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SUMMARY 

 

Objective: To assess using graph-theory properties of both structural and functional 

networks in schizophrenia patients, as well as the possible prediction of the latter based 

on the former. Abnormal structural and functional network parameters have been 

found in schizophrenia, but the dependence of functional network properties on 

structural alterations has not been described yet in this syndrome.  

Experimental design: We applied averaged path-length (PL), clustering coefficient (CLC) 

and density (D) measurements to structural data derived from diffusion magnetic 

resonance and functional data derived from electroencephalography in 39 

schizophrenia patients and 79 controls. Functional data were collected for the global 

and theta frequency bands with subjects performing an odd-ball task, both prior to 

stimulus delivery and at the corresponding processing window. Connectivity matrices 

were constructed respectively from (i) tractography and registered cortical 

segmentations (structural) and (ii) phase-locking values (functional).  

Principal observations: In both groups, we observed a significant EEG task-related 

modulation (change between pre-stimulus and response windows) in the global and 

theta bands. Patients showed larger structural PL and pre-stimulus density in the global 

and theta bands, and lower PL task-related modulation in the theta band. Structural 

network values predicted pre-stimulus global band values in controls and global band 

task-related modulation in patients. Abnormal functional values found in patients (pre-

stimulus density in the global and theta bands and task-related modulation in the theta 

band) were not predicted by structural data in this group. Structural and functional 

network abnormalities respectively predicted cognitive performance and positive 

symptoms in patients.   

Conclusions: Taken together, the alterations in the structural and functional theta 

networks in the patients and the lack of significant relations between these alterations, 

suggest that these types of network abnormalities exist in different groups of 

schizophrenia patients.  

Key words: schizophrenia, dysconnectivity, network, graph-theory, 

electroencephalography, diffusion magnetic resonance.  
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1. INTRODUCTION 

Mental functions depend on global dynamics of cerebral networks (Dehaene and 

Changeux, 2011; Varela, et al., 2001), whose functional and structural characteristics can 

be assessed in vivo using methods derived from graph-theory (Bullmore and Sporns, 

2009).  In this context, underpinnings of syndromes like schizophrenia likely involve 

distributed networks rather than regional alterations, as supported by studies using 

functional magnetic resonance imaging (fMRI) that revealed network alterations in the 

resting state (Lo, et al., 2015; Yu, et al., 2011)  and during task performance (Ma, et al., 

2012; Shim, et al., 2014) in this syndrome. However, considering the rapid and transient 

change of functional integration of diverse cerebral regions in cognition in humans 

(Varela, et al., 2001) and animals (Bressler, et al., 1993), assessing fast change of cerebral 

networks in schizophrenia holds a great interest. Techniques with high temporal 

resolution are useful to this purpose:  change of network properties using EEG during a 

cognitive task was significantly decreased in schizophrenia patients (Gomez-Pilar, et al., 

2017a). Using relative power analyses, we also reported lower EEG task-related change 

in theta but not in faster bands during an odd-ball task in schizophrenia (Bachiller, et al., 

2014). 

As mentioned, methods derived from graph-theory are useful to assess the properties 

of cerebral networks, which can be summarized in parameters such as clustering 

coefficient (CLC) and characteristic path length (PL). In a binary network, local CLC is the 

ratio between the number of triangles in which a given node participates and the 

maximum possible number of triangles including that node. When CLC is averaged 

across the nodes of a network, it quantifies network segregation and local efficiency of 

information transfer. In turn, PL is the average of shortest distances for all possible pairs 

of nodes; it is likely related to information integration across areas. These network 

parameters provide complementary information about the properties of the whole 

brain network. Therefore, the use of these parameters instead of their corresponding 

nodal versions, allows to characterize the global and predominant changes of the 

network. A recent meta-analysis of functional graph-analytical studies in schizophrenia 

revealed significant decreases in measures of local organization (CLC) with preservation 

in short communication paths (PL) (Kambeitz, et al., 2016).  

Abnormalities in structural connectivity are also prevalent in schizophrenia (Ellison-

Wright and Bullmore, 2009). These abnormalities are likely reflected in structural 

network properties, since longer structural PL values were found in schizophrenia at 

frontal and temporal regions using dMRI (van den Heuvel, et al., 2010) and may be 

associated to genetic liability to this disorder (Bohlken, et al., 2016). Thus, the possibility 

exists that functional network alterations might be secondary to structural 

abnormalities in schizophrenia. Indeed, in this syndrome, a relationship has been 
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reported between a reduction in “rich-club density” (i.e., connections among high-

degree hub nodes) and global efficiency of functional connectivity in the resting state 

using fMRI (van den Heuvel, et al., 2013). Similarly, connectivity deficits in rich-club hubs 

have been described in young offspring of schizophrenia patients associated to 

disruption of the functional connectome (Collin, et al., 2017). However, functional 

connectivity alterations in schizophrenia are not necessarily determined by structural 

connectivity, since functional connections in the resting state can be found between 

regions without direct anatomical connections (Honey, et al., 2009).  

The application of graph-theory parameters to functional and structural measurements 

can yield complementary information and  help uncovering hidden relationships (Sui, et 

al., 2012). Using diffusion magnetic resonance imaging (dMRI), graph-theory parameters 

may inform about structural connectivity differences between anatomical structures, 

revealing highly connected hubs (Honey, et al., 2010).  Graph-theory parameters applied 

to functional analysis may reveal baseline network characteristics and its dynamic 

modulation during cognition of signals such as synchrony of the bold-oxygen level 

dependent signal between regions, or magneto-electrical signals between sensors. 

Considering the millisecond-scale of modulation of cortical activity during cognition 

(Bressler, et al., 1993; Dehaene and Changeux, 2011), the combination of network 

analyses with temporal resolution of electroencephalographic (EEG) recordings can be 

useful to assess this task-related modulation. Indeed, using EEG in healthy subjects, we 

reported a significant task-related modulation of network parameters from pre-stimulus 

(from -300 to 0 ms prior to stimulus onset) to response (from 150 to 450 ms post-

stimulus) windows (Martin-Santiago, et al., 2016) during an odd-ball task. 

