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Abstract 

The study of the mechanisms involved in cognition is of paramount importance for the 

understanding of the neurobiological substrates in psychiatric disorders. Hence, this research 

is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we 

analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional 

brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG 

recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and 

thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to 

generate the time-varying functional network for each subject. Finally, pre-stimulus network 

connections were iteratively modified according to different models of network 

reorganization. This adjustment was applied by minimizing the prediction error through 

recurrent iterations, following the predictive coding approach. Both controls and 

schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., 

pathways between cortical brain regions weakly connected during pre-stimulus) for most of 

the subjects, though the ratio of controls that exhibited this behavior was statistically 

significant higher than for patients. These findings suggest that schizophrenia is associated 

with an impaired ability to modify brain network configuration during cognition. 

Furthermore, we provide direct evidence that the changes in phase-based brain network 

parameters from pre-stimulus to cognitive response in the theta band are closely related to the 

performance in important cognitive domains. Our findings not only contribute to the 

understanding of healthy brain dynamics, but also shed light on the altered predictive 

neuronal substrates in schizophrenia. 

 

Keywords  modeling; neural pathways; neural synchronization; schizophrenia; EEG. 
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1. INTRODUCTION 

It is well-established that disturbed cognition is a core feature of schizophrenia. 

Schizophrenia patients often exhibit global IQ deficits (Zanelli et al., 2010) and impairments 

in several cognitive domains, such as semantic memory (Rossell and Batty, 2008), executive 

function (Simonsen et al., 2011), and sustained attention (Sánchez-Morla et al., 2009), among 

others (Sheffield and Barch, 2016; Vöhringer et al., 2013). These impairments are likely 

related to alterations in prefrontal neural network dynamics in schizophrenia (Mukherjee et 

al., 2016; Poppe et al., 2016). However, the exact relationship between neural network 

abnormalities and cognitive impairment remains unclear. 

Cognition has not only been exhaustively studied using a neuropsychiatric approach both 

in healthy individuals (Leech and Sharp, 2014) and in schizophrenia patients (Moustafa and 

Gluck, 2011; Vöhringer et al., 2013), but also from a neuroscientific perspective (Li et al., 

2016; van den Heuvel and Fornito, 2014). In this context, a dynamical causal model of the 

brain behavior has been previously proposed (Friston et al., 2003). Despite the number of 

virtues of the model, dynamical causal modeling requires a high computational cost and the 

adjustment of several parameters (Thai et al., 2009). Additionally, the complexity of this 

model makes it rather difficult to draw direct relationship to brain networks without a strong a 

priori hypothesis. For these reasons, intuitive models focused on explaining the observed 

neurodynamics, could be helpful. In this regard, the framework of the predictive coding could 

be the basis to provide a Bayesian inference of the observed environment (Kilner et al., 2007). 

Predictive coding is based on minimizing prediction error through recurrent interactions 

among cortical hierarchy levels (Kilner et al., 2007). The neural activity encoding a particular 

brain state determines where the current dynamics are within the hierarchical sequence 

(Friston and Kiebel, 2009). Therefore, the encoding of a particular state would have a 



 4 

predictive capability of the subsequent state. Perceptual alterations could be then explained by 

abnormalities in the dynamic mechanisms of predictive coding (Hohwy et al., 2008). 

In this study, we propose an intuitive and reliable model of neural network dynamics 

during a cognitive task, in which the error between the modeled network and the real brain 

network is recurrently minimized. Thus, the brain network during the pre-stimulus activity 

(i.e., prior to stimulus presentation or perception) determines the brain network during the 

subsequent state. It is necessary, therefore, to characterize the brain network in different 

moments of the task. One approach being considered would be to directly compare these 

network parameters, i.e. an arithmetic difference, which would summarize the brain 

dynamics. This approach can be useful to characterize the network changes, but not the 

underlying neural mechanisms of such changes. A probabilistic model is, therefore, required 

in order to identify the neural underpinnings associated with the cognitive task. For that 

purpose, graph-theoretical analyses combined with EEG can be used to provide a 

mathematical representation of the functional brain network for studying rapid changes in the 

coordination and synchronization between different regions. Based on previous evidence 

about the importance of rapid changes in the cognitive processing (Varela et al., 2001), EEG 

becomes a suitable tool to analyze brain network changes in the range of milliseconds, 

unreachable by other neuroimaging techniques, such as fMRI. In addition, it is crucial the use 

of complementary network measures to obtain a comprehensive characterization of the 

functional brain network (Rubinov and Sporns, 2010). It is generally accepted that functional 

brain network is well-connected (Power et al., 2013) and complex (Liu et al., 2008). 

