e2 T̂

−
e2 f̂ = T̂−e1 f̂ = ĝ is M2/M1−summable in direction d2, so

De�nition 4.3.30.(i) is valid.

On the other hand, we observe that

SM2/M1,d2 ĝ = Ae1,e2Â
−
e1,e2 ĝ = Ae1,e2Â

−
e1,e2(ĝ1 + ĝ2)

where ĝ1 := T̂−e1 f̂1 and ĝ2 := T̂−e1 f̂2. Since f̂1 ∈ C{z}M1,d1 , we have that ĝ1 = T̂−e1 f̂1 converges
in a disc, admits analytic continuation g1 in the sector S1 = (d1, ε1) for some ε1 ∈ (0, ε2) and
g1 ∈ OM1(S1). Moreover, thanks to the convergence, Ae1,e2Â

−
e1,e2 ĝ1 = S ĝ1. Regarding ĝ2, we

observe that
Ae1,e2Â

−
e1,e2 ĝ2 = Ae1,e2Â

−
e1,e2 T̂

−
e1 f̂2 = Ae1,e2 T̂

−
e2 f̂2.

Since ĥ2 = T̂−e2 f̂2 converges in a disc and admits analytic continuation h2 ∈ OM2(S2), by The-
orem 4.3.29, we see that Ae1,e2h2 = T−e1Te2h2. Furthermore, T−e1Te2h2 is holomorphic in the
sector S(d2, ω2 − ω1 + ε2), which contains the sector S1 because |d1 − d2| < π(ω2 − ω1)/2,
and T−e1Te2h2 ∈ OM1(S1), so SM2/M1,d2 ĝ can be written as the sum of two functions Ae1,e2 ĥ2

and S ĝ1 whose analytic continuations in S1, T−e1Te2h2 and g1, have M1−growth there, that is,
De�nition 4.3.30.(ii) holds.
(ii) =⇒ (iii) Trivial.
(iii) =⇒ (i) By De�nition 4.3.30.(i), g = SM2/M1,d2 ĝ is holomorphic in a sectorial region G =
G(d2, α) with α > ω2−ω1 and g ∼M2/M1

ĝ in G. Let T be a subsector of G, bisected by direction
d2 and of opening πβ with β ∈ (ω2 − ω1, 2), such that T ⊆ G and let γ denote the positively
oriented boundary of T . Decomposing γ = γ1 + γ2 where γ1 is the circular part and γ2 is the
radial part, we de�ne

gj(z) :=
1

2πi

∫
γj

g(w)

w − z
dw, for all z ∈ T, j = 1, 2.

Since g is continuous at the origin, by Cauchy's Formula, we can write g = g1 + g2. By Leibniz's
rule we see that g1 is holomorphic at the origin. Hence, g2 = g−g1 ∼M2/M1

ĝ2 where ĝ2 := ĝ− ĝ1

and ĝ1 is the formal power series of g1 at the origin.

We de�ne f̂1 := T̂e1 ĝ1 and we immediately observe that f̂1 ∈ C[[z]]M1 . By (ii) in De�ni-
tion 4.3.30, g admits analytic continuation in a sector S1 = S(d1, ε) for some ε > 0, and this an-
alytic continuation has M1−growth there. Again by the Leibniz's rule, we can see that g2 is holo-
morphic in S(d2, β) and we can prove that tends to 0 as |z| → ∞ therein, so g2 ∈ OM1(S(d2, β)).
Since |d1 − d2| < π(ω2 − ω1)/2, we may assume, by suitably reducing ε, that S1 ⊆ S(d2, β).
Hence, g1 = g − g2 has an analytic continuation to S1 and has M1−growth there, this means by
Theorem 4.1.20 that f̂1 is M1−summable in direction d1.

Now, we consider f̂2 := T̂e1 ĝ2, we can apply Theorem 4.1.18.(i) to g2 and we deduce that
Te1g2 ∼M2 f̂2 on a sectorial region G(d2, β + ω1). Since β + ω1 > ω2, this means that f̂2
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is M2−summable in direction d2. Consequently, we can write f̂ = T̂e1 ĝ = f̂1 + f̂2, so f̂ ∈
C{z}(M1,M2),(d1,d2).

In case any of the previous equivalent conditions holds, we have seen that by Theorem 4.3.29,

f2 = Te2 T̂
−
e2 f̂2 = Te1Ae1,e2 T̂

−
e2 f̂2,

and, thanks to the convergence of T̂−e1 f̂1, we have shown that

f1 = Te1 T̂
−
e1 f̂1 = Te1Ae1,e2Â

−
e1,e2 T̂

−
e1 f̂1 = Te1Ae1,e2 T̂

−
e2 f̂1.

Hence, we conclude that S(M1,M2),(d1,d2)f̂ = S(e1,e2),(d1,d2)f̂ .
�

Remark 4.3.32. Classical multisummability theory can be also stated in a cohomological form.
In this general context, this approach is also possible and one can provide a version of the relative
Watson's Lemma (see [64, Th. 7.2.1] for the Gevrey case), which is the cohomological equivalent
of the Tauberian Theorem. Apart from the Watson's Lemma and the Borel-Ritt Theorem, a
Ramis-Sibuya-like result given by A. Lastra, S. Malek and J. Sanz in [61, Lemma 3] is necessary
for the proof (for a reference on the classical version of Ramis�Sibuya theorem, the reader may
consult to [39, Theorem XI-2-3]).

The main reason why the analytical point of view have been chosen is that an explicit
construction of the acceleration kernels and operators can be given with the corresponding explicit
expression for the multisums. This cohomological version and the results of this chapter are
included in our work [42].
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Chapter 5

A Phragmén-Lindelöf theorem via

proximate orders and the propagation

of asymptotics

In 1999, A. Fruchard and C. Zhang [29] proved that for a holomorphic function in a sector
S which is bounded in every proper subsector of S, the existence of an asymptotic expansion
following just one direction implies global (nonuniform) asymptotic expansion in the whole of S.
Moreover, a Gevrey version of this result is provided with a control on the type, namely:

Theorem A ([29], Theorem 11). Let f be a function analytic and bounded in an open sector
S = S(d, γ, r) of bisecting direction d ∈ R, opening πγ and radius r, with γ, r > 0. Suppose f has
asymptotic expansion f̂ =

∑∞
n=0 anz

n of Gevrey order 1/k (k > 0) and type (at least) R(θ0) > 0
in some direction θ0 with |θ0 − d| < πγ/2, i.e., for every δ > 0 there exists C = C(δ) > 0 such
that for every z ∈ S with arg(z) = θ0 and every nonnegative integer p we have that

|f(z)−
p−1∑
n=0

anz
n| ≤ C

(
1

R(θ0)
+ δ

)p
Γ(1 +

p

k
)|z|p. (5.1)

Then, in every direction θ of S, f admits f̂ as its asymptotic expansion of Gevrey order 1/k and
type R(θ) given as follows:

R(θ) =



R(θ0)
(

sin(k(θ−α))
sin(k(α′−α))

)1/k
if θ ∈ (α, α′],

R(θ0) if θ ∈ [α′, β′],

R(θ0)
(

sin(k(θ−β)
sin(k(β′−β))

)1/k
if θ ∈ [β′, β).

Here, α = d − πγ/2 and β = d + πγ/2 are the directions of the radial boundary of S, α′ =
min(θ0, α+ π

2k ) ∈ (α, θ0], and β′ = max(θ0, β − π
2k ) ∈ [θ0, β).

We warn the reader that there is no agreement about the terminology in this respect: while
most authors adhere, as we will do, to the convention that the asymptotics in (5.1) is Gevrey of
order 1/k, others (for example, Fruchard and Zhang or W. Balser in [6]) say this is of order k.
Moreover, the notion of type is not standard, compare to the de�nition by M. Canalis-Durand [22]
for whom the type in case one has (5.1) is (1/R+δ)k. It should also be mentioned that the factor
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Γ(1+p/k) could be changed into (p!)1/k without changing the asymptotics, but this would a�ect
the base of the geometric factor providing the type (by Stirling's formula, see [22, pp. 3-4]) in
any case. As it will be explained below, our interest in the type will be limited, and so we will
choose a simple approach in this respect, see De�nitions 5.1.1 and 5.1.2.

