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has dedicado y por el interés que siempre has mostrado en mi trabajo. Quiero agradecer a

todo el departamento de Estad́ıstica e Investigación Operativa lo bien que me han tratado

a lo largo de estos años, en especial quiero agradecer a Jesús Saez toda la ayuda que me
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Chapter 1
Introduction

1.1 Introducción en Español

La debilidad de muchos procedimientos estad́ısticos clásicos en presencia de valores at́ıpicos

es un problema que ha preocupado a los estad́ısticos durante años. Lo ideal seŕıa que la

distribución de un estimador cambie sólo ligeramente si la distribución de las observaciones

se modifica ligeramente. Este principio subyace en la llamada Estad́ıstica Robusta desde el

trabajo pionero de Huber (1964). En el enfoque de Huber, los procedimientos estad́ısticos

robustos son aquellos que se desempeñan relativamente bien, incluso cuando las hipótesis

sólo se cumplen aproximadamente. Como una medida de la calidad de un estimador desde

el punto de vista de la robustez, Hampel (1971) introdujo el punto de ruptura, basado

en un concepto similar definido en Hodges (1967). A grandes rasgos, el punto de ruptura

se definió como la distancia máxima de Prokhorov (véase Hampel (1971)) desde el mod-

elo paramétrico para el que el estimador da todav́ıa alguna indicación de la distribución

original. Años más tarde, Donoho and Huber (1983) introdujo una versión más simple

del punto de ruptura pensado para muestras finitas. Su versión es más parecida a la idea

original de Hodges que a la definición de Hampel. Ellos consideran el punto de ruptura

como la fracción más pequeña de contaminación que puede hacer que el estimador tome

valores arbitrariamente grandes. Basado en esta definición Rousseeuw publicó varios tra-

bajos sobre estimadores con un alto punto de ruptura como Rousseeuw (1985), Rousseeuw

(1997) y, más recientemente, Rousseeuw and Hubert (2013). Otros autores también han

trabajado sobre este tema, pongamos como ejemplo Yohai (1987) o Alfons et al. (2013).

Los métodos más robustos tienen un punto de rotura de 0,5 porque si la contaminación

es superior al 50% es imposible distinguir entre la distribución contaminada y la subya-

1



2 Chapter 1. Introduction

cente. Un ejemplo muy conocido y sencillo es la mediana: para medir la tendencia central

se suele utilizar la media, pero se sabe que no es un método robusto e incluso un outlier

puede estropearla (tiene un punto de ruptura de 1/n cuando el tamaño de la muestra es

n) por lo que una alternativa más robusta es la mediana cuyo punto de ruptura es de

0.5. Para una visión general sobre los métodos robustos en estad́ıstica nos referimos a

Andrews et al. (1972), Hampel et al. (1986), Huber (1996) o más recientemente Maronna

et al. (2006).

Se han propuesto muchas formas de robustificar estimadores como, en el caso de los

estimadores de localización, cambiar la media por la mediana o, en el caso de regresión

por mı́nimos cuadrados, cambiar la pérdida cuadrática por algo con mejores propiedades

como, por ejemplo, la pérdida `1 (pero hay que tener en cuenta que esto no genera ninguna

ganancia, al menos en el punto de ruptura). Entre todos estos, estamos interesados en los

procedimientos de recorte.

Los procedimientos de recorte se han utilizado en estad́ıstica robusta durante muchos

años, véase, por ejemplo, Bickel and Lehmann (1975). Un estimador recortado fue con-

siderado en primer lugar como un estimador que se derivó de otro estimador excluyendo

algunas de las observaciones extremas. Por ejemplo, un estimador recortado del k% fue el

estimador obtenido eliminando las k% primeras y las k% últimas observaciones. Volviendo

al ejemplo de tendencia central, la mediana es un estimador recortado del 50% de la me-

dia. El problema con este procedimiento surge cuando se trató de generalizarlo a variables

aleatorias n-dimensionales debido a la ausencia de direcciones preferenciales para eliminar

datos. Además, la forma de seleccionar la proporción de los datos a eliminar es arbitraria.

Para hacer frente a estos dos problemas Rousseeuw (1984) introdujo el recorte imparcial,

es decir, un procedimiento de recorte en el que es la muestra misma la que nos dice cuál es

la mejor manera de recortar. Más tarde, Gordaliza (1991) introdujo el concepto de función

de recorte en lugar de los conjuntos de recorte utilizados anteriormente. Se propusieron

otros métodos de recorte en Cuesta-Albertos et al. (1997) o en Garćıa-Escudero et al.

(2003).

Las técnicas de recorte pueden aplicarse a muchos problemas estad́ısticos diferentes.

Entre otros, hay trabajos en análisis de datos funcionales, ver por ejemplo Fraiman and

Muniz (2001) y Cuesta-Albertos and Fraiman (2006), en comparación de distribuciones,

ver Álvarez-Esteban et al. (2008) y Álvarez-Esteban et al. (2012). Recortar también

es muy popular como una herramienta robusta para problemas de reconocimiento de

patrones. Como ejemplo de esto ya hemos mencionado su uso en regresión, donde se

propuso por primera vez el procedimiento de recorte, incluyendo Rousseeuw and Driessen
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(2006) y Alfons et al. (2013). Otro ejemplo del problema del reconocimiento de patrones

es la clasificación. En la clasificación no supervisada podemos citar Garćıa-Escudero et al.

(1999), Cuesta-Albertos et al. (2002) y Garćıa-Escudero et al. (2008). También hay cierta

literatura sobre métodos de recorte en la implementación de la clasificación supervisada,

véase, por ejemplo, Debruyne (2009).

En esta tesis exploramos el uso de los métodos de recorte en dos problemas estad́ısticos

diferentes: la validación del modelos y el aprendizaje supervisado. En estas dos configu-

raciones propondremos y analizaremos nuevos procedimientos que se basan en el uso de

recortes. Observamos en este punto que los nuevos métodos no sólo comparten un uso

coincidente del recorte. De hecho, el recorte es la base de lo que podŕıamos llamar ‘vali-

dación esencial de modelos’ o ‘clasificación esencial’ lo que significa que estamos cambiando

nuestro paradigma a través del uso de recortes y estamos tratando con nuevas versiones

de la validación de modelos o del problema de clasificación. Intentaremos determinar si el

generador aleatorio subyacente a una muestra puede ser asumido como una versión liger-

amente contaminada de un modelo dado o identificar clasificadores simples que funcionan

bien en una gran fracción de las instancias. Todo esto se hará con un uso sistemático de

métodos de recorte y conceptos relacionados.

Hablando en términos generales, la clasificación supervisada es el problema de encon-

trar una forma automática de determinar a qué clase pertenece una observación basada

en varias observaciones anteriores. Los primeros trabajos sobre este problema son Fisher

(1936) y Fisher (1938) en el contexto de problemas binarios. Este trabajo condujo al

análisis discriminante lineal de Fisher. Este trabajo inicial asumió que los valores den-

tro de cada grupo teńıan una distribución normal multivariante. Posteriormente, Rao

(1952) y Anderson (1958) extendieron el análisis discriminante, aún bajo suposiciones de

normalidad, a más de dos grupos. Durante las últimas décadas, el problema de la clasi-

ficación binaria ha sido ampliamente estudiado y existe una gran variedad de métodos

para encontrar clasificadores óptimos en diferentes entornos. Nos referimos, por ejem-

plo, a Devroye et al. (1996), Cristianini and Shawe-Taylor (2000) o Hastie et al. (2009)

y las referencias en ellos para una visión general. Un gran avance en este campo vino

con el enfoque de Vapnik basado en el principio de la minimización del riesgo emṕırico

(ver Vapnik (1982), recientemente reimpreso en Vapnik (2006)). Este nuevo enfoque no

depend́ıa de un modelo paramétrico limitado y permit́ıa tratar con clases de clasificadores

más flexibles. Asimismo, las desigualdades de concentración recientemente desarrolladas

permitieron obtener cotas precisas sobre el error de generalización de las reglas de clasifi-

cación. Pronto se reconoció que una flexibilidad excesiva en el tipo de clasificadores bajo
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consideración teńıa un precio.

En un escenario ideal podŕıamos seleccionar entre todas las funciones posibles la que

mejor clasifique los datos, pero en la práctica esto es imposible en la mayoŕıa (si no en

todos) de los casos. Este problema se puede resolver mediante técnicas de selección de

modelos. Brevemente, esto equivale a elegir, dados los datos, el mejor modelo estad́ıstico

entre una lista de candidatos. Aqúı, por mejor modelo nos referimos a uno que equilibra el

ajuste a los datos y la complejidad del modelo, logrando un buen equilibrio sesgo-varianza.

Entre todo el trabajo que se ha hecho en este campo, nos gustaŕıa citar a Massart (2007)

o a el más reciente Bühlmann and van de Geer (2011) para dos estudios exhaustivos con

diferentes puntos de vista.

Cuando el número de observaciones se hace grande o en un caso de alta dimensión,

algunos de los datos pueden contener errores de observación y pueden considerarse datos

contaminantes. La presencia de tales observaciones, si no se eliminan, dificulta la eficacia

de los clasificadores, ya que muchos métodos de clasificación son muy sensibles a los valores

at́ıpicos. En realidad, si el conjunto de aprendizaje está demasiado corrompido, entrenar a

un clasificador sobre este conjunto lleva a malas tasas de clasificación. Por lo tanto, existe

una creciente necesidad de métodos robustos para abordar esta cuestión. Una solución

para hacer frente a este problema es clasificar sólo una fracción de los datos. Este es el

problema que vamos a tratar en este trabajo.

De la mano con la selección de modelos viene la validación de modelos. La validación

de modelos podŕıa definirse como una comparación entre las predicciones del modelo y

el mundo real para evaluar si el modelo es apropiado para los datos con los que estamos

trabajando. Entonces, debeŕıamos observar que los métodos clásicos de bondad de ajuste

generalmente no permiten concluir que el modelo es una representación válida de los datos.

En el mejor de los casos, cuando no se rechaza el modelo, la conclusión débil obtenida

es que no hay suficiente evidencia contra el modelo. Peor aún, es un hecho que desde

hace mucho tiempo (ver Berkson (1938)) que una prueba formal de bondad de ajuste

aplicada a una muestra suficientemente grande rechazará el modelo incluso en situaciones

en las que el modelo parezca una buena descripción de los datos. Estas consideraciones

están detrás de la distinción entre ‘significación estad́ıstica’ y ‘significación práctica’ en

Hodges and Lehmann (1954) que aboga por relajar la hipótesis nula, sustituyéndola por

una desviación controlada del modelo inicial. Esta desviación se puede medir de muchas

maneras diferentes. En el caso de los modelos paramétricos, la distancia eucĺıdea habitual

puede ser una buena opción, como en Hodges and Lehmann (1954). Una visión general

de las diferentes opciones para esta relajación se puede encontrar en Lindsay and Liu
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(2009). Más allá de la elección de una medida de desviación, la relajación implica fijar

un umbral de desviación admisible del modelo. Hay un cierto grado de arbitrariedad en

la fijación de este umbral y parece aconsejable elegir una medida de desviación para la

que la interpretación del umbral sea lo más simple posible. Una posibilidad simple es el

nivel de contaminación que debemos admitir para considerar el modelo como una buena

representación de los datos. Esto se consideró en Rudas et al. (1994) (véase también Lind-

say and Liu (2009)) en un marco de datos multinomiales. En este trabajo pretendemos

extender el uso de esta medida de desviación a modelos continuos. Además, abordamos el

problema de la validación de modelos desde un punto de vista particular. Se acepta que el

modelo propuesto no es el modelo ‘verdadero’, es decir, que las observaciones disponibles

no proceden exactamente de un generador dentro del del modelo. Reformulamos nues-

tra meta y nos proponemos evaluar cuánta contaminación debemos admitir para admitir

que un determinado modelo es válido. Como caracteŕıstica distintiva adicional, nuestra

propuesta adopta el punto de vista de la selección de modelos. Consideramos los entornos

de contaminación de un modelo. Estos entornos crecen con el nivel de contaminación y

eventualmente incluirán el generador aleatorio de los datos. Intentaremos encontrar un

equilibrio adecuado entre una medida de la desviación entre la medida emṕırica y un

entorno de contaminación y el nivel de contaminación.

En nuestra reformulación del problema de la bondad de ajuste a un marco de selección

de modelos, se necesita una medida de desviación entre la medida emṕırica y otras medidas

de probabilidad. Nuestra elección es la métrica del coste de transporte.

Ya en el siglo 18, Monge (1781) formuló el Problema del Transporte de Masas (MTP,

por sus siglas en inglés) como el problema de transportar una cierta cantidad de tierra

a algunos lugares donde debeŕıa ser usada para la construcción minimizando el costo de

transporte. Consideró que el coste de transporte de una unidad de suelo es la distancia

Euclidea entre el punto donde se extrae y el lugar donde se va a enviar. Posteriormente,

Kantorovich (1960) desarrolló herramientas de programación lineal y concibió una distan-

cia entre dos distribuciones de probabilidad, en Kantorovich (1958), que era el costo de

transporte óptimo de una distribución a la otra cuando el costo era elegido como la función

de distancia. Esta distancia se conoce ahora como distancia de Kantorovich-Rubinstein o

como distancia de Wasserstein (esta es la denominación que usaremos a partir de ahora).

En 1975, Kantorovich ganó el Premio Nobel de economı́a con Koopmans.

La teoŕıa de Monge-Kantorovich se ha aplicado a diferentes disciplinas cient́ıficas como

la economı́a, la bioloǵıa o la f́ısica y a varias ramas matemáticas como la geometŕıa,

ecuaciones diferenciales, sistemas dinámicos y matemáticas aplicadas como teoŕıa de juegos
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o registro de imágenes. Como un repaso a los avances en este problema citamos Rachev

and Rüschendorf (1998) y, el más reciente, Villani (2008).

La estructura especial y las propiedades del problema de transporte han permitido

desarrollar un algoritmo que, partiendo de los métodos simples habituales, resuelve el

problema de una manera más eficiente. La forma estándar real del problema y una primera

solución constructiva fue propuesta primero en Hitchcock (1941) y, no mucho más tarde,

en Koopmans (1949) pero el método simplex para el problema de transporte tal y como

lo estudiamos hoy en d́ıa fue propuesto en Dantzig (1951) y Dantzig (1963).

En este trabajo hemos tratado una variante del problema de transporte óptimo, el

problema de transporte parcial. Esta variante incluye la posibilidad de cierta holgura tanto

en la oferta como en la demanda, es decir, la cantidad de masa en los nodos de oferta supera

la cantidad que debe ser servida y la demanda no tiene que ser satisfecha completamente,

sino sólo una fracción de la misma. El problema del transporte parcial surge de forma

natural cuando consideramos la métrica de los costos de transporte entre conjuntos de

recortes, que son, como veremos, objetos duales a los entornos de contaminación de la

estad́ıstica robusta.