Furthermore, it exhibits an optimal balance between integration and segregation (Deco et al., 

2015), as well as between regularity and irregularity (Tononi et al., 1998). Abnormalities in 

the previously mentioned brain network features have been reported in schizophrenia (Liu et 

al., 2008; van den Heuvel and Fornito, 2014; Yeo et al., 2016). Therefore, a combination of 
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the previous network characteristics should be helpful to characterize brain network dynamics 

related to cognition in schizophrenia. 

Dysfunctional interactions between brain areas have been repeatedly suggested as a 

relevant contribution to explain the mental alterations in schizophrenia (Bjorkquist et al., 

2016; Friston and Frilh, 1995; Whalley, 2005). Within this framework, disrupted connectivity 

in long-range interactions plays a central role in this disorder (Dickerson et al., 2010; Friston 

et al., 2016; Gomez-Pilar et al., 2015; Sigurdsson et al., 2010). It is noteworthy that a 

relationship between long-range interactions and low frequency bands, such as delta and 

theta, has been proposed (Uhlhaas and Singer, 2010). Therefore, it is not surprising that 

noticeable findings have been usually reported in the literature about the strong association 

between schizophrenia and brain connectivity in the low EEG frequency bands (Ford et al., 

2002; Koenig et al., 2001; Uhlhaas and Singer, 2010). Alterations on low frequency bands 

have been related to a temporal misalignment of working memory function in schizophrenia 

(Kikuchi et al., 2007). In this regard, it was suggested that the neural activity underlying 

working memory may be abnormally dominated by slow frequencies in schizophrenia 

(Northoff and Duncan, 2016). Similarly, theta oscillations were proposed to be the basis for 

memory integration (Buzsáki, 2005) and top-down processing (Uhlhaas et al., 2008), both 

impaired in schizophrenia patients (Clare, 1993; Rossell and Batty, 2008). In addition, it has 

been suggested that cognitive control deficits may contribute to episodic memory deficits in 

schizophrenia (Barch and Sheffield, 2014), in which hippocampal and prefrontal regions 

could play an important role. This, jointly with our previous studies (Bachiller et al., 2015; 

Gomez-Pilar et al., 2018c), lead us to claim the importance of theta band to characterize the 

dynamical cognitive network. The analysis of the electric brain activity at low frequencies 

during the performance of an oddball task (related to working memory function and top-down 

processing) could then enhance our understanding of memory mechanisms in schizophrenia. 
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In the last decade, several studies assessed the brain network changes during a cognitive 

task in schizophrenia and healthy individuals, some of them by means of an oddball task 

(Bachiller et al., 2015; Reijneveld, 2011; Shim et al., 2014). They reported differences in 

connectivity and/or network features during the cognitive processing. However, for the sake 

of comparability, it would be appropriate to go a step further and identify a cognitive network 

model to explain the observed neural dynamics. In a previous study (Gomez-Pilar et al., 

2018c), we suggested that network differences between a healthy and a schizophrenia brain 

could be related with secondary pathways (i.e., pathways between nodes weakly connected) 

of the brain network during the pre-stimulus activity. These pathways would be strongly 

reinforced during the cognitive processing, while other connections would remain almost 

unchanged. These differences could be specifically linked to frequency bands related to 

memory and hippocampal activity (i.e. low frequency bands). 

Hence, the present study aimed at elucidating the dynamical network model during a 

cognitive task that better fits the brain network changes in a healthy population, as well as the 

possible abnormalities in schizophrenia. To avoid inter-subject variability, we performed an 

individualized approach that provides a specific network model for each subject. 
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2. METHODS AND MATERIALS 

2.1. Study subjects 

Thirty-five schizophrenia patients were recruited from the Psychiatry Department at the 

University Hospital of Valladolid (Spain). Diagnoses were made according to the Diagnostic 

and Statistical Manual of Mental Disorders, 5th edition (DSM-V) criteria (American 

Psychiatric Association, 2013). Fifty-one healthy control subjects, keeping a non-statistically 

significant age and gender ratio, were also included in the study. Inclusion/exclusion criteria 

were undertaken identically as in our previous studies (Bachiller et al., 2014; Gomez-Pilar et 

al., 2018c; Gomez-Pilar et al., 2017) (see Supplementary material for details). Cognitive data 

were collected using the Spanish version of the Brief Assessment in Cognition in 

Schizophrenia (BACS) (Segarra et al., 2011). Clinical and sociodemographic characteristics, 

as well as antipsychotic doses equivalents for patients, are summarized in Table 1. 