The proof of this result is based on the classical Phragmén-Lindelöf theorem and on the so-
called Borel-Ritt-Gevrey theorem. This last statement provides the surjectivity, as long as the
opening of the sector is at most π/k, of the Borel map sending a function with Gevrey asymptotic
expansion of order 1/k in a sector to its series of asymptotic expansion, whose coe�cients will
necessarily satisfy Gevrey-like estimates (see Section 3.3). Also, the injectivity of the Borel map
in sectors of opening greater than π/k (known as Watson's lemma) plays an important role
when specifying conditions that guarantee the uniqueness of a function with a prescribed Gevrey
asymptotic expansion of order 1/k in a direction (see Section 3.2).

The main aim of this chapter is to extend these results for other types of asymptotic ex-
pansions available in the literature. This possibility was already mentioned in [62], where A.
Lastra, J. Mozo-Fernández and J. Sanz generalized the results of Fruchard and Zhang for holo-
morphic functions of several variables in a polysector (cartesian product of sectors) admitting
strong asymptotic expansion in the sense of H. Majima [67, 68], considering also the Gevrey case
as introduced by Y. Haraoka in [34].

The asymptotics we will consider are those associated with a general ultraholomorphic class
of functions, as the ones studied in the previous chapters, de�ned by constraining the growth of
the sequence of their successive derivatives in a sector in terms of a sequence M = (Mp)p∈N0 of
positive numbers (N0 = {0, 1, 2, . . .} = {0} ∪ N), which will play the role of (Γ(1 + p/k))p∈N0 in
(5.1). The possibility of extending to this more general framework the results on the injectivity
or surjectivity of the Borel map, gathered in Chapter 3, and a Phragmén-Lindelöf-like state-
ment, obtained below applying the relation between weight sequences, proximate orders and the
property of regular variation established in Chapter 2, are the keys to our success.

As in the Gevrey case, the study of the type as the direction moves in the sector is possible,
although some information is lost in general (see Remark 5.1.7). This is due to the fact that the
classical exponential kernel appearing in the �nite Laplace transform providing the solution of
the Borel-Ritt-Gevrey theorem in the Gevrey case is now replaced by eV (z) (see Remark 4.1.4)
whose behavior at in�nity is only given by some asymptotic relations, which is not enough for
an accurate handling of the resulting type.

This chapter, whose contents may be found in our work [46], is organized as follows. In Sec-
tion 5.1, several lemmas of a Phragmén-Lindelöf �avor are obtained. A paradigm is Lemma 5.1.6,
where exponential decrease is extended from just one direction to a whole small (in the sense of
its opening) sector adjacent to it. Section 5.2 contains several versions of Watson's lemma on the
uniqueness of a function admitting a given asymptotic expansion in a direction, and in the �nal
Section 5.3 we characterize the functions with an asymptotic expansion in a sectorial region as
those asymptotically bounded and admitting such expansion in just one direction in the region.

5.1 M−�atness extension

As in the previous chapters M = (Mp)p∈N0 always stands for a sequence of positive real numbers,
and we always assume that M0 = 1. In most of the statements, M will be also assumed to be a
weight sequence, that is, (lc) with limp→∞mp =∞. The reader is referred to Chapters 1 and 2
for the information involving sequences, proximate orders and regular and O-regular variation
and to Chapter 3 for the notation and results concerning the ultraholomorphic classes of functions
de�ned in sectors and sectorial regions.
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We are going to consider two de�nitions useful for our purposes regarding the asymptotic
expansions. First, we recall the notion of type for the functions in ÃuM(S) previously considered.

De�nition 5.1.1. Given a sector S, we say f ∈ H(S) admits f̂ =
∑∞

n=0 anz
n ∈ C[[z]] as its

uniform M−asymptotic expansion in S (of type 1/A for some A > 0) if there exists C > 0 such
that for every p ∈ N0 one has∣∣∣f(z)−

p−1∑
n=0

anz
n
∣∣∣ ≤ CApMp|z|p, z ∈ S.

We will write f ∼uM f̂ in S, and ÃuM(S) stands for the space of functions admitting uniform
M−asymptotic expansion in S (of some type).

Secondly, we need to settle on the concept of asymptotic expansion in a direction.

De�nition 5.1.2. Let f be a function de�ned in a sectorial region G = G(d, γ), and θ be a
direction in G, i.e. |θ − d| < πγ/2. We say f has M−asymptotic expansion f̂ =

∑∞
n=0 anz

n in

direction θ if there exist rθ, Cθ, Aθ > 0 such that the segment (0, rθe
iθ] is contained in G, and for

every z ∈ (0, rθe
iθ] and every p ∈ N0 one has∣∣∣f(z)−

p−1∑
n=0

anz
n
∣∣∣ ≤ CθApθMp|z|p.

In this case, we say the type is 1/Aθ. Of course, the de�nition makes sense as long as the function
is de�ned only in direction θ near the origin, i.e. in a segment (0, reiθ] for suitable r > 0.

Remark 5.1.3. In the conditions of De�nition 5.1.2, if f̂ is the null series we say that f is
M−�at in direction θ. As in Proposition 3.1.9, this can be characterized in terms of ωM and it
amounts to the existence of rθ, Cθ, Aθ > 0 such that the segment (0, rθe

iθ] is contained in G, and
for every z ∈ (0, rθe

iθ] one has
|f(z)| ≤ Cθe−ωM(1/(Aθ|z|)).

Suppose moreover that f is bounded throughout the (bounded or not) sectorial region G. Since
the function e−ωM(t) is nonincreasing in [0,∞), it is obvious that f is M−�at in direction θ if
and only if there exist C̃θ > 0 and the same constant Aθ > 0 as before, such that for every z ∈ G
with arg(z) = θ one has

|f(z)| ≤ C̃θe−ωM(1/(Aθ|z|)). (5.2)

This fact will be used later on.

In getting the Phragmén-Lindelöf-like results contained in this section, similarly to the
M−summability theory presented in Section 4.1, a fundamental role is played by the functions
V ∈ MF (γ, ρ(t)) for a given γ > 0 and a given nonzero proximate order ρ(t). Using the char-
acterizations established in Section 2.2, we know that the possibility of associating a function V
with a weight sequence M in a suitable way (see Remark 5.1.4) depends on the regularity of the
function dM(t) = log(ωM(t))/ log(t) de�ned for large t, where ωM(t) is the associated function
introduced in Section 1.1.3. If dM(t) is a nonzero proximate order or, less restrictive, if it can
be approximated by one in the sense of De�nition 2.2.1, that is, M admits a nonzero proximate
order, this possibility is available.

Remark 5.1.4. If M admits a nonzero proximate order ρ(t), for every γ > 0, thanks to (VI) in
Theorem 1.2.16, we know that there exist V ∈MF (γ, ρ(t)) and positive constants A,B, t0 such
that

AV (t) ≤ tdM(t) = ωM(t) ≤ BV (t), t > t0. (5.3)
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It is worth recalling that weight sequences admitting a proximate order are strongly regular
and all the Matuszewska indices and orders are positive real numbers and coincide (See Re-
marks 2.2.7 and 2.2.18). Then it is a matter of convention how we name this value, γ(M), ω(M),
β(m), µ(m), ρ(m) or α(m). Since we mainly deal with quasianalyticity results, the notation
ω(M) is the choice. Furthermore, from this point on we will assume that

M is a given weight sequence admitting a nonzero proximate order.

In Subsection 2.2.4, it has been shown that this is not a strong assumption for strongly regular
sequences, since it is satis�ed by every such sequence appearing in applications. However, as it
has also been proved, there are strongly regular sequences which do not satisfy it.

We are ready for proving an important lemma about the extension of M−�atness from
a boundary direction into a whole small sector for functions bounded there and admitting a
continuous extension to the boundary (considered in R, i.e., disregarding the origin). First, we
recall a classical version of Phragmén-Lindelöf theorem needed in the proof.

Theorem 5.1.5 (Phragmén-Lindelöf theorem, [100], p. 177). Let f be a function holomorphic
in a sector S = S(d, γ, ρ), continuous and bounded by C in the boundary ∂S. Suppose there
exist K,L > 0 and ω > γ such that

|f(z)| < KeL|z|
−1/ω

for every z ∈ S. Then f is bounded by C in the sector S.

Now we obtain an analogue of Phragmén-Lindelöf theorem for M−�at functions in a sector.

Lemma 5.1.6. Let 0 < γ < ω(M) be given. Suppose f is a bounded holomorphic function in
Sγ that admits a continuous extension to the boundary ∂Sγ , and that is M−�at in direction
d = πγ/2. Then for every 0 < δ < πγ, there exist constants k1(δ), k2(δ) > 0 with

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), if arg(z) ∈ [−πγ/2 + δ, πγ/2].

