
SUPPLEMENTARY MATERIAL 

For the sake of replicability and completeness, additional methodological details and 

further analyses are included in this Supplementary material. 

 

Inclusion/exclusion criteria 

Among all the subject under study, exclusion criteria were: (i) any neurological illness; 

(ii) history of cranial trauma with loss of consciousness longer than one minute; (iii) past 

or present substance abuse, except nicotine or caffeine; (iv) total intelligence quotient 

(IQ) smaller than 70; and (iv) for patients, any other psychiatric process, and (v) for 

controls, any current psychiatric or neurological diagnosis or treatment. 

 

Preprocessing 

Signals were filtered between 1 and 70 Hz by means of a band-pass finite impulse 

response filter. A 50 Hz notch filter was also used to remove the power line artifact. 

Lastly, a three-steps artifact rejection algorithm was applied to minimize, mainly, 

electrooculographic and electromyographic contamination (1): (i) Independent 

Component Analysis (ICA) was carried out and, after visual inspection of a specialist, 

ICA components associated with artifacts were discarded (2); (ii) after ICA 

reconstruction, EEG data were divided into trials of 1 second length ranging from 300 ms 

before to 700 ms after stimulus onset, which ensures no overlapping with subsequent 

trials; and (iii) an automatic and adaptive trial rejection was performed by applying a 

statistical-based thresholding method. 

 

Continuous wavelet transform and edge effects 

EEG recordings are non-stationary signals with changing properties over time. 

Wavelet transform takes into account these changes, providing an appropriate alternative 

to Fourier transform.  

In this study, complex Morlet was used as mother wavelet. It provides a biologically 

plausible fit to EEG data (3). Complex Morlet wavelet is characterized by its localization 



in time (Δt) and frequency (Δf). In this study, Δt and Δf were set to 1 to obtain a balanced 

relationship at low frequencies (1). 

The coefficients of the continuous wavelet transform (CWT) are computed as the 

convolution between the EEG signal in each artifact-free trial, x(t), and scaled and 

translated versions of the mother wavelet,  t : 
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where s represents the dilation factor (s = si, i = 1, …, M), k is the translation factor and 

the asterisk denotes the complex conjugation. The dilation factor was set to include 

frequencies from 1 Hz (s1) to 70 Hz (sM) in equally-spaced intervals of 0.5 Hz (1). 

Nevertheless, as we explained in the main text, only theta frequency band (4-8 Hz) was 

considered for the analyses. 

EEG trials are finite and short-time recordings. Therefore, edge effects are not 

negligible (4). In this study, a cone of influence was defined in order to delimitate the 

time-frequency regions that included the biased wavelet coefficients (4).  

 

Brain network estimation 

Connectivity matrices were obtained by means of phase-locking value (PLV). The 

PLV has become a useful tool to quantify the phase steadiness between pairs of electrodes 

(5), given its sensitivity to measure the neural synchronization, even between EEG 

oscillations with relatively small amplitude (6). As previously mentioned, this study was 

aimed at analyzing cognitive network dynamics. Thereby, the PLV was calculated in the 

theta frequency band (4-8 Hz). 

Being able to use different approaches for computing the PLV, the CWT was used to 

extract the phase information from each trial (7). First, to calculate PLV between two 

signals, it is necessary to extract the instantaneous phase of each signal in a narrow 

bandwidth (8). CWT can be used to perform filtering and phase extraction in a single step 

(7). Thus, the instantaneous phases φx(k, s, ) and φy(k, s, ) of two EEG signals, x(t) and 

y(t), can be used to define the phase differences as follows: 
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where  represents each artifact-free trial. 

Detailed procedures about the wavelet parameters and the minimization of the edge 

effects were reported in our previous studies (1, 9, 10). 

PLV estimates the variability of the phase differences across successive trials, as 

follows: 
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where Nt is the total number of artifact-free trials. 

Functional connectivity matrices based on PLV were obtained by comparing the 

synchronization between all EEG channels. The values of the connectivity matrix (wij) 

ranged between 0 and 1 (weighted network). A value of 1 was obtained with completely 

synchronized signals and a value of 0 implied an absence of synchronization. It means 

that no threshold was applied. This has the advantage that all the connections are 

considered (even the lower ones), but the computational cost increases comparing to a 

semi-weighted network. 