All controls and patients gave their informed consent to be included in the study. The study 

protocol was approved by the research board of the University Hospital of Valladolid (Spain) 

and was conducted in accordance with the Declaration of Helsinki guidelines. 

2.2. Cognitive EEG task 

All participants performed a three-stimulus oddball task. During the 13-minutes of the 

auditory oddball paradigm, participants heard binaural tones bursts presented in random series 

of 600 tones with an inter-stimulus interval randomly jittered between 1.16 and 1.44 s. Three 

different tones were presented: target (500 Hz-tone; probability; 0.2), distractor (1000 Hz-

tone; probability; 0.2) and standard (2000 Hz-tone; probability; 0.6). The participants were 

asked to keep their eyes closed and to press a button with their right hand whenever they 

detected the target tones. Only attended target tones were considered for further analyses. The 

behavioral performance of both groups is included in Table 1. After preprocessing, the 
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number of trials for target condition was 97.41 ± 9.98 for controls and 89.26 ± 17.04 for 

patients.  

2.3. EEG network estimation and model construction 

2.3.1 Acquisition protocol and network analyses 

EEG recordings were acquired at a sampling frequency of 500 Hz in 28 electrodes with a 

BrainVision® equipment (Brain Products GmbH; Munich, Germany) while the participants 

underwent the previously mentioned oddball task. Electrode impedance was always kept 

under 5 kΩ and each channel was referenced over Cz electrode. After a preprocessing to 

reduce the noise in the EEG recordings (see Supplementary material for details), brain 

networks were estimated. 

The connectivity values of the functional brain network were computed using the phase-

locking value (PLV) across successive trials in the theta frequency band (4-8 Hz). Once the 

connectivity matrices were obtained, five complementary network features were assessed: (i) 

integration, (ii) segregation, (iii) connectivity strength, (iv) complexity, and (v) irregularity. 

They were quantified by means of the characteristic path length, the clustering coefficient, the 

graph density, the Shannon graph complexity and the Shannon graph entropy, respectively. 

Since the last two measures have been recently introduced, they do not have widespread use. 

In summary, the graph irregularity of the brain network was characterized by the Shannon 

Graph Entropy, defined as follows (Gomez-Pilar et al., 2018c): 
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where W is the sum of all weights of the graph and T2log is a normalization factor 

introduced to ensure that 0 ≤ H ≤ 1. On the other hand, graph complexity was estimated using 

the Shannon Graph Complexity, defined as follows (Gomez-Pilar et al., 2018c): 
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where w  is the average of all edge values of the graph and  is the standard deviation of 

those values. More details about network matrices generation and network parameter 

definitions have been included in the Supplementary material. 

To evaluate brain network changes during the cognitive task, network measures were 

computed during the pre-stimulus of each trial (i.e., time interval ranging from 300 ms before 

to the stimulus to the stimulus onset) and during the subsequent brain response (from the 

stimulus onset to 700 ms after it), with special attention on the brain response related to P3 

potential (i.e., a time window of 300 ms centered on 300 ms) (Gomez-Pilar et al., 2017). This 

procedure is also useful to avoid confounding factors due to volume conduction effects 

(Bastos and Schoffelen, 2016). 

2.4. Dynamical network modeling during cognition 

The dynamical network model was individually identified for each subject. We considered 

six different models of brain dynamics. Among all possible models, the six models explained 

below were selected for being intuitive and easy to explain in physiological terms. As we will 

discuss later, we are aware that changes in the brain network are probably more complex. The 

considered models are the following: 

i) Reinforcement of primary connections. This model assumes that the primary 

connections of the brain (i.e. connections with higher values of connectivity 

measured by PLV) during pre-stimulus will suffer more marked changes during 

the cognition. Specifically, the connection values are increased during the 

cognitive processing.  

ii) Reinforcement of secondary connections. This model assumes that the 

secondary connections of the brain (i.e. connections with lower values of 
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connectivity measured by PLV) during pre-stimulus will suffer a more marked 

increase during cognition.  

iii) Reinforcement of a connection at random. This model assumes that the 

increase of the brain connections during the pre-stimulus can randomly occur. 