Proof. For simplicity, we denote ω := ω(M). We �x 0 < δ < πγ. Since γ < ω, we have that

π

2
< β = β(δ) :=

1

ω
(
π

2
ω +

δ

2
) < π, −π

2
+

δ

2ω
< α = α(δ) :=

1

ω
(
π

2
ω − πγ +

δ

2
) <

π

2
.

Then we take ε, η > 0 (depending on δ) such that

cos(β) + ε ≤ −η < 0.

Since M admits a nonzero proximate order ρ(t), by Remark 5.1.4 there exist a function V ∈
MF (2ω, ρ(t)) and positive constants A,B, t0 such that (5.3) holds. According to Remark 5.1.3,
and speci�cally to (5.2), there exist c1, c2 > 0 with

|f(z)| ≤ c1e
−ωM(1/(c2|z|)), if arg(z) = πγ/2. (5.4)

Choose d2 > 0 such that c−1/ω
2 > d2, and take a ∈ R with

arg(a) =
ωπ

2
− πγ

2
+
δ

2
, 0 < |a| <

(
Ad2

2

)ω
.

We see that ε < 1, so we have that

cos

(
arg(a)− arg(z)

ω

)
+ ε ≤ 2 (5.5)
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for every z ∈ Sγ (where the closure is taken in R, and so the vertex of the sector is not under
consideration).

We observe that arg(a/z) ∈ [ωα, ωβ] ⊆ (−πω/2, πω) for every z ∈ Sγ . Taking into account
the comments at the beginning of Subsection 2.2.4 and using property (I) of the functions in
MF (2ω, ρ(t)), we see that

lim
|z|→0

V (a/z)

|a|1/ωV (1/|z|)
= ei(arg(a)−arg(z))/ω

uniformly for arg(z) ∈ [−πγ/2, πγ/2]. Consequently,

lim
|z|→0

Re

(
V (a/z)

|a|1/ωV (1/|z|)

)
= cos((arg(a)− arg(z))/ω)

uniformly for arg(z) ∈ [−πγ/2, πγ/2], and we deduce that

|a|1/ωV
(

1

|z|

)
(cos ((arg(a)− arg(z))/ω)− ε)) ≤ Re

(
V
(a
z

))
, (5.6)

|a|1/ωV
(

1

|z|

)
(cos ((arg(a)− arg(z))/ω) + ε) ≥ Re

(
V
(a
z

))
, (5.7)

for |z| < s1 small enough and arg(z) ∈ [−πγ/2, πγ/2]. For convenience, we choose s1 < 1/(t0c2).
Consider the function

F (z) := f(z)eV (a/z).

The function V (a/z) is holomorphic in S(arg(a), 2ω) ⊃ Sγ , so F (z) is holomorphic in Sγ and
continuous up to ∂Sγ . Our aim is to apply the Phragmén-Lindelöf theorem 5.1.5 to this function
in a suitable bounded sector S(0, γ, s3).

If arg(z) = −πγ/2, we have that arg(a)− arg(z) = βω. Then, since f is bounded in Sγ by a
constant K > 0, by using (5.7) we see that for |z| < s1,

|F (z)| ≤ KeRe(V (a/z)) ≤ Ke(cos(β)+ε)|a|1/ωV (1/|z|) ≤ Ke−η|a|1/ωV (1/|z|).

Now, observe that V (1/|z|) > 0 (property (III)), so we deduce that |F (z)| ≤ K for every z with
|z| < s1 and arg(z) = −πγ/2.

If arg(z) = πγ/2, we have that arg(a)−arg(z) = αω. Then, from (5.4), (5.3), (5.5) and (5.7)
we see that, if |z| < s1,

|F (z)| ≤ c1e
−ωM(1/(c2|z|))e(cos(α)+ε)|a|1/ωV (1/|z|) ≤ c1e

−AV (1/(c2|z|))+2|a|1/ωV (1/|z|).

Using property (I) of the functions in MF (2ω, ρ(t)) we have that

lim
|z|→0

V (1/(c2|z|))
V (1/|z|)

= c
−1/ω
2 .

Then, for |z| < s2 ≤ s1 small enough we have that V (1/(c2|z|)) ≥ d2V (1/|z|), and we conclude
that

|F (z)| ≤ c1e
(−Ad2+2|a|1/ω)V (1/|z|), for |z| < s2, arg(z) = πγ/2.

Since |a| has been chosen small enough in order that −Ad2 + 2|a|1/ω < 0, we deduce that
|F (z)| ≤ c1 for every |z| < s2 and arg(z) = πγ/2.
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For z ∈ Sγ with |z| < s1, by using (5.5) and (5.7) we have that

Re
(
V
(a
z

))
≤ 2|a|1/ωV

(
1

|z|

)
.

As γ < ω, there exists µ > 0 such that γ < µ < ω. By property (VI), we know that
log(V (t))/ log(t) is a proximate order equivalent to ρ(t), hence tending to 1/ω at in�nity. Then,
we can apply Remark 1.2.8: there exists 0 < s3 ≤ s2 small enough such that for every z ∈ Sγ ,
|z| ≤ s3,

Re
(
V
(a
z

))
≤ 2|a|1/ω

(
1

|z|

)1/µ

.

Since f(z) is bounded in Sγ , we have that

|F (z)| ≤ K exp(2|a|1/ω|z|−1/µ), for all z ∈ Sγ , with |z| ≤ s3,

and, in particular,

|F (z)| ≤ K exp(2|a|1/ωs−1/µ
3 ), for every z ∈ Sγ , with |z| = s3.

By applying Phragmén-Lindelöf theorem 5.1.5 to the function F (z) in S(0, γ, s3), we obtain that

|F (z)| ≤ K0 := max(K, c1,K exp(2|a|1/ωs−1/µ
3 ))

for |z| ≤ s3 and arg(z) ∈ [−πγ/2, πγ/2].
Consequently, using (5.6), if |z| ≤ s3 and arg(z) ∈ [−πγ/2, πγ/2] we have that

|f(z)| ≤ K0e
Re(−V (a/z)) ≤ K0e

−(cos((arg(a)−arg(z))/ω)−ε)|a|1/ωV (1/|z|).

Assuming that arg(z) ∈ [−πγ/2 + δ, πγ/2], we deduce that

cos((arg(a)− arg(z))/ω) ≥ cos

(
π

2
− δ

2ω

)
= − cos(β) ≥ η + ε > 0.

Then, for r2 := η|a|1/ω > 0 we �nd that for every z with arg(z) ∈ [−πγ/2 + δ, πγ/2] and |z| < s3

we have that

|f(z)| ≤ K0e
−r2V (1/|z|).

Choose k2 > 0 such that (1/k2)1/ω < r2/B. Property (I) of the functions inMF (2ω, ρ(t)) implies
that, for z with |z| < s4 < min(s3, 1/(t0k2)), small enough, and arg(z) ∈ [−πγ/2 + δ, πγ/2], we
have

|f(z)| ≤ K0e
−BV (1/(k2|z|)) ≤ K0e

−ωM(1/(k2|z|)).

We take k1 := K0e
ωM(1/(k2s4)) ≥ K0. Then, since ωM(t) is nondecreasing, if |z| ≥ s4 and

arg(z) ∈ [−πγ/2 + δ, πγ/2] we have

|f(z)| ≤ K ≤ K0 = k1e
−ωM(1/(k2s4)) ≤ k1e

−ωM(1/(k2|z|)),

which concludes the proof. �
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Remark 5.1.7. Some comments are in order concerning the statement or proof of the previous
result.

By a simple rotation, one may easily check that the validity of Lemma 5.1.6 and of the
subsequent results in this chapter does not depend on the bisecting direction of the sector where
the function f is de�ned. Moreover, one could slightly weaken the hypotheses by considering a
function f holomorphic in Sγ that admits a continuous extension to the direction d = πγ/2, in
which it is M−�at, and that is bounded in every (half-open) sector

{z ∈ R : arg(z) ∈ (−πγ
2

+ δ,
πγ

2
]}, δ > 0.

Indeed, we may give a more precise information about the type. Following the previous proof,
one notes that

k2 = k2(δ) >
(B
r2

)ω
=
( B

η|a|1/ω
)ω
≥
( 2B

Ad2 cos(π2 −
δ

2ω )

)ω
≥
(2B

A

)ω( 1

sin( δ
2ω )

)ω
c2,

and k2 may be made arbitrarily close to the last expression at the price of enlarging the constant
k1 = k1(δ). So, the original type c2 is basically a�ected by a precise factor when moving to a
direction θ = −πγ/2+δ with 0 < δ < πγ. It is obvious that k2(δ) explodes at least like 1/ sinω(δ)
as δ → 0. This means that the type of the null asymptotic expansion tends to 0 as the direction
in the sector approaches the boundary d = −πγ/2, in the same way as in the Gevrey case (see
Theorem A).