El objetivo de este trabajo era desarrollar métodos estad́ısticos en la clasificación y

validación de modelos bajo el tema común de la contaminación, tal como acabamos de

exponer. Hemos propuesto métodos y analizado aspectos teóricos y prácticos. Estos

dos objetivos han hecho necesario utilizar una gran variedad de herramientas de difer-

entes campos matemáticos, aśı como de estad́ıstica y computación. Entre otros, queremos

destacar las desigualdades de concentración, las desigualdades oráculo, los problemas de

transporte óptimo, la teoŕıa de dualidad, la programación lineal, la optimización convexa

y los algoritmos de gradiente. En aras de la legibilidad, se incluye un caṕıtulo preliminar

en el que se describen algunos de los conceptos y resultados fundamentales utilizados du-

rante esta investigación. Además, hemos implementado en R y C algoritmos para calcular

eficientemente los métodos estad́ısticos propuestos en esta tesis. Están disponibles bajo

petición.

Dedicamos el caṕıtulo 3 al problema del transporte parcial. Mostramos cómo esta

variante del problema clásico del transporte se relaciona con los modelos de contami-

nación a través de la idea de recortar. Luego, con vistas a las aplicaciones estad́ısticas,

consideramos el problema de la computación de versiones emṕıricas del coste parcial del

transporte. Nos ocupamos de un esquema doble. En primer lugar, tratamos el caso del

transporte parcial entre dos medidas emṕıricas. Esto resulta en un problema discreto

que demostramos que puede ser reformulado como un tipo particular de problema de
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transporte clásico (en el sentido de programación lineal). Discutimos métodos numéricos

eficientes para la solución de este problema y proporcionamos un código C (llamable desde

R) con una implementación. Una segunda opción en este caṕıtulo es el caso del trans-

porte parcial entre la medición emṕırica y un modelo continuo, que lleva a un problema

semidiscreto. Para este problema proporcionamos un método de optimización estocástico

basado en algoritmos de gradiente. Todos estos conceptos se aplican en este caṕıtulo a

los problemas de validación de modelos contaminados. Más allá de proporcionar métodos

numéricos viables, proporcionamos desigualdades oráculo que garantizan el rendimiento

de nuestro método. Para concluir el caṕıtulo, probamos nuestro algoritmo en un estudio

de simulación.

El caṕıtulo 4 puede parecer una desviación del tema de esta tesis y en realidad lo

es. Durante esta investigación resultó que las técnicas de transporte óptimas eran una

herramienta útil en los problemas de registro y que los algoritmos numéricos diseñados

para la versión discreta del problema de transporte parcial también eran útiles para la

implementación de métodos de registro basados en el transporte óptimo. En este caṕıtulo

estudiamos un problema de alineación para distribuciones deformadas proponiendo un

procedimiento para la estimación de deformaciones basado en la minimización de la dis-

tancia de Wasserstein entre distribuciones deformadas y las no deformadas. El buen

funcionamiento del criterio está asegurado por sus propiedades asintóticas. Finalmente

ilustramos este trabajo con algunos ejemplos y resolviendo algunos problemas simulados.

El material de este caṕıtulo se publicó en Agulló-Antoĺın et al. (2015).

En el caṕıtulo 5 se aborda el problema de la clasificación parcial, que es un enfoque

robusto del problema clásico de clasificación. Es práctica común en el análisis de datos

eliminar los datos ‘perturbadores’ o ‘at́ıpicos’ y aplicar los procedimientos al conjunto

de datos depurado. La clasificación no es una excepción a esta regla. Pero entonces las

garant́ıas de generalización de los clasificadores entrenados de esta manera pueden ser

diferentes de lo que el usuario esperaŕıa. Con esta motivación nos proponemos buscar el

clasificador que ofrezca el mejor rendimiento sobre una fracción suficientemente grande de

los datos. Formulamos esto como un problema de minimización del riesgo sobre un con-

junto de recortes. Dado que estos conjuntos de recortes crecen con el nivel de recorte, pro-

ponemos una versión penalizada, por la que proporcionamos garant́ıas de su rendimiento

a través de las desigualdades oráculo. Si bien la teoŕıa que presentamos es más simple

y limpia con el uso de una pérdida de 0/1, su aplicabilidad se ve obstaculizada por el

hecho de que esta pérdida de 0/1 requeriŕıa, en su aplicación práctica, la minimización de

algún objetivo no convexo. Por esta razón hemos explorado la extensión de los resultados
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a una función de pérdida de mejor comportamiento, la pérdida hinge usada en el SVM.

Proporcionamos desigualdades oráculo y proporcionamos estrategias computacionales vi-

ables. También esbozamos algunas maneras alternativas de elegir la función de pérdida.

Este caṕıtulo incluye algunos resultados de simulación que ilustran el rendimiento de los

métodos, aśı como el análisis de un conjunto de datos reales. Parte del material de este

caṕıtulo se presenta en Agulló-Antoĺın et al. (2017).

Finalizamos este documento con un breve caṕıtulo que resume las contribuciones en

este trabajo. Creemos que algunos resultados de esta tesis son contribuciones útiles hacia

una metodoloǵıa más completa para la validación de modelos esenciales y la clasificación

esencial, que fueron los objetivos iniciales de este proyecto. Sin embargo, durante esta

investigación han surgido nuevas ĺıneas de investigación. En lugar de una tarea inacabada,

nos gustaŕıa pensar en estos problemas no resueltos como una oportunidad para el trabajo

futuro.

1.2 Introduction in English

The weakness of many classical statistical procedures in the presence of atypical values is a

problem that has concerned statisticians for years. Ideally, the distribution of an estimator

changes only slightly if the distribution of the observations is slightly altered. This prin-

ciple underlies the so called Robust Statistics since the pioneering work of Huber (1964).

In Huber’s approach robust statistical procedures are those that perform relatively well

even when the assumptions are only approximately met. As a measure of the quality of

an estimator from the point view of robustness, Hampel (1971) introduced the breakdown

point, based on a similar concept defined in Hodges (1967). Roughly speaking, the break-

down point was defined as the maximum Prokhorov distance (see Hampel (1971)) from

the parametric model for which the estimator still gives some indication of the original

distribution. Years later, Donoho and Huber (1983) introduced a simpler version of the

breakdown point intended for finite samples. Their version is closer to the original idea

of Hodges than Hampel’s definition. They consider the breakdown point as the small-

est fraction of contamination that can make the estimator take arbitrarily large values.

Based on this definition, Rousseeuw published several works about estimators with a high

breakdown point as Rousseeuw (1985), Rousseeuw (1997) and, more recently, Rousseeuw

and Hubert (2013). Other authors have worked on this topic as well, take as an example

Yohai (1987) or Alfons et al. (2013).

The most robust methods have a breakdown point of 0.5 because if the contamination
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is greater than 50% it is impossible to distinguish between the contaminated distribution

and the underlying one. A very well-known and simple example is the median: to measure

the central tendency is often used the mean, but it is known that is not a robust estimator

and even one outlier can crash it (it has a breakdown point of 1/n when the sample size

is n) so a more robust alternative is the median whose breakdown point is 0.5. For a

general view on robust methods in statistics we refer to Andrews et al. (1972), Hampel

et al. (1986), Huber (1996) or the more recent Maronna et al. (2006).

Many ways to robustify estimators have been proposed as, in the case of location

estimators, changing the mean by the median or, in the case of least squares regression,

changing the square loss by something with better properties as, for example, the `1-loss

(but beware that this does not generate any gain, at least in breakdown point). Among

all, we are interested in trimming procedures.

Trimming procedures have been used in robust statistics for many years, see as an

example Bickel and Lehmann (1975). A trimmed estimator was firstly considered as an

estimator that was derived from another one by excluding some of the extreme observa-

tions. For example an k%-trimmed estimator was the estimator obtained by removing the

k% first and the k% last observations. Going back to the central tendency example, the

median is a 50% trimmed estimator of the mean. The problem with this procedure arises

when one tries to generalize it to n dimensional random variables due to the absence of

preferential directions to remove data. In addition, the way of selecting the proportion of

the data to be removed is arbitrary. To deal with this two problems Rousseeuw (1984)

introduced the impartial trimming, that is, a trimming procedure in which is it the sample

itself that tells us what is the best way to trim. Later, Gordaliza (1991) introduced the

concept of trimming function instead of the trimming sets that were used before. Further

trimming methods were proposed in Cuesta-Albertos et al. (1997) or in Garćıa-Escudero

et al. (2003).

Trimming techniques can be applied to many different statistical problems. Among

others, there are works in functional data analysis, see for example Fraiman and Mu-

niz (2001) and Cuesta-Albertos and Fraiman (2006), in comparison of distributions, see

Álvarez-Esteban et al. (2008) and Álvarez-Esteban et al. (2012). Trimming is also very

popular as a robust tool for pattern recognition problems. As an example of this we have

already mentioned its use in regression, where the trimming procedure was first proposed,

including Rousseeuw and Driessen (2006) and Alfons et al. (2013). Another example of

pattern recognition problem is classification. In unsupervised classification we can cite

Garćıa-Escudero et al. (1999), Cuesta-Albertos et al. (2002) and Garćıa-Escudero et al.
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(2008). There is also some literature on trimming methods in the setup of supervised

classification, see, e.g. Debruyne (2009).

In this thesis we explore the use of trimming methods in two different statistical prob-

lems: model validation and supervised learning. In these two setups we will propose and

analyze new procedures that rely on the use of trimming. We note at this point that the

new methods do not share only a coincidental use of trimming. In fact, trimming is the

basis for what we could call essential model validation or essential classification, meaning

that we are changing our paradigm through the use of trimming and are dealing with new

versions of the model validation or the classification problem. We will try to determine

whether the random generator underlying a sample can be assumed to be a slightly con-

taminated version of a given model or to identify simple classifiers that perform well over

a large fraction of the instances. All this will be done with a systematic use of trimming

methods and related concepts.

Roughly speaking, supervised classification is the problem of finding an automatic way

to determine to which class does an observation belong based on several previous obser-

vations. Early work on this problem is Fisher (1936) and Fisher (1938) in the context of

binary problems. This work led to Fisher’s linear discriminant analysis. This early work

assumed that the values within each group had a multivariate normal distribution. Later

Rao (1952) and Anderson (1958) extended discriminant analysis, still under normality

assumptions, to more than two groups. During the last decades, the binary classification

problem has been extensively studied and there exists a large variety of methods to find

optimal classifiers in different settings. We refer for instance to Devroye et al. (1996),

Cristianini and Shawe-Taylor (2000) or Hastie et al. (2009) and references therein for a

survey. A major breakthrough in the field came with Vapnik’s approach based on the

principle of empirical risk minimization (see Vapnik (1982), recently reprinted in Vapnik

(2006)). This new approach did not depend on a limited parametric modeling and allowed

to deal with more flexible classes of classifiers. Also, the newly developed concentration

inequalities enabled to obtain precise bounds about the generalization error of the classi-

fication rules. Soon it was recognized that an excessive flexibility in the kind of classifiers

under consideration came at a price.

In an ideal setting we would be able to select among all the possible functions the one

that better classifies the data, but in practice this is impossible in most (if not all) of the

cases. This problem can be handled through model selection techniques. In short, this

amounts to choosing, given the data, the best statistical model among a list of candidates.

Here, by best model we refer to one that balances fit to the data and complexity of the
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model, attaining a good bias-variance trade-off. Among all the work that has been done

in this field we would like to cite Massart (2007) or the more recent Bühlmann and van de

Geer (2011) for two comprehensive surveys with different points of view.

When the number of observations grows large or in a high dimensional case, some of

the data may contain observation errors and may be considered as contaminating data.

The presence of such observations, if not removed, hampers the efficiency of classifiers

since many classification methods are very sensitive to outliers. Actually, if the learning

set is too corrupted, training a classifier over this set leads to bad classification rates.

Hence there is a growing need for robust methods to tackle such issue. A solution to cope

with this issue is to allow ourselves to classify only a fraction of the data. This is the

problem we are going to deal with in this work.

Hand in hand with model selection comes model validation. Model validation could

be defined as a comparison between the model’s predictions and the real world to assess

if the model is appropriate for the data we are working with. Then, we should note that

classic goodness-of-fit methods generally do not allow to conclude that the model is a valid

representation of the data. In the best case scenario, when the model is not rejected, the

weak conclusion obtained is that there’s not enough evidence against the model. Even

worse, it is a long-held fact (see Berkson (1938)) that a formal goodness-of-fit test applied

on a sufficiently large sample will reject the model even in situations where the model

looks like a good description of the data. These considerations are behind the distinction

between ‘statistical significance’ and ‘practical significance’ in Hodges and Lehmann (1954)

which advocates for relaxing the null hypothesis, replacing it by a controlled deviation from

the initial model. This deviation can be measured in many different ways. In the case

of parametric models the usual Euclidean distance can be a good choice, as in Hodges

and Lehmann (1954). A survey of different choices for this relaxation can be found in

Lindsay and Liu (2009). Beyond the choice of a measure of a deviation, the relaxation

involves fixing a threshold of admissible deviation from the model. There is a certain

degree of arbitrariness in fixing this threshold and it seems advisable to choose a deviation

measure for which the interpretation of the threshold is as simple as possible. A simple

possibility is the contamination level that we should admit to consider the model as a good

representation of the data. This was considered in Rudas et al. (1994) (see also Lindsay

and Liu (2009)) in the setup of multinomial data. In this work we aim at extending the use

of this measure of deviation to continuous models. Additionally, we address the problem

of model validation from a particular point of view. It is accepted that the proposed

model is not the ‘true’ model, i.e., that the observations available do not exactly come
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from a generator within the scope of the model. We reformulate our goal and we propose

to evaluate how much contamination we must accept in order to admit a given model as

valid. As a further distinctive feature, our proposal adopts the point of view of model

selection. We consider contamination neighbourhoods of a model. These neighbourhoods

grow with the contamination level and will eventually include the random generator of

the data. We will try to find a right balance between some measure of deviation between

the empirical measure and a contamination neighbourhood and the contamination level.

In our reformulation of the goodness-of-fit problem to the setup of model selection,

a measure of deviation between the empirical measure and other probability measures is

needed. Our choice is the transportation cost metric.

Back in the 18th century Monge (1781) formulated the Mass Transportation Problem

(MTP) as the problem of transporting a certain amount of soil to some places where it

should be used for construction minimizing the transportation cost. He considered that

the transport cost of a unit of soil is the Euclidean distance between the point where it

is extracted and the place where it is going to be shipped. Later, Kantorovich (1960)

developed tools for linear programming and conceived a distance between two probability

distributions, in Kantorovich (1958), which was the optimal transportation cost from one

distribution to the other when the cost was chosen as the distance function. This distance

is now known as Kantorovich-Rubinstein distance or as Wasserstein distance (this is the

denomination we will use in the following). In 1975 Kantorovich won the Nobel Prize of

economics with Koopmans.