To our knowledge, no previous study has assessed the relationship between structural 

and EEG networks in schizophrenia. Such investigation may help identifying the substrate 

of the cortical dysfunction in schizophrenia. Therefore, the present study was aimed at 

characterizing the properties of structural and EEG-based functional networks in 

schizophrenia and assessing the relationships between properties of those networks in 

this syndrome, particularly between structural connectivity and EEG modulation.  

 

2. SUBJECTS AND METHODS 

2.1 Subjects 

Thirty-nine schizophrenia (19 stable chronic and 20 first-episode, FE) patients and 78 

healthy controls with normal hearing were included. Demographic, clinical, cognitive 

and EEG data were collected for each participant (Table 1). In addition, dMRI data were 

also available in 33 patients (16 FE) and 27 controls (Table 1). One of the psychiatrists in 

the group (VM) diagnosed the patients according to the Diagnostic and Statistical 

Manual of Mental Disorders, 5th edition. Chronic patients received atypical 

antipsychotics, 30 of them in monotherapy (12 received antidepressants and 7 
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benzodiazepines). FE patients were receiving stable doses of antipsychotics for less than 

15 days, with a wash-out period of 24 hours prior to EEG acquisition. Symptoms were 

scored using the Positive and Negative Syndrome Scale (PANSS) (Kay, et al., 1987). 

Exclusion criteria were: (i) any neurological illness; (ii) history of cranial trauma with loss 

of consciousness longer than one minute; (iii) past or present substance abuse, except 

nicotine or caffeine; (iv) total intelligence quotient (IQ) smaller than 70; and (iv) for 

patients, any other psychiatric process, and (v) for controls, any current psychiatric or 

neurological diagnosis or treatment.  

The population here included overlaps in part with that of previous reports of our group 

in schizophrenia on functional networks based on evoked response (Gomez-Pilar, et al., 

2017a), graph complexity (Gomez-Pilar, et al., 2017b) and structural connectivity of 

specific tracts of the prefrontal region (Molina, et al., 2017) 

We obtained written informed consent from all participants after full printed 

information. The ethical committees of the University Hospital of Valladolid approved 

the study. 

2.2. Cognitive assessment 

Cognitive data from patients and controls were collected using: the Wechsler Adult 

Intelligence Scale, WAIS-III (IQ); the Wisconsin Card Sorting Test (WCST; completed 

categories and percentage of perseverative errors); and the Spanish version of the Brief 

Assessment in Cognition in Schizophrenia Scale (BACS) (Segarra, et al., 2011). 

2.3. MRI acquisition and processing 

Acquisitions were carried out using a Philips Achieva 3 Tesla MRI unit (Philips Healthcare, 

Best, The Netherlands) at the MRI facility at Valladolid University, including anatomical 

T1-weighted and diffusion-weighted images. For the T1-weighted images, acquisition 

parameters were: turbo field echo (TFE) sequence, 256 x 256 matrix size, 1 x 1 x 1 mm3 

of spatial resolution and 160 slices covering the whole brain. About the diffusion 

weighted images, the acquisition protocol parameters were: 61 gradient directions and 

one baseline volume, b-value = 1000 s/mm2, 2 × 2 × 2 mm3 of voxel size, 128 × 128 matrix 

and 66 slices covering the entire brain. Total acquisition time was 18 minutes. 

The processing pipeline of the acquired MRI volumes is designed to obtain structural 

connectivity matrices by using both the anatomical (T1-weighted) and diffusion images 

(Fig. 1). 

First, non-brain structures were removed from the T1 images, using BET, the brain 

extraction tool from the FSL software suite (http://fsl.fmrib.ox.ac.uk) (Smith, 2002). 

After that, the segmentation of 84 cortical structures was performed employing 

Freesurfer (https://surfer.nmr.mgh.harvard.edu) (Desikan, et al., 2006; Fischl, et al., 

2004). From the same T1 images, gray matter, white matter and cerebrospinal fluid (CSF) 

were also segmented, and subcortical gray matter structures were obtained using FAST 

https://surfer.nmr.mgh.harvard.edu/
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and FIRST utilities from FSL, respectively (Patenaude, et al., 2011; Zhang, et al., 2001), 

and combined into a volume called 5tt (5-tissue-type) image. 

In parallel, the brain was extracted from the diffusion weighted images (DWI) using 

DWI2MASK tool from MRtrix (www.mrtrix.org) (Dhollaner and Connelly, 2016). Also 

employing MRtrix, orientation distribution functions were estimated from the diffusion 

data using spherical deconvolution(Tournier, et al., 2007), which were later employed 

to generate anatomically-constrained tractography using both the diffusion data and 

the 5tt image (after registration). Two million streamlines were generated for each 

subject. 

In order to characterize diffusion at each voxel, diffusion tensors were estimated using 

a least squares method (Salvador, et al., 2005), and scalar Fractional Anisotropy (FA) 

volumes were computed from the diffusion tensors. FA quantifies the amount of 

anisotropy in the diffusion tensor, that is, how much it deviates from a totally isotropic 

diffusion. FA is usually interpreted as a descriptor of white matter integrity, and 

decreases in FA have been related to alterations in the white matter due to several 

factors (demyelination and axonal destruction, among others).  

Finally, connectivity matrices were constructed from the tractography results and the 

(registered) cortical segmentations. When a streamline between two cortical 

segmentations was found, the averaged FA was computed. Thus, 84x84 connectivity 

matrices were obtained using FA as connectome metrics (Fig. 2). A threshold was not 

applied to the obtained matrices; however, some matrix coefficients were equal to zero 

when a streamline was not found. 

Similar connectomics analyses have been reported in schizophrenia (Di Biase, et al., 

2017) and other neurocognitive conditions (Jones, et al., 2015) 

2.4. EEG recordings and processing 

2.4.1 EEG acquisition and preprocessing 

EEG recordings were obtained following MRI scans, after a resting period of 30 minutes. 