We also took into account three additional models, which are similar to models i), ii) and 

iii) but considering a decrease in the edge values: iv) weakening of primary connections, v) 

weakening of the secondary connections and vi) weakening of a connection at random. 

In order to determine the dynamical network model for each subject, an iterative algorithm 

was used. The schematic overview of the procedure is shown in Fig. 1. In summary, the 

algorithm modified the connections of the pre-stimulus activity following the models 

previously described. After repeating the algorithm for each of the six models, the model with 

the lowest mean square error (MSE) between the real and the modeled response was selected. 

It ensures that the selected model is the one that better fits the cognitive response. All the 

steps of the algorithm are detailed in the Supplementary material. 

2.5. Statistical analysis 

Statistical analysis was done with SPSS (version 19) and Matlab ‘Statistics and Machine 

Learning’ Toolbox (version 2013b). After checking that parametric assumptions were not 

meet, group differences in gender and age distribution were tested using the Chi-squared test 

and the Mann-Whitney U-test, respectively. Network measures showed a non-Gaussian 

distribution. Thus, depending on the number of groups, between-group differences were 

tested using the Mann-Whitney U-test or Kruskal-Wallis H test. The effects of age, gender 

and psychoactive drugs on PLV, network measures and cognitive data were assessed using 

Spearman’s bivariate correlation test (see “Confounding factors” of the Supplementary 

material for further details), which is robust against spurious since it deals with monotonic 

associations in a flexible manner. This test was also used for correlation analyses between 
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graph parameters, cognition and symptoms. Finally, Chi-squared test was used for the 

between-group comparison of the model distributions. 

For all the tests, a significance level of  = 0.05 was used. The Bonferroni correction was 

applied to control the multiple comparisons problem in the correlation analyses between 

network parameters and cognition. No correction for multiple comparison was performed 

when comparing graph parameters, since measures were obtained at network level, i.e. one 

value for each network.  
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3. RESULTS 

3.1. Network dynamics 

A visual comparison of the averaged brain networks before and after the stimulus onset 

(see Fig. 2) shows a global increase of the edge weight values for both groups, though this 

increase is more noticeable for controls. The brain networks were visualized using the 

BrainNet Viewer (Xia et al., 2013). To assess network evolution across time, a sliding 

window approach was used. Windows of 300 ms with an overlap of 90% were selected for 

network measures computation. Fig. 3A shows the associated dynamics for each network 

parameter and group. Statistically significant between-group differences for each time 

window were marked with black rectangles. The main differences were found around the N2 

and P3 event-related potentials. 

Fig. 3B depicts violin plots with the distribution of the averaged change of the network 

parameters from pre-stimulus to cognitive response for both groups. Statistically significant 

differences between groups for the change from pre-stimulus activity to cognitive response 

were obtained: integration (U(84)= 619; p <0.05), segregation(U(84)= 553.0; p <0.01), 

connectivity strength (U(84)= 559.5; p <0.01), complexity (U(84)= 670.5; p <0.05) and 

irregularity (U(84)= 670.5; p <0.05). In summary, brain network during pre-stimulus window 

has lower changes in the response window in schizophrenia patients compared to healthy 

controls. 

3.2. Modeling the network changes 

Network modeling with the three different scenarios (primary, secondary and random 

connection models) was applied to data obtained from the pre-stimulus window. Thus, the 

model that better predicts the cognitive response network using the pre-stimulus network was 

selected individually for each subject. The behavior of the modeling is shown in Fig. 4. On 
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average, the MSE between the network parameters in pre-stimulus window and the response 

window was 10.69% for controls and 2.96% for patients (from yellow to orange lines). 

Furthermore, the MSE between the predicted model and the cognitive response was 0.21% for 

controls and 0.07% for patients, which serves to exemplify the accuracy of the model. 