Monge-Kantorovich theory has been applied to different science disciplines as economy,

biology or physics and to several mathematic branches such as geometry, nonlinear partial

differential equations, dynamical systems and applied mathematics as game theory or

image registration. As a review of the advances in this problem we cite Rachev and

Rüschendorf (1998) and, more recently, Villani (2008).

The special structure and properties of the transportation problem has made it possible

to develop an algorithm that, starting from the usual simplex methods, solves the problem

in a more efficient way. The actual standard form of the problem and a first constructive

solution was first proposed in Hitchcock (1941) and, not much later, in Koopmans (1949)

but the simplex method for transportation problem as we study it today was proposed in

Dantzig (1951) and Dantzig (1963).

In this work he have dealt with a variant of the optimal transportation problem, the

partial transportation problem. This variant includes the possibility of some slackness

both in supply and demand, that is, the amount of mass at supply nodes exceeds the
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amount that has to be served and the demand does not have to be completely met, but

only a fraction of it. The partial transportation problem arises in a natural way when we

consider the transportation cost metric to sets of trimmings, which are, as we will see,

dual objects to the contamination neighbourhoods of robust statistics.

The purpose of this work was to develop statistical methods in classification and model

validation under the common topic of contamination, in the way we have just discussed.

We have proposed methods and analyzed theoretical and practical aspects. These two

objectives have made necessary to use a great variety of tools from different mathematical

fields, as well as from statistics and computation. Among others we want to point out

concentration inequalities, oracle inequalities, optimal transportation problems, duality

theory, linear programming, convex optimization and gradient algorithms. For the sake of

readability, a preliminary chapter is included in which we describe some of the concepts

and fundamental results used during this research. Besides, we have implemented, in R

and C, algorithms to efficiently compute the statistical methods proposed in this thesis.

They are available upon request.

We devote chapter 3 to the partial transportation problem. We show how this variant

of the classical transportation problem is related to contamination models through the

idea of trimming. Then, with a view towards statistical applications we consider the

problem of computing empirical versions of the partial transportation cost. We deal with

a double setup. First, we handle the case of partial transportation between two empirical

measures. This results in a discrete problem which we show that can be recast as a

particular kind of classical transportation problem (in the sense of linear programming).

We discuss efficient numerical methods for the solution of this problem and provide C

code (callable from R) with an implementation. A second setup in this chapter is the case

of partial transportation between empirical measure and a continuous model, leading to a

semidiscrete problem. For this problem we provide a stochastic optimization method based

on gradient algorithms. All these concepts are applied in this chapter to contaminated

model validation problems. Beyond providing feasible numerical methods, we provide

oracle inequalities that guarantee the performance of our method. To conclude the chapter,

we tested our algorithm in a simulation study.

Chapter 4 may seem a deviation of the topic of this thesis and actually it is. It turned

out during this research that optimal transportation techniques were a useful tool in reg-

istration problems and that the numerical algorithms designed for the discrete version

of the partial transportation problem were also useful for the partial implementation of

registration methods based on optimal transportation. In this chapter we study an align-
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ment problem for warped distributions proposing a procedure for deformation estimation

based on the minimization of Wasserstein’s distance between warped distributions and

the unwarped ones. The good performance of the criterion is assured by its asymptotic

properties. Finally we illustrate this work with some examples and solving some simulated

problems. The material in this chapter was published in Agulló-Antoĺın et al. (2015).

Chapter 5 deals with the partial classification problem which is a robust approach

to the classical classification problem. It is common practice in data analysis to remove

‘disturbing’ or ‘atypical’ data and apply established procedures to the cleaned data set.

Classification is not an exception to this rule. But then the generalization guarantees of

the classifiers trained in this way may be different from what the user would expect. With

this motivation we propose to look for the classifier that offers the best performance over

a large enough fraction of the data. We formulate this as a problem of risk minimization

over a set of trimmings. Since these sets of trimmings grow with the trimming level, we

propose a penalized version, for which we provide performance guarantees through oracle

inequalities. While the theory that we present is simpler and cleaner with the use of a

0/1 loss, its applicability is hampered by the fact that this 0/1 loss would require, in its

practical application, the minimization of a non-convex target. For this reason we have

explored the extension of the results to a better behaved loss function, the hinge loss from

SVM. We provide oracle inequalities and provide feasible computational strategies. We

also outline some alternative ways of choosing loss function. This chapter includes some

simulation results illustrating the performance of the methods as well as the analysis of

a real data set. Part of the material in this chapter is submitted in Agulló-Antoĺın et al.

(2017).

We end this document with a short chapter summarizing the contributions in this

work. We believe that some results in this thesis are useful contributions towards a more

complete methodology for essential model validation and essential classification, that were

the initial goals of this project. However, during this research new lines have arisen.

Rather than an unfinished task, we would like to think of these unsolved problems as an

opportunity for future work.



Chapter 2
Preliminaries

This chapter describes several concepts and results that are fundamental in the develop-

ment of this thesis and that will be essential for proving some results. There in essentially

no new result in this chapter, but it is included for the sake of reference and readabil-

ity for the other chapters in this document. We start by introducing trimming methods

that will be the principal nexus of the problems treated in this thesis. Section 2.2 deals

with the classification problem; a robust approach to this problem is the main subject of

this chapter. Section 2.3 addresses the optimal transportation problem and Wasserstein

metrics that result from this problem. Combining trimming methods with the problem of

optimal transportation presents the partial transport problem. Its resolution by means of

the Wasserstein distance between trimming sets will be the first topic we will tackle in this

paper. Trimming methods will give a new vision to the problems of validating contami-

nated models and aligning models with deformations. We will treat them in sections 2.1

and 2.4. To solve some of these problems, in addition to the theoretical approach, we will

propose algorithms that solve them efficiently. These algorithms will be based on other

existing algorithms whose description is covered in the last section of this chapter.

2.1 Statistical methods based on trimming

In statistical practice, it is usual to treat in a particular way observations that deviate

from the main trend or that significantly affect the credibility of a particular model. One

possibility is to eliminate or trim such atypical observations or outliers. More specifi-

cally, as mentioned in the introduction, impartial trimming methods were introduced in

Rousseeuw (1984) as a robustifying method for statistical estimators and have received

15
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extensive attention in the literature (see Gordaliza (1991), Cuesta-Albertos et al. (1997),

Fraiman and Muniz (2001), Álvarez-Esteban et al. (2008) o Alfons et al. (2013) among

others).

Shortly, trimming a sample consists in removing a fraction of the sample’s points.

That is, to replace the empirical measure

1

n

n∑
i=1

δxi

by a new measure

1

n

n∑
i=1

biδxi (2.1)

where bi = 0 for the observations we want to delete and bi = n
n−k for the rest of the obser-

vations with k ≤ nα for the number of observations trimmed and α ∈ (0, 1) the maximum

proportion of points we can remove. An alternative to eliminating some observations and

leaving others is to divide the weights so that we decrease the weight of the points we

suspect may be outliers instead of eliminating them and increase the weight of others. In

this case, for all points of the sample we will have 0 ≤ bi ≤ 1
n

1
(1−α) in such a way that

n∑
i=1

bi = 1.

The theoretical counterpart of trimmings in a sample are the trimmed distributions.

Suppose we are in the measurable space (X , β), we will call P(X , β) the set of probability

measures in the measurable space. The trimming set of level α or set of α-trimmings of

a probability P ∈ P(X , β) is defined, given 0 ≤ α ≤ 1, as

Rα(P ) =

{
Q ∈ P(X , β) : Q� P,

dQ

dP
≤ 1

1− α
P -a.s.

}
Equivalently, we can say that Q ∈ Rα(P ) if and only if Q � P y dQ

dP = 1
1−αf with

0 ≤ f ≤ 1. When f = IA with A a measurable set such that P (A) = 1 − α, trimming is

just a conditional probability.

Now we present some useful properties of trimming sets. This proposition combines

the results of Propositions 3.5 and 3.6 in Álvarez-Esteban (2009).

Proposition 2.1. Let α, α1, α2 ∈ (0, 1) and P ∈ P(X , β) be a probability measure, then

trimming sets satisfy:

(a) α1 ≤ α2 ⇒ Rα1(P ) ⊂ Rα2(P ).

(b) Rα(P ) is a convex set.
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(c) Q ∈ Rα(P ) if and only if Q(A) ≤ 1
1−αP (A) for all A ∈ β.

(d) If (X , β) is a separable metric space then Rα(P ) is closed for the weak convergence

topology in P(X , β). If, in addition, X is complete, then Rα(P ) is compact.

Trimming sets relate to contamination models that are an essential part of the statis-

tical robustness theory introduced by Huber (Huber (1964), Huber (1996), Huber (1981)).

Briefly, robust statistics is an alternative approach to classic statistical methods that aim

to obtain estimators that are not affected by small variations in model assumptions. In

addition to limited sensitivity to small variations in the model, it is also desirable for a

robust method that larger deviations do not completely ruin the model.

We say that P ∈ P(X , β) is an α-contaminated version of Q if

P = (1− α)Q+ αP ′

with Q,P ′ ∈ P(X , β). Furthermore, when we consider a whole class of probabilities F
instead of a single probability, we say that Fα is the α-contaminated neighbourhood of F
if

Fα = {(1− α)Q+ αR : Q ∈ F and R a probability} .

That is, the α-contaminated neighbourhood of F is the set of all α-contaminated versions

of the probability measures that form the class F .

A related concept is α−similarity (Álvarez-Esteban et al. (2012)). Two probabilities

P,Q ∈ P(X , β) are α-similar if both are α-contaminated versions of the same distribution

R ∈ P(X , β), that is, if 
P = (1− α)R+ αP ′

Q = (1− α)R+ αQ′

where P ′, Q′ ∈ P(X , β).

The following propositions, coming from Proposition 2 in Álvarez-Esteban et al. (2008),

reflect the mentioned relationship between trimming sets and contamination models.

Proposition 2.2. Let P, P ′, Q ∈ P(X , β) and α ∈ [0, 1) then

Q ∈ Rα(P ) ⇐⇒ P = (1− α)Q+ αP ′.

Proposition 2.3. Let P, P ′, Q,Q′, R ∈ P(X , β) and α ∈ [0, 1) then
P = (1− α)R+ αP ′

Q = (1− α)R+ αQ′

⇐⇒ Rα(P ) ∩Rα(Q) 6= ∅ ⇐⇒ dTV (P,Q) ≤ α,
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where (dTV (P,Q) = sup
A∈β
|P (A)−Q(A)|) stands for the distance in total variation which

is the largest difference between the probability that the two distributions can give to the

same set.

Contamination neighbourhoods are also an essential element in the theory of statistical

robustness. Propositions 2.2 and 2.3 provide a dual formulation of contamination models

that will be exploited in Chapter 3. More specifically, if we consider a metric, d, over

P(X , β), or over an appropriate subset so that Rα(P ) is closed for d, then another distri-

bution Q ∈ Rα(P ) is a contaminated version of P if and only if d(Q,Rα(P )) = 0. Equiv-

alently, the same characterization is given for Proposition 2.3, two distributions P and Q

are contaminated versions of the same distribution if and only if d(Rα(Q),Rα(P )) = 0.

2.2 The classic classification problem

The classification problem is one of the classic problems in Statistics. Briefly, it consists in

searching, from a data set (the training set) in which group belonging has been observed

along with additional attributes, for rules that predict belonging to one of those groups

of future cases in which only these additional attributes will have been observed. There

is extensive literature on this issue. For an overview, see Hastie et al. (2009). Mention

should also be made of Lugosi (2002), Boucheron et al. (2005), Massart (2007) and the

third chapter of del Barrio et al. (2007), which give a complete overview of the current

state of the art in classification with a focus on obtaining oracle inequalities for model

selection. Finally, mention should also be made of Cristianini and Shawe-Taylor (2000)

for a more applied and computational view of the problem. To make it easier to read and

fix the notation, we include here a brief description of the main elements of the problem.

Usually we find samples formed by n pairs ξi = (Yi, Xi) where Yi is the label assigned

to an individual i whose attributes are Xi. While Xi is usually a vector in Rd, the domain

of Yi will vary depending on the problem we are working with:

• Y ∈ {0, 1} or Y ∈ {−1, 1}: Binary classification

• Y ∈ {1, . . . ,m}: Multiclass classification

The sample S = ((Y1, X1), . . . , (Yn, Xn)) is called the training set.

The goal of classification is to find a function g : Rd 7→ Dom(Y ) that predicts from

an attribute which will be its label. This function is obtained from the training sample,

selecting it in such a way that it classifies correctly as many pairs of the sample as possible.
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In this work we will focus on binary classification. We assume that the pairs in the

sample (Y1, X1), . . . , (Yn, Xn) are i.i.d. observations with Yi ∈ {0, 1} (or Y ∈ {−1, 1}) and

Xi ∈ Rd. We are going to consider that all variables in this section are defined in the space

(Ω,F ,P). In this context a classification rule is a function g : Rd → {0, 1}. If (Y,X) is a

new observation, with the same distribution as (Yi, Xi) then the prediction given by the

rule will be g(X). The rule is correct if g(X) = Y .

The law of (Yi, Xi) is a probability in {0, 1} × Rd which will be denoted by P . Given

A ⊂ {0, 1} × Rd we say Ai = {x ∈ Rd : (i, x) ∈ A}, i = 0, 1. Obviously A = ({0} × A0) ∪
({1} ×A1) and the union is disjoint, so that for each A ⊂ {0, 1} × Rd measurable,

P (A) = p0P0(A0) + p1P1(A1), (2.2)

where p0 = P ({0} × Rd), p1 = 1 − p0, P0(A0) = P ({0} × A0)/p0 and P1(A1) = P ({1} ×
A1)/p1. P0 and P1 are probabilities in Rd. Conversely, from p0 ∈ [0, 1] and probabilities

P0 and P1 in Rd equation (2.2) defines a probability in {0, 1} × Rd and the relationship

is one-to-one (except for the degenerate cases p0 = 0 or p0 = 1), so we can identify each

probability P with the object (p0, P0, P1). We will keep this identification along the work.

For each sample we can find infinite classification functions and we want to choose

among them the one that best classifies the sample. In order to make this choice we need

a measure of the error we make. We have chosen to use the generalization error which is

the probability of misclassification of future observations, that is,

R(g) := P(g(X) 6= Y ) = P{(y, x) : g(x) 6= y}.

Since, in the case we are considering, a classification rule is a function with values in

{0, 1} we can express it as the indicator of a set, g = IA. Bad classification occurs for the

point (0, x) if x ∈ A and for the point (1, x′) if x′ /∈ A. In terms of the notation (p0, P0, P1)

the classification error is then

P{(y, x) : g(x) 6= y} = p0P0(A) + (1− p0)P1(AC).