Participants performed a 13 minutes three-tone P300 oddball task (for a detailed 

description see (Gomez-Pilar, et al., 2017a). Electrode impedance was always kept under 

5 kΩ. Ground was placed at Fpz electrode and each channel was referenced over Cz 

electrode and re-referenced to the average activity of all active sensors (Bledowski, et 

al., 2004; Gomez-Pilar, et al., 2017b), yielding a total of 29 channels.  

The P300 task has several advantages for assessing functional network modulation in 

schizophrenia. In addition to its widespread previous use in the field: (i) it is easy to 

perform, thus decreasing bias related to lack of subject’s cooperation; (ii) its performance 

activates a large cerebral network (Linden, et al., 1999; Bledowski, et al., 2004); and (iii) 

differences in EEG global activation patterns have been reported in schizophrenia using 

this paradigm (Gomez-Pilar, et al., 2017a). 
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Signals were band pass filtered between 1 and 70 Hz. In addition, a zero-phase 50 Hz 

notch filter was used to remove the power line artifact. A three-step artifact rejection 

algorithm was applied to minimize electroculographic and electromiographic 

contamination (Bachiller, et al., 2015a): (i) an Independent Component Analysis (ICA) 

was carried out to discard noisy ICA components; (ii) after ICA reconstruction, EEG 

signals were divided into trials of 1 second length (ranging from 300 ms before to 700 

ms after stimulus onset); and (iii) an automatic method was applied to reject trials 

whose amplitude exceeded an adaptive statistical-based threshold, which consists of 

two stages. First, the mean and standard deviation of each channel was computed. Then, 

trials that exceeded mean ± 4 × standard deviation in at least two channels were discarded 

(Nunez, et al., 2017). After this adaptive artifact rejection, 91.21 ± 11.28 trials for 

controls and 86.33 ± 14.13 for patients were left for further analyses.  

In order to describe the event-related potential (ERP) waveforms, Figure 1S has been 

include in the Supplementary material. ERPs in the midline electrodes are shown in Figure 

S1.A. Figure S1.B shows the channel grand average waveforms. Finally, Figure S1.C 

depicts scalps maps with the P300 peak amplitude for both groups. 

 

2.4.2 EEG brain graphs 

  The functional brain network was characterized using EEG graphs. Electrodes were 

used to represent network nodes, whereas network edges were set by computing the 

neural coupling between pairs of electrodes. Specifically, neural coupling was 

established using the phase locking value (PLV) across successive trials (Lachaux, et al., 

1999). PLV in sensible to small oscillations of the EEG (Spencer, et al., 2003) and takes 

into account nonlinearities (van Diessen, et al., 2015), which is an intrinsic feature of 

EEG recordings. PLV can be computed using different approaches. In this study, the 

continuous wavelet transform (CWT) was used to extract the phase information from 

each trial (Bob, et al., 2008). Edge effects in CWT were considered by computing the 

cone of influence (COI) for pre-stimulus and response time windows. Only wavelet 

coefficients inside the respective COI were considered for the analyses to avoid edge 

effects. We refer to  our previous studies  (Gomez-Pilar, et al., 2017b) for detailed 

explanations about how wavelet coefficient were computed, the wavelet parameters 

were configured and the COIs were applied to the CWT decomposition in order to 

minimize edge effects. After using CWT approach to perform filtering and phase 

extraction in one operation (Bob et al., 2008), the PLV between two signals x(t) and y(t) 

can be obtained evaluating the variability of the phase difference across successive 

trials: 

PLVxy(k, s) =
1

Nt
|∑ eφxy(k,s,n)N

n=1 |,    (1) 

where Nt is the number of trials, φxy is the instantaneous phase difference between x 

and y signals, k is the time interval, and s the scaling factor of the mother wavelet (see 

(Bachiller et al., 2015) for details). 
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Thus, functional connectivity matrices based on PLV ranged between 0 and 1, where a 

value of 1 is obtained with completely synchronized signals and a value of 0 implies an 

absence of synchronization. Following the same methodology as in the structural data, 

functional connectivity matrices were not thresholded. 

2.4.3 Segmentation of the EEG response 

In order to assess the task-related modulation of the graph parameters along the odd-

ball task, two time windows were considered for comparison. On the one hand, the pre-

stimulus window (i.e. a period of expectation before the stimulus onset) ranges from -

300 ms to the stimulus onset. On the other hand, the response window was selected to 

capture the P3b response. In order to take into account the inter-individual variability 

of the P3b response, the response window was adaptively set for each participant. 

Firstly, the event-related wave was computed for each subject by the synchronized 

averaging of all the trials corresponding to attended target tones. Secondly, a low-pass 

finite impulse response filter with cut-off frequency of 8 Hz was applied to the evoked 

wave in order to obtain only the components related to delta and theta frequency 

bands. It is noteworthy that this filter was only applied to estimate the time window 

related to the EEG response. Thirdly, the maximum amplitude of the low-pass filtered 

evoked wave in the Pz channel was located into a window ranging from 250 to 550 ms 

from the stimulus onset (Bachiller, et al., 2015b). The corresponding sample to the 

maximum amplitude was used as a central time sample of the response window. Finally, 

the response window was set on ±150 ms around the central time sample. 

2.5. Graph-theory parameters 

From both the structural and functional connectivity matrices, we calculated three 

graph-theory parameters to characterize global properties of the brain network: (i) 

connectivity strength (i.e. mean network degree) by means of network density (D), also 

named network strength (ii) network segregation using CLC, and (iii) network integration 

by means of PL (Rubinov and Sporns, 2010).  For the sake of comparability and to obtain 

results independent of network size and network strength,, CLC and PL were computed 

over an ensemble of 50 surrogate random networks, which were used to normalize CLC 

and PL values obtained from the original networks (Stam, et al., 2009).  

