
Scalable Team-Based Software Engineering Education via Automated
Systems

An Ju
EECS*

University of California, Berkeley
Berkeley, CA, USA
an ju@berkeley.edu

Xiao Fu
Harbin Institute of Technology

Harbin, China
fxdawn@hotmail.com

Joshua Zeitsoff
EECS*

University of California, Berkeley
Berkeley, CA, USA

jzeitsoff@berkeley.edu

Adnan Hemani
EECS*

University of California, Berkeley
Berkeley, CA, USA

adnan.h@berkeley.edu

Yannis Dimitriadis
Universidad de Valladolid

Valladolid, Spain
yannis@tel.uva.es

Armando Fox
EECS*

University of California, Berkeley
Berkeley, CA, USA

fox@cs.berkeley.edu

I. INTRODUCTION

Team projects are essential in modern software engi-
neering education. Students collaboratively build a piece
of software that addresses practical issues, through which
they practice both technical skills and soft skills, in a set-
ting that resembles the real working environment. However,
team projects are complex. Previous studies have explored
various design spaces, such as team formation [1], project
selection [2], team coaching [3], and student evaluation [4];
while others have reported experience regarding the design,
organization, teaching, and evolution of a project-based soft-
ware engineering curriculum [5][6][7][8]. The complexity of
team projects explains why we rarely see large-scale software
engineering courses with a team project. In this paper, we
try to address the scalability issue of software engineering
projects and lay out our blueprint for enabling the learning
of software engineering with a team project via MOOCs.

II. PROCESSES MATTER

In this section, we explain why software engineering team
projects are difficult to scale from the perspective of team
coaches; we further show that measuring software engineer-
ing processes is the key to scalable software engineering
team projects.

We address the scalability issue from coaches’ perspective
because coaching is necessary to keep team project on
track [3], yet the nature of substantial interactions between
coaches and student teams makes it a primary impedance
for the scalability of team projects [6]. Erdogmus et al.
reported based on their experience that the best ratio of
coaches and student teams is 1:2 [6], which implies an
unbearably large teaching team in a MOOC-scale course
to provide effective coaching. Even worse, coaches have to
be experts both technically and pedagogically. They should

*Department of Electrical Engineering and Computer Sciences

be able to identify issues of student teams and provide
a proper amount of interventions to avoid ”over-teaching”
while providing appropriate scaffolding or taking sufficient
orchestration actions [5][3][6].

Digging deeper, we reviewed previous studies on teaching
software engineering with team projects with a focus on
coaches’ responsibilities.

We categorize the most commonly seen responsibilities
into three roles:

• An Expert answers technical questions, critiques soft-
ware design, and provides guidance on development
processes to keep teams on track.

• A Grader gives evaluations to the team and individuals.
• A Teaching Assistant handles daily communication,

keeps healthy team dynamics, and tracks the learning
of individuals, with the goal of ensuring the learning of
each student.

Although different in addressed aspects and purposes of
interventions, the three roles share one responsibility: being
able to evaluate and critique the processes that students have
followed to build the product.

Process measurements can support both individual and
team assessments [9], help coaches to better address process
issues, and facilitate the tracking of learning issues. Thus our
approach to address the scalability of team projects focuses
on measuring processes reliably and automatically, and how
can we leverage the measurements to inform instructors and
students. We will present in the next section more details
about this approach.

III. OUR APPROACH

A. Systems
Our approach focuses on building automated systems

to facilitate coaching of software engineering teams. Our
systems address two issues

• How can we effectively give informative feedback at
large scale?



• How can we scaffold processes to reduce the need for
team coaching?

Our systems are composed of metrics built from teamwork
telemetry, data available from various development tools.
It is a trend in software engineering courses to use tools
to support development. Many researchers and instructors
have recognized the importance of using tools in software
engineering courses with a team project [5][8]. Tools such
as the code-hosting and team-collaboration tool GitHub1,
the project-management tool Pivotal Tracker2, and the code
quality measurement service CodeClimate3, give powerful
infrastructure for team development, and in the meantime
records behaviors of the software development process. We
call data available from these tools teamwork telemetry and
build process metrics based on the data.