The procedure selected a single model for each subject. The distribution of the model for 

each group is shown in Fig. 5A. Secondary reinforcement model was selected for most of the 

subjects, especially in the control group. Models based on weakening network connections 

were selected only in 15% of the subjects (thirteen subjects: seven controls and six 

schizophrenia patients; more details are indicated in the Supplementary material). Statistically 

significant differences between groups in the model selection distribution were obtained 

(2(2, N = 73) = 6.6874, p < 0.05; Chi-square test). Likewise, MSE distribution of the 

network parameters in each cognitive model was also assessed for both groups (Fig. 5B). 

Within-group comparisons indicate that controls exhibited a statistically significant different 

MSE distribution (2(2, N = 44) = 22.0032, p < 0.001), but not schizophrenia patients (2(2, N 

= 29) = 2.6302, p > 0.05). In summary, the higher change from pre-stimulus activity to 

cognitive response for controls, the higher probability to model their behavior by a 

reinforcement of the secondary connections. The schizophrenia patients do not follow this 

tendency, as they do not exhibit a relevant change from pre-stimulus activity to the post-

stimulus period during the cognitive response. 

3.3. Cognitive correlates 

Interest in the assessment of correlations between cognition and brain functioning is 

growing, as it is becoming increasingly evident that it is a useful way to evaluate the 

heterogeneity of schizophrenia (Sheffield and Barch, 2016). As shown in Fig. 6, there was a 

noticeable relationship between connectivity strength modulation (measured as the percent of 

change from pre-stimulus to cognitive response) and cognitive parameters (z-score corrected).  
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Specifically, the connectivity strength was statistically significant correlated to processing 

speed (r = 0.472, p < 0.001), verbal fluency (r = 0.499, p < 0.001) and verbal memory (r = 

0.423, p < 0.001) after Bonferroni correction. The positive correlations indicate that the 

greater susceptibility to change in the pre-stimulus, the better cognitive performance. No other 

statistically significant correlations were found after Bonferroni correction. 

Additionally, we performed correlations between cognition and symptoms, as well as 

between network parameters and symptoms. All these correlations are shown in the 

Supplementary material. 
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4. DISCUSSION 

To the best of our knowledge, this is the first study that combine network modeling and 

EEG recordings to determine a model of network dynamics during cognition for healthy and 

schizophrenia subjects. The proposed network modeling effectively predicts the functional 

brain network of the cognitive response from the pre-stimulus activity. 

4.1. Disrupted brain dynamics of the phase-based mechanisms in schizophrenia 

Schizophrenia has been characterized by abnormal brain network reconfigurations, 

commonly described in the literature (Gomez-Pilar et al., 2017; Shim et al., 2014). These 

abnormal dynamics (see Fig. 3) suggest a disrupted phase-based mechanisms during the 

cognitive processing (Lakatos et al., 2013). 

In this study, a significant reduced dynamic capability of the network during the pre-

stimulus was observed in patients. This reduction is driven by the phase of the EEG theta 

band. The lack of change in schizophrenia patients was characterized by complementary 

network parameters. All of them showed statistically significant reduced changes, which 

involves an impaired ability to modify the main topological features of the brain network. The 

reduced flexibility of the network integration and connectivity strength during the task 

supports an impaired capability of the communication among brain network, which is in 

agreement with the results obtained by previous studies (Bob et al., 2008; Friston, 1998; Kim 

et al., 2003). The lower change on segregation in functional brain networks indicates lower 

local communication or less segregated neural processing (Rubinov and Sporns, 2010). 

Finally, a reduced change in graph regularity and graph complexity was also found for 

patients. The physiological interpretation of this result could be related to abnormalities in 

small-world structure (Liu et al., 2008; Micheloyannis et al., 2006) and, therefore, a reduced 

network efficiency (Bassett and Bullmore, 2006; Boccaletti et al., 2006). 
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The underlying biological mechanisms that influence the abnormal dynamics can have 

different explanations. From the graph theory point of view, a fMRI study reported a 

diminished number of hubs during a cognitive task in schizophrenia (Ma et al., 2012). These 

well-connected nodes typically increase the global integration and connectivity, as well as 

local segregation. Therefore, the lower the number of hubs in schizophrenia during a 

cognitive task, the lower the global integration, connectivity and segregation. From a 

physiological perspective, this lack of change can be related to the abnormal oscillatory 

behavior during a cognitive task in schizophrenia, which could elicit a lower synchronization 

between brain regions in comparison to healthy subjects. It could be explained by an 

abnormal balance between inhibitory GABAergic interneurons (Lewis et al., 2005; 

Moghaddam, 2003) and pyramidal neurons producing dysfunctionalities between excitation 

and inhibition processes, which is reflected in the phase measures. This affects to the neural 

pathways in long-range synchronization (Dickerson et al., 2010), providing abnormal phase-

based network measures. Hence, the result that the diminished EEG response was observable 

in complementary network parameters (see Figs. 3 and 4) suggests that different brain 

network domains are significantly affected by schizophrenia. 

