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Abstract 

 

Background: Higher mental functions depend on global cerebral functional 

coordination. Fast modulation of functional networks in schizophrenia has not been 

previously assessed. 

Methods: Graph-theory was used to analyze the electroencephalograhic (EEG) activity 

during an odd-ball task in 57 schizophrenia patients (18 first episode patients, FEPs) and 

59 healthy controls. Clustering coefficient (CLC), characteristic path length (PL) and 

small-worldness (SW) were computed at baseline ([-300 0] ms prior to stimulus delivery) 

and response ([150 450] ms post-stimulus) windows. Clinical and cognitive assessments 

were performed. 

Results: CLC, PL and SW showed a significant modulation between baseline and 

response in controls but not in patients. Patients obtained higher CLC and SW at 

baseline, lower CLC and higher PL at response, and diminished modulation of CLC and 

SW as compared to controls. In patients, CLC and SW modulation were inversely 

associated to cognitive performance in executive tasks and directly associated to 

working memory. Similar patterns were observed in FEPs. CLC and SW during the 

baseline were inversely associated to their respective modulation magnitudes.  

Conclusions: Our results are coherent with a hyper-segregated network at baseline 

(higher CLC) and a decreased modulation of the functional connectivity during cognition 

in schizophrenia.  

Key words: Complex Network Theory, Schizophrenia, Electroencephalography, Evoked 

Response. 
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Significant outcomes 

- A deficit in fast modulation of functional network properties (clustering 

coefficients, path-length and small-worldness) during an odd-ball task was found 

in schizophrenia patients. 

- This deficit was also found in first-episode patients 

- There was a significant association between network modulation deficits and 

cognition in the patients 

Limitations 

- Spatial resolution of EEG is low and cannot assess possible contributions of 

subcortical structures. 

- The number of electrodes in our study.  

- We did not perform source analyses. 
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Text 

1. Introduction 

Mental functions depend on global dynamic coordination of cerebral networks1,2, whose 

characteristics can be assessed using methods derived from graph-theory. Previous 

studies in the normal brain revealed structural and functional small-world properties as 

an efficient way to balance local specialization and integration3, 4. These network 

properties can be jointly summarized in the “small-worldness” parameter (SW), which 

is defined as the ratio between the global clustering coefficient (CLC) and the 

characteristic path length (PL) of the network. In a binary network, local CLC is the ratio 

between the number of triangles in which a given node participates and the maximum 

possible number of triangles including that node. This measure, averaged across the 

nodes of the entire network, can be used as an indicator of the network segregation and 

of local efficiency of information transfer, probably related to specialization. PL is the 

average of shortest distances for all possible pairs of nodes. It is usually interpreted as a 

metric of information integration across areas. Both parameters are of interest in the 

study of schizophrenia, given the abnormal integration of cerebral networks observed 

in this psychiatric disorder5-8.  

Quickly evolving patterns of interaction (in the order of hundreds of milliseconds) are 

likely to underlie cognitive function in real time 9,10. Considering such rapid modulation 

of cortical activity1,11, the high temporal resolution of electroencephalography (EEG) and 

magnetoencephalography (MEG), combined with a complex network analysis, can be 

useful for assessing global connectivity dynamics in normal and altered cognition. In 

healthy subjects, a MEG study showed that the cognitive effort drives normal brain 

networks to a less clustered configuration and more long-range synchronization12. Using 

the EEG we observed in healthy subjects a significant SW increase from baseline (-300 

to 0 ms prior to stimulus onset) to response (150 to 450 ms post-stimulus) windows 

during an odd-ball task13.  

However, most EEG or MEG network analyses published in schizophrenia did not take 

into account that temporal dynamics or compared parameters during different tasks. 
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Using resting EEG, lower CLC and shorter PL were reported in schizophrenia14. Also, a 

lower SW index was reported in 20 chronic patients at rest, whereas decreased CLC and 

increased PL values were appreciated during a working memory test15. More recently, 

globally reduced segregation and integration were described in 34 schizophrenia 

patients during an odd-ball task16, without discriminating between windows in the task. In a 

functional magnetic resonance (fMRI) study, a lower SW index in schizophrenia patients 

when compared to controls was reported both at rest and during an odd-ball task17. 