Therefore, normalized CLC and PL can be defined: 

CLC =
C

Crandom
,     (2) 

PL =
L

Lrandom
,      (3) 

where C and L can be defined as follows: 



MRI and EEG networks in schizophrenia 
 

Gomez Pilar et al.                                                                                                                                    9 

C =
1

N
∑

∑ ∑ wijwilwjli≠l
j≠l

i≠j

∑ ∑ wijwili≠l
j≠l

i≠j

N
i=1 ,     (4) 

L =
N(N−1)

∑ ∑
1

Lij

N
j≠i

N
i=1

,     (5) 

In equation (4), wij can be referred to PLV between nodes i and j (for functional analyses) 

or the structural connectivity between two regions using the streamlines from MRI. N is 

the total number of nodes of the network (29 in EEG analyses, 84 in MRI). Finally, Lij is 

defined as the inverse of the edge weight (Stam et al., 2009). 

With regard to the EEG functional network, parameters were computed into two 

frequency ranges. They were selected based on their relevance for the task-related 

modulation of the EEG during P300 tasks shown in schizophrenia in previous studies: the 

global band (from 1 to 70 Hz)  (Gomez-Pilar, et al., 2017a) and the theta band (from 4 

to 8 Hz)  (Bachiller, et al., 2014; Doege, et al., 2009). A diminished task-related 

modulation of theta activity during an oddball task was found in schizophrenia, but not 

in faster frequency bands (Bachiller et al., 2014). In addition, the assessment of the theta 

band showed abnormalities in the brain network reconfiguration in the secondary 

functional pathways in schizophrenia (Gomez-Pilar et al., 2017b). On the other hand, the 

global band could be also useful to assess the specificity of the theta band. 

Functional network parameters during pre-stimulus and its corresponding task-related 

modulation (i.e. difference between the response and the pre-stimulus windows) were 

used for statistics.  

Structural connectivity network parameters will be referred to as dMRI-PL, dMRI-D and 

dMRI-CC, and functional network parameters as EEG-PL, EEG-D and EEG-CLC.  

2.6. Statistics 

We compared socio-demographic data (age, sex, education years and parental 

education) between patients and controls (t or χ2 tests when appropriate). Each 

subgroup of patients (i.e., those with only EEG and those with EEG plus dMRI data) was 

compared to the corresponding controls.  

2.6.1 Comparisons of graph-theory parameters 

After testing normality and homoscedasticity of data distribution using Kolmogorov-

Smirnov and Levene tests, we compared functional (EEG-based) and structural (dMRI-

based) graph-theory parameters between patients and controls using Student´s t-tests. 

Within-group changes in functional network parameters were assessed using t-tests for 

related samples. After Bonferroni adjustment, p level was set to 0.05/15=0.003. 
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For the sake of interpretability, we studied the relationship between structural 

connectivity parameters (dMRI-PL, dMRI-D and dMRI-CLC) and the average FA values in 

identifiable relevant white matter tracts. With this analysis, it could be easier to interpret 

the results of graph-theory data in terms of integrity of white matter tracts. To do this, 

we used the methodology employed in a previous study (Molina, et al., 2017), in which 

FA was assessed in tracts connecting prefrontal cortex (PFC) with other relevant regions. 

Correlation coefficients between structural connectivity network parameters and FA 

values in these tracts were computed, with Bonferroni adjustment with p set to 0.001. 

When statistically significant differences in network parameters were found between 

patients and controls, we compared the corresponding values between FE and stable 

chronic patients using Mann-Whitney U-tests for independent samples, to discard a 

major effect of chronicity in those differences.  

2.6.2 Association between structural and functional networks 

The main hypothesis of the study was that the structural connectivity of the brain 

network would determine the pre-stimulus functional network properties and/or its 

task-related modulation. This was studied using stepwise multivariate regression 

models. Since significant correlations between different structural variables were found, 

to avoid collinearity effects we performed principal component analyses (PCA) 

separately with structural (dMRI) and functional (EEG) variables for global and theta 

bands. This allowed a priori reducing the number of comparisons for further analyses, 

thus reducing the Type I errors risk. Individual structural and functional network factor 

scores were introduced respectively as independent and dependent variables in the 

regression model aimed to predict functional properties from structural network data.   

2.6.3 Clinical and cognitive correlates 

Next, we studied the cognitive and clinical correlates of graph-theory parameters for the 

patients using stepwise multivariate regression models (for structural and functional 

data). To calculate a global score summarizing cognition, individual cognitive scores 

were introduced in a PCA. The resulting individual scores were saved and introduced as 

dependent variables in the model. Possible associations between graph-theory 

parameters and symptoms were similarly assessed.  

To discard major confounders, correlation coefficients were calculated between graph-

theory parameters and both illness duration and current treatment doses. 

3. RESULTS  

There were no statistically significant differences between patients and controls in age 

and sex distribution in the whole sample, nor between patients and controls with dMRI 

data. Patients had fewer study years and a generalized cognitive deficit (Table 1).  
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3.1. Comparison of graph-theory parameters 

3.1.1 Structural parameters 

Patients showed statistically significant longer mean dMRI-PL values than controls 

(t=2.20, df=58, unadjusted p=0.03; Figure 3).  

Values of dMRI-PL were inversely associated to FA values in relevant tracts linking PFC 

with anterior cingulate, superior temporal, insular and superior parietal cortices and 

hippocampus and caudate. Moreover, dMRI-CLC and dMRI-D values were directly 

associated to FA values in these tracts (3.2.3 section).  

3.1.2 Functional parameters 

Both EEG-PL and EEG-CLC in the global band and EEG-D in the theta band showed a 

significant increase from pre-stimulus to response within patients and control groups, 

which remained significant only in the controls after Bonferroni adjustment (table 2). 

Controls, but not patients, showed a significant increase in EEG-CLC and EEG-PL values 

in the theta band from pre-stimulus to response (Table 2). Therefore, a significant 

positive task-related modulation of EEG-CLC and EEG-PL values was found in this band 

only in controls. 

In the global band, pre-stimulus window EEG-D was significantly higher for patients 

(t=2.52, df=115, unadjusted p=0.03; Figure 3; Table 2), without significant differences in 

the corresponding task-related modulation. 