4.2. Reinforcement of the secondary pathways as a predominant model 

The results show (Fig. 5A) that the predominant model of brain network dynamics during 

cognition in healthy and schizophrenia subjects involves a reinforcement of the secondary 

pathways of the pre-stimulus network (i.e., connections with lower phase synchronization 

between brain areas prior to stimulus perception). However, there are statistically significant 

differences in the model distribution between groups. 

In order to provide a reason of these differences, we rely on the predictive coding (Hohwy 

et al., 2008). In this study, we constructed generative models that minimize the error at each 

iteration following the main neurocomputational principle for the brain perception of the 
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environment (Hohwy et al., 2008). The recurrent error minimization until the most likely 

model has been obtained is formally equivalent to empirical Bayesian inference (Kilner et al., 

2007). This implies that abnormalities in the dynamical process of the brain reconfiguration 

would have a strong impact on the subsequent state. Following the aberrant salience 

hypothesis (Kapur, 2003), schizophrenia leads to an aberrant assignment of salience to the 

elements of one's experience. It suggests that the relevance assignment to the unexpected 

stimulus in an oddball task would be disrupted in schizophrenia and, as a consequence, would 

cause an increase in the prediction error. Therefore, the observed disrupted brain dynamics in 

schizophrenia patients yield a higher prediction error in schizophrenia subjects compared to 

controls. The abnormalities in the response network in schizophrenia, in turn, account for the 

cognitive deficits in this disorder.  

Additionally, for controls, it was found a statistically significant relationship between the 

amount of change from pre-stimulus to cognitive response and the model that better predicts 

the cognitive network. Fig. 5B shows that the secondary pathway reinforcement modeling is 

linked to a higher network reconfiguration in controls, which could be considered the ‘normal 

behavior’. However, schizophrenia patients did not show that trend. This was observed in the 

theta band, which supports the concept of the impaired top-down processing in schizophrenia 

(Uhlhaas et al., 2008). This lack of activation of the connections with low synchronization 

during pre-stimulus in several schizophrenia patients could be due to several reasons. 

Thereby, it could be related with abnormal structural connectivity networks (Gomez-Pilar et 

al., 2018a), with hyperactive functional connectivity in the patients during the pre-stimulus 

(Gomez-Pilar et al., 2018b), or with deficits in the inhibitory/excitatory circuits, usually 

linked to glutamate neurotransmission (Moghaddam, 2003), which could elicit abnormalities 

in the synchronization between brain regions.  
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Glutamatergic abnormalities could not only be related to the long-range synchronization in 

the theta band, but also to the way of organizing the connections during a cognitive task. 

While subjects are waiting for the next relevant stimulus, the brain is in a state of alert related 

to glutamate resting-state concentration in the perigenual anterior cingulate cortex (PACC) 

(Bai et al., 2015). This level of glutamatergic activity has a strong relationship with the pre-

stimulus oscillations. Therefore, possible abnormalities of glutamatergic concentrations in 

schizophrenia would affect to the predisposition to change of the pre-stimulus network (Bai et 

al., 2015). Furthermore, a special association between pre-stimulus activity levels and 

stimulus-induced activity has been suggested in previous studies (Bai et al., 2015). We can 

speculate that the aberrant network dynamics during cognition in schizophrenia may be driven 

by underlying abnormalities in the glutamate resting-state concentration in the PACC. Could 

these abnormalities impact on the cognitive network model of schizophrenia patients? Could 

it be the reason for the almost dichotomous distribution of the selected models in the 

schizophrenia group? 