Shorter PL values during task performance were also observed in 20 schizophrenia 

patients performing a contextual paradigm {Fogelson, 2013 #6983}. 

Thus, deficits in the fast modulation of network properties might be found in to 

schizophrenia. In particular, our working hypotheses were that (i) patients would exhibit 

altered modulation of functional network properties with cognitive activity across the 

brain; and (ii) such modulation would correlate with patient’s symptoms and/or 

cognitive performance. We analyzed stimulus-evoked oscillations given its association 

with “top-down” cognitive processing18. 

Aims of the study: To assess the fast dynamic modulation of brain network properties 

during a cognitive task in schizophrenia, not addressed in previous studies, using network 

parameters summarizing segregation and integration of this network.  

2. Materials and Methods 

2.1. Participants 

Fifty-nine healthy controls and 57 schizophrenia patients (39 chronic and 18 first-

episode (FE) patients) with normal hearing were included in the study. Exclusion criteria 

were: (i) any neurological illness; (ii) history of cranial trauma with loss of consciousness 

longer than one minute; (iii) past or present substance abuse, except nicotine or caffeine 

(iv) total intelligence quotient (IQ) smaller than 70; and (iv) for patients, presence of any 

other psychiatric process, and (v) for controls, any current psychiatric or neurological 

diagnosis or treatment. 

Patients were diagnosed according to the Diagnostic and Statistical Manual of Mental 

Disorders, 4th edition. They were on antipsychotic monotherapy. Chronic patients 

received stable doses of atypical antipsychotics. FEP only received antipsychotics for less 
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than 72 hours prior to EEG acquisition followed by a wash-out period of 24 hours. Hence, 

the possible bias due to the selection of acutely ill patients able to cooperate during EEG 

acquisition without any prior treatment was avoided. Symptoms were scored using the 

Positive and Negative Syndrome Scale (PANSS)19. Healthy controls were recruited 

through newspaper advertisements. Demographic and clinical characteristics are shown 

in Table 1. 

Cognitive data from patients and controls were collected using: the Wechsler Adult 

Intelligence Scale, WAIS-III (IQ); the Trail-Making Test, TMT ((time part B – time part 

A)/time part A); the Wisconsin Card Sorting Test (WCST; completed categories and 

percentage of perseverative errors); and the Spanish version of the Brief Assessment in 

Cognition in Schizophrenia Scale (BACS)20. 

Written informed consent was obtained from all participants after full printed 

information. The ethical committees of the participating hospitals approved the study. 

2.2. Electroencephalographic recordings 

EEG data were recorded using a 17-channel EEG system (BrainVision®, Brain Products 

GmbH). Active electrodes were placed in an elastic cap at Fp1, Fp2, F3, F4, F7, F8, C3, 

C4, P3, P4, O1, O2, T5, T6, Fz, Pz and Cz (international 10–20 system). Impedance was 

kept under 5 kΩ. Thirteen minutes of eyes-closed EEG was obtained during an auditory 

odd-ball 3-stimulus paradigm, which consisted of 600 random sequences of target (500 

Hz-tone, probability 0.2), distractor (1000 Hz-tone, probability 0.2), and standard (2000 

Hz-tone, probability 0.6) tones. The tone duration was 50 ms, rise and fall time being 5 

ms and intensity being 90 dB. Inter-stimulus interval between tones randomly jittered 

between 1.16 and 1.44 s. The participants were asked to press a button whenever they 

detected the target tones. Target tones were considered ‘attended tones’ when they 

were followed by a button press. Only ‘attended’ target tones were taken into account 

for further analysis21. Alertness differences across groups were controlled by comparing 

accuracy of target responses. 

EEG signals were recorded using a sampling frequency of 500 Hz and referenced over Cz 

electrode. EEG recordings were subsequently re-referenced to the average activity of all 
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sensors in order to minimize the effect of microsaccadic artifacts22. Data were filtered 

using a finite impulse response (FIR) band-pass filter (1–70 Hz, Hamming window) and a 

notch filter to remove the power line frequency interference (50 Hz, Butterworth filter). 

