TABLES

Table 1. Summary of the studies using pattern recognition techniques for classification of suspected OSAS patients using overnight oximetry.

Author	Dataset (n)	Gold	Aim	Variables	Classification	Se	Sp	Acc
(year)		standard		involving oximetry	technique	(%)	(%)	(%)
		(cut-off)						
Marcos et al.	187 adult patients	In-lab PSG	Binary	Statistical moments	MLP ANN with	87.76	82.39	85.58
(2010) [38]	with suspected	(AHI≥10	classification	in time and	Bayessian			
	OSAS	events/h)		frequency, spectral	training			
				and nonlinear				
Almazaydeh et	93 recordings from	In-lab PSG	Binary	Delta index, ODI3,	MLP ANN	87.5	100	93.3
al. (2012) [39]	32 healthy	(AHI≥5	classification	CTM				
	volunteers and	events/h)						
	OSAS patients							
Morillo &	115 patients with	In-lab PSG	Binary	Time, frequency,	PNN	92.42	95.92	93.91
Gross (2013)	suspected OSAS	(AHI ≥10	classification	stochastic, and				
[40]		events/h)		nonlinear features				
Álvarez et al.	320 including	In-lab PSG	Binary	Statistical moments	FLD + GAs	80.0	83.3	81.2
(2013) [41]	healthy and	(AHI≥10	classification	in time and	LR + stepwise	95.2	86.0	88.7
	suspected OSAS	events/h)		frequency, spectral	SVM + GAs	95.2	80.0	84.5
	patients			and nonlinear				
Hang et al.	616 patients with	In-lab PSG	4-class and	ODI2 and ODI4	SVM _{4-CLASS}	-	-	71.27
(2015) [42]	suspected OSAS	(AHI≥5,	binary		SVM (AHI ≥15)	87.36	93.05	90.42
		15, 30	classification		SVM (AHI ≥30)	87.71	86.56	87.33
		events/h)						
Huang et al.	124 patients with	In-lab PSG	Binary	ODI4	DTs	98.67	90.67	94.67
(2015) [43]	suspected OSAS	(AHI≥5	classification		MLP ANN	88.00	93.33	90.67
		events/h)			LVQ	80.67	79.33	80.00
					ANFIS	90.67	86.00	88.33

Acc: accuracy; AHI: apnea-hypopnea index; ANFIS: adaptive network-based fuzzy inference systems; ANN: artificial neural network; CTM: central tendency measure; DTs: decision trees; FLD: Fisher's linear discriminant; GAs: genetic algorithms; MLP: Multilayer perceptron; LR: logistic regression; LVQ: learning vector quantization; ODI2: oxygen desaturation index \geq 2%; ODI3: oxygen desaturation index \geq 3%; ODI4: oxygen desaturation index \geq 4%; OSAS: obstructive sleep apnea syndrome; PPN: probabilistic neural network; PSG: polysomnography; Se: sensitivity; Sp: specificity; SVM: support vector machines.

Table 2. Summary of the studies using pattern recognition techniques for regression of the AHI using overnight oximetry.

Author	Dataset (n)	Gold	Aim	Variables involving	Classification	Se	Sp	Acc	ICC
(year)		standard		oximetry	technique	(%)	(%)	(%)	
		(cut-off)							
Marcos et	240 patients	In-lab PSG	AHI	Statistical moments in time	MLPREGRESSION	-	-	-	0.91
al. (2012)	with suspected	(AHI≥5	estimation	and frequency, spectral and	$AHI_{OX} \ge 5$	91.82	58.82	84.03	-
[45]	OSAS	events/h)	(regression)	nonlinear features	$AHI_{OX}\!\ge\!\!15$	94.87	90.91	93.06	-
Ebben &	1467 patients	In-lab PSG	AHI	ODI4	QR	-	-	-	0.88
Krieger	with suspected	(AHI≥5	estimation		$AHI_{OX} \ge 5$	90	90	91	-
(2016) [46]	OSAS	events/h)	(regression)		$AHIox \ge 15$	82	96	91	-
					$AHI_{OX}\!\ge\!\!30$	76	98	95	-
Jung et al.	455 patients	In-lab PSG	AHI	ODI from morphological-	Hill regression	-	-	-	0.99
(2017) [23]	with suspected	(AHI≥5	estimation	based heuristic rules	AHIox≥5	98.6	94.4	97.8	-
	OSAS	events/h)	(regression)		$AHI_{OX}\!\ge\!\!15$	96.4	94.6	95.7	-
					AHI _{OX} ≥30	97.1	96.5	96.7	-