A plausible hypothesis for explaining the heterogeneity of the selected models could be the 

extended concept that schizophrenia is a complex and heterogeneous disorder with 

distinguishable genotypes (Sheffield and Barch, 2016) and network abnormalities (Gomez-

Pilar et al., 2018a), which can influence the cognitive traits. Schizophrenia heterogeneity 

should not be related to the symptoms, but to underlying neural mechanisms, which are 

maybe phase-related. To address this heterogeneity, we measured the correlation between 

network topology features and the cognitive variables.  

4.3. Relationship between topological network measures and cognitive variables 

Our results showed a positive correlation between the modulation (i.e., change from pre-

stimulus to cognitive response) of the connectivity strength and three cognitive domains 

measured by means of the BACS: processing speed, verbal fluency and verbal memory. 
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Consequently, the higher averaged values of change in synchronization between brain regions 

would involve a better performance in the measured cognitive traits. Due to the novelty of our 

approach, we only have notice of one study that previously assessed the association between 

the modulation of network parameters and cognitive data in schizophrenia (Gomez-Pilar et 

al., 2017). Despite the difficulty to compare the correlations observed in this study with 

previous findings and for the sake of brevity, we link the present findings with previous works 

in the Supplementary material.  

4.4. Further steps towards a comprehensive neural cognitive model 

Despite the clues provided in this study to obtain a reliable model of the brain network 

dynamics during cognition, a number of questions remain unresolved. First, brain functioning 

is complex; probably it is more complex than the proposed model. It could result in losing 

relevant information about brain interactions likely related to the heterogeneity among 

subjects. For instance, complementary processes could be taking place, such as changes in 

specific connections or deactivations of a few well-connected pathways during pre-stimulus. 

Therefore, an almost infinite number of combinations of changes in synchronization could be 

analyzed to individually improve the model adjustment, but the generalization capability of 

the model would be likely lost. 

Second, the present study was focused on the theta frequency band. Knowing the 

importance of other frequency bands in the brain functioning, we focused on theta band 

because of its close relationship with memory processes, top-down control and long-range 

interactions in the brain, all of them involved in core features of the schizophrenia pathology. 

Additionally, it was not feasible to simultaneously determine the model for all the frequency 

bands due to the high computational cost for individually adjusting the more confident model. 

Future works should investigate network dynamics in other frequency bands to ascertain the 

predisposition to change of the pre-stimulus activity. 
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Finally, a hierarchical clustering analysis using both the graph measures and the 

cognitive/behavioral data could be useful to check the schizophrenia subgroups found by the 

proposed EEG model. However, a large number of observations would be needed for this 

kind of analysis, being insufficient the number of subjects of the present study. Future studies 

with larger number of subjects should address this issue. 

4.5. Conclusions 

We provided direct evidence of the predictive capability of the proposed model to ascertain 

the functional brain behavior during cognition. Our results support the idea that schizophrenia 

is associated with significant abnormalities in the relation between neural dynamics during the 

pre-stimulus and cognitive response, which are directly related to cognitive performance. 

Furthermore, we presented a new model of network organization during cognition based on 

graph theory measures, which could be used to differentiate behavioral phenotypes of 

schizophrenia. Our findings not only contribute to a further understanding of healthy neural 

dynamics during cognition, but also provide new insights for identifying the altered neural 

underpinnings of schizophrenia.  
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FIGURE LEGENDS 

 

Figure 1. Cognitive network modeling procedure. After the EEG acquisition, the pre-stimulus 

window and the response window were segmented. During the signal processing step, graph 

parameters in each window were computed from the phase-locking value (PLV) connectivity matrix. 

In the modeling step, the pre-stimulus connectivity matrix was modified by applying the different 

cognitive models under study. Finally, in the model selection step, the cognitive model and the 

iteration that obtained the minimum Mean Square Error (MSE) with respect to the network parameters 

in the response window were selected. 

Figure 2. Averaged brain networks for both groups before and after stimulus onset. Both 

groups show an increase in the edge weight values from the pre-stimulus (from -300 ms to the 

stimulus onset) to the response window (from 150 ms to 450 ms after the stimulus), though 

this increase is more noticeable for controls. To facilitate the visualization of the networks, a 

threshold was applied: only those connections with phase-locking values higher than 0.5 were 

depicted. The brain networks were visualized using the BrainNet Viewer (Xia et al., 2013). 