Similarly, if µ is a measure for which P0 and P1 are absolutely continuous with densities

f0, f1 respectively, then the generalization error is∫
Rd

(p0f0IA + (1− p0)f1IAC )dµ.

With this last expression we see that there is a classification rule that minimizes the

generalization error, this rule is obtained by taking A = {x ∈ Rd : p0f0(x) ≤ (1−p0)f1(x)},
which produces the generalization error

Err(P ) = Err(p0, P0, P1) =

∫
Rd

min(p0f0, (1− p0)f1)dµ.
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The above rule is known as Bayes rule and Err(P ) as Bayes error. Its interest is theoretical

because it is impossible to calculate it unless the distribution of the sample is known a

priori. It is the least possible generalization error; on the other hand, it depends on p0, f0

and f1, which are unknown. Given the impossibility of calculating Bayes rule, we usually

restrict ourselves to looking for the best possible classification rule within a class.

The selection of a suitable class is very important when it comes to getting good

classifiers. To know if a class is adequate, we need to measure the error that is made by

selecting the class and to do this we are going to use the generalization error of a class G
which is the minimum error that we can achieve with classifiers in the class, that is to say,

R(G) := min
g∈G

R(g). (2.3)

The generalization error is defined in terms of a probability P that we will rarely know,

which makes impossible to calculate R(g). Instead, an estimator of this amount is used,

usually an empirical version of R(g). The proportion of errors made with a rule g is known

as the empirical error or empirical risk of the rule,

Rn(g) :=
1

n

n∑
j=1

I(g(xj) 6=yj). (2.4)

Through the following inequality, inspired by Lemma 1.1 in Lugosi (2002), we can

assess how appropriate the choice of G is. Given a class of classifiers G, we define

gB = arg min
g

R(g), ĝ0 = arg min
g∈G

R(g) and ĝn = arg min
g∈G

Rn(g),

the Bayes classifier, the best classifier in the class and the classifier that provides the

minimum empirical error in the class respectively.

Proposition 2.4. Let E(G) := min
g∈G

R(g)−R(gB) be the excess of risk of G, then

R(ĝn)−R(gB) ≤ 2 sup
g∈G
|Rn(g)−R(g)|+ E(G). (2.5)

Proof.

R(ĝn)−R(gB) = R(ĝn)−Rn(ĝn) +Rn(ĝn)−R(ĝ0) +R(ĝ0)−R(gB)

≤ (R(ĝn)−Rn(ĝn)) + (Rn(ĝ0)−R(ĝ0)) + (R(ĝ0)−R(gB))

≤ 2 sup
g∈G
|Rn(g)−R(g)|+ E(G).

2
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As happened before with the Bayes rule, we can not calculate ĝ, and therefore R(ĝ),

without a priori knowledge of the distribution. But we can estimate the value of the

generalization error by means of the empirical generalization error defined in (2.4) and,

therefore, approximate ĝ by means of ĝn := arg min
g∈G

Rn(g) which will be the rule that

minimizes the empirical error within the class we are considering.

Proposition 2.4 helps us to understand what would be an appropriate choice of the

class G. The two terms on the right-hand side have a different role: the second term is

a bias term and the first one is a variance term. If we choose a class that is too large,

we will have a small bias but a very large variance, which translates into classifiers that

are over-adjusted to the training sample and can also be computationally expensive to

obtain. On the other hand, choosing a small class will reduce variance but increases bias,

in this case we will get bad classifiers. In order to find a balance between bias size and

variance, several techniques have been proposed, among which we will focus on the model

selection techniques derived from Vapnik’s method for minimizing structural risk based

on concentration inequalities presented in Vapnik (1982).

Since choosing a class that is too small, even if it reduces variance, provides poor

classifiers, the tendency is to choose large classes at the risk of getting over-adjusted rules

that may not work well with samples different from the training set. In order to avoid

selecting classes that are too large, a penalty is introduced on the size of the class to the

generalization error that we want to minimize. From now on we are going to work with

the following objective function

min
m∈N

[
min
g∈Gm

R(g) + pen(Gm)

]
, (2.6)

with (Gm)m∈N a family of classifiers class.

Choosing an appropriate penalty is crucial for a good class selection. A very large

penalty means that very small classes are chosen which, as we have already seen, leads to

bad classifiers. On the other hand, a very small penalty leads to very large classes that

cause over-adjustment and that is precisely what we were trying to avoid. To ensure that

the chosen penalty is appropriate, oracle inequalities are used. They guarantee that if the

sample is large enough, the error of generalization we make with ĝm̂ (that is the classifier

in which

min
m∈N

[
min
g∈Gm

Rn(g) + pen(Gm)

]
is attained) will be small.

An oracle inequality relates the performance of a real classifier to an ideal classifier that

relies on perfect information provided by a superior being (or oracle) and is not available
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in practice. The best model (the oracle) will be the one that minimizes (2.6), so it is said

that a model selector m̂ satisfies an oracle inequality if

E(R(ĝm̂)) ≤ K inf
m∈M

(
R(Gm) + pen(Gm) + o(n−r)

)
+ o(n−s),

for certain r, s > 0 and M a subset of N.

As we have already said, the penalty depends on the size of the chosen class. Since

a class will usually consist of infinite classifiers, the form we will use to quantify the size

of a class will be its Vapnik-Chervonenkis dimension. Together with this dimension we

are going to use a series of concentration inequalities when it comes to obtaining our own

oracle inequalities.

2.2.1 Vapnik-Chervonenkis theory

Vapnik-Chervonenkis theory was developed during the 70’s to explain the learning process

from a statistical point of view. In addition to statistical learning theory, it is related to

empirical processes. The basic elements of this theory are explained below, with statements

drawn mainly from Devroye et al. (1996), Devroye and Lugosi (2001) and Vapnik (1999).

Given a collection of measurable sets A, a Vapnik-Chervonenkis shatter coefficient is

SA(n) = max
x1,...,xn∈Rd

|{{x1, . . . , xn} ∩A;A ∈ A}|.

IfA is a set collection with |A| ≥ 2, the Vapnik-Chervonenkis dimension (or VC dimension)

of collection A is the biggest integer k ≥ 0 for which SA(k) = 2k. We will denote it by

VA. If SA(n) = 2n ∀n, we say that VA =∞.

A relevant example is given by the collection A of subsets of Rd of the form {x : aTx−

b ≥ 0} with a ∈ Rd and b ∈ R, then VA = d+1 and SA(n) = 2
d∑
i=0

(
n− 1

i

)
≤ 2(n−1)m+2

(see Corollary 13.1 in Devroye et al. (1996)).

Usually Vapnik-Chervonenkis shatter coefficients are difficult to calculate. A crucial

result to ease the control of the size of SA(n) is Sauer’s Lemma, which we reproduce below.

The lemma guarantees that SA(n) grows at most polynomically if the collection A has

finite VC dimension. A proof can be found at Devroye et al. (1996) (Theorem 13.2).

Theorem 2.5 (Sauer’s lemma). Let A be a collection of sets with Vapnik-Chervonenkis

dimension VA <∞. Then for all n,

SA(n) ≤
VA∑
i=0

(
n

i

)
.
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Shatter coefficients are a useful tool to control the variance term in decomposition

(2.5). As an example, by symmetrization and randomization arguments we can prove (see

Theorem 3.1 in Devroye and Lugosi (2001)) that

E

(
sup
A∈A
|P (A)− Pn(A)|

)
≤ 2

√
ln(2)SA

n
,

where Pn stands for the empirical version of P , that is, Pn =
1

n

n∑
i=1

δXi , X1, . . . , Xn are

random vectors i.i.d. with values in Rd and A is a class of measurable sets in Rd. If class

A has finite VC dimension then the following consequence is obtained (see Devroye and

Lugosi (2001), Corollary 4.1),

E

(
sup
A∈A
|P (A)− Pn(A)|

)
≤ 2

√
VA ln(n+ 1) + ln(2)

n
. (2.7)

From the point of view of the 0/1 loss, a classifier g can be identified with the indicator

of the set Ag = {(y, x) : g(x) 6= y}, so that Rn(g) = Pn(Ag). In the same way, we can

identify a class G with the indicator of the set of points A = {(Y,X) : g(X) 6= Y ; g ∈ G}
and now Rn(G) = inf

g∈G
Pn(Ag). As a result, we can identify the VC dimension of the class

G, VG , with the VC dimension of the collection of sets A. Therefore, the bound (2.7)

is also valid for the expected value of the difference between theoretical and empirical

generalization error. If VG <∞, then

E

(
sup
g∈G
|R(g)−Rn(g)|

)
≤ 2

√
VG ln(n+ 1) + ln(2)

n
. (2.8)

2.2.2 Loss functions, SVM and LASSO

For computational and other reasons it can be of interest to replace the 0/1 loss and

consider different loss functions and, consequently, different risk measures. When we

consider the 0/1 loss all poorly ranked points are equally penalized regardless how far or

close they are from being well ranked. This loss function is a piecewise constant function

and is neither convex nor continuous. This means that, in practice, the calculation of the

minimum is very expensive, making it impossible to calculate the optimal rule even for

small samples. The reason why we consider its study interesting is because of the good

statistical properties it has. We will analyze these properties in depth in section 5.2. Due

to this computational problem, other loss functions with better calculation properties such

as convex functions will be considered. Throughout section 5.3 we will study this type of

functions focusing mainly on the hinge function which is a convex function of the form
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l(x) = (1−x)+. This function not only considers whether an observation is well or poorly

classified, in case of misclassification it also gives a measure of how bad this classification

is. The hinge functions is well-known because it is the one used in SVM that we will see

later in this section.

On the other hand, it is worth mentioning the L1 loss function used in LASSO algo-

rithms. This method was originally proposed in Tibshirani (1996) for regression problems

but the proposed techniques have also been used to obtain optimal rules for the clas-

sification problem. Shortly, LASSO estimator is the one that, given a training sample

(y1, x1), . . . , (yn, xn) with x1, . . . , xn independent and (yi, xi) ∈ Rd+1, is defined by

β̂LASSO := arg min
β∈Rd

n∑
i=1

(Yi − βTxi)2

s.t.
d∑
i=1

|βi| ≤ λ

where λ > 0 is an adjustment parameter. The resulting optimization problem is a

quadratic programming problem with linear constraints. There are many efficient and

stable algorithms for resolving this type of problem, such as LARS (Efron et al. (2004))

or sparse LTS (Alfons et al. (2013)), which are discussed in more detail at the end of this

chapter.

As has been observed, LASSO methods consider only linear rules. If f is a linear

function of the form f(x) = xTβ + β0 where β ∈ Rd, x ∈ Rd and β0 ∈ R,

g(x) =


−1 if g(x) < 0

1 if g(x) ≥ 0

.

Within the linear classifiers we highlight support vector classifier (see, for example,

Cristianini and Shawe-Taylor (2000)) which is obtained by maximizing the distance of

each observation to the separation hyperplane. These classifiers are those provided by

Support Vector Machines. SVMs are a set of supervised learning algorithms developed

by Vapnik and used in classification and regression problems to obtain optimal classifiers

and regressors. Intuitively, a SVM is a model that separates the points of each class into

semispaces as wide as possible by means of a separation hyperplane (note that by the term

wide we mean the distance between the points and the hyperplane). The optimization
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problem that solves SVMs is the following

(SVM) max
β,β0

C

s.t. yi(x
Tβ + β0) ≥ C(1− ζi) i = 1, . . . , n

‖ β ‖= 1

ζi ≥ 0

n∑
i=1

ζi ≤ K,

where K is a constant that limits the maximum number of classification errors and

ζ = (ζ1, . . . , ζn) are slack variables that represent the proportional amount by which the

prediction is on the wrong side of its margin (they will be worth 0 when the observation

is on the correct side).

2.3 Optimal transportation problem and Wasser-

stein metrics

Optimal transportation problem is a widely studied mathematical problem due to its

usefulness in many branches of science and social science. In this section we will focus on

studying the continuous formulation of the problem that is used to calculate the cost of

mass transportation between probabilities. We would like to outline Bickel and Freedman

(1981), where you can find proofs of the statements reproduced in this section and the

books Villani (2003) and Villani (2008) in which we can find an overview of the evolution

of the problem.

Generally speaking, the transportation problem consists in transferring a mass quantity

between two distributions so that the transportation cost is minimal. If P and Q are two

probabilities in a separable metric space and c is a measurable function in such a way

that P represents the distribution of mass at source and Q at destination and c is a cost

function where c(x, y) represents the cost of moving a unit of mass from the location x to

the location y, the transportation problem can be formulated as

inf
π∈M(P,Q)

∫
c(x, y)dπ(x, y),

where M(P,Q) is the set of probability measures with marginals P and Q respectively.

This problem is directly related to Wasserstein metrics that were designed to quantify

the distance between probability distributions.
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Although transportation problem and Wasserstein metrics can be defined in more

general spaces, in this work we limit ourselves to handling the concepts in Rd. Let Pp(Rd)
with p ≥ 1 be the set of all (Borel) probabilities in Rd with finite moment of order p.

We denote by Wp(P,Q), the Wasserstein Lp distance between two probability measures

P,Q ∈ Pp(Rd). This distance is

Wp
p (P,Q) := inf

π∈M(P,Q)

{∫
‖x− y‖pdπ(x, y)

}
(2.9)

= min{E((X − Y )p) : X,Y r.v. with marginals P and Q} (2.10)

whereM(P,Q) is, as before, the set of probability measures in Rd×Rd with marginals P

and Q. In Bickel and Freedman (1981) is proved that Wp actually defines a distance over

Pp(Rd).
If d = 1 this distance can be calculated easily thanks to the following result that

corresponds to Lemma 8.2 in Bickel and Freedman (1981).

Proposition 2.6. If P,Q ∈ Pp(R), let F and G be the distribution functions of P and Q

respectively and F−1 and G−1 their quantile functions, then

Wp
p (P,Q) =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣p dt.

If d > 1 there is not a equivalent expression that allows us to calculate this distance.

Here arises the interest in numerical methods that allow us to approximate its value as

the discretization of the problem through empirical versions of the distributions (we will

study this in section 2.5.1) or the stochastic approximation in section 3.3.

The following proposition reproduces an interesting characterization of Wasserstein’s

distance convergence that can be found in Bickel and Freedman (1981).

Proposition 2.7. Let {Pn}n∈N be a sequence in

W2(Rd) :=

{
P ∈ Rd :

∫
Rd
‖x‖2dP (x) <∞

}
and P ∈ W2(Rd) then

W2 (Pn, P )
n→∞−−−→ 0 if and only if

 Pn ⇀ P∫
Rd
‖x‖2dPn(x)

n→∞−−−→
∫
Rd
‖x‖2dP (x)

, (2.11)

where ⇀ denotes weak convergence in the classical way.