Acc: accuracy; AHI: apnea-hypopnea index; AHI_{OX} : estimated apnea-hypopnea index from oximetry; ANN: artificial neural network; ICC: intra-class correlation coefficient; MLP: Multilayer perceptron; ODI: oxygen desaturation index; ODI4: oxygen desaturation index \geq 4%; OSAS: obstructive sleep apnea syndrome; PSG: polysomnography; QR: quadratic regression; Se: sensitivity; Sp: specificity.

Table 3. Summary of the studies using ensemble learning techniques to assist in OSAS diagnosis from overnight oximetry.

Author	Dataset (n)	Gold	Aim	Variables involving	Classification	Se	Sp	Acc
(year)		standard		oximetry	technique	(%)	(%)	(%)
		(cut-off)						
Xie & Minn	25 patients	In-lab PSG	Binary	111 ECG-derived and	Bagging.DT (SpO ₂)	63.73	92.40	85.43
(2012) [50]	with	(AHI≥5	classification	39 SpO ₂ -derived	Bagging.DT (ECG)	45.49	92.96	81.41
	suspected	events/h)		features	Boosting.DT (SpO ₂)	72.64	87.18	83.64
	OSAS				Boosting.DT (ECG)	31.59	91.60	77.00
					Bagging.DT	65.64	93.35	86.60
					(SpO2+ECG)			
					Boosting.DT	71.82	87.59	83.75
					(SpO2+ECG)			
Hang et al.	566 patients	In-lab PSG	Binary	Anthropometric and	Ensemble SVMs:			
(2013) [49]	with	(AHI ≥15,	classification	demographic,	- Moderate-to-	89.34	90.15	89.62
	suspected	30 events/h)		symptoms, sleep and	severe OSAS			
	OSAS			life quality scores	- Severe OSAS	90.11	90.58	90.37
Sánchez-	115 patients	In-lab PSG	4-class	Statistical, spectral and	Ensemble (DT,	-	-	86.0
Morillo et al.	with	(AHI≥5,	(no-OSAS,	nonlinear features	SVM, PNN)			
(2014) [48]	suspected	15, 30	mild, moderate,		- Non-OSAS	91.7	96.7	-
	OSAS	events/h)	severe		- Mild	80.0	88.8	-
					- Moderate	73.1	94.4	-
					- Severe	86.7	95.3	-

Acc: accuracy; AHI: apnea-hypopnea index; DT: decision tree; ECG: electrocardiogram; OSAS: obstructive sleep apnea syndrome; PPN: probabilistic neural network; PSG: polysomnography; Se: sensitivity; Sp: specificity; SpO₂: blood oxygen saturation; SVM: support vector machines.

Table 4. Summary of the studies using oximetry to assist in OSAS diagnosis in patients with comorbidities and especial risk groups.