Figure 3. Time evolution of the network parameters. (A) Mean and standard error of the network 

parameters for controls (blue) and patients (red). Control subjects exhibit higher changes from pre-

stimulus (yellow) to cognitive response (orange) compared to patients. Statistically significant 

differences between the network parameter evolution across time of both groups are highlighted by a 

black rectangle (p < 0.05, Mann-Whitney U-test). The results indicate an impaired ability in patients to 

modify the functional brain network during an oddball task. (B) Boxplots and violin plots showing the 

distribution of the averaged change of the network parameters from pre-stimulus (yellow transparency 

in A) to cognitive response (orange transparency in A) for both groups. Statistically significant 

differences between groups are indicated with one asterisk (p < 0.05, Mann-Whitney U-test) or two 

asterisks (p < 0.01, Mann-Whitney U-test).  
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Figure 4. Prediction capability of the network modeling from the phase information of the theta 

band during the pre-stimulus window. Grand-average normalized network parameters for the pre-

stimulus window (yellow) and the real response window (dark orange). The network measures 

prediction obtained by the model from the phase information of the pre-stimulus window is also 

shown (light orange). The model fitting for both the controls and the patient groups is computed by 

minimizing the mean square error (MSE). 

Figure 5. Histogram of the selected models and mean square error (MSE) distribution for each 

model. (A) Percentage of subjects that best fit each model for controls and schizophrenia patients. The 

reinforcement of the secondary connections is the most frequently selected model for both groups; 

however, statistically significant differences between the histograms of controls and patients were 

found and marked with an asterisk (2 = 6.6874, p < 0.05; Chi-square test). (B) Change from pre-

stimulus to cognitive response of the network parameters measured by means of the mean square error 

(MSE) and grouping by the network model. Differences among models were statistically significant 

for controls and marked with an asterisk (2(2, N = 73) = 22.0032, p < 0.001; Kruskal-Wallis test), but 

not for patients (2(2, N = 73) = 2.6302, p > 0.05; Kruskal-Wallis test). 

Figure 6. Correlations between cognition and network parameter. Statistically significant 

correlations after Bonferroni correction for the comparison between cognition and network 

parameters: (i) normalized processing speed and change in connectivity strength (r = 0.472, p < 0.001; 

Spearman’s rank correlation coefficient); (ii) normalized verbal fluency and change in connectivity 

strength (r = 0.499, p < 0.001; Spearman’s rank correlation coefficient) and; (iii) normalized verbal 

memory and change in connectivity strength (r = 0.423, p < 0.001; Spearman’s rank correlation 

coefficient). 
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TABLES 

 

Table 1. Sociodemographic and clinical characteristics of schizophrenia patients and healthy 

control subjects 

  
Controls Patients Comparison 

  
Mean SD Mean SD t p 

Demographic 

data 
Age (years) 29.31 9.74 32.68 10.37 -1.510 0.135 

 
Gender 

(male:female) 
23:28 20:15 2 = 0.851 0.356 

Symptom 

Scale scores 
PANSS + - - 12.63 7.53 - - 

 
PANSS - - - 18.26 8.24 - - 

 
PANSS total - - 54 21.47 - - 

BACS scale 
Working 

memory 
20.67 4.00 15.79 5.31 4.601 < 0.001 

 

Processing 

Speed 
70.00 14.10 42.45 15.42 8.055 < 0.001 

 
Executive 

function 
17.18 2.63 15.57 3.44 2.311 < 0.05 

 Verbal memory 51.61 8.57 34.76 11.25 7.457 <0.001 

 Motor speed 72.16 14.11 47.34 14.69 4.415 <0.001 

 
Verbal fluently 27.89 5.77 17.44 6.39 7.103 <0.001 

Illness 

Drug 

equivalence 

(mg/d) 

- - 351.29 270.10 - - 

 

Duration 

(months) 
- - 84.45 117.40 - - 

Oddball task 
Reaction time 

(ms) 
242.43 33.06 277.23 47.32 -4.018 < 0.001 

 
Precision (%) 98.70 2.13 89.82 16.11 3.897 < 0.001 

 
Amplitude Pz 

(V) 
3.35 1.48 2.29 0.95 3.725 < 0.001 

 Latency Pz (ms) 448.78 86.22 457.49 117.11 -0.397 > 0.05 

PANSS: Positive and Negative Syndrome Scale 

BACS: Brief Assessment in Cognition in Schizophrenia  
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Figure 2. 
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