Moreover, the constant 2 in δ/(2ω) could be any number greater than 1 and, by suitably
choosing the value ε in the proof, the constant 2B/A appearing before can be made as close to
B/A as desired, so the only indeterminacy in the previous factor is caused by the values A,B
involved in (5.3). In the common situation that the function dM(t) is indeed a proximate order,
the constants A and B can also be taken as near to 1 as wanted, what makes the expression even
more explicit.

Finally, note that, by using Theorem 2.2.17 one may change M by an equivalent sequence L
such that dL is a proximate order. However, this fact does not improve the proof, since again
Theorem 1.2.16 will be applied to obtain a function V ∈ MF (2ω, dL(t)) and we will work with
the same type of estimate that we have in (5.3).

The following lemma shows that imposing γ < ω(M) is only a technical condition in order
to apply Phragmén-Lindelöf theorem 5.1.5.

Lemma 5.1.8. Let γ > 0 be given. Suppose f is a bounded holomorphic function in Sγ that
admits a continuous extension to the boundary ∂Sγ , and that is M−�at in direction d = πγ/2.
Then for every 0 < δ < πγ, there exist constants k1(δ), k2(δ) > 0 with

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), if arg(z) ∈ [−πγ/2 + δ, πγ/2].

Proof. For simplicity we write ω = ω(M), and put θ0 := πγ/2. We can obviously choose a
suitable natural number m and directions θj ∈ (−πγ/2, πγ/2), j = 1, 2, . . . ,m, such that

θj := θj−1 − πω/2, θj ≥ −πγ/2 + δ, j = 1, . . . ,m− 1,

θm ∈ (−πγ/2,−πγ/2 + δ), θm−1 − θm < πω/2.

We �x 0 < ε < πω/4. Since θ0 − θ1 + ε < 3πω/4 < πω, we can apply Lemma 5.1.6 to the
function f restricted to the sector S1 = {z ∈ R : arg(z) ∈ [θ1 − ε, θ0]}. We deduce that there
exist constants k1,1, k2,1 > 0 with

|f(z)| ≤ k1,1e
−ωM(1/(k2,1|z|)), if arg(z) ∈ [θ1, θ0].
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By recursively reasoning in the sectors

Sj = {z ∈ R : arg(z) ∈ [θj − ε, θj−1]}, j = 2, 3, . . . ,m− 1,

and �nally in the sector
Sm = {z ∈ R : arg(z) ∈ [θm, θm−1]},

we obtain constants k1,j , k2,j > 0 such that

|f(z)| ≤ k1,je
−ωM(1/(k2,j |z|)), if arg(z) ∈ [θj , θj−1].

Then for k1 := maxj k1,j and k2 := maxj k2,j we have that

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), if arg(z) ∈ [−πγ/2 + δ, πγ/2].

�

In the next result we impose M−�atness in both boundary directions of the sector, and
conclude uniform M−�atness throughout the sector.

Lemma 5.1.9. Let γ > 0 be given. Suppose f is a bounded holomorphic function in Sγ that
admits a continuous extension to the boundary ∂Sγ , and that is M−�at in directions d = πγ/2
and −d. Then there exist constants k1, k2 > 0 with

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), if arg(z) ∈ [−πγ/2, πγ/2]. (5.8)

Proof. By Lemma 5.1.8, there exist constants k1,1, k2,1, k1,2, k2,2 > 0 such that

|f(z)| ≤ k1,1e
−ωM(1/(k2,1|z|)), if arg(z) ∈ [0, πγ/2]

and
|f(z)| ≤ k1,2e

−ωM(1/(k2,2|z|)), if arg(z) ∈ [−πγ/2, 0].

We conclude taking k1 := max{k1,1, k1,2} and k2 := max{k2,1, k2,2}. �

Remark 5.1.10. By carefully inspecting its proof, we see that Lemma 5.1.6 holds true in any
bounded sector S(d, γ, r) and, consequently, Lemma 5.1.8 and Lemma 5.1.9 are also valid in
bounded sectors.

We show next that, as Remark 5.1.10 suggests, it is also possible to work in sectorial regions.

Proposition 5.1.11. Let γ > 0 be given. Suppose f is holomorphic in a sectorial region Gγ ,
bounded in every T � G, and M−�at in a direction θ in Gγ . Then, for every T � Gγ there
exist constants k1(T ), k2(T ) > 0 with

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), for all z ∈ T. (5.9)

Proof. By suitably enlarging the opening of the subsector, we can assume that θ is one of the
directions in T . There exist R, c1, c2 > 0 with

|f(z)| ≤ c1e
−ωM(1/(c2|z|)), if arg(z) = θ and |z| ≤ R. (5.10)

If θ1 < θ2 are the (radial) boundary directions of T , we consider δ > 0 such that −πγ/2 < θ1− δ
and θ2 + δ < πγ/2. There exists 0 < r < R such that the sectors S1 = {z ∈ R : |z| ≤ r, arg(z) ∈
[θ1 − δ, θ]} and S2 = {z ∈ R : |z| ≤ r, arg(z) ∈ [θ, θ2 + δ]} are contained in Gγ . Taking into
account (5.10) and Remark 5.1.10, we can apply Lemma 5.1.8 to the restriction of f to each
sector and we conclude that f is M−�at uniformly for arg(z) ∈ [θ1, θ2] and |z| ≤ r. Since ωM(t)
is nondecreasing, by suitably enlarging the constant k1 we obtain (5.9). �
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Example 5.1.12. Boundedness of the considered function is necessary in any of the previous
results in this section. The next example shows that having an M−asymptotic expansion in a
direction d does not guarantee its validity in any sector containing that direction. Our inspiration
comes from a similar example in W. Wasow's book [104, p. 38], which concerned the function
f(z) = sin(e1/z)e−1/z.

By Remark 5.1.4, for every γ > 0 there exists V ∈MF (γ, ρ(t)) such that we have (5.3). We
consider the function

f(z) = sin(eV (1/z))e−V (1/z), z ∈ Sγ .

Since sin(eV (1/z)) is bounded for real z > 0, we see that f is M−�at in direction 0. If we compute
the derivative of f in Sγ we see that

f ′(z) =
V ′(1/z)

z2

(
sin(eV (1/z))e−V (1/z) − cos(eV (1/z))

)
=
V ′(1/z)

zV (1/z)

V (1/z)

z

(
sin(eV (1/z))e−V (1/z) − cos(eV (1/z))

)
.

Since for z > 0 we have limz→0(1/z)V ′(1/z)/V (1/z) = 1/ω(M) (by property (VI), see [65,
Prop. 1.2]) and limz→0 V (1/z)/z = ∞ (property (III)), we deduce that limz→0 f

′(z) does not
exist. By Proposition 3.1.5.(ii), f can not have M−asymptotic expansion in any sectorial region
containing direction 0. Consequently, f is not M−�at in any such sectorial region. We note
that, in particular, the example of Wasow corresponds to the Gevrey case of order 1, i.e., to the
sequence M = (p!)p∈N0 .

Remark 5.1.13. At this point it is worth saying a few words about a situation which, although
not usually considered in the theory of asymptotic expansions, plays an important role in the
general framework of ultradi�erentiable or ultraholomorphic classes, namely that of the so-called
Carleman classes of Beurling type. We will not give full details here, but let us say that a function
f , holomorphic in a sectorial region G, has Beurling M−asymptotic expansion f̂ =

∑∞
n=0 anz

n

in a direction θ in G if there exists rθ > 0 such that the segment (0, rθe
iθ] is contained in G, and

for every Aθ > 0 (small) there exists Cθ > 0 (large) such that for every z ∈ (0, rθe
iθ] and every

p ∈ N0 one has ∣∣∣f(z)−
p−1∑
n=0

anz
n
∣∣∣ ≤ CθApθMp|z|p.