Artifact rejection was conducted following a three-step approach21, 23. Firstly, an 

independent component analysis (ICA) was carried out to decompose each EEG 

recording into a total of 17 components24. After a visual inspection of the scalp maps 

and the temporal activation, components related to eye-blinks and muscle artifacts 

were discarded. Secondly, continuous EEG data were segmented into 1s-length trials 

ranging from -300 ms before target stimulus onset to 700 ms after onset. Thirdly, trials 

with artifacts were automatically rejected if their amplitude exceeded a statistical-based 

local adaptive threshold23. 

2.3 Signal similarity across sensors: Event-Related Coherence  

Continuous wavelet transform (CWT) was computed to obtain a time-frequency 

representation of EEG recordings. Complex Morlet wavelet was used because it provides 

a biologically plausible fit to the signal being modeled26. The scaling factor was set to 

include frequencies from 1 to 70 Hz21,23,27. Thus, 1s-length evoked responses ([-300 - 

700] ms) were decomposed using CWT into two windows: (i) baseline ([-300 0] ms to 

stimulus onset); and (ii) response ([150 450] ms after stimulus onset)21,23. These 

windows were chosen to summarize the underlying temporal dynamics between resting 

(inter-stimulus) and the cognitive processing (centered around the usual P300 peak) 

windows. We previously showed a significant modulation of graph parameters between 

these windows in healthy subjects13. It is noteworthy that edge effects are not negligible, 

since EEG trials are finite and short-time recordings. Hence, two cones of influence 

(COIs) were defined around baseline and response windows to avoid border distortion28. 

From CWT decomposition, event-related Coherence (ERC) was computed to assess 

linear functional interactions29. ERC is useful to identify coherent activity between 

cognitive networks [Yener and Başar 2012], since it is a measure of the degree of 

coordination between assemblies of neurons triggered by a cognitive task [Başar et al. 

2015] In this study, ERC was calculated for each pair of electrodes and its values were 

averaged in the 4-70 Hz frequency band to obtain a global similarity measure for each 
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time window. Changes in ERC between resting and active windows allowed the 

assessment of task-related modulation in graph parameters for each group.  Since we 

had no a priori hypothesis regarding modulation deficits in any particular band, network 

analyses were performed in the whole frequency band to avoid an inflation of the 

number of comparisons.  

Further description of CWT and ERC is detailed in the Supplementary Material. 

2.5 Graph parameters 

In order to model a system as a graph, nodes should represent the dynamical units and 

their links should be the interactions between them30. Thereby, the brain can be 

assimilated to a complex network with functional connectivity units that can be altered 

due to a pathological process 31. The linear interaction between the neural activity in 

different cerebral regions can be used to represent the brain as a graph. Each electrode 

would correspond to a vertex (or node) and the relationships between electrodes would 

be the links (or edges) between them. In the present study, we used ERC to set the 

weights of the links. ERC could be useful in patients with cognitive impairment, such as 

schizophrenia, to study whether sensory and cognitive networks are manifested in 

topologically different places and in different frequency windows [Yener y Basar 2012]. 

Completely filled ERC matrices were then used as adjacency matrices. Hence, the 

generated fully connected network was composed of N=17 nodes, corresponding to the 

electrodes, and network weights set by the ERC values between electrodes. 

Networks can be described by several parameters. The present study focused on two 

complementary features of the brain network: segregation and integration, together 

with their fast modulation during a cognitive task. In order to characterize the 

segregation of the network, we computed CLC32. In the case of weighted networks, CLC 

has been generalized as follows in order to avoid the influence of the mean edge weight: 
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where  denotes the edge weight between electrodes i and j. 

To quantify the integration of the network, we computed PL. It is defined as the average 

shortest path length between all pairs of nodes in the network32: 
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where dij indicates the minimum distance (i.e. the inverse of ERC) between electrodes i 

and j. It is noteworthy that the previous definition takes into account that some of the 

paths with minimum distance can be formed of multiple edges. 

To facilitate the comparison with previous research, the balance between CLC and PL 

was computed. This ratio (known as SW) is useful to assess the small-world properties 

of the network. Small-world networks are defined as those significantly more clustered 

than random networks, yet have approximately the same PL as random networks32. SW 

index is defined as the ratio between segregation and integration, where CLC and PL 

have been normalized in order to eliminate the dependence on basic parameters of the 

network, such as network size, or density33: 

,

random
ClC

CLC
      (3) 

,

random
PL

PL
      (4) 

,



SW       (5) 

where 
random

ClC  and 
random

PL  denote CLC and PL averaged over an ensemble of 50 

surrogate networks, which were computed from a randomization of the original 

network by reshuffling its connections33.  