From this characterization it is easy to prove that Rα(P ) is compact for Wp (see

Álvarez-Esteban et al. (2011)). As a consequence, the equivalent forms of Propositions

2.2 and 2.3 will be valid.
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2.4 Deformation models. Alignment

Sometimes we come across several samples that we know they come from the same distri-

bution but have suffered transformations that make it difficult to compare them. In order

to undo these transformations and be able to compare the samples, the alignment problem

arises. The following example illustrates the problem. Suppose we have 5 samples all from

a normal distribution. One follows a N(0, 1), but the others have suffered translations,

change of scale or both, coming now from distributions N(1, 0.75), N(2, 2), N(0, 5) and

N(5, 1). The graphic on the left in figure 2.1 represents the empirical distribution func-

tions of the 5 samples while the graphic on the right represents the empirical distribution

functions for the standardized data. In this easy way the distributions have been aligned

and made more comparable.
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Figure 2.1: Example of normal distribution alignment

The distribution alignment problem often arises in biology, for example, when con-

sidering gene expression data obtained with microarray technologies. In this case, the

alignment is known as normalization, see for example Bolstad et al. (2003) and related

work Gallon et al. (2013). Here we are going to consider the extension of semi-parametric

alignment methods, as in Gamboa et al. (2007) or in Vimond (2010), to the problem of

estimating a distribution of random variables observed in a deformation frame.

Assume that we have n samples of J independent random variables Xij with distri-

bution µj , where i = 1, . . . , n and j = 1, . . . , J . Each sample is extracted from one mean

distribution µ with some variations, i. e. there are some unobserved deformation functions
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of ϕ such that, for all j, we have µj = µ ◦ϕ−1. In order to deal with this problem we will

consider that the deformations have a known shape that depends on parameters specific

for each sample. Therefore, we have parameters θ∗ = (θ∗1, . . . , θ
∗
J) such that ϕj = ϕθ∗j for

every j = 1, . . . , J . Each θ∗j represents the deformation of the j-th sample that must be

removed by reversing the deformation operator to recover the unknown distribution. So,

the observed model is

Xij = ϕθ?j (εij) 1 ≤ i ≤ n, 1 ≤ j ≤ J,

where εij are independent identically distributed unobserved random variables with an

unknown distribution µ. We aim to build an estimator for the parameters θ∗j .

Alignment problems can be seen from two perspectives:

• The solution is provided by choosing an observation as a reference and aligning the

rest according to this chosen pattern.

• We obtain the solution by aligning the sample with the mean of the deformed

distributions.

The second option is more robust and less sensitive to such a previous choice than the

first. This case has been studied for the case of regression in Vimond (2010). In chapter 4

we will generalize this work to the case of distribution deformation that, besides, will allow

us to deal with problems in which we have multidimensional deformation parameters.

2.5 Algorithms

In section 2.3 we saw the relationship between continuous transportation problem and

Wasserstein metrics that measure the distance between probability distributions. As we

have already seen, for a dimension greater than 1 there is not an expression that allows

us to calculate this distance exactly. Hence the interest in numerical methods that enable

us to approximate it arises. We will study a stochastic approximation in section 3.3 and

also we will calculate the distance between the empirical versions of the distributions for

large enough samples. In this latter case, the empirical distribution of the first proba-

bility will play the role of origin and the second one will play the role of destination.

As transportation cost we will take a power of the norm of the difference between each

point of the first distribution and each point of the second. In this way, the problem of

optimal transportation becomes a linear programming problem. Although the number of

variables grows fast as the sample sizes increase (as a linear programming problem we will
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have n×m variables with n+m restrictions) there are specialized implementations of the

simplex method that are able to efficiently solve the problem for relatively large values

of n and m (see Bazaraa et al. (2010)). However, the statistical problems considered in

this thesis lead to a different version of the classic transportation problem: the optimal

partial transportation problem. This problem naturally arises when studying properties

of trimming sets with Wasserstein metric and will be addressed in chapter 3. The em-

pirical version of this partial transportation problem leads to a discrete version of the

transportation problem that does not fit into the classic linear programming problem. For

this reason, an adaptation of a classic algorithm capable of solving this new problem has

been developed in this memory. This adaptation is described in chapter 3. Here, in section

2.5.1, we describe the classical algorithm on which we have relied in order to make the

document easier to read.

The other part of this section explores another type of algorithms that could potentially

lead to efficient methods for calculating optimal classifiers for certain loss functions. As we

observed before, despite its good theoretical properties, the lack of algorithms to obtain the

optimal classifier when the loss function is 0/1 limits in practice its application. This brings

us to investigate other loss functions that are convex and can be efficiently minimized with

existing algorithms. Among these loss functions we highlight the quadratic and hinge

functions which with appropriate penalties lead to convex optimization problems. Despite

convexity, we often encounter problems of very high dimensions, which result in very

slow optimization methods. In order to find efficient algorithms, related to the LASSO

estimator, arose the coordinate descent algorithm. This algorithm is used to find the

classifier (or regressor) that is used to minimize the LASSO objective function (for more

details see, for example, Bühlmann and van de Geer (2011)).

Again, the aim of this work is to apply trimming techniques to find more robust so-

lutions to problems such as classification. Therefore, instead of considering only that

we want to minimize the classification error of each observation, we will have a double

minimization since we will also consider that each observation will be accompanied by

a weight that indicates whether we should take it into account for classification or not.

Although we do not have an algorithm for calculating double minimization directly, by

combining the above-mentioned coordinate descent and a concentration algorithm as pro-

posed in Rousseeuw and Driessen (2006) we can approximate the solutions to such double

minimization problems.

In order to facilitate the presentation of algorithms of this type introduced in this

thesis, we include here a subsection dedicated to describing the method of coordinate



30 Chapter 2. Preliminaries

descent (2.5.2) and another dedicated to presenting concentration algorithms of the type

of Rousseeuw and Driessen (2006)(2.5.3).

2.5.1 Optimal transportation algorithms

The discrete optimal transportation problem is one that minimizes the cost of transporting

a certain amount of goods from n origins to m destinations. A graphical representation

of this problem is shown in figure 2.2.

Figure 2.2: Graph of a transportation problem with 3 origin nodes and 3 destination

nodes.

First of all, we are going to see the formulation of the linear optimization problem in

order to fix notation and make it easier to understand chapter 3. We denote by oi the

amount offered in source node i and by dj the amount demanded by destination node j.

Let Cij be the cost of transporting a unit from source i to destination j and call X to

the matrix n × m in which each of its components xij corresponds to the variable that

indicates the amount transported from the source node i to the destination node j, then

the formulation of the optimal transport problem will be

(OTP) min
X

n∑
i=1

m∑
j=1

xijCij

s.t.
m∑
j=1

xij ≤ oi, i = 1, . . . , n (2.12)

n∑
i=1

xij ≥ dj , j = 1, . . . ,m (2.13)

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

For this problem to have a feasible solution, it must necessarily happen that

m∑
j=1

dj ≤
n∑
i=1

m∑
j=1

xij ≤
n∑
i=1

oi,
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that is, total offer must always be greater or equal than total demand.

Among all optimal transportation problems, those that are balanced (those with∑n
i=1 oi =

∑m
j=1 dj) are of special importance to us. When we are in this situation,

we can replace the inequalities in the restrictions (2.12) and (2.13) with equalities and the

problem (OTP) will be equivalent to

(BTP) min
X

n∑
i=1

m∑
j=1

xijCij

s.t.

m∑
j=1

xij = oi, i = 1, . . . , n

n∑
i=1

xij = dj , j = 1, . . . ,m

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

The importance of these problems is that the algorithm we are going to describe in this

section can only be applied when the problem we want to solve is balanced. Occasionally

we find problems that are not balanced, i.e.,
n∑
i=1

oi >
m∑
j=1

dj . In these cases we can

transform the unbalanced problem into an equivalent balanced problem. To do this, an

artificial demand node with zero costs is added: ci(m+1) = 0 for i = 1; . . . , n with demand

dm+1 =

n∑
i=1

oi −
m∑
j=1

dj and the problem can be written in a standard form.

min
X

n∑
i=1

m+1∑
j=1

xijCij

s.t.
m+1∑
j=1

xij = oi, i = 1, . . . , n

n∑
i=1

xij = dj , j = 1, . . . ,m+ 1

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m+ 1.

Below we are going to see that it is possible to estimate the Wasserstein distance

between two probability distributions by calculating the optimal transport plan between

their empirical distributions.
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If we denote by Πij the amount transported between xi and yj , we take

m∑
j=1

Πij = pi; i = 1, . . . , n,

n∑
i=1

Πij = qj ; j = 1, . . . ,m

and assume that

Πij ≥ 0; i = 1, . . . , n; j = 1, . . . ,m,

then, writing the expected value in (2.10) as

E((X − Y )p) =
n∑
i=1

m∑
j=1

|xi − yj |pΠij ,

we have

Wp
p (P,Q) = min

Π

n∑
i=1

m∑
j=1

|xi − yj |pΠij

s.t.
m∑
j=1

Πij = pi; i = 1, . . . , n

n∑
i=1

Πij = qj ; j = 1, . . . ,m

Πij ≥ 0; i = 1, . . . , n; j = 1, . . . ,m.

that is a problem of the same type as (BTP).

Now we describe the algorithm. We start from a balanced problem (an unbalanced

problem can be easily reformulated into this case). We need a feasible initial solution

to start working with. This solution is obtained using a heuristic algorithm. There are

already several heuristic algorithms described in the literature and we will see below some

of them. This solution is known as a feasible initial solution. In order to reach the optimum

from the initial solution, we must obtain new solutions in an iterative way that bring us

closer and closer to the optimum (that is to say, we will obtain solutions whose total cost

is lower and lower) until we reach it. These new solutions will be obtained by the method

called MODI (Bazaraa et al. (2010)). This procedure is known as the simplex method for

transportation problem.

For calculating the initial basic solution there are several heuristics in the literature,

the best known are the northwest corner denoted as NC and Vogel approximation method

(known as VAM). We are also going to consider a modification of this last method which,
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as we will see later, is the one that obtains the best resolution times, especially when the

problem we want to solve is a big one.

To apply these heuristics we have to start by building what is known as a transportation

tableau. To elaborate this table we have to put in the first column the origin nodes and

in the first row the target nodes, each square of the table will have in the upper right

corner a rectangle with the cost of going from the origin node of the row in which we are

to the destination node of the corresponding column. Finally, outside the table we write

the offer vector on a column to the right and the demand vector on a row below the table.

An example of transportation tableau is shown in Figure 2.3.

Figure 2.3: Transportation tableau.

This table will be filled according to the heuristic algorithm that we choose until we

obtain the basic initial solution. The number that will appear in each cell will be the

quantity of goods that we transport between the source node and the destination node of

the row and the column in which the cell is.

The northwest corner heuristic (see Bazaraa et al. (2010)) is the easiest to implement

and the fastest to get an initial feasible solution. The problem with this algorithm is that

it only takes into account offer and demand and does not take transport costs into account.

This means that, in most cases, the initial solution is very far from the optimal solution,

which will require many iterations to reach the final solution. The number of iterations

will increase with the size of the problem and the time required for each iteration will also

increase making the use of this unfeasible to solve big problems. Algorithm 1 shows this
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Algorithm 1: Northwest corner

1. Start with the cell in the upper left corner, which corresponds to the value of x11, and give the cell the

maximum value possible that will be the minimum between the supply on the first source node and the

demand of the first destination node.

2. Subtract from the corresponding elements of the offer and demand vectors the amount already allocated,

which will cause at least one of the two to become 0. If the one that is canceled is demand, fill the rest of

the column with 0, if it is supply, do the same with the row. In the event that both of them are canceled,

we fill the row with 0 and in the offer vector, instead of putting a 0 in the corresponding position, we

will put a very small amount ε (small enough so the solution of the problem will not be affected).

3. Ignore the row or column filled with 0 and repeat steps 1 and 2 for the new table that will have one row

or column less than the previous one. Repeat this until all the demand and therefore all the offer has

been delivered.

method.

On the other hand, we have the heuristic VAM (see Reinfeld and Vogel (1960)) which

is slower than the northwest corner because the calculations we must make to get the

initial feasible solution are more complicated. The advantage of this algorithm is that it

does take into account transportation costs and therefore the solution will be closer to

the optimum. This reduction in the number of iterations required will be reflected in a

reduction in the total resolution time. We can see a diagram of this heuristics in Algorithm

2.

Algorithm 2: Vogel’s approximation method

1. Calculate the penalty for each row and column, this is done by subtracting the smallest cost from the

second smallest cost of the row and the same way for the columns.

2. Select the row or column for which the penalty is the highest, in case of a tie we will keep the lowest

index.

3. We assign to the empty cell that has the lowest cost of the row or column selected the largest amount of

goods we can (as was done in the northwest corner this amount will be the minimum between demand

and supply in the corresponding node).

4. Subtract the quantity already allocated to the corresponding elements of the vectors offer and demand.

One of them will be canceled, if it is demand fill with 0 the rest of the elements of the column, if it is

supply do the same with the row. If both are canceled, fill the row with 0 and assign an offer of ε.

5. Repeat the previous 4 steps until we have m+ n− 1 boxes with positive value.

A slight modification of the VAM algorithm is described in Korukoğlu and Ballı (2011)

which provides a better initial solution and is called IVAM. The advantage of using this

heuristic is that the initial solution is slightly better than VAM’s. This means that the
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number of iterations required to reach the optimum will be smaller and, for large problems,

will significantly reduce the computation time of the problem.

This improvement has two differences with the original method. The first is that

instead of working with the given cost matrix, it works with what is known as the TOC

matrix or total opportunity cost matrix, which is obtained by adding the matrices obtained

by subtracting the lowest cost within each row (ROC) and the second by doing the same

thing per column (COC). If we denote by Ci = (Ci1, . . . , Cim) with i = 1, . . . , n and by

C ′j = (C1j , . . . , Cnj)
T with j = 1, . . . ,m, clearly C = [C1, . . . , Cn]T = [C ′1, . . . , C

′
m]. So if

we define

C̃i = Ci − min
1≤j≤m

{Cij} with i = 1, . . . , n

C̃ ′j = C ′j − min
1≤i≤n

{Cij} with j = 1, . . . ,m.

we have that ROC = [C̃1, . . . , C̃n]T and COC = [C̃ ′1, . . . , C̃
′
m] and, as we have already

said, TOC = ROC + COC. The second difference, is that instead of selecting the row

or column with the highest penalty, it takes into consideration the three rows or columns

with the highest penalty. In Algorithm 3 we find a schematic explanation of this heuristic.

Algorithm 3: Improved Vogel’s approximation method

1. Calculate the penalty for each row and column, this is done by taking the smallest cost out of the row

and to the second smallest cost out of the row and the same way for the columns.

2. Select the three rows or columns with the three highest penalties, in case of ties we will select those with

the lowest indices.