Following the idea in Remark 5.1.3, one can prove that f , bounded throughout G, is Beurling
M−�at in direction θ if and only if for every c2 > 0 (small) there exist c1 > 0 (large) such that
for every z ∈ G with arg(z) = θ one has

|f(z)| ≤ c1e
−ωM(1/(c2|z|)). (5.11)

Then, the following analogue of Lemma 5.1.6 is valid: Given 0 < γ < ω(M), suppose f is a
bounded holomorphic function in Sγ that admits a continuous extension to the boundary ∂Sγ ,
and that is Beurling M−�at in direction d = πγ/2. Then for every 0 < δ < πγ and every k2 > 0,
there exists a constant k1 = k1(δ, k2) > 0 such that

|f(z)| ≤ k1e
ωM(1/(k2|z|)), if arg(z) ∈ [−πγ/2 + δ, πγ/2].

The proof of this statement follows the same lines as that of the original lemma, by carefully
tracing the dependence of the di�erent constants involved in the estimates. Indeed, the constants
A,B, α, β, ε, η are determined in the same way. Choose r2 > 0 such that r2/B > k

−1/ω
2 , and
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a point a with the speci�ed argument and modulus (r2/η)ω. Take a positive d2 such that
d2 > 2|a|1/ω/A, and then c2 > 0 such that c2 < d−ω2 . By de�nition of Beurling M−�atness in
direction γπ/2, there exists c1 > 0 such that (5.11) holds for arg(z) = γπ/2. Then, the desired
estimates hold for the same k1 > 0 obtained in the proof of that lemma.

Note that also Lemma 5.1.8, Lemma 5.1.9 and Proposition 5.1.11 will be valid in this Beurling
setting.

5.2 Watson's Lemmas

Given a weight sequence M admitting a nonzero proximate order, we will now obtain several
quasianalyticity results by combining those in Subsections 3.2.1 and 3.2.2 with the results on the
propagation of null asymptotics in Section 5.1.

Remark 5.2.1. In a similar way as in the proof of Proposition 3.1.9 (see [97]), it is easy to
deduce that, given a bounded holomorphic function f in a sector Sγ that admits a continuous
extension to the boundary ∂Sγ , the fact that f ∈ ÃuM(Sγ) and f is M−�at amounts to the
existence of constants k1, k2 > 0 such that (5.8) holds.

In the �rst version, an immediate consequence of previous information, we assume the func-
tion is �at at both boundary directions.

Lemma 5.2.2. Let γ > 0 be given, such that either γ > ω(M), or γ = ω(M) and the series∑∞
p=0(mp)

−1/ω(M) diverges. Suppose f is a bounded holomorphic function in Sγ that admits a
continuous extension to the boundary ∂Sγ , and that is M−�at in directions d = πγ/2 and −d.
Then f ≡ 0.

Proof. By Lemma 5.1.9, we know that (5.8) holds for suitable k1, k2 > 0. The previous remark
implies that f ∈ ÃuM(Sγ) and f ∼M 0̂, and by Theorem 3.2.2 we deduce that f ≡ 0. �

In the second, improved version we assume only that the function is �at in one of the boundary
directions.

Lemma 5.2.3. Assume the same hypotheses as in Lemma 5.2.2, except that now f is M−�at
only in direction d = πγ/2. Then f ≡ 0.

Proof. For simplicity we write ω = ω(M). The argument is simple if γ > ω: We �x ω < µ < γ
and δ = (γ−µ)π > 0. By Lemma 5.1.8 we know that there exist constants k1(δ), k2(δ) > 0 with

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), if arg(z) ∈ [πγ/2− µπ, πγ/2].

Then, Remark 5.2.1 implies that f ∈ ÃuM(S), with S = {z ∈ R : arg(z) ∈ (πγ/2 − µπ, πγ/2)}
and f ∼M 0̂. Since µ > ω, we can apply Theorem 3.2.2 to the function f in S, using a suitable
rotation, and we deduce that f ≡ 0.

If γ = ω we �x δ = πω/8 > 0. Lemma 5.1.8 ensures there exist k1(δ), k2(δ) > 0 with

|f(z)| ≤ k1e
−ωM(1/(k2|z|)), if arg(z) ∈ [−3πω/8, πω/2]. (5.12)

As in the proof of Lemma 5.1.6, since M admits a nonzero proximate order ρ(t), there exist
V ∈ MF (2ω, ρ(t)) and positive constants A,B, t0 such that we have (5.3). Choose q2 > 0 such

that k−1/ω
2 > q2, and take a ∈ R such that

arg(a) =
ωπ

4
, 0 < |a| <

(
Aq2

2

)ω
.
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We observe that for every z with arg(z) ∈ [−πω/2, πω/2] one has

arg(a/z) ∈ [−πω/4, 3πω/4] ⊆ (−πω/2, πω).

Using property (I) of the functions in MF (2ω, ρ(t)), we see that

lim
|z|→0

Re

(
V (a/z)

|a|1/ωV (1/|z|)

)
= cos((arg(a)− arg(z))/ω)

uniformly for arg(z) ∈ [−πω/2, πω/2]. We �x 0 < ε < 1 such that

cos(3π/4) + ε ≤ cos(5π/8) + ε ≤ −1/3 < 0.

We deduce that we have (5.6) and (5.7) for arg(z) ∈ [−πω/2, πω/2] and |z| < s1, small enough
and subject to the restriction s1 < 1/(t0k2). Consider the function

F (z) := f(z)eV (a/z), for arg(z) ∈ [−πω/2, πω/2].

Then we see that F (z) is holomorphic in Sω and continuous in Sω.
If arg(z) ∈ [−πω/2,−3πω/8], we have that arg(a/z) ∈ [5πω/8, 3πω/4]. Then, since f(z) is

bounded by K > 0 in Sω and using (5.7) for |z| < s1, one has

|F (z)| ≤ KeRe(V (a/z)) ≤ Ke(cos(5π/8)+ε)|a|1/ωV (1/|z|) ≤ Ke−|a|1/ωV (1/|z|)/3.

Using property (I) of the functions in MF (2ω, ρ(t)) we see that

lim
|z|→0

V ((|a|/(3B)ω)(1/2|z|))
(|a|1/ω/(3B))V (1/|z|)

= (1/2)1/ω < 1.

We de�ne b2 := (|a|/(3B)ω)/2. Then for |z| < s2 < min(s1, b2/t0), small enough, we have that

|F (z)| ≤ Ke−BV (b2/|z|), if |z| < s2, arg(z) ∈ [−πω/2,−3πω/8].

Using (5.3), we see that

|F (z)| ≤ Ke−ωM(b2/|z|), if |z| < s2, arg(z) ∈ [−πω/2,−3πω/8]. (5.13)

We de�ne C = max{Re(V (a/z)) : |z| ≥ s2, −πω/2 ≤ arg(z) ≤ −3πω/8} and we take

c1 := K max{exp(C), 1} <∞.

Then, since ωM(t) ≥ 0 we have that

|F (z)| ≤ c1 ≤ c1e
ωM(b2/|z|) if |z| ≥ s2, arg(z) ∈ [−πω/2,−3πω/8]. (5.14)

Since c1 ≥ K, from (5.13) and (5.14) we deduce that F is M−�at uniformly for arg(z) ∈
[−πω/2,−3πω/8].

If arg(z) ∈ [−3πω/8, πω/2], we have that arg(a/z) ∈ [−πω/4, 5πω/8]. Using (5.3), (5.7) and
(5.12), for |z| < s1 we see that

|F (z)| ≤ k1e
−ωM(1/(k2|z|))e(cos(arg(a/z)/ω)+ε)|a|1/ωV (1/|z|) ≤ k1e

−AV (1/k2|z|)+2|a|1/ωV (1/|z|).

Now, property (I) of the functions in MF (2ω, ρ(t)) lets us write

lim
|z|→0

V (1/k2|z|)
V (1/|z|)

= k
−1/ω
2 ,
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so, for |z| < s3 ≤ s2 small enough, we have that V (1/k2|z|) ≥ q2V (1/|z|). We conclude that

|F (z)| ≤ k1e
(−Aq2+2|a|1/ω)V (1/|z|), if |z| < s3, arg(z) ∈ [−3πω/8, πω/2].

Since |a| has been chosen small enough in order that −Aq2 + 2|a|1/ω < 0, proceeding as before,
we �nd that F (z) is M−�at uniformly for arg(z) ∈ [−3πω/8, πω/2].

Consequently, F veri�es estimates of the type (5.8) in Sω and, by Remark 5.2.1, F ∈ ÃuM(Sω)
and F ∼M 0̂. Since

∑∞
p=0(mp)

−1/ω(M) is assumed to be divergent, we can apply Theorem 3.2.2
to the function F (z) in Sω, and deduce that F (z) ≡ 0 and f ≡ 0. �

In the proof of Lemma 5.2.3 we need to distinguish two situations: in case γ > ω(M) we
have been given an M−�at function f in a wide enough sector (what entails uniqueness), while
in case γ = ω(M) an M−�at function F in a sector of opening πω(M) has to be constructed in
order to apply Theorem 3.2.2, what is possible thanks to the additional assumption on the series∑∞

p=0(mp)
−1/ω(M).