2.6 Parameter baseline correction (modulation) 

The baseline correction process was applied to achieve a stimulus-independent 

characterization23 and to quantify the dynamical changes during the evoked response 

(i.e. modulation). Network parameters were computed for each temporal window 

(baseline and response), providing meaningful information about the temporal 

evolution of network properties23. Modulation in each parameter (Pc)  was assessed as 

the result of the following  baseline correction procedure:  
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 ,,,, SWPPPP BLRESC         (6) 

where 
BLP  and 

RESP  represent the parameter averaged for the baseline and the 

response windows. Negative or positive values indicate decreases or increases from 

baseline to response, respectively. 

Figure 1 summarizes the whole signal processing procedure carried out in the study. 

2.7. Statistical analyses 

After testing normality and homoscedasticity of the distribution of network parameters, 

the following analyses were performed:  

i. Network parameters at baseline and response windows were compared 

between  groups using a multivariate analysis of covariance (‘group’ as fixed 

factor, and ‘sex’ and ‘age’ as covariates) with Bonferroni correction. Using a 

similar multivariate analysis of covariance, modulation of network 

parameters (and SW changes between baseline and response windows) 

were compared between groups. Effect sizes were assessed using Cohen’s d 

when statistically significant differences were found. This was followed by 

univariate within-group analyses of network parameters using paired t–tests 

(significance level: α= 0.009). 

ii. The statistical significance of possible associations between baseline network 

parameters and the corresponding modulation values in patients, (only 

where significant between-group differences in modulation were detected) 

was assessed using Pearson correlation. In order to discard a major role for 

long-term treatment and chronicity, these and the previous analyses were 

repeated only for FEP. 

iii. We also assessed the significance of the association between modulation of 

network parameters (only those that showed significant between-group 

differences) and clinical and cognitive data. Spearman’s correlation was 

used, since cognitive data distribution did not meet parametric assumptions.  

iv. Finally, spatial analyses of the network changes (within- and between-group 

comparisons) were performed using nodal CLC. 
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3. Results 

3.1. Between- and within group differences in network parameters  

3.1.1 Between-groups differences at baseline and response windows 

There was a significant multivariate effect for ‘group’ (Wilk’s lambda=0.87; F=2.24; 

df=6,109; p=0.045) but not for ‘age’ or ‘sex’. The inter-subject effects tests (Table 2) 

revealed statistically significant differences for SW and at baseline (with larger values 

in patients) and  and  at response (smaller _and larger  in patients). There were no 

statistically significant differences between FEP and chronic patients in mean network 

parameters 

3.1.2  Between- and within-group differences in network modulation 

There was a significant multivariate effect for ‘group’ but not for ‘age’ or ‘sex’ on mean 

network modulation (Wilk’s lambda=0.98; F=3.64; df=3,112; p=0.040). The inter-subject 

effects tests revealed statistically significant differences with moderate effect sizes for 

c, c  and SWc  (smaller values in patients; Table 2).  

Controls showed statistically significantly positive changes for c
  (i.e. a statistically 

significant increase from baseline to response windows) (t=3.38, df=58, p=0.001), c 

(t=2.84, df=58, p=0.006) and SWc (t=3.27, df=58, p=0.002). In patients, non-significant 

changes were observed for c
 (t=-0.96, df=56, p=0.340), c (t=0.74, df=56, p=0.460) and 

SWc (t=-0.34, df=56, p=0.700). FEP showed similar deficits of modulation in _c (t=-0.85, 

df=17, p=0.410), _c (t=-1.07, df=17, p=0.30) and SWc (t=0.37, df=17, p=0.720) (Table 2). 

3.2. Association between baseline parameters and modulation  

In patients, baseline parameters were negatively associated with the corresponding c 

(all patients r=-0.569, p<0.0001; FEP r=-0.535, p=0.022), c (all patients r=-0.602, 

p<0.0001; FEP r=-0.821, p<0.001) and SWc (all patients r=-0.525, n=57, p<0.0001; FEP r= 

-0.647, n=18, p=0.004). Therefore, higher values at baseline were associated with 

smaller task-related modulation of the corresponding network parameter (Fig. 2).  