3. For each of the three selected rows or columns, it calculates the transport cost by assigning to the empty

cell with the lowest cost of the selected row or column the largest quantity of goods that we can (as

always this amount will be the minimum between demand and supply in the corresponding nodes).

4. Choose the minimum of the three transportation costs chosen in step 3. Break any possible ties by

choosing the cell corresponding to the row or column with the lowest index.

5. Subtract the quantity already allocated to the corresponding elements of the vectors offer and demand.

One of them will be canceled, if it is demand fill with 0 the rest of the elements of the column, if it is

offer do the same with the row.

6. Until we have m+ n− 1 boxes with a positive value check if the row or column deleted was providing

the minimum for any column or row. If so, go to step 1, otherwise go to step 2.

In the literature we can find evidence that both the northwest corner algorithm and

Vogel’s algorithm provide an initial basic feasible solution. To our knowledge, there is no

explicit proof of this property for the IVAM algorithm. We include here a short result

covering this fact.

Proposition 2.8. The solution provided by the IVAM algorithm is a basic feasible solution.
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Proof. This follows from Theorem 1, p.303 in Dantzig (1963), since the algorithm proceeds

as in cases 1, 2 and 3 in this reference. 2

Once we have a feasible basic initial solution, we have to iterate this solution in order

to reach the optimal solution, so that in each step, the feasible solution will have smaller

cost. To do this we will use the method known as MODI. An scheme of this algorithm

can be found in algorithm 4.

Algorithm 4: MODI

1. Look for the non-basic cell whose contribution to cost is the lowest.

2. If the contribution to cost is equal or greater than 0 the current solution is optimal, otherwise continue

to step 3.

3. Find the basic cell that needs to be removed from the current solution so that we can introduce the not

basic cell selected in step 1.

4. Redistribute the goods between the boxes to get a new basic feasible solution and return to step 1.

We will say that a cell is a basic cell if it is part of the current solution and non-basic

if it is not. The first step is to search through all the non-basic cells to find out which one

would reduce the transportation cost of the problem the most. For this we will calculate

the net unit contribution of each cell to the cost, this contribution can be either negative

or positive (if it is 0 we consider it as positive). If the contribution is positive it means

that the solution is better without that cell than with it and when the contribution of

all cells is positive we will have reached the optimal solution. This may occur in the first

iteration and the initial feasible basic solution may be optimal, but the larger the problem

is, the less likely it is to occur.

We will denote the contribution of each cell by eij . To calculate it we have to solve a

system of equations. To each row we will assign a variable ui, (i = 1, . . . , n) and to each

column we will assign the variable vj , (j = 1, . . . ,m). For each basic cell (i, j) we have

the equation ui + vj = Cij . This would make a total of n + m − 1 equations and n + m

unknowns, in order to get a system with a unique solution we need to add the equation

u1 = 0. Once the system is solved, we will obtain the contribution of each non-basic cell

with

eij = Cij − ui − vj . (2.14)

Among all the contributions we keep the minimum, as long as this minimum is negative

we will have to do another iteration and get the next feasible solution. In this case we

have to keep the cell that provides the minimum (in case of a tie we keep the lowest index)
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to introduce it in the new solution. As the current solution already has all the offer and

demand distributed among its cells, we have to remove a basic cell, so a new cell can enter,

and redistribute the goods. To determine which cell will be the one that comes out, we

will have to find a loop that includes the new cell and several basic ones.

A loop is a path that begins and ends in the same cell. We consider as cells of the

path the initial cell and the sequence of all the basic cells in the path. For a path to be

considered a loop it must have the following properties:

1. The starting and ending cell must be the same.

2. Two consecutive cells must be either in the same column or in the same row.

3. There cannot be three consecutive cells in the same row or column.

4. There must be an even number of cells along the path.

In Figure 2.4 we see two examples of paths that do constitute a loop and in Figure

2.5 we see two other examples of paths that do not form a loop: the first is not a loop

because it fulfills neither the second nor the fourth property and the second because it

fulfills neither the third one nor the fourth.

Figure 2.4: Examples of paths that constitute a loop.

Figure 2.5: Examples of paths that are not loops.
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It is known that any non-basic cell forms a loop with a subset of basic cells (see, for

example, Bazaraa et al. (2010)). Finally, we only need to redistribute the goods in such

a way that the new basic cell gets some goods and one of the basic cells in the previous

solution runs out of goods. We are going to number the cell of the path starting from the

initial cell and we are going to calculate the minimum number of goods that has an even

cell assigned. We will take this minimum from the goods assigned to all even cells and we

will add it to all odd cells. This means that the basic cell that is going to be left out of the

new solution is the one that gives us that minimum (in case there is more than one that

provides that minimum we will only leave out the first of them and to the rest of them we

will assign ε goods, where ε is a very small amount that does not affect the final cost). We

now have a new, feasible basic solution to begin the whole process jut described with it.

Algorithm 5 describes schematically the simple algorithm for the transportation problem.

Algorithm 5: Simplex algorithm for optimal transportation problem.

1. Check if the problem is balanced and if not, balance it.

2. Construct the transportation tableau and obtain an initial solution using algorithm 3.

3. Propose and solve the system of equations.

4. Calculate the unit contribution of each non-basic cell with the formula (2.14) and get the minimum of

all contributions.

– If the minimum is positive or 0 we have the optimal solution and we have finished.

– If the minimum is negative, proceed to step 5.

5. Get a loop.

6. Redistribute the goods between the cells of the loop. Return to step 3 with the new feasible basic

solution.

In chapter 3 we propose an efficient algorithm, based on the ideas described here, for

solving the discrete problem of partial transportation.

2.5.2 Gradient methods

Gradient descent algorithms are numerical methods for minimizing functions that can be

used in many problems. In a statistical or machine learning context, part of the interest

of these methods is their adaptability to minimize functions defined in high dimensional

spaces, reducing sometimes the problem to the resolution of one-dimensional problems.

As a reference on the application of these gradient methods in the context of machine
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learning we can cite Bubeck (2015). Here we briefly summarize some basic aspects of the

method.

Gradient methods are numerical minimization methods that arise in response to the

problem of minimizing high dimensional functions by reducing them to one-dimensional

problems. To describe the method, we will assume that X ⊂ Rd is a convex, compact set

and Q : X → R is a differentiable function that reaches its minimum value in x∗ ∈ X . Let

∇f be the gradient of Q, η the step size and x0 ∈ Rd the starting point, the algorithm

calculates in each iteration t

xt+1 = xt − η∇Q(xt).

Although these methods can get stuck in local minimums, if Q is convex and soft

enough, the gradient algorithm produces a sequence of iterants converging to x∗. For

example, if ∇Q is β-Lipschitz and we take η = 1
β , then

Q(xt)−Q(x∗) ≤ 2β‖x0 − x∗‖2

t
, t ≥ 1,

(See Theorem 3.3 in Bubeck (2015)). We observe that the bound is independent of the

dimension d, which may be interesting for solving high-dimensional problems (although the

dimension often influences the Lipschitz constant β, associated with Q). Sometimes the

speed of convergence towards the minimizer can be improved by choosing the appropriate

step width. With variable-pass methods (ηt depending on t) an exponential bound can be

achieved by means of Nesterov’s acceleration (see Theorem 3.18 in Bubeck (2015)).

An important aspect in gradient methods is, as we see, the choice of step width. Once

the direction in which we explore the space is chosen (the one given by the gradient) the

ideal displacement would be the one that takes us to the point where the minimum is

reached along that direction. Searching for this optimal displacement may be computa-

tionally inadvisable.

An alternative strategy is to change search direction and limit it to directions along

which it is easy (computationally) to find the optimal displacement. This principle is

behind the coordinate descent method. This is an iterative algorithm for fast resolution of

large scale problems where classic minimization algorithms are not feasible. This heuristic

algorithm produces a sequence that, under certain conditions, converges to the minimizer

(see Friedman et al. (2007)). Shortly, the algorithm minimizes in each iteration in the

direction of one of the coordinates given the current value of the other coordinates. The

minimization will end when the improvement of the objective value between two iterations

is very small.
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The optimization problem to be solved by this algorithm is

min
β∈Rd

Q(β). (2.15)

In addition to function Q, the algorithm will need the gradient of this function in each

coordinate. The gradient will be denoted by Gj(β). If there is no gradient, a subgradient

will suffice.

The algorithm works as follows. We start from an initial value for β[0] and m = 0. On

each iteration it takes m = m + 1 and j = m( mod p) and calculates Gj(β
[m−1]
−j ) where

β
[m−1]
−j = (β

[m−1]
1 , . . . , β

[m−1]
j−1 , 0, β

[m−1]
j+1 , . . . , β

[m−1]
p ). We take

β
[m]
j =

 0 if Gj(β
[m−1]
−j ) = 0

arg min
βj∈R

Q(β
[m−1]
+j ) other case

,

with β
[m−1]
+j = (β

[m−1]
1 , . . . , β

[m−1]
j−1 , βj , β

[m−1]
j+1 , . . . , β

[m−1]
p ) (as we said at the beginning only

one of the coordinates changes in each iteration). For every β[m] we calculate Qm :=

Q(β[m]) and when the difference between Qm and Qm−1 is small enough the algorithm

ends.

Algorithm 6: Coordinate descent minimization

1. Choose β[0] and set m = 0.

2. Set m = m+ 1 and j = m mod p

3. Calculate Gj(β
[m−1]
−j ). If its value is 0 then β

[m]
j = 0 in other case β

[m]
j = arg min

βj∈R
Q(β

[m−1]
+j ).

4. Repeat steps 2 and 3 until convergence.

Although the number of iterations that the algorithm needs in order to reach the

optimum can be very large, especially in high-dimensional problems, the simplicity that,

in some problems, has each one of them, makes that the resolution of the problem (2.15)

is much faster than with other methods. A relevant example of this situation is LASSO.

In this case step 3 in Algorithm 6 is calculated using a simple explicit formula, making

the coordinate descent algorithm one of the usual methods used to calculate the LASSO

estimator.

2.5.3 Concentration algorithms

In the first section of this chapter we saw that trimming a sample consists in removing

a series of observations from it. A trimmed estimator is one obtained from this trimmed
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sample. In general, sample trimming is made in such a way that the observations that

are eliminated are those with the worst impact over the fit to a certain model. In fact,

one of the motivations for considering trimming methods is the fact observed in many

contexts that a single observation can completely alter the fit to a model and thus the

conclusions of a data analysis, including the setup of classification (see, for example,

Alfons et al. (2013) for a recent survey). From a practical point of view, the adequacy

of observations to a model will be measured according to some criterion function. The

concentration step algorithm or C-steps is an iterative method for getting an approximate

solution for minimization problems of this type. The algorithm, in an iterative way,

removes observations from the sample, recovering those that are less harmful to the model

and removing those that are more harmful.

We illustrate the idea by outlining its application to a linear regression problem with

quadratic loss, as in Rousseeuw and Driessen (2006). Suppose we have n observations of

the form (xi, yi) = (xi1, . . . , xid, yi) ∈ Rd+1 and that we can estimate the parameter vector

β = (β1, . . . , βd) in such a way that

y = x1β1 + . . .+ xdβd + ε.

The presence of atypical observations or outliers can seriously affect the estimation of β.

In order to limit the impact of possible outliers on the estimate, the LTS estimator (Least

trimmed squares) is

β̂LTS,α = arg min
β∈Rd

min
H∈H

∑
i∈H

(yi − xTi β)2

where we assume that α is such that n(1 − α) = h is an integer and H is the class of

subsets of {1, . . . , n} with h elements. Obviously, for fixed β ∈ Rd

min
H∈H

∑
i∈H

(yi − xTi β)2 =

h∑
i=1

(r2)i:n(β)

where (r2)1:n(β) ≤ . . . ≤ (r2)n:n(β) are the ordered square residuals.

The algorithm starts with a first set H1 randomly generated so that |H1| = h and

calculates

β̂1 = arg min
β∈Rd

Q(β)|H1 = arg min
β∈Rd

∑
i∈H1

(r1(i))2

and

Q1 :=
∑
i∈H1

(r1(i))2

where r1(i) = yi−(xi1β̂
1
1 +. . .+xidβ̂

1
d). For the first iteration chooses H2 in such a way that

{|r1(i)| : i ∈ H2} = {|r1|1:n, . . . , |r1|h:n} where |r1|1:n ≤ . . . ≤ |r1|h:n ≤ . . . ≤ |r1|n:n. In the
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same way we calculate β̂2 and Q2. It can be proved (see Rousseeuw and Driessen (2006))

that Q2 ≤ Q1 and, then, that the objective value of the residuals function decreases with

each iteration. The steps from Hk to Hk+1 are known as C-Steps, short for concentration

steps.

Since the set H1 is randomly chosen, to reduce computation time instead of generating

it with h elements we can choose a smaller size (for instance, Alfons et al. (2013) suggests

choosing a set of three elements).

Algorithm 7: C-Steps

1. Randomly generate an initial set of H1 of l elements.

2. Calculate β̂1 and Q1.

3. Sort the errors obtained in step 2 and get H2 with the remaining h couples that have the smallest errors.

4. Repeat steps 2 and 3 with β̂2 to get H3.

5. Make n.init repetitions of steps 1 through 4 and choose the n.cSteps subsets H3 that provide the

smallest generalized empirical errors.

6. For every H3 chosen in step 5 we repeat steps 2 and 3 until the difference between the trimmed

minimum square error of two successive iterations is small enough.

7. From the n.cSteps errors that we get in step 6 we choose the smallest and the corresponding β̂ will be

the optimal one.

The final output of this algorithm can be affected by the choice of the initial set. The

descent property only guarantees convergence to a local optimum. This is enhanced by

choosing a large number, n.init, of random initializations. For each one of them, we per-

form two iterations of the algorithm since it is usually possible to differentiate after only 2

or 3 iterations if the proposed initial solution will lead to a good solution or not. Of those

n.init solutions we keep the best n.cSteps to apply the algorithm until convergence. Of

these n.cSteps results we keep the best. The good performance of this concentration algo-

rithm with many initializations has been tested, for example, in Rousseeuw and Driessen

(2006).



Chapter 3
Statistical methods related to partial

transportation problem

This chapter presents the problem of optimal partial transportation and its connections

to methods based on trimming and contamination models.

The problem of partial transportation is a variant of the classic optimal transportation

problem described in section 2.3. Partial transportation problem also consists in trans-

porting a mass quantity from an origin to a destination at the lowest possible cost. The

difference between these two problems is that in the problem of partial transportation

there is an excess of mass offered at the origin that we are not going to transport and,

possibly, it is not necessary to satisfy all the demand at the destination but only a fraction

of it.

According to section 2.1 there is an equivalent way to express contaminated models

in terms of trimming sets. This equivalence takes on a more convenient shape when

a metric is used between probabilities for which trimming sets are closed. Wasserstein

metrics, associated with the problem of optimal transportation, have that attribute. This

chapter exploits this fact to properly formulate contamination models in terms of the

partial optimal transportation problem.