In the theta band, pre-stimulus EEG-D was higher (t=2.637, df=115, p=0.010), and EEG-

PL task-related modulation was lower (t=-2.128, df=115, p=0.035) for patients (Figure 3; 

Table 2).  

Between-group differences in functional and structural graph-theory parameters had 

medium effect sizes (Cohen´s d; Table 2), although these differences would not survive 

after Bonferroni adjustment.  

3.1.3 Comparison between FE and chronic patients 

As compared to the FE subgroup, we found larger structural PL in the chronic patients, 

while no differences were obtained between patient subgroups in global and theta band 

pre-stimulus density nor in theta band modulation (Supplementary material, Table S3). 

3.2. Association between structural and functional networks  

3.2.1 Correlations among graph-theory parameters: PCA 

Correlations were high among graph-theory parameters based on structural (dMRI-CLC 

vs. dMRI-D r=0.802, p<0.001; dMRI-CLC vs. dMRI-PL r=-0.515, p<0.001) and functional 

data in the global (EEG-CLC vs. EEG-PL r=0.791, EEG-CLC vs. EEG-D r=0.512, p<0.001) and 

in the theta bands (EEG-CLC vs. EEG-PL r=0.919, p<0.001; EEG-CLC vs. EEG-D r=0.631, 
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p<0.001). Therefore, independent variables for the regression models were calculated 

from PCAs. Eigenvalues higher than the unit and scree-plots were used to select the 

number of factors, saving individual factor scores. PCA results are summarized in Table 

S2. 

The PCA for structural parameters yielded one factor explaining 73.07% of variance 

(eigenvalue 2.192), with positive coefficients for dMRI-CLC and dMRI-D and negative for 

dMRI-PL. Factor scores were statistically significant lower for patients (mean -0.235, sd 

1.125) than for controls (mean 0.294, sd 0.769; df=54, t=2.01, p=0.049). 

PCA of EEG graph-theory parameters in the global band yielded a three factors solution 

explaining 88.49% of variance, respectively contributed by EEG-CLC, EEG-PL and EEG-D 

task-related modulation (42.40% variance, eigenvalue 2.544), pre-stimulus EEG-PL and 

EEG-CLC (25.39% variance, eigenvalue 1.52) and both pre-stimulus and task-related 

modulation of EEG-D (20.70% variance, eigenvalue 1.242). Scores for the third factor 

were significantly larger for patients (mean 0.300, sd 1.138) than for controls (mean -

0.134, sd 0.893, t=2.26, df=115, p=0.026). 

In the theta band, a two-factor solution was found. The first was positively related to 

task-related modulation of EEG-CLC, EEG-PL and EEG-D (53.07% variance, eigenvalue 

3.18), whereas the second factor was positively related to pre-stimulus EEG-CLC, EEG-

PL and EEG-D (23.55% variance, eigenvalue 1.41). Scores for the first factor were smaller 

at trend level for patients (mean -0.294, sd 0.759) than for controls (mean 0.119, sd 1-

090, t=-1.86, df=115, p=0.065). 

3.2.2 Prediction of functional scores based on structural scores  

For the healthy controls, structural factor scores predicted functional global band pre-

stimulus (EEG-PL and EEG-CLC) scores (R2=0.222, df=1,24, F=6.86, β=-0.472, p=0.015). 

This relation was not significant for patients (R2=0.008, df=1,29, F=0.23, β=-0.090, 

p=0.606). 

In the patients, structural factor scores inversely predicted values of the first factor in 

the global band (task-related modulation of EEG-PL and EEG-CLC) (R2=0.172, df=1,29, 

F=6.03, β=-0.415, p=0.02; Figure 4a).  Therefore, in the patients, larger dMRI-CLC and 

dMRI-D values were associated to smaller task-related modulation of EEG-PL and EEG-

CLC. Since dMRI-PL contributed negatively to the structural factor, that negative 

association between structural and functional factors implies that shorter dMRI-PL will 

predict larger EEG-PL and EEG-CLC task-related modulation. 

In the patients structural factor scores did not predict functional parameters that had 

shown significant differences with controls: task-related modulation in the theta band 

(R2=0.001, df=1,29, F=0.006, β=0.015, p=0.93), pre-stimulus EEG-D in the global  band 

(R2=0.024, df=1,29, F=0.075, β=-0.15, p=0.42) and pre-stimulus (EEG-CLC, EEG-PL and 

EEG-D) in the theta band (R2=0.008, df=1,29, F=0.244, β=0.091, p=0.34).  
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For the sake of interpretability, we calculated Pearson´s correlations between individual 

d-MRI and EEG graph parameters. dMRI-CLC was negatively associated in the patients 

to task-related modulation of EEG-PL (r=-0.383, p=0.03) and EEG-PL (r=-0.495, p=0.005) 

in the global band. There were no significant correlations between task-related 

modulation in theta band parameters and individual dMRI-based graph parameters (-

0.28>r>0.166). 

 

3.2.3 Structural networks and specific tracts 

Structural PL was inversely associated to FA (n=55) in the tracts linking homolaterally 

dorsolateral PFC with right cingulate (r=-0.299, p=0.028), left cingulate (r=-0.357, 

p=0.008), right hippocampus (r=-0.499, p<0.001), left caudate (r=-0.446, p=0.001), left 

parietal (r=-0.394, p=0.003), left superior temporal (r=-0.359, p=0.007), right superior 

temporal (r=-0.478, p<0.001), left insula (r=-0.322, p=0.016) and right insula (r=-0.359, 

p=0.007). No positive correlations were found between structural PL and FA values. 