Author	Dataset (n)	Gold standard	Aim	Variables from	Classification	Se	Sp	Acc
(year)				oximetry	technique	(%)	(%)	(%)
Malbois et	68 obese patients	At-home RP	Binary	ODI3 and ODI4	ODI3, AHI ≥10	97	69	-
al. (2010)	before bariatric		classification	from oximetry	ODI3, AHI ≥30	100	93	-
[54]	surgery regardless		(AHI ≥10, 30	alone	ODI4, AHI ≥10	83	93	-
	suspicion of OSAS		events/h)		ODI4, AHI ≥30	91	96	-
Ward et al.	173 patients with	Unattended	Binary	ODI3 from	ODI3 >7.5	97	32	-
(2012) [52]	congestive heart	PSG (either in-	classification	portable oximetry	desaturations/h			
	failure regardless	lab or at-home)	(AHI≥15					
	suspicion of OSAS		events/h)					
Aaronson et	56 stroke patients	In-hospital	Binary	ODI4 from RP	ODI4 >15	77	100	-
al. (2012)	admitted to	attended RP	classification		desaturations/h			
[51]	rehabilitation		(AHI≥15					
	regardless suspicion of		events/h)					
	OSAS							
Chung et al.	475 patients before	At-home PSG	Binary	ODI3 from	ODI3, AHI ≥5	96.3	67.3	87.0
(2012) [56]	surgery regardless		classification	portable oximetry	ODI3, AHI ≥15	70.0	92.5	84.0
	suspicion of OSAS		(AHI ≥5, 15, 30	alone	ODI4, AHI ≥30	76.0	97.2	93.7
			events/h)					
Scott et al.	59 COPD admitted for	In-hospital PSG	Binary	Visual inspection	Manual visual	59	60	-
(2014) [19]	pulmonary		classification	and ODI4 from in-	inspection			
	rehabilitation		(AHI≥15	lab portable	Automated	60	63	-
	regardless suspicion of		events/h)	oximetry	ODI4			
	OSAS							
Mazière et	58 hospitalized elders	In-hospital	Binary	Variability index	Var. ind. >0.51	100	18.8	-
al. (2014)	regardless suspicion of	attended RP	classification	ODI3	Var. ind. >0.88	66.7	93.8	-
[57]	OSAS		(AHI≥15	ODI4	ODI3 ≥15	69.1	93.8	-
			events/h)	(automated)	ODI4 ≥15	33.3	100	-
Andrés-	407 patients suspected	In-hospital PSG	Regression of	Statistical,	MLP ANN:			
Blanco et al.	of OSAS with and		AHI, common	spectral, and	$AHI_{LAB}\!\ge\!\!15$			
(2017) [55]	without COPD		cut-offs	nonlinear	- Non-COPD	97.5	58.6	87.3
					- COPD	96.2	56.3	86.8
					$AHI_{HOME}\!\ge\!\!15$			
					- Non-COPD	97.5	24.1	78.2
					- COPD	86.5	37.5	75.0

Acc: accuracy; AHI: apnea-hypopnea index; AHI_{HOME}: estimated apnea-hypopnea index from at-home oximetry; AHI_{LAB}: apnea-hypopnea index from PSG; ANN: artificial neural network; COPD: chronic obstructive pulmonary disease; MLP: Multilayer perceptron; ODI3: oxygen desaturation index \geq 3%; ODI4: oxygen desaturation index \geq 4%; OSAS: obstructive sleep apnea syndrome; PSG: polysomnography; RP: respiratory polygraphy; Se: sensitivity; Sp: specificity; Var. ind.: variability index.

Table 5. Summary of the studies assessing oximetry-based test for OSAS in the clinical practice.

Author	Dataset (n)	Gold	Aim	Variables	Classification technique	Se	Sp	Acc
(year)		standard		from		(%)	(%)	(%)
				oximetry				
Antic et	195 patients with high	In-lab PSG	Simplified	ODI2	ODI2 >27 + nurse skilled	-	-	-
al. (2009)	risk of moderate-to-	(manual	CPAP		in CPAP (auto-titrating at			
[60]	severe OSAS	scoring of	management at		home) vs. ODI2 >27 +			
	- 100 nurse model	AHI)	home		manual setting by			
	- 95 physician model				specialist (in-lab)			
Chai-	157 selected patients	At-home	Binary	ODI3 from	OSA50 ≥5 + ODI3 _{AL} ≥16	88	82	83
Coetzer et	(4:1 high-to-low risk	PSG	classification	ApneaLink				
al. (2011)	rate according to BQ)	(manual	(AHI ≥30	(ODI3 _{AI})				
[11]		scoring)	events/h)					
Sharma et	592 OSAS positive	In-lab PSG	Binary	ODI4 from	ODI4≥5	89	48	-
al. (2017)	from 5062 obese	(AHI≥5	classification	portable	ODI4 ≥10	74	78	-
[61]	patients admitted to	events/h)	(AHI≥5	oximetry at	ODI4 ≥15	65	90	-
	cardiology, internal		events/h)	home	ODI4 ≥20	55	94	-
	medicine, family							
	practice services							

Acc: accuracy; AHI: apnea-hypopnea index; BQ: Berlin questionnaire; CPAP: continuous positive airway pressure; ODI2: oxygen desaturation index \geq 3%; ODI3_{AI}: estimated oxygen desaturation index \geq 3%; ODI3_{AI}: estimated oxygen desaturation index \geq 4%; OSAS: obstructive sleep apnea syndrome; OSA50: sleep questionnaire; PSG: polysomnography; Se: sensitivity; Sp: specificity.