With the exception of the one-dimensional case, the calculation of optimal transporta-

tion plans does not accept simple closed expressions. These difficulties are transmitted

(even in the one-dimensional case) to partial optimal transportation problem and numer-

ical methods are necessary for the approximate calculation of optimal solutions. One

possibility is to replace origin and destination distributions with discrete versions. This

possibility occurs naturally when working with sample distributions. For this reason, we

43
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will devote the section 3.2 to the study of the discrete problem of partial transportation,

with special attention to designing an efficient algorithm for calculating solutions.

Another interesting situation corresponds to the case in which we want to compare

a sample distribution with a continuous model. This leads to a semi-discrete version of

partial optimal transportation problem. This problem is addressed in section 3.3. With the

help of Kantorovich’s duality for the optimal transportation problem, we will prove that the

semi-discrete problem accepts an equivalent formulation in terms of minimizing a convex

and differentiable function over a convex set of constraints. This allows the application of

standard convex optimization methods for the approximate estimation of the semi-discrete

partial transportation cost, such as the gradient descent algorithm described in section

2.5.2. However, the numerical calculation of the gradient in this partial transportation

problem is too costly, which has led to the consideration of a type of stochastic gradient

algorithm for the effective calculation of the partial transportation cost in this semi-discrete

case.

Section 3.4 presents an application of the partial transportation problem to the val-

idation of contaminated models. The approach is that the random data generator will

belong to a contamination neighbourhood of a given model if the contamination level is

large enough. On the other hand, classic fitting contrasts to a model generally do not

allow us to conclude that the model is valid. At best, when the model is not rejected, the

weak conclusion is that there is not enough evidence against the model. Here we intend

to evaluate how much contamination we must admit to give the model as valid. We refor-

mulated the problem of fitting a model to the model selection point of view. We measure

the suitability of a model by means of the cost of transporting the empirical measure to

a contamination neighbourhood of the model. This distance decreases as contamination

levels increase. By adding an appropriate penalization, it is possible to guarantee (see

Theorem 3.16) a good selection of the contamination level.

Finally, section 3.5 describes implementation details of the algorithms introduced in

sections 3.3 and 3.4 and presents the results of applying the essential model validation

procedure to simulated data.

3.1 Trimming and Wasserstein metrics

Similarly to how Wasserstein metrics and the optimal transportation problem relate to

each other, a relationship can be established between the partial optimal transportation

problem and Wasserstein distances between distribution’s trimming sets.
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In the problem of partial optimal transportation we have an excess of offer, so that it

is not necessary to serve all the mass at origin, or we have some slackness with respect to

the demand and it is only necessary to satisfy a fraction of this or both situations at the

same time. Given an origin distribution P , a destination distribution Q and α1, α2 ∈ [0, 1],

a partial transportation plan will be a probability π ∈ X × Y, where X and Y are the

metric spaces where distributions P and Q are defined respectively, so that

π(A× Y) ≤ 1

1− α1
P (A) ∀A (3.1)

π(X ×B) ≤ 1

1− α2
Q(B) ∀B. (3.2)

We can express the cost of partial optimal transportation as

inf
π∈Πα1,α2 (P,Q)

∫
c(x, y)dπ(x, y), (3.3)

where Πα1,α2(P,Q) is the set of all probabilities π in X × Y that satisfy conditions (3.1)

and (3.2).

Consider X = Y = Rd. If we set c(x, y) = ‖x− y‖p, (3.3) is the same as

Wp
p (Rα1(P ),Rα2(Q)).

In Álvarez-Esteban et al. (2012) it is proved that this distance can be obtained as

Wp(Rα1(P ),Rα2(Q)) = min
P ′∈Rα1 (P ),Q′∈Rα2 (Q)

Wp(P
′, Q′).

If instead of considering an excess of mass both at origin and destination we consider

that there is only excess in one of them, we obtain that, in this case, the optimal partial

transportation plan is precisely Wp
p (Rα(P ), Q) and, again, from Álvarez-Esteban et al.

(2012) we get

Wp(Rα(P ), Q) = min
P ′∈Rα(P )

Wp(P
′, Q)

As a direct consequence of Proposition 2.1 of Álvarez-Esteban et al. (2011) and the fact

that the trimming set is compact for the Wasserstein metric, we can obtain the following

result that relates contamination models and trimming sets.

Proposition 3.1. If P,Q, P ′ ∈ Pp(X ) then

P = (1− α)Q+ αP ′ ⇐⇒Wp(Rα(P ), Q) = 0.

Similarly, we can use the Wasserstein distance between trimming sets to determine if

two distributions are similar at a level α, this is illustrated by the following result from

Proposition 2 of Álvarez-Esteban et al. (2012).
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Proposition 3.2. If P,Q,R, P ′, Q′ ∈ Pp(X ) then


P = (1− α)R+ αP ′

Q = (1− α)R+ αQ′

⇐⇒Wp(Rα(P ),Rα(Q)) = 0.

One objective of this thesis is to propose statistical methods based on trimming that

can be used in practice. Some methods based on Wasserstein distance between trimming

sets have been treated in Álvarez-Esteban et al. (2012). These methods are limited to

univariate data and a main objective of this work is to extend the applicability of this type

of methods to the multivariate case. A first step is to have a good method of calculating

empirical versions of Wasserstein distances between trimming sets. A response to this

issue will be given in section 3.2, with an algorithm for calculating the partial optimal

transportation in the discrete case. In other applications it may be necessary to calculate

the partial transportation cost for a continuous model. As we have already said, this will

lead to a semi-discrete problem whose treatment is discussed in section 3.2.1.

3.2 The discrete partial transportation problem

In this section we focus on the problem described by the equations (3.1) to (3.3) in the

particular case where P and Q have finite support. More precisely, we will assume that

P{xi} = pi, i = 1, . . . , n and Q{yj} = qj , j = 1, . . . ,m (so that pi > 0, qj > 0, p1 +

· · · + pn = q1 + · · · + qm = 1). Each element of the cost matrix will be of the form

Cij = ‖xi − yj‖p. A probability over {x1, . . . , xn} × {y1, . . . , ym} can be described by the

probabilities of the pairs (xi, yj), which we will denote by Πij . Then the conditions (3.1)

and (3.2) become

m∑
j=1

Πij ≤
pi

1− α1
, i = 1, . . . , n

n∑
i=1

Πij ≤
qj

1− α2
, j = 1, . . . ,m

n∑
i=1

m∑
j=1

Πij = 1, Πij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m,
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so

Wp
p (Rα1(P ),Rα2(Q)) = min

Π

n∑
i=1

m∑
j=1

ΠijCij (3.4)

s.t.

m∑
j=1

Πij ≤
pi

1− α1
, i = 1, . . . , n

n∑
i=1

Πij ≤
qj

1− α2
, j = 1, . . . ,m

n∑
i=1

m∑
j=1

Πij = 1

Πij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

More generally we can consider the problem

(PTP) min
X=(xij)

n,m
i,j=1

n∑
i=1

m∑
j=1

xijCij

s.t.

m∑
j=1

xij ≤ oi, i = 1, . . . , n (3.5)

n∑
i=1

xij ≤ dj , j = 1, . . . ,m (3.6)

n∑
i=1

m∑
j=1

xij = 1, xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m. (3.7)

For the problem to be feasible it is necessary that
n∑
i=1

oi ≥ 1 and
m∑
j=1

dj ≥ 1.

This formulation is very similar to that of the discrete optimal transportation problem

discussed in section 2.5.1. However, there is a fundamental difference. Inequalities deal

symmetrically with offer and demand nodes. If it was not for restriction (3.7), which

guarantees that X is a probability (the total displaced mass is 1), the minimum in (PTP)

would be 0. This means that (PTP) is a problem of a different nature from that de-

scribed in section 2.5.1 and that it is not possible to rewrite (PTP) directly as a balanced

transportation problem.

In order to turn this problem into a balanced optimal transportation problem, and to

be able to apply the usual algorithms, we must transform inequalities (3.5) and (3.6) into

equalities. As with the classic unbalanced problem, the way to do this is by adding dummy

nodes. In this case we must add an origin and a destination node. Since these nodes are

dummy, the shipments made from the dummy source node or those that reach the dummy
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destination node will also be dummy and, therefore, we do not want them to affect the

solution of the problem. Thus, the cost between any source node and the destination

dummy node and the cost from a source dummy node to any destination node will be 0.

Besides, we also have a forbidden path. We cannot transport any goods between the two

dummy nodes. Since eliminating this path would destroy the structure of the problem,

the way to solve it is to assign this path a cost that is high enough to ensure that in any

optimal solution this path will not be taken.

Figure 3.1: Graph of a partial transportation problem with 3 origin nodes, 2 desti-

nation nodes and 2 dummy nodes.

In Figure 3.1 we show the extended graph corresponding to a partial transportation

problem between 3 source nodes and 2 demand nodes. Added dummy nodes are D3 and

O4. Transportation costs between O1, O2, O3 and D3 are null, the same as O4 to D1 or D2.

Our next result provides a possible assignment to the transportation cost between dummy

nodes that ensures that nothing is transported between them in the optimal solution.

Proposition 3.3. Given a balanced transportation problem of the form

(BTP) min
x11,...,xnm

n∑
i=1

m∑
j=1

xijCij

s.t.

m∑
j=1

xij = oi, i = 1, . . . , n

n∑
i=1

xij = dj , j = 1, . . . ,m

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.
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with Cij ∈ R known ∀i, j. If ∃ k, l/

Ckl ≥
DC

dl
(3.8)

where D =
∑m

j=1 dj and C = (
∑n

i=1

∑m
j=1Cij)− Ckl then in the optimum x̂kl = 0.

Proof: Let X and Y be two feasible solutions to the problem (not necessarily optimal),

with ykl = 0. We know that if we take Ckl big enough and xkl 6= 0 then ∀i ∈ {1, . . . , n}\{k}
and ∀j ∈ {1, . . . ,m}\{l} there are yij solution to the problem so that

n∑
i=1

m∑
j=1

xijCij ≥
n∑
i=1

m∑
j=1

yijCij . (3.9)

Clearly
n∑
i=1

m∑
j=1

xijCij = xklCkl +
n∑
i=1

m∑
j=1

(i,j)6=(k,l)

xijCij

and
n∑
i=1

m∑
j=1

yijCij = yklCkl +

n∑
i=1

m∑
j=1

(i,j) 6=(k,l)

yijCij = 0 +

n∑
i=1

m∑
j=1

(i,j)6=(k,l)

yijCij .

From (3.9)

xklCkl ≥
n∑
i=1

m∑
j=1

(i,j) 6=(k,l)

yijCij −
n∑
i=1

m∑
j=1

(i,j)6=(k,l)

xijCij =

n∑
i=1

m∑
j=1

(i,j) 6=(k,l)

(yij − xij)Cij . (3.10)

As yij ≤ dj and 0 ≤ xij we can bound

yij − xij ≤ dj < D.

So, we have

n∑
i=1

m∑
j=1

(i,j)6=(k,l)

(yij − xij)Cij ≤
n∑
i=1

m∑
j=1

(i,j) 6=(k,l)

djCij < D

n∑
i=1

m∑
j=1

(i,j)6=(k,l)

Cij .

and going back to (3.10)

xklCkl ≥ D
n∑
i=1

m∑
j=1

(i,j)6=(k,l)

Cij ,

then, as xkl ≤ dl,
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Ckl ≥

D
n∑
i=1

m∑
j=1

(i,j)6=(k,l)

Cij

xkl
≥

D
n∑
i=1

m∑
j=1

(i,j) 6=(k,l)

Cij

dl
.

2

With this we conclude that we can solve the partial transportation problem by means

of a classic balanced discrete transportation problem by adding dummy nodes as described

and imposing the conditions

dm+1 =
n∑
i=1

oi − 1,

on+1 =
m∑
j=1

dj − 1,

C(n+1)j = 0, j = 1, . . . ,m,

Ci(m+1) = 0, i = 1, . . . , n and

C(n+1)(m+1) =

 m∑
j=1

dj

 n∑
i=1

m∑
j=1

Cij


n∑
i=1

oi − 1

.

Therefore, taking

C̃ =

(
C 0n×1

01×m
(1−α1)DC

Oα1

)
.

we can formulate the partial transportation problem as follows,
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(PTPB) min
X=(xij)

n,m
i,j=1

n+1∑
i=1

m+1∑
j=1

xijC̃ij

s.t

m+1∑
j=1

xij = oi, i = 1, . . . , n

m+1∑
j=1

x(n+1)j =
m∑
j=1

dj − 1

n+1∑
i=1

xij = dj , j = 1, . . . ,m

n+1∑
i=1

xi(m+1) =

n∑
i=1

oi − 1,

n+1∑
i=1

m+1∑
j=1

xij = 1

xij ≥ 0, i = 1, . . . , n+ 1; j = 1, . . . ,m+ 1,

This is precisely an optimal transportation problem and, therefore, we can apply algorithm

5 we saw in section 2.5.1 to solve it.

Returning to the problem of calculating the Wasserstein distance between sets of trim-

mings of probabilities with finite support, using the above we can rewrite problem (3.4)

as a transportation problem as follows,
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Wp
p (Rα1(P ),Rα2(Q)) = min

Π

n+1∑
i=1

m+1∑
j=1

ΠijCij

s.t.

m+1∑
j=1

Πij =
pi

1− α1
, i = 1, . . . , n

m+1∑
j=1

Π(n+1)j =
α2

1− α2

n+1∑
i=1

Πij =
qj

1− α2
, j = 1, . . . ,m

n+1∑
i=1

Πi(m+1) =
α1

1− α1

n+1∑
i=1

m+1∑
j=1

Πij = 1

Πij ≥ 0, i = 1, . . . , n+ 1, j = 1, . . . ,m+ 1.

3.2.1 A fast algorithm for the partial transportation prob-

lem

In this section we will obtain an algorithm for the R statistical package (R Core Team

(2013)) that will allow us to efficiently solve the optimal transportation problem and the

partial transportation problem seen in the previous section.

Nowadays, there is function lp.transport in the lpSolve package (see Berkelaar

(2013)) which calculates the solution to a balanced optimal transportation problem, but

this function is only efficient if we work with small datasets. This is why we have im-

plemented the algorithm described below, which calculates the optimal solution to the

transportation problem faster than lp.transport. In addition, function lp.transport

presents problems when it has to solve big problems, while our algorithm has been suc-

cessfully tested with samples os size 10000 × 10000 nodes. We have called our algorithm

Partial.Transport, this name comes from the fact that, in addition to solving the trans-

portation problem quickly and efficiently, it is also prepared to solve the partial transporta-

tion problem by automatically making all the changes on the formulation of the problem

seen in the previous section.