It is interesting to note that in the Gevrey case the aforementioned series diverges, so the
previous result extends Lemma 5 in [29]. Indeed, in that instance the very divergence of the series
allows one to treat the case γ > ω(M) by restricting the function to a sector with γ = ω(M), an
argument which is not available in our general situation.

Remark 5.2.4. In most situations we can obtain converse statements to Lemma 5.2.2 and
Lemma 5.2.3. Observe that if γ < ω(M) and we take γ < µ < ω(M), by Theorem 3.2.2 we know
there exists a nontrivial �at function f ∈ ÃuM(Sµ). Then (the restriction of) f is a bounded
holomorphic function in Sγ that admits a continuous extension to the boundary ∂Sγ , and that
is M−�at in directions d = πγ/2 and −d.

Analogously, if γ = ω and
∑∞

p=0((p+ 1)mp)
−1/(ω(M)+1) converges, we deduce that the series∑∞

p=0(mp)
−1/ω(M) converges too. Hence, by Theorem 3.2.4 there exists a nontrivial �at function

f ∈ AM(Sω(M)). Since the derivatives of f are Lipschitzian, one may continuously extend f to
the boundary of Sω(M) preserving the estimates, and again obtain that f is M−�at in directions
πω(M)/2 and −πω(M)/2.

However, the converse of Lemma 5.2.2 and Lemma 5.2.3 fails in case γ = ω(M), the series∑∞
p=0(mp)

−1/ω(M) converges and
∑∞

p=0((p+ 1)mp)
−1/(ω(M)+1) diverges (for instance, this is the

situation for the sequence M1,3/2, see Example 1.1.4(i)). Although nontrivial �at functions in

ÃuM(Sω(M)) exist in this situation, there is no warranty that they can be continuously extended
to the boundary of the sector.

Finally, we provide a version of Watson's Lemma for functions in sectorial regions which are
M−�at in a direction.

Proposition 5.2.5. Let γ > 0 be given with γ > ω(M). Suppose f is holomorphic in a sectorial
region Gγ , bounded in every T � G, and M−�at in a direction θ in Gγ . Then f ≡ 0.

Proof. Using Proposition 5.1.11 we know that for every T � Gγ we have (5.9) for suitable
k1, k2 > 0 depending on T and for every z ∈ T . Then, Proposition 3.1.9 implies that f ∈ ÃM(Gγ)
and f ∼M 0̂, and Theorem 3.2.15 leads to the conclusion. �

Remark 5.2.6. By Theorem 3.2.15, if γ ≤ ω(M) we can �nd a nontrivial function f ∈ ÃM(Gγ)
such that f ∼M 0̂, so it is bounded on every proper bounded subsector T of Gγ and M−�at in
any direction θ0 ∈ (−πγ/2, πγ/2). Consequently, in this situation we have a complete version of
Watson's Lemma.
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5.3 Asymptotic expansion extension

From the generalized version of the Borel�Ritt�Gevrey, Theorem 3.3.21, for a weight sequence
M admitting a nonzero proximate order we may generalize Theorem 1 in [29].

Theorem 5.3.1. Given γ > 0, suppose f is holomorphic in a sectorial region Gγ , it is bounded
in every T � Gγ , and it admits f̂ ∈ C[[z]] as its M−asymptotic expansion in a direction
θ ∈ (−πγ/2, πγ/2). Then, f ∈ ÃM(Gγ) and f ∼M f̂ in Gγ .

Proof. We distinguish two cases:

1. Sectorial regions of small opening: If γ < ω, we take γ < µ < ω. By the Borel-Ritt-Gevrey
Theorem 3.3.21 we know that there exists a function f0 ∈ ÃM(Sµ) such that f0 ∼M f̂ in
Sµ. Then the function g := f −f0 is holomorphic in Gγ , bounded in every proper bounded
subsector of Gγ and it is M−�at in direction θ. Using Proposition 5.1.11, we see that g is
M−�at in Gγ .
Then, for every proper bounded subsector T of Gγ , there exist positive constants A(T ),
B(T ), C(T ), D(T ) > 0 such that

|f(z)−
p−1∑
n=0

anz
n| ≤ |g(z)|+ |f0(z)−

p−1∑
n=0

anz
n|

≤ ACpMp|z|p +BDpMp|z|p ≤ 2 max(A,B) max(Cp, Dp)Mp|z|p,

for every z ∈ T and every p ∈ N0. Consequently, f ∈ ÃM(Gγ) and f ∼M f̂ in Gγ .

2. Sectorial regions of large opening: If γ ≥ ω, we may choose natural numbers ` and m, and
for all j = −`, . . . ,−1, 0, 1, . . . ,m we may consider directions θj ∈ (−πγ/2, πγ/2) such that

θ0 := θ, θj :=θj−1 + πω/8, j = 1, . . . ,m, πγ/2− θm < πω/8;

θj :=θj+1 − πω/8, j = −1, . . . ,−l, −πγ/2 + θ−l > −πω/8.

There exists ρ0 > 0 such that S0 = S(θ0, πω/4, ρ0) ⊆ Gγ . We apply the �rst part in the
sector S0 and we see that f ∈ ÃM(S0) and f ∼M f̂ in S0. In particular, f admits f̂ as its
M−asymptotic expansion in directions θ1 and θ−1 for |z| < ρ0. Repeating the process we
see that f ∈ ÃM(Gγ) and f ∼M f̂ in Gγ .

�

The proof of our last statement is now straightforward.

Corollary 5.3.2. Given γ > 0 and θ ∈ (−πγ/2, πγ/2), we have that

ÃM(Gγ) = {f ∈ H(Gγ) : f is bounded in every proper bounded subsector T of Gγ
and f admits M−asymptotic expansion in direction θ}.
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Conclusiones y trabajo futuro

El objetivo de esta tesis era explorar ciertas propiedades de las clases ultraholomorfas de funciones
y su aplicación a los desarrollos asintóticos y la teoría de multisumabilidad, analizando qué
resultados del caso Gevrey pueden ser extendidos a este marco general. Una primera meta
alcanzada con éxito en el Capítulo 2 es la descripción de las relaciones entre diversas propiedades
de las sucesiones peso y las nociones de orden aproximado, variación regular y O-variación regular.
De ese capítulo, el Teorema 2.2.19 merece mención especial porque caracteriza la forma de las
sucesiones para las que la teoría de sumabilidad desarrollada en [60, 88, 89] esté disponible.

El tercer capítulo está dedicado al estudio de la inyectividad y sobreyectividad de la aplicación
de Borel asintótica. El resultado principal de este estudio, completado para la inyectividad
y sucesiones peso generales y casi �nalizado para la sobreyectividad y sucesiones fuertemente
regulares, es la existencia de dos índices ω(M) y γ(M), uno para cada problema y en general
distintos (ver el Ejemplo 2.2.26), que miden la apertura límite de los sectores para los que la
aplicación de Borel es inyectiva o, respectivamente, sobreyectiva. Puesto que para todos los
ejemplos en las aplicaciones el valor de estos índices coincide, esta división ha resultado difícil
de detectar. Finalmente, en los Capítulos 4 y 5 se acentúa el signi�cado de estos resultados
relativos a los desarrollos asintóticos. En esta dirección, el Teorema Tauberiano 4.2.14 clari�ca
cuándo tiene sentido la herramienta de multisumabilidad en este contexto. En ese caso, se ha
proporcionado una construcción explícita y detallada de los núcleos de aceleración, lo que nos
permite recuperar la multisuma de una serie de potencias formal. Por último, se ha probado que,
como sucede en el caso Gevrey, se puede extender un M−desarrollo asintótico de una función
holomorfa en el origen en una dirección a la región donde dicha función está acotada.

Esta tesis representa un primer paso hacia una mejor comprensión de las condiciones que se
asumen frecuentemente para las funciones y sucesiones peso mediante la noción de O-variación
regular, expresando propiedades cualitativas en términos de ciertos valores cuantitativos. Estos
hallazgos y técnicas presentes podrían ayudar a resolver otros asuntos en el contexto ultra-
holomorfo y ultradiferenciable. Ambos están estrechamente relacionados, como se ha resaltado
mediante el estudio de la aplicación de Borel, lo que ha potenciado nuestro entendimiento sobre
su conexión. Una consecuencia adicional que emerge de este trabajo es la aplicación poten-
cial al estudio de ciertas ecuaciones, particularmente ecuaciones en diferencias, del método de
multisumabilidad, que proporcione un tratamiento uni�cado del problema.