 

Network parameters 

Networks can be described by several parameters. The present study was focused on 

five complementary features of the brain network: integration, segregation, connectivity 

strength, complexity and irregularity. The parameters that were used to quantify the 

previous network features are the following: 

 The integration of the network was characterized by means of the characteristic 

path length. It is defined as the average shortest path length between all pairs 

of nodes in the network (11): 
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where dij indicates the minimum distance (i.e. the inverse of PLV) between 

electrodes i and j. Of note, N represents the number of nodes in the network (N 

= 29). 

 The segregation of the network was quantified by the averaged clustering 

coefficient (11) . In the case of weighted networks, the averaged clustering 

coefficient can be generalized as follows to avoid the influence of the main 

connection weights: 
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where wij denotes the connection weight between electrodes i and j. 

 The connectivity strength was computed using the network density as follows 

(10): 
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where wij represents the connection weight between nodes i and j, and 

  21 NNT  is the total number of connections in an undirected graph. 

 The irregularity of the brain network was characterized by the Shannon Graph 

Entropy, defined in our previous work as follows (10): 
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where W is the sum of all weights of the graph and T2log  is a normalization 

factor introduced to ensure that 0 ≤ H ≤ 1. 

 The complexity of the brain network was estimated using the Shannon Graph 

Complexity, defined in our previous work as follows (10):  
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where w  is the average of all edge values of the graph and  is the standard 

deviation of those values. 

Importantly, Shannon Graph Entropy and Shannon Graph Complexity do not depend 

on the connectivity strength. Therefore, changes in these measures ensure that the 

network changes in the other parameters are not only due to changes in the connectivity 

strength. 

 

Dynamical network modeling 

The steps of the proposed algorithm, individually adjusted for each subject, can be 

summarized as follows: 

1) A specific connection (usually named as wij in graph theory context) of the pre-

stimulus connectivity matrix is randomly selected. 

2) The value of the connection, wij, is eventually modified with a probability P. 

Both the value of P and how it is modified depend on the specific model being 

considered, as we explain below. 

3) The network features are computed for the modified connectivity matrix. 

4) The MSE between the network parameters of the connectivity matrix in 3) and 

those of the connectivity matrix associated to the cognitive response is 

computed. 

5) The steps 1), 2) 3) and 4) are repeated 5000 times and the MSE is stored for 

each iteration. 

6) The connectivity matrix that minimizes the MSE is selected. The simulations 

showed that the MSE is a concave function with a minimum that varies for 

each subject. We checked that the minimum was always achieved before 5000 

repetitions. Of note, the number of iterations required for reaching the 

minimum MSE is different for each subject. 



The previous procedure was repeated six times (one for each model). The value of P 

and how it was modified depend on the model being considered as follows: 

i) Reinforcement of primary connections: The value of the connection 

randomly selected is increased a 1% with probability P = wij (wij ranges from 

0 to 1). 

ii) Reinforcement of secondary connections: The value of the connection 

randomly selected is increased a 1% with probability P = 1- wij. 

iii) Reinforcement of a connection at random. The value of the connection 

randomly selected is increased a 1% with probability P = 1. 

iv) Weakening of primary connections: The value of the connection randomly 

selected is decreased a 1% with probability P = wij. 

v) Weakening of secondary connections: The value of the connection 

randomly selected is decreased a 1% with probability P = 1- wij. 

vi) Weakening of a connection at random. The value of the connection 

randomly selected is decreased a 1% with probability P = 1. 

The percentage of change (1%) was heuristically determined as a compromise between 

goodness of fit and computational cost. 

As previously mentioned, the dynamical cognitive network model randomly selected 

a node in each iteration. In order to minimize the possible bias due to the intrinsic 

stochastic behavior of the algorithm, all the experiment was repeated 100 times and MSE 

results were averaged across repetitions in each subject. Nevertheless, we observed that 

the variability among experiments for each subject was negligible. 