Table 6. Summary of the studies comparing overnight portable oximetry with additional simplified screening test for OSAS.

Author	Dataset (n)	Gold	Aim	Simplified	Classification	Se	Sp	Acc	AUC
(year)		standard		screening test	technique	(%)	(%)	(%)	
Rofail et al.	98 patients with	In-hospital	Binary	At-home	ODI3 ≥5	77	89	-	-
(2010) [16]	clinical suspicion	PSG	classification	oximetry vs. at-	$RDI_{AF}\!\ge\!\!5$	80	87	-	-
	of OSAS		(AHI ≥5, 30	home airflow	ODI3 ≥30	90	85	-	-
			events/h)		$RDI_{AF}\!\ge\!\!30$	90	85	-	-
Ting et al.	151 male bus	In-hospital	Binary	In-lab oximetry	ODI3 ≥4.6(AHI ≥5)	97	78	-	0.95
(2014) [62]	drivers regardless	PSG	classification	+ actigraphy vs.	RDI≥8.2(AHI ≥5)	82	63	-	0.79
	suspicion for		(AHI ≥5, 15	in-lab airflow	PRI7≥18.6(AHI ≥5)	81	63	-	0.76
	OSAS		events/h)	from ApneaLink	ODI3≥15.6(AHI≥15)	91	87	-	0.94
				vs. in-lab HRV	RDI≥14.8(AHI ≥15)	82	69	-	0.81
					PRI7≥22.0(AHI ≥15)	82	68		0.75
Dawson et	73 patients with	In-hospital	Binary	At-home	ODI4 _{OX}	-	-	-	0.827
al. (2015)	clinical suspicion	PSG	classification	oximetry alone	ODI4 _{AL}	-	-	-	0.840
[64]	of OSAS		(AHI≥5	vs. at-home	RDI_{AL}	-	-	-	0.849
			events/h)	ApneaLink					

Acc: accuracy; AHI: apnea-hypopnea index; AUC: area under the receiver operating characteristics curve; HRV: heart rate variability; ODI3: oxygen desaturation index \geq 3%; ODI4_{AL}: oxygen desaturation index \geq 4% from ApneaLink; ODI4_{OX}: oxygen desaturation index \geq 4% from oximetry alone; OSAS: obstructive sleep apnea syndrome; PRI7: pulse-raising index of increases \geq 7%; PSG: polysomnography; RDI: respiratory disturbance index; RDI_{AF}: respiratory disturbance index from airflow; RDI_{AL}: respiratory disturbance index from ApneaLink; Se: sensitivity; Sp: specificity.

Table 7. Summary of the studies analyzing overnight oximetry and additional biomedical recordings together in order to develop improved screening test for OSAS.