Este análisis de clases ultraholomorfas de funciones se ha ocupado principalmente de aque-
llas de�nidas por medio de una sucesión peso, de tipo Roumieu, y en el caso de una variable.
Sin embargo, algunos de los resultados podrían ser válidos también para clases ultraholomorfas
de�nidas mediante una función peso, o incluso una matriz peso, como ha sido recientemente
considerado por A. Rainer y G. Schindl. Además, las clases de tipo Beurling son adecuadas
para el estudio de problemas similares, o se podrían considerar clases de funciones de varias vari-
ables complejas de�nidas en polisectores (productos cartesianos de sectores) o en regiones más
generales. Al mismo tiempo, el estudio presente ha utilizado solo parcialmente la información
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disponible proveniente de la teoría de variación regular o de O-variación regular, por lo tanto
se podría profundizar en algunas de las conclusiones del segundo capítulo. Finalmente, merece
la pena mencionar que, aunque los métodos de M−sumabilidad se han aplicado en [60, 61], su
desarrollo permanece aún en un plano bastante teórico.

Antes de terminar, y a la luz de los resultados obtenidos en esta tesis, sus implicaciones y
sus limitaciones, se listan a continuación algunas líneas de investigación futura.

� En primer lugar, parece que todavía se puede explotar la conexión entre sucesiones peso y
la O-variación regular, establecida en la Sección 2.1, para dilucidar el signi�cado de otras
condiciones que aparecen frecuentemente cuando se consideran clases ultraholomorfas o ultra-
diferenciables de funciones. En esta misma dirección, se podría analizar la noción, también
clásica, de E-variación regular (véase [13, Sect. 2.1]), que se encuentra entre la variación reg-
ular y la O-variación regular. Adjunto a este concepto interviene un par adicional de índices,
los de Karamata, distintos en general de los órdenes y de los índices de Matuszewska. Por
lo tanto, es natural el análisis de si estos también describen propiedades signi�cativas de las
sucesiones peso. Una línea diferente, mencionada en la Observación 2.1.33, tiene que ver con la
consideración de clases ultraholomorfas y ultradiferenciables de�nidas por medio de funciones
peso. Hemos mostrado en [45, 47] que los requerimientos impuestos sobre estas funciones
tienen una interpretación en términos de propiedades o índices de O-variación regular. Sin
embargo, como ocurre en el caso de sucesiones peso, parece que no hemos explotado todavía
toda la información que se puede obtener a partir de estas potentes herramientas.

� La sucesión dual introducida en la Subsección 2.1.5 sugiere la existencia de cierta dualidad
entre los espacios correspondientes. La dualidad clásica en espacios de Orlicz, construidos
a partir de una función monótona y de O-variación regular cuya inversa `por la derecha'
determina el espacio dual (ver [86]), apoya esta conjetura. Puesto que la función de conteo
νm puede verse como una suerte de inversa de la función escalonada fm(x) = mbxc, puede
esperarse dicha dualidad.

� Uno de los objetivos más evidentes que alcanzar es el estudio completo de la sobreyectividad de
la aplicación de Borel. Como se señaló en la Observación 3.3.19, se espera que S̃M = (0, γ(M)]
y SM = S̃uM = (0, γ(M)), al menos para sucesiones fuertemente regulares. En este caso, solo
queda determinar si el valor γ(M) pertenece o no a alguno de estos intervalos.

Cuando M no es fuertemente regular, se debe observar que solo se tiene información acerca de
la extensión máxima de los intervalos de sobreyectividad pero, hasta donde sabemos, perfec-
tamente podrían ser vacíos. Por lo tanto, se debería dedicar algún esfuerzo a la construcción
de operadores de extensión bajo la condición necesaria (snq) junto con, posiblemente, alguna
otra condición más débil que (mg).

� La existencia de núcleos de M−sumabilidad ha sido probada únicamente para sucesiones peso
que admiten un orden aproximado no nulo (ver la Observación 4.1.4). Es un problema abierto
el determinar si tales núcleos existen para sucesiones fuertemente regulares arbitrarias. Es-
trechamente relacionado con este, se podría también intentar caracterizar las sucesiones que
pueden ser escritas como momentos de un núcleo de M−sumabilidad; observemos que la solu-
ción de este problema no se conoce ni siquiera en el caso Gevrey, como ha señalado W. Balser [7,
p. 94]. Se comentó en la Observación 4.1.3 que, para una sucesión peso M que satisfaga (dc),
con 0 < ω(M) < 2 y para la que exista un núcleo de M−sumabilidad, se puede deducir que
no solo M es (snq), sino que de hecho γ(M) = ω(M). Un asunto interesante sería el estudio
de las posibles implicaciones o equivalencias entre diferentes propiedades de este tipo, como la
existencia de núcleos de M−sumabilidad, la existencia de funciones planas `buenas' en sectores
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óptimos, y el hecho de que M satisfaga algún conjunto especí�co de propiedades entre (snq),
(dc), (mg), 0 < γ(M) = ω(M) <∞, etc.

� El lector puede haber advertido que, incluso habiéndose establecido un método de suma-
bilidad para la sucesión Mα,β , paradójicamente no se sabe si la serie de potencias formal∑∞

p=0

(
p!α
∏p
m=0 logβ(e+m)

)
zp es Mα,β−sumable. Este problema fundamental surge del he-

cho de que en el método de Mα,β−sumabilidad la sucesión es reemplazada por la sucesión
de momentos meV construida a partir de una función de Maergoiz V . Este fenómeno, que
es especialmente molesto cuando se consideran métodos de sumabilidad de momentos, es en
general una debilidad del método de sumabilidad de Borel, puesto que no hay ningún pro-
cedimiento sistemático para encontrar información acerca del comportamiento global de una
función analítica, tal como su prolongación analítica o la posición de sus singularidades, en
términos de sus coe�cientes de Taylor en un punto. Por ejemplo, en un trabajo reciente de
O. Costin y X. Xia [24] se ha probado la 1−sumabilidad de la serie aparentemente ingenua∑∞

p=0 p
p+1zp, y la prueba requiere de herramientas y conceptos so�sticados como la analiz-

abilidad de sus coe�cientes y el uso de trans-series. Valdría la pena clari�car si esto es posible
en el caso anterior, y si la variación regular puede arrojar algo de luz en este asunto.

� Es relevante veri�car si es posible rede�nir la noción de M−sumabilidad de modo que el
Teorema Tauberiano 4.2.14 esté disponible para dos sucesiones peso M and L, comparables
pero no equivalentes y con ω(M) = ω(L). Puesto que el Lema deWatson 3.2.15 para desarrollos
asintóticos no uniformes se veri�ca para regiones sectoriales arbitrarias, es posible que se
hayan de considerar desarrollos asintóticos uniformes. En esta situación, gracias a un teorema
de S. Mandelbrojt [72, Sect. 2.4.I], podemos determinar regiones de casianaliticidad para la
sucesión más pequeña, digamos L, que no tienen esta propiedad para la más grande, M, por
lo tanto el Teorema Tauberiano debería ser cierto en este contexto. Sin embargo, dado que
el índice de crecimiento de la sucesión cociente es ω(M/L) = 0, para recuperar la multisuma
se debería proporcionar una nueva de�nición de núcleo de sumabilidad, de�nido solamente en
el eje real positivo. Además, la función asociada ωM/L puede ser de variación rápida, por lo
que las funciones de Maergoiz no son útiles y la construcción de núcleos requiere considerar
un procedimiento distinto.

� Las técnicas de multisumabilidad desarrolladas en el Capítulo 4 nos permitirán trabajar al
mismo tiempo con M− y con k−sumabilidad. Esto lleva a considerar las propiedades de
sumabilidad de las soluciones en serie de potencias formal de diferentes tipos de ecuaciones.
En el estudio de ecuaciones en diferencias aparece el llamado nivel 1+ (véanse los trabajos de
G. I. Immink [40, 41]), que corresponde a la sucesión M1,−1. Siempre que los otros niveles
de la solución formal, aparte del 1+, sean distintos de 1, podremos aplicar nuestro método de
multisumabilidad. No obstante, existe una situación interesante en la que se necesita aplicar
un proceso de aceleración para la sucesión Gevrey de orden 1 y la sucesión M1,−1, y para el
que es imprescindible resolver previamente el asunto planteado en el apartado anterior.
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Conclusions and future work

This thesis had the aim of exploring certain properties of ultraholomorphic classes of functions
and their application to asymptotic expansions and multisummability theory, analyzing which
results from the Gevrey case can be extended to this general framework. A �rst objective suc-
cessfully accomplished in Chapter 2 is the description of the relations between several properties
of the weight sequences and the notions of proximate order, regular and O-regular variation.
From that chapter, Theorem 2.2.19 deserves a special mention because it characterizes the shape
of the sequences for which the summability theory developed in [60, 88, 89] is available.