Structural CLC was directly related to FA in the tracts linking homolaterally dorsolateral 

PFC with right hippocampus (r=0.508, p<0.001), left parietal (r=0.392, p=0.003) and right 

parietal (r=0.273, p=0.044). Similarly, structural density was directly related to FA in the 

tracts linking homolaterally dorsolateral PFC with left hippocampus (r=0.328, p=0.016), 

right hippocampus (r=0.404, p=0.002), left thalamus (r=0.337, p=0.013), left caudate 

(r=0.268, p=0.050), left parietal (r=0.542, p<0.001), right parietal (r=0.435, p=0.001), left 

superior temporal (r=0.331, p=0.014), right superior temporal (r=0.475, p<0.001), left 

insula (r=0.316, p=0.019) and right insula (r=0.424, p=0.001). 

Only associations at p≤0.001 were significant after Bonferroni adjustment. 

3.3 Cognitive and clinical correlates  

The factor analysis of cognitive scores yielded a single factor (eigenvalue 3.449), with 

positive coefficients for all but percent of perseverative errors, explaining 54.11% of the 

total variance.  

Scores of the first factor in the theta band (modulation) directly predicted cognitive 

performance in the patients (R2=0.312, df=1,28, β=0.558, F=12,22, p=0.002; Figure  4b). 

Structural values were not associated to cognition in patients.  

Positive symptoms were inversely associated to structural network factor scores 

(R2=0.329, df=1.29, F=13.21, β=-0.573, p=0.001; Figure 4c), therefore positively 

associated to dMRI-CLC and dMRI-D and inversely to dMRI-PL. The first factor in the 

global band (task-related modulation of EEG-PL and EEG-CLC) positively predicted 

positive symptoms (R2=0.235, df=1,35, F=10,74, β=-1.274, p=0.002; Figure 4d). To 

further clarify this point, we calculated the partial correlation coefficients  between 

positive symptoms and structural factor scores controlling for global band task-related 
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modulation (r=-0.459, p=0.006) and between positive symptoms and global band task-

related modulation controlling for structural network values (r=0.432, p=0.01), 

supporting the independence of the associations.  

3.4 Confounding factors 

Duration of illness was inversely associated to structural factor scores (r=-0.599, 

p=0.001). Thus, larger duration would imply smaller dMRI-CLC and dMRI-D as well as 

longer dMRI-PL.  Current antipsychotic dose was not significantly related to structural (-

0.069<r<0.148, p=n.s.) nor functional (-0.040<r<0.183, p=n.s.) graph-theory parameters.  

 

4. DISCUSSION 

Global band network characteristics a baseline in control and its task-related modulation 

in patients were predicted by structural network parameters. EEG-PL and EEG-CLC in the 

global band and EEG-D in the theta band showed a significant task-related modulation 

only in controls after adjustment for multiple comparisons. Although unadjusted, 

patients showed larger dMRI-PL, higher pre-stimulus EEG-D at both global and theta 

bands and reduced functional task-related modulation of EEG-PL at the theta band, 

without any significant association between these structural and functional alterations. 

In patients, structural connectivity and theta task-related modulation respectively 

predicted positive symptoms and cognition.  

Network parameters have been calculated from scalp sensors in the present work. 

Therefore, the connectivity estimates are not derived from true sources of the 

corresponding activity involved in task processing. Volume conduction effects imply that 

signals from different sources arrive to different sensors, hampering the estimation of the 

connectivity among the original activity sources (Brunner, et al., 2016; Van de Steen, et 

al., 2016).  Our functional estimates are therefore to be considered just a global outline of 

the functional network characteristics and their modulation with cognitive activity. 

However, this outline may contain useful information regarding characteristics such as 

local clustering, mean path length and density of functional connections. They can be 

relevant to understand differences between patients and controls in terms of pre-stimulus 

network organization and their change with cognition.  Source estimates using procedures 

such as Low Resolution Tomography (LORETA) might allow identifying activity sources 

from which PLV values could be calculated and among which structural connectivity 

could be assessed. This approach would be useful to describe effective connectivity 

relations among these sources, which can be of interest for the pathophysiology of 

psychosis. Those procedures, however, are not completely reliable, and the inverse 

solution problem remains unsolved. Therefore, the functional global outline here describe 

can hold a significant value, in particular its fast modulation with cognition; although 

only indirectly reflecting the characteristics of the underlying sources.  
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We calculated structural connectivity parameters using FA values from white matter 

tracts linking anatomical regions and functional connectivity using phase similarity of 

EEG signals between sensors. Both measurements summarized the same properties of 

the respective networks, and the prediction of global band pre-stimulus (controls) and 

task-related modulation (patients) functional values from structural scores supports the 

relation of both kinds of networks. Caution is necessary when considering these 

relations, given the above mentioned possible influence of volume conduction effects. 

Remarkably, abnormalities in structural and functional networks were unrelated in the 

patients.  

The lower factor scores in the patients for structural connectivity (positively loaded for 

dMRI-CLC and dMRI-D and inversely related to dMRI-PL), suggest a reduced integrity of 

white matter connectivity in schizophrenia among nearby (reflected in lower CLC) and 

distant (longer PL) regions. The larger dMRI-PL in our patients is coherent with reports 

of reduction of global communication paths (Griffa, et al., 2015; van den Heuvel, et al., 

2013) and lower FA in schizophrenia, likely reflecting alterations of long-range tracts 

(Ellison-Wright and Bullmore, 2009; Patel, et al., 2011).  

To our notice, no previous study has explored the structural underpinnings of alterations 

of fast task-related modulation in functional networks in schizophrenia. Odd-ball task 

performance involves the coordination of different brain regions (Linden, et al., 1999). 

For both groups, EEG-PL and EEG-CLC in the global band increased from pre-stimulus to 

response windows, which implies that widespread local task-related activations 

elongate mean EEG-PL and increase EEG-CLC. In our cases, factor scores summarizing 

structural network (positively associated to dMRI-CLC and dMRI-D, and negatively to 

dMRI-PL) inversely predicted EEG-PL and EEG-CLC task-related modulation in the global 

band in patients. Thus, patients with smaller dMRI-CLC and dMRI-D, and larger dMRI-PL, 

would show a smaller global-band EEG-CLC and EEG-PL modulation. However, as 

compared to controls, patients did not show a deficit of functional EEG-PL task-related 

modulation in the global band, raising doubts about the significance for schizophrenia 

of that association between structural connectivity and global band modulation.  