3.3. Association between network modulation and cognitive performance 
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In patients, c was inversely associated to completed categories (all patients: rho=-0.348, 

p=0.015; FEP rho=-0.325, p=0.219) and directly to the percent of perseverative errors in 

WCST (all patients: rho=0.316, p= 0.029; FE: rho=0.022, p>0.05). SWc was inversely 

associated to performance in the Tower of London test (all patients: rho=-0.338, 

p=0.004; FEP rho=-0.382, p=0.118) and completed categories in WCST (all patients: rho=-

0.373, p=0.009; FE: rho=-0.389, p=0.0136). Consequently, higher increases in SW and c 

from baseline to response can be related to a poorer performance in schizophrenia 

patients, although this was not confirmed in the FEP subgroup (Fig. 2). 

c was inversely related to normalized scores in TMT (all patients; rho=-0.298, p=0.044; 

FE: rho=-0.512, p=0.043), suggesting a direct association with working memory 

performance (Fig. 2). 

In controls, no significant associations were found for network modulation or cognitive 

performance.  

There was no association between symptom scores and network modulation. 

3.. Spatial analyses 

Controls showed bilateral frontal and right temporoparietal _ increases from baseline to 

the response window, not found in patients. Patients showed a statistically 

significantly lower widespread  value during the response window (Fig. 3).  

4. Discussion 

In our study, a modulation deficit in all network parameters was found in schizophrenia 

patients during a P300 task. Moreover, CLC and SW values were higher at baseline and 

lower in response windows, whereas PL was higher in the response window for patients 

during the task. In this group, an inverse relationship between positive modulation of 

CLC and SW and performance in executive function tests was found.  

Previous evidences in humans2 and animals11 showed that rapid and transient 

modulation of coherence and functional integration play a role in cognition, which may 

be hampered in schizophrenia patients according to the present data. Our analyses 
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support the notion that schizophrenia can be associated with a deficit to reconfigure the 

brain network during a cognitive task. The particular brain sources driving such deficit 

may be further explored. 

The larger baseline CLC in patients may reflect more segregated cortical activity in 

comparison to controls prior to stimulus onset. Previous results on clustering in 

schizophrenia using graph analyses are discrepant. In the resting state, a larger 

clustering was observed with fMRI in 19 schizophrenia patients34, as well as non-

significant differences in clustering using MEG35. By means of EEG, a reduced clustering 

was seen in 34 schizophrenia patients performing an odd-ball task16 and in 40 patients 

looking at a stationary dot14. Ma et al17 reported with fMRI a reduced clustering in 

schizophrenia both at rest and during and odd-ball task, with shorter path length at rest 

but longer during the task. Our findings support the notion that both increased (larger 

CLC values during the baseline) and reduced (smaller CLC values during the response) 

clustering may be found in schizophrenia patients at different temporal points 

depending on the time of cognitive processing. This result could correspond to 

respectively increased and decreased functional segregation in patients during baseline 

and response windows.  

The temporal resolution of fMRI would not allow discriminating between resting and 

active windows as defined in the present study. This may contribute to the discrepancies 

with previous reports of reduced clustering in schizophrenia using fMRI36. However, 

information from fMRI studies may help to explain the reconfiguration deficit observed 

in our study. Fewer hubs (i.e. highly connected nodes) have been reported with fMRI in 

schizophrenia in the resting state37 and during an odd-ball task17, along with a significant 

randomization of global network metrics37 . Such reduction in the number of highly 

connected nodes may explain the network reconfiguration deficit and the larger PL in 

the response window in our patients. Likewise, it would be also coherent with the less 

globally coordinated mode of brain connectivity in schizophrenia, reported with fMRI36.  

Additional increases of CLC over baseline levels predicted worse performance on 

executive tasks in patients but not in controls. This result indicates that a larger basal 

(i.e. pre-stimulus) segregation hinders cognition in schizophrenia. Thus, larger increases 
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in clustering above a hyper-segregated basal state could hamper the more complex 

cognitive capacities, for which a larger integration of cortical activity among distant brain 

regions is needed1,2. Hypothetically, this might be related to the fewer number or 

strength of hubs, which could hamper cortical integration. Cognitive demands of the 

P300 task are low, but more demanding tasks drive the transitory formation of long-

range integrative networks12. However, CLC modulation was directly related to working 

memory. Therefore, larger segregation could provide some advantage for working 

memory performance when network modularity was more important than integration 

In a previous fMRI study modularity, but not SW, predicted working memory 

performance 38.  