 

Discarding confounding factors 

Studies of mental disorders through the EEG are prone to obtain inaccurate results due 

to the number of confounding factors. In order to avoid misinterpretation and prevent 

inappropriate conclusions, the influence of potential confounding factors on the clinical 

and network features was assessed. Thus, we found that the age and gender distributions, 

as well as the doses of the prescribed medication, did not produce a significant effect on 



PLV values, network measures or cognitive data (p > 0.05; Spearman’s bivariate 

correlation test). 

It must be noticed that all EEG measures are influenced by volume conduction. In 

order to minimize this effect, a well-known strategy is based on the assumption that 

volume conduction affects the connectivity estimates in a similar way in two different 

experimental contrasts (12). Spurious estimates can then effectively get rid by comparing 

both conditions (12). This is the approach followed in our study: comparing pre-stimulus 

and response during the cognitive task, both acquired during the performance of the 

oddball task, but in two different moments. In addition, short-scale synchronization is 

more influenced by volume conduction (5). However, we focused on theta band, which 

is associated with long-range interactions (13). 

In order to discard possible influence of abnormal shape of the event-related potentials 

(ERPs), they are represented in the Figure 1S. In addition, P3b peak and latency for both 

groups are shown in the Table 1 of the main text. Finally, connectivity matrices are shown 

in the Figure 2S. 

 

Figure 1S. (A) P300 waveforms at Pz electrode for controls (blue) and patients (red). (B) Scalp 

maps depicting the P3b peak amplitude (from 300 ms to 550 ms) for controls and patients. 



 

Figure 2S. Averaged connectivity matrices. The connectivity matrices are shown for controls 

and schizophrenia patients before (from -300 to 0 ms) and after (from 150 to 450 ms) stimulus 

onset.  

 

Weakening network models 

Most of the subjects fitted a reinforcement model; however, in the case of 15% of the 

subjects (seven controls and six schizophrenia patients), a model based on weakening the 

connections was selected. For these thirteen subjects, Fig. 3S shows the distribution of 

the selected model for each group. Due to the low number of subjects, statistical analyses 

were not performed in this case.  

 

Figure 3S. Histogram of the selected models and mean square error (MSE) distribution for 

each model. Only the subjects that follow a model based on weakening the network connections 

were depicted in this histogram. 



The relationship between cognition and network parameters 

Relationship between cognition and brain functioning was assessed by means of the 

correlations between results of the cognitive tests (z-scores corrected) and values of 

network measures (measured as the percent of change from pre-stimulus to cognitive 

response). For that purpose, Spearman’s bivariate correlation test was used. Bonferroni 

correction was applied to correct for multiple testing (p-values were multiplied by  

6 cognitive domains x 5 network parameters = 30). All the performed correlations are 

shown in Table 1S. Statistically significant correlations after Bonferroni correction  

(p < 0.05) are highlighted in bold. 

 

The relationship between cognition and symptoms 

Symptoms were assessed by means of the PANSS (z-scores corrected). Correlation 

between cognition and symptoms was studied by Spearman’s bivariate correlation test. 

The performed correlations are shown in Table 2S. Statistically significant correlations 

(p < 0.01) are highlighted in bold. The symptoms, summarized as the PANSS-total, are 

negatively correlated to verbal memory and processing speed (i.e., more symptoms are 

related to poorer cognitive performance). 

These findings agree with the intuitive notion that more pronounced symptoms are 

usually linked to poorer cognitive performance (14). It was suggested that the negative 

and disorganized symptom dimensions are the reason for the strong correlation between 

symptoms and cognitive dysfunction in schizophrenia (14). 

  



Table 1S. Correlation coefficient and p-values for all the possible comparisons 

between cognition and network parameters. Three correlations remain statistically 

significant after Bonferroni correction (p < 0.001, highlighted in bold). 