Teamwork telemetry, together with metrics built on top
of it, works as building blocks for automated systems. We
propose to improve the scalability of team coaching with two
systems:

• An early-warning system.
• A scaffolding system.

a) The early-warning system: addresses the scalability
issue by reducing the workload of instructors to provide
informative feedback. Composed of process metrics, the
system can provide warnings at an early stage; instructors
can thus be aware of teams that need help and provide
interventions with information from the system. The system
addresses two major issues:

• it reduces the workload of instructors with a dashboard
for team status;

• it facilitates less experienced teachers to conduct expert
diagnosis and give professional feedback.
b) The scaffolding system: improves scalability by re-

ducing the team’s need for human coaching. The system
gives instructions on the team’s tasks and processes. Fur-
thermore, the system is able to track a team’s task status and
progress. Team members can use the information to improve
their practice and navigate through the project.

Figure 1 shows how teamwork telemetry, metrics, and the
two automated systems are related.

B. Role of Instructors/Coaches

Although our systems are designed to address team
projects’ intensive dependence on the teaching staff, they
are not meant to replace instructors. Instead, the systems
facilitate instructors by presenting summarized results that
used to require a huge amount of effort for instructors to
elicit; instructors’ responsibilities are pivoted toward decision
making and intervention design.

This idea follows Baker’s proposal of ”stupid tutoring sys-
tem” [10], where the intellectual power of human is respected
and put in the center, while the computational power of
machines is used to support human decision making.

1https://github.com/
2https://www.pivotaltracker.com/
3https://codeclimate.com/

Fig. 1. Both the early-warning system and the scaffolding system are
built on top of teamwork telemetry. Metrics are primarily used in the early-
warning system, but are also used in the scaffolding system to test the
quality of a finished task.

Fig. 2. Our system provides metrics for instructors to facilitate coaching.
Students can also directly benefit from the system through scaffolding and
self-diagnosis.

Figure 2 shows how instructors and student teams interact
with the systems. In a MOOC setting, students can receive
self-diagnosis and scaffolding directly from the system,
which reduces the workload of instructors. In the meantime,
instructors can leverage process metrics to detect abnormali-
ties in student teams and provide targeted feedback efficiently
when a team needs help.

C. Metrics

Previous studies have explored the use of metrics in
teaching software engineering courses [11][12]. Matthies et
al. further summarized their metrics into a system called
ScrumLint [13].

However, their metrics are empirical, designed based on
researchers’ experiences and observations, and sometimes
these empirical metrics may even seemingly conflict with
each other. For example, both Alperowitz et al. and Matthies
et al. proposed metrics to measure the time to close a pull
request on GitHub; while Alperowitz et al. argue that a pull
request should be quickly reviewed and closed [11], Matthies
et al. think a short close time indicates a violation of the
reviewing process [12]. This seeming conflict is induced by



the fact that the two group of researchers address different
concerns with this metric, while neither has a thorough
understanding of the role of this process.

We ground our metrics on industry practices. Our met-
rics are designed based on industry’s recognized practices,
industrial case studies, observations of industry projects, and
interviews with experienced practitioners. As for approach,
we build a conformance template for each process [14].
Conformance templates give us the flexibility when defining
a process and allows us to focus on violations of processes,
which is helpful in classroom settings.

D. Summary

Results from a case study in a software engineering course
at a US university [15] have provided supporting evidence
to our approach by showing that

• measuring processes can provide useful information for
team coaches, and

• processes can be measured directly or indirectly from
teamwork telemetries.

As our next step, we plan to study more processes and
measurements, implement our scaffolding system and early-
warning system, and deploy systems in real large-scale
software engineering courses.

In summary, with our metrics and the system, a coach can
manage multiple teams at the same time, which improves the
scalability of software engineering projects. Furthermore, the
system pivots coaches attention from the ocean of artifacts
and logs to aggregated results mined from teamwork teleme-
tries; thus a less experienced coach can still give accurate
feedbacks to student teams.

Our system and metrics can be used as building blocks
for more powerful tools to facilitate learning in large-scale
software engineering projects. We expect to build an ecosys-
tem that better connects software engineering education with
industrial needs. Such an ecosystem will enable the execution
of a full project life-cycle, team formation, project selection,
customer contact, team management and evaluation, project
maintenance, etc., with minimal human inputs.