Author	Dataset (n)	Gold	Aim	Biomedical	Classification	Se	Sp	Acc	AUC
(year)		standard		recordings	technique	(%)	(%)	(%)	
Heneghan	59 patients with	In-hospital	Binary	Portable	AHI _{OX-ECG} ≥5	95.8	100	-	-
et al. (2008)	clinical suspicion	PSG	classification	oximetry + ECG	$(AHI_{PSG}\!\ge\!\!5)$				
[68]	of OSAS		(AHI ≥5, 15	simultaneous to	$AHI_{OX\text{-}ECG}\!\ge\!\!15$	74.2	96.4	-	-
			events/h)	PSG	$(AHI_{PSG} \ge 15)$				
Yadollahi	66 patients with	In-hospital	Binary	Oximetry +	AHI _{OX-TS} ≥5	74.3	82.4	-	0.87
et al (2010)	clinical suspicion	PSG	classification	tracheal sounds	$(AHI_{PSG} \ge 5)$				
[66]	of OSAS		(AHI ≥5, 15	from PSG	$AHI_{OX\text{-}TS}\!\ge\!15$	84.6	96.0	-	0.96
			events/h)		$(AHI_{PSG}\!\ge\!\!15)$				
Barak-	140 patients with	In-hospital	Binary	Oximetry + PPG	AHI _{OX-PPG} ≥5	97.03	97.44	-	-
Shinar et al.	clinical suspicion	PSG	classification	from PSG	$(AHI_{PSG}\!\ge\!\!5)$				
(2013) [65]	of OSAS		(AHI ≥5, 15		$AHI_{OX\text{-}PPG}\!\ge\!\!15$	94.44	96.51	-	-
			events/h)		$(AHI_{PSG} \ge 15)$				
Li et al.	49 patients with	In-hospital	Binary	Portable	RDI _{OX-PPG} for group:				
(2017) [67]	clinical suspicion	PSG	classification	oximetry + PPG	- 5≤AHI _{PSG} <15	95.3	50.0	-	0.849
	of OSAS		(AHI ≥5, 15,	simultaneous to	- 15≤AHI _{PSG} <30	89.7	90.0	-	0.888
			30 events/h)	PSG	- $AHI_{PSG} \ge 30$	68.8	97.0	-	0.936
Abedi et al.	54 patients with	In-hospital	Binary	Oximetry +	SVM:				
(2017) [70]	clinical suspicion	PSG	classification	thoracic	- Obs vs. cent	92.7	89.5	87.8	-
	of OSAS		- Event-	respiratory	- No-OSAS vs.	99.5	90.2	96.0	-
			based	effort	OSAS				
			- Patient-						
			based						

Acc: accuracy; AHI: apnea-hypopnea index; AHI_{PSG}:apnea-hypopnea index from PSG; AHI_{OX-ECG}: estimated apnea-hypopnea index from oximetry and ECG; AHI_{OX-PPG}: estimated apnea-hypopnea index from oximetry and photoplethysmography; AHI_{OX-TS}: estimated apnea-hypopnea index from oximetry and tracheal sounds; AUC: area under the receiver operating characteristics curve; Cent: central apneic events; ECG: electrocardiogram; Obs: obstructive apneic events; OSAS: obstructive sleep apnea syndrome; PPG: photoprethysmography; PSG: polysomnography; RDI: respiratory disturbance index; RDI_{OX-PPG}: respiratory disturbance index from oximetry and photoprethysmography; Se: sensitivity; Sp: specificity; SVM: support vector machines.

Table 8. Summary of the studies using visual or semi-automated analysis of overnight oximetry in the detection of pediatric OSAS.

Author	Dataset (n)	Gold	Aim / Data	Technique	Classification	Se	Sp	Acc
(year)		standard			approach	(%)	(%)	(%)
		(cut-off)						
Velasco-	167 children	In-lab PSG	Binary	Nº of clusters of	Visual inspection	86.6	98.9	93.4
Suárez et al.	with suspected	(AHI≥1	classification /	$desaturations>2+N^{o}$				
(2013) [74]	OSAS	events/h)	In-lab	drops below 90% >1				
			oximetry					
Tsai et al.	148 children	In-lab PSG	Binary	Manual ODI4	ODI4 >2.05 (AHI	77.7	88.9	79.0
(2013) [77]	with suspected	(AHI ≥1, 5,	classification /		≥1)			
	OSAS	10 events/h)	In-lab		ODI4 >3.50 (AHI	83.8	86.5	85.1
			oximetry		≥5)			
					ODI4 >4.15 (AHI	89.1	86.0	87.1
					≥10)			
Van Eyck et	130 obese	In-lab PSG	Binary	Brouillette criteria	Manual scoring of	58	88	78
al. (2015) [18]	children with	(AHI≥2	classification /	Velasco criteria	desaturations	66	69	68
	suspected OSAS	events/h)	In-lab					
			oximetry					
Villa et al.	268 children	In-lab PSG	Binary	Clusters of deasturations	Semi-automatic			
(2015) [75]	with suspected	$(AHI \ge 1 \text{ and }$	classification /	and clinical history	- AHI≥1	91.6	40.6	85.8
	OSAS	5 events/h)	In-lab		- AHI≥5	40.6	97.9	69.4
			oximetry					

Acc: accuracy; AHI: apnea-hypopnea index; ODI4: oxygen desaturation index ≥4%; OSAS: obstructive sleep apnea syndrome; PSG: polysomnography; Se: sensitivity; Sp: specificity.