Patients also showed larger PL values in the response window, which might result from 

the structural long-range connectivity deficits reported in schizophrenia39. Such deficits 

in network integration might also conceivably contribute to the deficit of modulation in 

functional clustering.  

The investigation of baseline hyper-clustering in patients is beyond our research, but 

speculatively might be related to inhibitory deficits in schizophrenia40, 41. CLC quantifies 

the linear similarity degree between the neighbors of each node and most short-range 

cortico-cortical42 and recurrent43 connections are excitatory. As a consequence, 

inhibitory cortical deficits might drive a basal hyper-synchronization secondary to 

mutual excitation among pyramidal neurons, which could be reflected in larger local 

phase and power coupling (and therefore in larger CLC values). This possibility seems 

consistent with previous EEG studies in schizophrenia that showed an increased neural 

noise (i.e. the amount of spontaneous, non-task evoked EEG power)44-47. In this context, 

spontaneous neural activity is not stochastic noise, but rather exhibits patterns largely 

conditioning by evoked responses52.  

Husserl’s phenomenology (and Aristotle´s “koine aesthesis”  proposes 

the “synthesis” of multiple mental processes as the basis of conscious experience. 

Conscious and subliminal perception seem to be different by a larger extension of 

synchronization in the former1. Therefore, a dysfunction in that integrative process 

(suggested in our cases by the larger basal CLC and the modulation deficits in CLC and 
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PL) may disturb the conscious experience in patients with schizophrenia. The neural 

representation of internal and external events may be based on the transitory 

conformation of distributed synaptic assemblies53. Thus, network deficits, such as those 

found in our study, might contribute to schizophrenia. This possibility seems to be in line 

with phenomenological accounts, such as “disturbed ipseity”, one of whose facets is 

hyper-reflexivity. It is defined as “exaggerated self-consciousness, a tendency to 

objectifying attention towards processes and phenomena that would normally be 

‘inhabited’ or experienced as part of oneself” 54. An excess of functional segregation 

accompanied by a deficit in network modulation might be compatible with increased 

consciousness of these phenomena. Cortical hyper-segregation may hamper an 

adequate phenomenological integration of elements of mental life, leading to 

misinterpretation or hindered cognition. 

Our study has strengths and limitations. The sample size is larger than previous network 

studies. Furthermore, this is the first study that assesses fast network modulation during 

cognitive activity in schizophrenia. However, EEG recordings are hampered by the 

shared variance among contiguous sensors, though the comparison of different 

conditions may help to overcome this problem. In addition, our analyses are based on 

low-density EEG recordings; nonetheless, functional characteristics of dynamic brain 

networks can be explored using low-density EEG recordings55. Larger CLC at baseline in 

patients may reflect a more segregated brain (i.e. diffuse hyperconnectivity). Measures 

of network segregation may help to elucidate these possibilities by balancing the density 

between intra- and inter-module connections56.  Finally, EEG activity was recorded with 

eyes closed. Thereby, a larger contribution of alpha rhythms can be expected, but this 

should not have influenced the results on modulation between windows. 

In conclusion, our findings support a relevant decrease in the ability to integrate cortical 

networks in schizophrenia, which may be based on a hyper-segregated basal state and 

a deficit of network modulation during cognitive activity.  
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Table/figure legends 

Table 1. Demographic and clinical characteristics. Significant differences with respect to 

controls (**, p<0.001).. 

Table 2. Mean network parameters for each group and summary of the statistical results 

obtained after comparing schizophrenia patients and controls (*, p<0.05; **, p<0.01). 

Effect sizes for within- and between-group significant differences are shown (Cohen´s 

d). 

Figure 1. Processing steps for evoked response analysis. EEG recordings for each 

electrode during a single trial of the oddball task for a control (a1) and a schizophrenia 

patient (a2). Computation of the evoked response (b1 and b2). Similarity matrices 

calculated by means of ERP (c1 and c2). Nodal CLC for a control (d1) and a schizophrenia 

patient (d2). 