The third chapter is devoted to the study of the injectivity and surjectivity of the asymptotic
Borel map. The main outcome of this study, completed for injectivity for general weight sequences
and nearly �nished for surjectivity and strongly regular sequences, is the existence of two indices
ω(M) and γ(M), one for each problem and generally di�erent (see Example 2.2.26), measuring the
limit opening of the sectors for which the Borel map is injective or, respectively, surjective. Since
for all the examples in the applications the value of these indices coincides, this division has been
hard to detect. Finally, in Chapters 4 and 5 the signi�cance of these results regarding asymptotics
is stressed. In this direction, Tauberian Theorem 4.2.14 clari�es when the multisummability tool
makes sense in this context. In that situation, an explicit and detailed construction of the
acceleration kernels has been provided, allowing us to recover the multisum of a formal power
series. Finally, it has been shown that, as it happens in the Gevrey case, one may extend the
M−asymptotic expansion at the origin in a direction of a holomorphic function to the region
where it is bounded.

This dissertation represents the �rst step towards a better insight into the conditions fre-
quently assumed for weight functions and weight sequences through the notion of O-regular
variation, expressing qualitative properties in terms of some quantitative values. These present
�ndings and techniques might help to solve other issues in the ultraholomorphic and ultradi�er-
entiable settings. Both settings are closely related, as it has highlighted the study of the Borel
map, enhancing our understanding of their connection. An additional implication that emerges
from this work is the potential application to certain equations, particularly di�erence equations,
of the multisummability method, so providing a uni�ed treatment of the problem.

This analysis of ultraholomorphic classes of functions has been primarily concerned with
those de�ned by means of a weight sequence, of Roumieu type, and in the one-variable situation.
However, some of the outcomes might be also valid in ultraholomorphic classes de�ned by means
of a weight function or even a weight matrix, as it has been recently considered by A. Rainer
and G. Schindl. Also, the Beurling type classes are suitable for the study of similar problems,
or one could consider classes of functions of several complex variables de�ned in polysectors
(cartesian products of sectors) or more general regions. At the same time, the present study
has only partially employed the information available from the regular and O-regular variation
theory, so some of the conclusions in the second chapter might be sharpened. Eventually, it is
worth mentioning that, although M−summability methods have been applied in [60, 61], their
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development remains still on a quite theoretical plane.
Before concluding, and in the light of the results obtained in this dissertation, their implica-

tions and limitations, some possible future lines of research are listed below.

� In the �rst place, it seems that one may still take advantage of the connection between weight
sequences and O-regular variation, established in Section 2.1, in order to elucidate the meaning
of other conditions frequently appearing when dealing with ultraholomorphic and ultradi�er-
entiable classes of functions. In this same direction, one might be guided to consider the, also
classical, notion of E-regular variation (see [13, Sect. 2.1]) which is in between regular and
O-regular variation. Attached to this concept, an extra pair of indices, Karamata indices, gen-
erally di�erent from orders and Matuszewska indices, come into play. Hence, one is tempted
to analyze whether or not they are also describing signi�cant properties of weight sequences.
A di�erent line, mentioned in Remark 2.1.33, has to do with the consideration of ultraholo-
morphic and ultradi�erentiable classes de�ned by means of weight functions. We have shown
in [45, 47] that the requirements imposed on these functions have an interpretation in terms
of properties or indices of O-regular variation. However, as for the weight sequence case, it
seems that we have not put to work yet all the information that could be obtained from this
powerful machinery.

� The dual sequence introduced in Subsection 2.1.5 suggests the existence of some duality be-
tween the corresponding spaces. Supporting this conjecture is the classical duality of Orlicz
spaces which are constructed from a O-regulary varying monotone function f whose right
inverse function g determines the dual space (see [86]). Since the counting function νm can be
seen as a sort of inverse of the step function fm(x) = mbxc, such a duality might be expected.

� One of the most evident objectives to be achieved is the complete study of the surjectivity of
the Borel map. As it was pointed out in Remark 3.3.19, it is expected that S̃M = (0, γ(M)]
and SM = S̃uM = (0, γ(M)) at least for strongly regular sequences. In this case, it only rests to
determine whether the value γ(M) belongs to some of these intervals or not.

In case M is not strongly regular, one should note that we only have information about the
maximal extent of the surjectivity intervals, but as far as we know they could perfectly be
empty. So, some e�orts should be concentrated in the construction of extension operators
under the necessary condition (snq) plus possibly some other condition weaker than (mg).

� The existence of M−summability kernels has only been proved for weight sequences admitting
a nonzero proximate order (see Remark 4.1.4). It is an open question to determine whether or
not they exist for an arbitrary strongly regular sequence. Closely related to it, one might also
try to characterize the sequences that can be written as the moments of an M−summability
kernel; we note that the solution of this problem is not even known in the Gevrey case, as
W. Balser [7, p. 94] pointed out. It was commented in Remark 4.1.3 that, for a weight sequence
M satisfying (dc), 0 < ω(M) < 2 and for which a kernel of M−summability exists, one may
deduce that not only M is (snq), but indeed γ(M) = ω(M). An interesting issue would be the
study of the possible implications or equivalences among di�erent properties of this kind, such
as the existence of kernels of M−summability, the existence of `�ne' �at functions in optimal
sectors, and the fact that M satis�es some speci�c set of properties among (snq), (dc), (mg),
0 < γ(M) = ω(M) <∞, etc.

� The reader may have noticed that even if a summability method for the sequenceMα,β has been
developed, it is paradoxically unknown if the formal power series

∑∞
p=0

(
p!α
∏p
m=0 logβ(e +

m)
)
zp is Mα,β−summable. This fundamental problem arises from the fact that in the method
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of Mα,β−summability the sequence is replaced by the moment sequence meV constructed from
a Maergoiz function V . This phenomenon, which is specially disturbing when dealing with
moment summability methods, is in general a weakness of the Borel summability method,
since there is not a systematic procedure to �nd information about the global behavior of
an analytic function, such as the analytic continuation or the position of its singularities, in
terms of its Taylor coe�cients. For instance, in a recent work by O. Costin and X. Xia [24] the
1−summability of the apparently naive series

∑∞
p=0 p

p+1zp has been shown, and their proof
requires sophisticated tools and concepts such as the analyzability of its coe�cients and the
use of transseries. It would be worthy to clarify if this could be done in our situation and if
regular variation could bring some light to this issue.

� It is relevant to verify if it is possible to rede�ne the M−summability notion in such a way
that the Tauberian Theorem 4.2.14 is available for two comparable but not equivalent weight
sequences M and L with ω(M) = ω(L). Since Watson's Lemma 3.2.15 for nonuniform asymp-
totics holds for arbitrary sectorial regions, one might need to consider uniform asymptotics.
In this situation, thanks to a theorem of S. Mandelbrojt [72, Sect. 2.4.I] we can determine
regions of quasianalyticity for the smaller sequence, say L, that do not have this property for
the bigger one M, so the Tauberian theorem should be true in this context. However, since
the growth index of the quotient sequence is ω(M/L) = 0, in order to recover the multisum a
new concept of summability kernel, de�ned just over the positive real axis, should be given.
Moreover, the associated function ωM/L may be rapidly varying, so Maergoiz functions are
useless and a di�erent procedure has to be considered for the construction of the kernels.

� The multisummability techniques developed in Chapter 4 will allow to us work at the same time
with M− and k−summability. This leads to the consideration of the summability properties
of the formal power series solutions of di�erent types of equations. In the study of di�erence
equations, the so-called level 1+ (see the works of G. I. Immink [40, 41]), which corresponds
to the sequence M1,−1, appears. Whenever the other levels, apart from the 1+, of the formal
solution are distinct from 1 we might apply our multisummability method. Nevertheless, there
is an interesting situation in which one needs to apply an acceleration process for the Gevrey
sequence of order 1 and the sequence M1,−1, and for which the issue presented in the last
paragraph needs to be previously solved.
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