Table 9. Summary of the studies using automated analysis of overnight oximetry in the detection of pediatric OSAS.

Author	Dataset (n)	Gold standard	Aim / Data	Technique	Classification	Se	Sp	Acc
(year)		(cut-off)			approach	(%)	(%)	(%)
Chang et al.	141 children	In-lab PSG	Binary classif. /	Presence of mouth	LR	60.0	86.0	71.6
(2013) [76]	with suspected	(AHI≥5	Questionnaires	breathing, restless				
	OSAS	events/h)	and oximetry	sleep, ODI4				
Jing-Ru et al.	32 habitually	In-lab PSG	Binary classif. /	Automated ODI4	ODI4 >1 for	59.26	80.00	-
(2017) [78]	snoring children	(AHI≥1, 5, 10	Portable pulse		$cut\text{-}offAHI{\ge}1$			
		events/h)	oximetry watch		ODI4 >5 for	70.59	66.67	-
			(attended)		cut-off AHI ≥5			
					ODI4 >10 for	64.29	83.33	-
					cut-off AHI \geq 10			
Garde et al.	146 children	In-lab PSG	Binary classif. /	Time and spectral:	LDA			
(2014) [15]	with suspected	(AHI≥5	Portable oximetry	- SpO2		80.0	83.9	78.5
	OSAS	events/h)	(attended)	- $SpO2 + PR$		88.4	83.6	84.9
Álvarez et al.	50 children with	In-lab PSG	Binary classif. /	Statistical, spectral	LR (AHI≥1)	89.6	71.5	85.5
(2017) [27]	suspected OSAS	AHI ≥1, 3,	Port. oximetry	and nonlinear	LR (AHI ≥3)	82.9	84.4	83.4
		5 events/h	from at-home RP	features	LR (AHI≥5)	82.2	83.6	82.8
Gutiérrez-	50 children with	In-lab PSG	Binary classif. /	Spectral features	LR	85.9	87.4	86.3
Tobal et al.	suspected OSAS	(AHI≥3	$Airflow + SpO_2$	from airflow +				
(2015) [80]		events/h)	from at-home RP	ODI3				
Crespo et al.	50 children with	In-lab PSG	Binary classif. /	Nonlinear features	LR	84.5	83.0	83.5
(2017) [33]	suspected OSAS	(AHI≥3	Port. oximetry	and conventional				
		events/h)	from at-home RP	oximetric indices				
Vaquerizo-	298 habitually	In-lab PSG	Multiclass classif	Bispectrum, PSD,	3-class MLP:			
Villar et al.	snoring children	(AHI ≥1, 5, 10	/ In-lab oximetry	ODI3, age, sex,	- AHI≥5	61.8	97.6	81.3
(2017) [81]		events/h)		BMI	- AHI≥10	60.0	94.5	85.3
Hornero et al.	4191 habitually	In-lab PSG	Estimation AHI /	Statistical, spectral,	, MLP ANN:			
(2017) [82]	snoring children	(AHI ≥1, 5, 10	In-lab oximetry	nonlinear features,	- AHI≥1	84.0	53.2	75.2
		events/h)		and ODI3	- AHI ≥5	68.2	87.2	81.7
					- AHI≥10	68.7	94.1	90.2
Cohen & De	288 infants (<27	At-home PSG	Portable pulse	T/F feat. ECG	Linear	39.6	76.4	74.7
Chazal (2015)	weeks) healthy	(event-based	oximetry + ECG	T/F feat. ECG + T	discriminant	58.1	67.0	66.7
[79]	and suspected	classification)	(unattended)	feat. Oximetry				
	OSAS							

Acc: accuracy; AHI: apnea-hypopnea index; ANN: artificial neural network; BMI: body mass index; ECG: electrocardiogram; LDA: linear discriminant analysis; MLP: Multilayer perceptron; LR: logistic regression; ODI3: oxygen desaturation index \geq 4%; OSAS: obstructive sleep apnea syndrome; PR: pulse rate from oximetry; PSD: power spectral density; PSG: polysomnography; RP: respiratory polygraphy; Se: sensitivity; Sp: specificity; SpO₂: blood oxygen saturation from oximetry; T feat.: time domain features; T/F feat.: features from time and frequency domains.