ACKNOWLEDGMENT

This research has been partially funded by MOE On-
line Education Research Center (Quantong Fund) grant
2017ZD203.

This research has also been partially funded by the Eu-
ropean Union (grant agreements no. 669074 and 731685),
the Spanish Ministries of Economy and Competitiveness
(projects TIN2014-53199-C3-2-R and TIN2017-85179-C3-
2-R) and Science and Education (PRX17/00410), and the
Regional Government of Castilla y Len (project VA082U16).

REFERENCES

[1] A. Mujkanovic and A. Bollin, “Improving learning outcomes through
systematic group reformation-the role of skills and personality in
software engineering education,” in Cooperative and Human Aspects
of Software Engineering (CHASE), 2016 IEEE/ACM. IEEE, 2016,
pp. 97–103.

[2] T. Sedano, A. Rengasamy, and C. Péraire, “Green-lighting proposals
for software engineering team-based project courses,” in Software
Engineering Education and Training (CSEET), 2016 IEEE 29th In-
ternational Conference on. IEEE, 2016, pp. 175–183.

[3] G. Rodrı́guez, Á. Soria, and M. Campo, “Measuring the impact of agile
coaching on students performance,” IEEE Transactions on Education,
vol. 59, no. 3, pp. 202–209, 2016.

[4] H. Igaki, N. Fukuyasu, S. Saiki, S. Matsumoto, and S. Kusumoto,
“Quantitative assessment with using ticket driven development for
teaching scrum framework,” in Companion Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
372–381.

[5] A. Scharf and A. Koch, “Scrum in a software engineering course:
An in-depth praxis report,” in Software Engineering Education and
Training (CSEE&T), 2013 IEEE 26th Conference on. IEEE, 2013,
pp. 159–168.

[6] H. Erdogmus and C. Péraire, “Flipping a graduate-level software
engineering foundations course,” in Proceedings of the 39th Inter-
national Conference on Software Engineering: Software Engineering
and Education Track. IEEE Press, 2017, pp. 23–32.

[7] N. Herbert, “Reflections on 17 years of ict capstone project coordina-
tion: Effective strategies for managing clients, teams and assessment,”
in Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. ACM, 2018, pp. 215–220.

[8] D. Delgado, A. Velasco, J. Aponte, and A. Marcus, “Evolving a
project-based software engineering course: A case study,” in Software
Engineering Education and Training (CSEE&T), 2017 IEEE 30th
Conference on. IEEE, 2017, pp. 77–86.

[9] F. Rocha and E. Stroulia, “Understanding individual contribution and
collaboration in student software teams,” in Software Engineering
Education and Training (CSEE&T), 2013 IEEE 26th Conference on.
IEEE, 2013, pp. 51–60.

[10] R. S. Baker, “Stupid tutoring systems, intelligent humans,” Interna-
tional Journal of Artificial Intelligence in Education, vol. 26, no. 2,
pp. 600–614, 2016.

[11] L. Alperowitz, D. Dzvonyar, and B. Bruegge, “Metrics in agile project
courses,” in Software Engineering Companion (ICSE-C), IEEE/ACM
International Conference on. IEEE, 2016, pp. 323–326.

[12] C. Matthies, T. Kowark, M. Uflacker, and H. Plattner, “Agile metrics
for a university software engineering course,” in Frontiers in Education
Conference (FIE), 2016 IEEE. IEEE, 2016, pp. 1–5.

[13] C. Matthies, T. Kowark, K. Richly, M. Uflacker, and H. Plattner,
“How surveys, tutors, and software help to assess scrum adoption
in a classroom software engineering project,” in Proceedings of the
38th International Conference on Software Engineering Companion.
ACM, 2016, pp. 313–322.

[14] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and
K. Schneider, “Are developers complying with the process: an xp
study,” in Proceedings of the 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement. ACM,
2010, p. 14.

[15] A. Ju and A. Fox, “Teamscope: measuring software engineering pro-
cesses with teamwork telemetry,” in Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science
Education. ACM, 2018, pp. 123–128.