Instead, we found task-related modulation deficits in patients in the theta band. 

However, modulation in the global band was not decreased in patients, which may relate 

to the relatively larger involvement of theta oscillations in P300 performance as shown 

by relative power and median frequency analysis during this task (Bachiller, et al., 2014). 

Using different methodologies, smaller increases of theta power have been found for 

schizophrenia patients during P300 tasks (Bachiller, et al., 2014; Doege, et al., 2009). 

Taken together, this suggests a higher impact on theta than global band connectivity in 

schizophrenia. Since theta oscillations have a role in synchronization between distant 

regions (von Stein, et al., 2000), the task-related modulation deficit in theta suggests a 

decreased capacity for integrating activity across cortical regions in schizophrenia, which 
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would be not closely associated to anatomical connectivity deficits according to our 

results.  

Such relative independence of structural and functional connectivity alterations 

surprised us, but could be explained by data showing that functional connectivity exists 

between regions without direct anatomical connection (Adachi, et al., 2012; Honey, et 

al., 2009). Thus, deficits of functional integration (in the theta band) would not require 

altered structural substrates. Coordination of activity between distant regions may be 

established indirectly, since functional connectivity is high among regions with common 

efferences to third regions, which may convey information to higher regions and may 

also receive similar afferences (Adachi, et al., 2012). Therefore, the alteration in relevant 

cortical hubs reported in schizophrenia (van den Heuvel, et al., 2013) may hamper the 

synchronization of regions not directly linked via with matter tracts. Although other data 

using anatomical and functional MRI show a substantial correspondence between the 

corresponding networks  (Hagmann, et al., 2008), this relation had not been assessed 

yet with EEG data. Considering all this, we must underline that structural deficits were 

found in our patients (larger dMRI-PL and lower factor scores) and were predictive of 

positive symptoms. This suggests the coexistence of alterations in both structural and 

functional networks (in the theta band) within schizophrenia, but not necessarily in the 

same cases. In other words, either both unrelated functional and structural networks 

alterations are found in schizophrenia or they are characteristics of different 

schizophrenia subgroups. The latter possibility seems favored by recent reports 

supporting that structural connectivity values can segregate biologically valid clusters 

within schizophrenia (Lubeiro, et al., 2016; Sun, et al., 2015; Wheeler, et al., 2015). Using 

EEG, both no difference (Jhung, et al., 2013; Rubinov, et al., 2009) and a decrease 

(Micheloyannis, et al., 2006) of CLC at rest were reported in schizophrenia, which may 

be coherent with that possibility.  

Remarkably, pre-stimulus EEG-D is higher in the patients. The density is the mean 

network degree (i.e. a measure of the network strength), implying a functional over-
connectivity at rest in schizophrenia. This result is in agreement with the increased 
prefrontal functional connectivity reported in schizophrenia (Anticevic, et al., 2015). The 
different patterns of dMRI-D and EEG-D in patients, and the lack of a significant relation 
between them, support the independence of the alterations in both networks. 
Speculatively, the increased EEG-D might relate to the deficit in GABA function observed 
in schizophrenia (Gonzalez-Burgos, et al., 2011; Thakkar, et al., 2017), which could lead 
to hyper-synchronization. In our study, functional connectivity is based on PLV values; 
thus, larger pre-stimulus theta EEG-D values suggest and excess of synchronization in the 
patients in this band, which could have a ceiling effect on task-related synchronization 
and might hamper theta EEG-D modulation. Therefore, an inhibitory transmission deficit 
could justify both the increased baseline D values and the lower modulation in the theta 
band, given its large implication in P300 task performance (Bachiller, et al., 2014; Doege, 
et al., 2009). This possible dependence on inhibitory function might also justify the lack 
of a significant prediction of theta modulation by structural connectivity.  
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The increase in theta task-related modulation values (i.e., larger functional density, CLC and PL 

in this band) predicted better cognition in the patients. There was only one cognitive factor, 

which is not surprising since the assessment instrument (BACS) included the dimensions where 

performance was previously found decreased in schizophrenia. That predictive relationship 

suggests that cognitive deficit is secondary to the decreased capacity of modulating the 

functional network in the theta band, perhaps indicating a lesser capacity to integrate the 

activity of different areas in a task.  

Our study is limited by the sample size of patients with both structural and functional 

network data available. A larger sample would be needed to test the hypothesis of distinct 

schizophrenia clusters based on structural connectivity. In addition, the assessment of 

nodal parameters could be of interest. However, connectivity analysis at the sensor level 

is very problematic due to effects of field spread (Schoffelen and Gross, 2009). Therefore, 

future studies should also be focused on increasing the number of EEG electrodes to 

provide more accurate results. Moreover, we cannot rule out an effect of treatment, 

although antipsychotic doses were unrelated to structural and functional graph 

parameters. It must be also noted that all EEG measures are influenced by volume 

conduction. In order to minimize this effect, a well-known strategy is based on the 

assumption that volume conduction affects the connectivity estimates in a similar way 

in two different experimental contrasts,  such as  pre-stimulus and response conditions 

(Bastos and Schoffelen, 2016). With regard to the use of dMRI-based connectivity, the 

accuracy of the cortical segmentation and the choice of the tractography method 

influence the obtained connectivity matrices. Although FA is the most usual dMRI 

descriptor for white matter integrity, it cannot identify the ultimate origin of 

connectivity alterations. 