  Integration Segregation 
Connectivity 

strength 
Complexity Irregularity 

Verbal memory r -0.196 0.218 0.423 -0.190 0.169 

p-value 0.042 0.027 <0.001 0.048 0.070 

Working memory r 0.005 0.023 0.199 0.042 -0.034 

p-value 0.484 0.422 0.040 0.357 0.383 

Motor speed r 0.044 -0.017 0.153 0.073 -0.062 

p-value 0.352 0.442 0.090 0.264 0.296 

Verbal fluently r -0.285 0.331 0.499 -0.160 0.159 

p-value 0.007 0.002 <0.001 0.087 0.087 

Processing speed r -0.244 0.261 0.472 -0.178 0.166 

p-value 0.016 0.010 <0.001 0.060 0.073 

Executive function  r -0.029 -0.012 0.103 0.121 -0.137 

p-value 0.402 0.459 0.186 0.147 0.118 

 

  



Table 2S. Correlation coefficient and p-values for all the possible comparisons between 

cognition and symptoms. Two correlations are statistically significant (p<0.01, 

highlighted in bold). 

  
Verbal 

memory 

Working 

memory 

Motor  

speed 

Verbal 

fluently 

Processing 

speed 

Executive 

function 

PANSS-positive 

r -0.177 -0.224 0.173 -0.106 -0.134 0.171 

p-value 0.193 0.136 0.199 0.319 0.257 0.207 

PANSS-negative 

r -0.282 -0.150 -0.035 -0.283 -0.354 0.033 

p-value 0.081 0.233 0.433 0.101 0.038 0.439 

PANSS-total 

r -0.459 -0.319 0.061 -0.281 -0.478 0.155 

p-value <0.01 0.056 0.384 0.103 <0.01 0.230 

 

The relationship between network parameters and symptoms 

We also assessed the relationship between symptoms and network measures (as the 

percent of change from pre-stimulus to cognitive response) by Spearman’s bivariate 

correlation test. The performed correlations are shown in Table 3S. Significant 

correlations (p < 0.01) are highlighted in bold. The symptoms, summarized as the 

PANSS-total, are negatively correlated to segregation and irregularity, but positively 

correlated to complexity. On the other hand, positive symptoms, summarized as PANSS-

positive, are negatively correlated to irregularity. 

 

  



Table 3S. Correlation coefficient and p-values for all the possible comparisons between 

symptoms and network parameters. Four correlations are statistically significant (p<0.01, 

highlighted in bold). 

  Integration Segregation 
Connectivity 

strength 
Complexity Irregularity 

PANSS-positive 

r 0.153 -0.273 -0.314 0.413 -0.434 

p-value 0.206 0.068 0.043 0.011 <0.01 

PANSS-negative 

r 0.254 -0.331 -0.290 0.215 -0.178 

p-value 0.084 0.035 0.057 0.123 0.170 

PANSS-total 

r 0.280 -0.461 -0.413 0.465 -0.445 

p-value 0.064 <0.01 0.010 <0.01 <0.01 

 

Topological network measures and cognitive variables: comparison with 

previous findings 

Comparisons between network measures and cognitive variables are usually 

performed using a resting-state approach (15, 16) and sometimes during a cognitive task 

(17), but it is not usually assessed by analyzing the predisposition to change of the pre-

stimulus activity. In our previous study (9), segregation was inversely associated with 

executive function and directly associated with working memory. Although, the same 

trend was found in this study, non-significant associations were found between such 

parameters after Bonferroni correction. This discrepancy can be easily explained due to 

the number of differences between both studies: (i) connectivity strength was not 

computed in the previous research; (ii) network parameters were computed using event-

related coherence, which is not strictly a synchronization measure; and (iii) low-density 

EEG recordings were used (17 channels). 

Despite the difficulty to compare the correlations observed in this study with previous 

findings, it seems natural that a direct correlation between global brain synchronization 

and cognitive performance exists. In fact, although Pachou et al. (2008) did not evaluate 

the change from pre-stimulus to cognitive response, they found a correlation in patients 



between working memory load and global synchronization. This result could indicate that 

the cognitive effort required higher synchronization of the whole brain. The empirical 

evidence regarding the association between cognitive functions and network parameters 

was not so widespread some years ago (18). Nowadays, however, it is well-stablished that 

the architecture of functional brain networks is related to cognitive performance (19). 
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