Figure 2. A) Association between baseline and modulation values in schizophrenia 

patients for: (a1) SW, and (a2) normalized CLC. B) Significant relationships between 

cognitive performance and modulation of network parameters for patients: b1, b2 and 

b3 depict associations with modulation of CLC; b4 depicts an association with SW 

modulation: larger values in Tower of London, completed categories in WCST and less 

perseverative errors in WCST indicate better executive function. Lower values in 

adjusted TMT indicate better working memory.  

Filled circles: chronic patients; empty circles: FEP. 
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Figure 3. Nodal clustering maps depicting the spatial distribution of intra- (comparison 

between baseline and response) and inter-group differences in CLC (C: controls; SP: 

schizophrenia patients; FEP: first episode patients; CP: chronic patients).   
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Tables 

 
Schizophrenia patients 

(n=57) 

First episode 
patients 

(n=18) 

Controls 

(n=59) 

Age (years) 34.1 (8.4) 28.4 (8.5) ** 35.0 (11.6) 

Sex (Male:Female) 29:28 12:6 29:21 

PANSS-Positive 11.6 (4.8) 11.3 (3.7) NA 

PANSS-Negative 18.0 (8.5) 21.2 (9.3) NA 

PANSS-Total 

 

 

55.2 (22.6) 59.8 (25.6) NA 

Total IQ 88.1 (16.4) 87.7 (16.6) 104.9 (10.0) 

BACS list of words 36.0 (11.7)** 34.3 (12.2) ** 55.5 (7.7) 

BACS digits 16.5 (5.1) ** 15.3 (5.7) ** 22.8 (3.2) 

BACS motor speed 46.5 (19.3) ** 40.0 (17.8) ** 57.0 (15.4) 

BACS verbal fluency 17.2 (6.0) ** 17.5 (5.1) ** 25.4 (4.6) 

BACS execution speed 

 

 

36.7 (15.6) ** 33.9 (14.1) ** 67.7 (10.7) 

BACS Tower of London 14.1 (5.4) ** 12.7 (5.7) ** 18.6 (2.6) 

WCST completed categories 3.8 (2.0) ** 3.5 (2.2) ** 5.8 (0.8) 

WCST perseverative errors (%) 

 

20.4 (13.3) ** 22.9 (9.8) ** 9.6 (4.8) 

TMT (time B-A/A) 1.9 (1.4) ** 2.4 (1.7) ** 0.9 (0.6) 
 

Table 1.   
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 Controls 
Schizophrenia 

patients (n=57)  
Type III square sum; F; p 

Effect-size (patients vs 

controls) 

First episodes 

(n=18) 
 

SW baseline* 1.021 (0.015) 1.027 (0.013) 0.001; 6.627; 0.011 0.427 1.024 (0.014)  

SW response 1.030 (0.019) 1.027 (0.160) 0.000; 1.340; 0.249  1.027 (0.016)  

SW modulation** 0.010 (0.020) 0.000 (0.018) 0.003; 7.484; 0.007 0.525 0.003 (0.021)  

Effect size  

(within-group) 
0.525 0.000  

 
0.199  

CLC baseline* 1.050 (0.022) 1.059 (0.020) 0.003; 5.733; 0.018 0.428 1.048 (0.019)  

CLC response* 1.065 (0.030) 1.056 (0.023) 0.002; 3.025; 0.085 0.336 1.056 (0.026)  

CLC modulation** 0.015 (0.034) -0.003 (0.027)  0.009; 10.155; 0.002 0.586 0.009 (0.031)  

Effect size  

(within-group) 
0.587 0.139  

 
0.351  

PL baseline 1.033 (0.013) 1.030 (0.011) 0.000; 2.432; 0.122  1.033 (0.013)  

PL response* 1.028 (0.009) 1.031 (0.011) 0.000; 3.758; 0.055 0.298 1.027 (0.009)  

PL modulation* -0.005 (0.016) 0.002 (0.014) 0.001; 4.635; 0.033 0.456 -0.006 (0.016)  

Effect size  

(within-group) 
0.447 0.090  

 
0.536  

 

Table 2.  

 