We may conclude that task-related modulation deficit in the theta band in schizophrenia 

is independent from deviation from normal structural network properties. This, 

considered together with the different correlates of functional and structural 

connectivity alterations, might support different clusters within the schizophrenia 

syndrome. 
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Table 1: Demographic, clinical and cognitive data in patients and controls. Significant 

differences with respect to controls are shown for patients    * p<0.05; **p<0.001; 

***p<0.001. 

 Patients Controls 

 Schizophrenia 

 (EEG, n=39) 

Schizophrenia 

 (EEG+dMR; n=33) 

Controls (EEG; n=78) Controls 
(dMR+EEG; n=27) 

Age 33.053(8.801) 33.059(8.951) 
 

30.948 (10.839) 34.668 (11.150) 
 

Sex (M:F) 23:16 19:14 46:32 18:9 

CPZ equivalents 
(mg/d) 

377.901(196.934) 374.802(193.419) NA  

Duration(months) 95.169(117.388) 83.86(117.456) 
 

NA  

Education years 14.191(3.600) 14.882(3.051) 
 

16.561(2.254) 17.427(2.866) 
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PANSS Positive 
symptoms 

11.702(3.427) 11.388 (3.457) 
 

NA  

PANSS Negative 
symptoms 

17.571(7.309) 15.450 (5.057) 
 

NA  

Total symptoms 53.810(18.892) 53.313 (18.913) 
 

NA  

Total IQ 91.061(14.528) *** 94.701(11.789) *** 
 

113.209(11.088) 109.458 (12.165) 
 

Verbal memory 34.262(12.889) *** 35.315(12.345)*** 
 

51.115(8.194) 53.000(7.274) 
 

Working memory 16.151(5.010) *** 17.074(4.148) *** 
 

21.626(3.621) 23.140(2.723) 
 

Motor speed 58.879(13.781) *** 62.538(12.041) *** 
 

72.610(16.583) 85.503(8.154) 
 

Verbal fluency 18.352(5.730) *** 19.613(4.799) *** 
 

27.856(5.155) 28.827(5.177) 
 

Proccessing 
speed 
 

43.700(15.360) *** 45.641(14.672) *** 
 

69.588(14.378) 69.251(14.841) 
 

Problem solving 15.253(4.622) 16.317(3.418)  
 

17.524(2.571) 17.042(2.641) 
 

WCST 
perseverative 
errors (%) 

17.921(10.123) *** 21.152 (17.077) *** 
 

9.801(5.141) 8.221(3.573) 
 

WCST completed 
categories 

4.419(1.878) *** 4.812 (1.711) ** 
 

5.847(0.610) 5.879 (0.478) 
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Table 2. Structural and functional graph-theory parameters for patient and controls. Mean values are shown with the corresponding sd per 

group. Task-related modulation is defined as the difference for the corresponding functional parameter between its value at the response and 

pre-stimulus windows. 

 

 Structural (dMRI) network Functional (EEG) network 

 

                                               Global band                                    Theta band 

 Schizophrenia 

(n=33) 

Controls 

(n=27) 

Cohen´s 

d 

 Schizophrenia 

 (n=39) 

Controls 

(n=78) 

Cohen´s 

d 

Schizophrenia 

 (n=39) 

Controls 

(n=78) 

Cohen´s d 

CLC 0.995 (0.002) 0.995 (0.001)  Pre-stimulus 

Modulation 

1.006 (0.004) 
0.001 (0.001)# 
 

1.007 (0.005) 
0.001 (0.002)## 
 

 1.009 (0.006) 
-8.526E-05 (0.004) 
 
 

1.008(0.004) 
0.001 (0.004)# 
 

 

PL 1.018(0.009)* 1.013 (0.005) 0.686 Pre-stimulus 

Modulation 

1.087 (0.028) 
0.003 (0.008)# 
 

1.088 (0.027) 
0.004 (0.013)## 
 

 1.104(0.027) 
-0.001 (0.020)* 
 

1.099 (0.022) 
0.009 (0.025)# 
 

 
-0.432 

D 0.329 (0.032) 0.346 (0.030)  Pre-stimulus 

Modulation 

0.326 (0.078)* 
0.001 (0.009) 
 

0.297 (0.053) 
-0.001 (0.013) 
 

0.434 0.361 (0.043)* 
0.008 (0.025)# 
 

0.3381 (0.042) 
0.020 (0.032)# 
 

0.514 

* Statistically significant differences between patients and controls (p<0.05) ; # statistically significant within-group task-related 

modulation(response minus pre-stimulus; p<0.05; ## idem p<0.001. 
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Figure legends 

Figure 1. Processing pipeline yielding fractional anisotropy values to be used in graph-

theory calculations.  

 

Figure 2. (A) The 29 EEG channel labels superposed on the structural ROIs. EEG nodes 

(filled in white) were used to generate functional connectivity matrices from PLV values 

between each pair of electrodes. The figure illustrates the approximate placement of 

the EEG electrodes over the ROIs. The list of the 29 electrodes used in the study according 

to international 10-10 system is: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, T7, 

C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz and O2. 

 

Figure 2. (B) Schematic depiction (axial and sagittal views) of the relevant tracts 

(streamlines) from which fractional anisotropy (FA) was calculated to generate 

structural connectivity matrices. Streamlines were calculated between each pair of the 

84 nodes corresponding to the cortical segmentation are shown as spheres (their sizes 

are proportional to the actual size of the corresponding ROI). For the sake of clarity, only 

tracts linking PFC with anterior cingulate, superior temporal, insular and superior 

parietal cortices and hippocampus and caudate are drawn. 

 

Figure 3. Error bars corresponding to the graph-theory parameters with statistically 

significant differences between patients and controls (from left to right, structural PL, 

functional pre-stimulus D at the global and at the theta bands, and functional PL task-

related modulation at the theta band). Circles represent the mean value, while bars 

indicate the interval of confidence (95%). 

 

Figure 4. Scatterplots showing the association between (a) factor scores resulting from 

the principal components analysis of structural graph-theory parameters (X axis) and 

scores of the second factor resulting from the principal components analysis of 

functional graph-theory parameters in the global band (modulation; Y axis); (b) factor 

scores for the first factor from the principal components analysis of functional graph-

theory parameters at the theta band (modulation) and factor scores from the principal 

components analysis summarizing cognitive scores; (c) positive PANSS scores and global 

band PL and CLC task-related modulation and (d) structural network (right) Solid dots 

represent chronic patients, open dots represent FE patients.  