In section 2.5.1 we introduced the simplex for the calculation of optimal transportation

plans. Below we will review the modifications introduced to obtain an improvement in
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the efficiency of the solution. First, we are going to compare the IVAM heuristic with

the others considered to highlight its advantages. Table 3.1 presents the average number

of iterations of algorithm 4 needed to reach the optimal solution when starting from the

initial solution provided by each heuristic for 10 different problems. In problems up to

500 × 500 it is clearly seen that NC is much worse than the others. Due to this and

the immense amount of time required to reach the optimum in greater problems we have

skipped this calculations.

Table 3.1: Number of iterations

Iterations

Size NC VAM IVAM

10×10 26 9.3 8

100×100 740.5 227.2 212.5

200×200 1956 525 470.3

500×500 5966.2 1767.5 1467.9

1000×1000 - 6518.4 5996.2

2000×2000 - 15256.8 12970.7

5000×5000 - 44771 39400.4

In table 3.1 we can see not only that the average of iterations required by the program

to reach the optimum is lower when we use IVAM, but also that the difference with the

other two algorithms becomes larger with the sample size. This translates into significantly

less time for calculating the optimal solution.

The second modification comes in the resolution of the system because although it is

very simple and also very fast when we are working with small problems, increasing the

size of the problem also increases the size of the system and, therefore, the computation

time needed to solve it. Since we are looking to implement an algorithm that resolves the

transportation problem fast, we need to find a way to reduce the computation time of this

solution.

If we write the system in matrix notation Ax = b, where b is the vector whose n+m−1

first components will be the costs of the basic boxes and the last component will be 0,

x = (u1, . . . , un, v1, . . . , vm)T and A is the (n+m)× (n+m) matrix which will have only

two elements different from 0 in the first n+m−1 rows and whose last row will be formed

by a 1 in the first column and 0 in the rest.
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The time to solve this system of equations using matrix algebra becomes too long

when the problem grows. To avoid this we will take advantage of the fact that matrix

A is sparse and that we already know the value of the first variable. Instead of matrix

A we will be working with Ã of size (n + m − 1) × 2. Matrix Ã consists of the number

of the columns in which the 1’s of each row were placed, i. e. if the first row was the

one corresponding to cell (1, 1), Ã1· = [1, 1 + n]. Clearly we cannot express the system in

matrix form using Ã instead of A, but, by means of algorithm 8 we can get all values of

the vector x in a quick way. We will also need a list where we are going to write down the

rows of Ã we have already used.

Algorithm 8: Resolution of the system

1. Find the first unused row of Ã and call it i.

2. See if we have already obtained either the value of xÃi1
or of xÃi2

, if so, we get the other one by solving

xÃi1
+ xÃi2

= bi.

3. If we’ve got all the components of x we’re done, if not make i = i+ 1 and continue to step 4.

4. If i is in the list of used rows make i = i+ 1 and repeat this step, if i > n+m− 1 return to step 1.

Otherwise go to step 2.

Once the system is solved we will have to calculate min
i,j

ei,j = Xij − xi − xj+n where

the possible values (i, j) are the components of all the non-basic cells.

Finally, to find the loop we have implemented a recursive algorithm that starts in the

non-basic cell selected in the previous step and goes from basic cell to basic cell until

returning to the initial one, giving as a result the path that has been passed through.

The operation of the algorithm is simple, in each step, starting from the second, receives

a cell and the direction from which we have arrived at it. First, the algorithm checks if

the received cell is the initial cell and, if so, it finishes the program and returns the path

with the basic cells it has passed through. If this is not the case, makes a second check

to see if the cell received is a feasible cell, that is, if we have not exceeded the limits of

number of offer or demand nodes. If it is not within the limits, the algorithm ends that

path and returns nothing. If it is within the limits then the algorithm calls itself back

with the following cells to investigate. In order to decide which are these cells, it makes

yet another check: if the received cell is not basic, it makes a single call with the next

cell in the same direction. If the cell is basic then there are two options, it is part of the

path and therefore there is a change of direction or it is not part of the path and then the

algorithm will treat it as if it was a non-basic cell. In the case where there is a change

of direction the algorithm is launched twice, one for each possible direction with the cell
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next to the current one in the appropriate direction.

Finally, the first step has yet to be described. In this case the algorithm receives the

initial cell and starts the loop search without doing any checking since it is already known

that we are in a loop cell. This implies that there has to be a change of direction in

this cell when the loop is finished, i.e. it will be enough to look for the loop only in two

directions up and down or left and right.

To make this clearer, assume that we are in the case of Figure 3.2 where the blue

painted cells form the current feasible basic solution and the cell marked with the green

dot is the initial box of the loop. The algorithm will start by searching for the loop in the

two directions indicated by the arrows. When it goes down it will do all the checks and,

as it is in a non-basic cell, it will continue with the cell below in the same direction. This

time when it does the checks it will see that the cell is out of bounds and it will finish that

search. Now, when it goes upwards, it will arrive at a basic cell, in this one the algorithm

will be called three times, one with the cell to the left, one with the cell above and another

with the cell to the right. For each of these three cells it will do the same thing again,

ending the process or calling each other as many times as necessary until it finally finds

the loop.

Figure 3.2: Example of how the algorithm works.

To finish this section, we have tested by simulations that our algorithm is significantly

faster than lp.transport. In table 3.2 we have gathered the average time taken by each

algorithm to solve the same problems with different dimensions. There have been 10

simulations of each size with an i7-1790 computer at 3.60 GHz and 16.0GB of RAM.

As you can see in table 3.2, our algorithm usually takes much less time than lp.transport.

This difference is not very noticeable when the problems are not very big, but as the size

increases this difference can be of several hours.

This algorithm can obviously solve the partial transportation problem once trans-

formed into an ordinary transportation problem. It also solves the partial transport prob-

lem without having to input anything other than the original partial transport problem



56 Chapter 3. Partial transportation problem

Table 3.2: Comparison in seconds of average speed in the resolution of transportation

problem.

Dimension lp.Transport Partial.Transport

100×100 0.084 0.029

200×200 0.607 0.315

300×300 2.302 0.949

500×500 12.234 4.439

1000×1000 113.436 55.5260

2000×2000 955.198 601.840

5000×5000 17404.363 13893.384

and the maximum trimming levels. In addition to making all these changes automatically,

it also takes advantage of the shape of the matrix C̃ that has, except for the last element,

a column and a row of 0 to speed up calculations of the initial solution.

3.3 A stochastic approximation algorithm for the

computation of optimal transportation costs

In this section we will consider the problem of computing the 2-Wasserstein distance

between probabilities P and Q in Rd when P has finite support. First, we will state and

prove a lemma that we will need in the proof of the main result of this section.

Lemma 3.4. Let P be a probability with finite support {x1, . . . , xn} ⊂ Rd with P (xi) =

bi > 0 for i = 1, . . . , n and Q a Borel probability in Rd with finite second moment, then

W2
2 (P,Q) =

∫
Rd
‖x‖2dP (x)+

∫
Rd
‖y‖2dQ(x)−2 inf

(z,u)∈Φ

[
n∑
i=1

bizi +

∫
u(y)dQ(y)

]
, (3.11)

where Φ is the class of pairs (z, u) such that z ∈ Rn, u ∈ L1(Q) and xjy ≤ zj + u(y) for

1 ≤ j ≤ n, y ∈ Rn.

Proof: From the theory of duality for optimal transportation we can find, for example,

in Villani (2003) that

W2
2 (P,Q) = max

ϕ̃,ψ̃∈L1

ϕ̃+ψ̃≤‖x−y‖2

[∫
ϕ̃dP +

∫
ψ̃dQ

]
.
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From here, taking

ϕ̃ = ‖x‖2 − 2ϕ(x)

ψ̃ = ‖y‖2 − 2ψ(y),

and operating with them

‖x‖2−2ϕ(x)+‖y‖2−2ψ(y) = ϕ̃+ψ̃ ≤ ‖x−y‖2 = ‖x‖2+‖y‖2−2x·y ⇔ x·y ≤ ϕ(x)+ψ(y),

we arrive to

W2
2 (P,Q) =

∫
Rd
‖x‖2dP (x) +

∫
Rd
‖y‖2dQ(y)− 2 min

ϕ,ψ∈L1
ϕ+ψ≥x·y

[∫
ϕdP +

∫
ψdQ

]
.

Since the support of P is finite, we have that∫
ϕdP =

n∑
i=1

biϕ(xi) =
n∑
i=1

bizi,

with zi = ϕ(xi) ∈ R. With this, 3.3 will now be of the form

xi · y ≤ zi + ψ(y) ∀i = 1, . . . , n⇔ ψ(y) ≥ xi · y − zi ∀i = 1, . . . , n

⇔ ψ(y) ≥ sup
i∈{1,...,n}

(xi · y − zi).

2

We can now proceed to state the main result of this section.

Theorem 3.5. Let P be a probability with finite support {x1, . . . , xn} ⊂ Rd where P (xi) =

bi > 0 for i = 1, . . . , n and Q a Borel probability in Rd with finite second moment, then

W2
2 (P,Q) =

n∑
i=1

bi‖xi‖2 +

∫
Rd
‖y‖2dQ(y)− 2 min

(z1,...,zn)∈B
V (z1, . . . , zn),

where V is the convex function given by

V (z1, . . . , zn) =

n∑
i=1

bizi + E max
1≤j≤n

(
xj · Y − zj

)
, (3.12)

with B the closed ball centered in −1
2(‖x1‖2, . . . , ‖xn‖2) with radius M/( min

1≤j≤n
bj) where

M =
∑n

i=1 bi‖xi‖2 +
∫
Rd ‖y‖

2dQ(y) and Y is a random vector with distribution Q.
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Proof. Starting from equality (3.11) for Wasserstein distance we saw in Lemma 3.4, we

have that

W2
2 (P,Q) =

n∑
i=1

bi‖xi‖2 +

∫
Rd
‖y‖2dQ(y)− 2 inf

(z,u)∈Φ

[ n∑
i=1

bizi +

∫
u(y)dQ(y)

]
,

where Φ = {(z, u) : z ∈ Rn, u ∈ L1(Q), xj · y ≤ zj + u(y) 1 ≤ j ≤ n y ∈ Rn}.
We will call ũ(y) := max

1≤j≤n
(xj · y − zj) and given that u(y) ≥ ũ(y) and (z, ũ) ∈ Φ we can

see that

inf
(z,u)∈Φ

[ n∑
i=1

bizi +

∫
u(y)dQ(y)

]
= inf

z∈Rn
V (z)

with V as in the statement.

Consider now (z1, . . . , zn) ∈ Rn and u(y) = max
1≤j≤n

(xj · y − zj). We have

u(y) +
‖y‖2

2
≥ ‖xj + y‖2

2
− zj −

‖xj‖2

2
≥ −zj −

‖xj‖2

2
.

Then if we set a := inf
y∈Rd

(
u(y) +

‖y‖2

2

)
we have that a is finite. If we replace (z1, . . . , zn)

by (z1 + a, . . . , zn + a) then u(y) becomes u(y)− a and V remains unchanged. As a conse-

quence of this, for the minimization of V we only have to consider the points (z1, . . . , zn)

for which the corresponding function u(y) = max
1≤j≤n

(xj · y − zj) satisfies

inf
y∈Rd

(
u(y) +

‖y‖2

2

)
= 0. (3.13)

Assume that (3.13) holds and define z̃j = sup
y∈Rd

(xj · y − u(y)). As zj ≥ xj · y − u(y) for all

y we have that z̃j ≤ zj , j = 1, . . . , n. We are going to fix now ũ(y) = max
1≤j≤n

(xj · y − z̃j).

Then we have ũ(y) = max
1≤j≤n

(xj · y − z̃j) ≥ max
1≤j≤n

(xj · y − zj) = u(y). On the other hand,

z̃j + u(y) ≥ xj · y for all y and j and this implies that u(y) ≥ max
1≤j≤n

(xj · y − z̃j) = ũ(y).

Then, ũ = u and V (z̃1, . . . , z̃n) ≤ V (z1, . . . , zn). We can observe that

z̃j +
‖xj‖2

2
= sup

y∈Rd

(
xj · y +

‖xj‖2

2
− u(y)

)
≥ sup

y∈Rd

(
− ‖y‖

2

2
− u(y)

)
= − inf

y∈Rd

(
u(y) +

‖y‖2

2

)
= 0.

From where we conclude that z̃j ≥ −‖xj‖
2

2 . On the other hand,

V (z̃1, . . . , z̃n) +
1

2

n∑
i=1

bi‖xi‖2 +
1

2

∫
Rd
‖y‖2dQ(y)

=

n∑
i=1

bi

(
z̃i +

‖xi‖2

2

)
+

∫
Rd

(
u(y) +

‖y‖2

2

)
dQ(y),
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this, by (3.13), implies that

n∑
i=1

bi

(
z̃i +

‖xi‖2

2

)
≤ V (z̃1, . . . , z̃n) +

1

2

n∑
i=1

bi‖xi‖2 +
1

2

∫
Rd
‖y‖2dQ(y).

We know that V is a finite convex function in Rn and

inf
z∈Rn

V (z) =
−1

2

(
W2

2 (P,Q)−
n∑
i=1

bi‖xi‖2 −
∫
Rd
‖y‖2dQ(y)

)
≤ 1

2

( n∑
i=1

bi‖xi‖2 +

∫
Rd
‖y‖2dQ(y)

)
=: C

Obviously, inf
z∈Rn

V (z) = inf
z∈Rn:V (z)≤2C

V (z). All this argumentation implies that we can

limit the minimization to the set of points z such that

zj ≥ −
‖xj‖2

2
, j = 1, . . . , n,

n∑
i=1

bi

(
zi +

‖xi‖2

2

)
≤ 2C +

1

2

n∑
i=1

bi‖xi‖2 +
1

2

∫
Rd
‖y‖2dQ(y),

which is a compact subset of Rn. This proves that V reaches its minimum value, C, at

some point z. Again, by the previous reasoning, we know that we can choose the optimal

z such that zj ≥ −‖xj‖
2

2 , j = 1, . . . , n and

n∑
i=1

bi

(
zi +

‖xi‖2

2

)
≤ C +

1

2

n∑
i=1

bi‖xi‖2 +
1

2

∫
Rd
‖y‖2dQ(y) =

1

2
W2

2 (P,Q) ≤M.

If we write vi = zi + ‖xi‖2
2 then the set of v such that

∑n
i=1 bivi ≤ M , vi ≥ 0 is a closed

convex set contained in the ball B̄(0,M/( min
1≤j≤n

bj)).

2

The following result corresponds to Proposition 4.2 in del Barrio and Loubes (2017),

which proves that function V is differentiable if Q � `d, the d−dimensional Lebesgue

measure, and its gradient is obtained.

Proposition 3.6. Let P be a probability with finite support {x1, . . . , xn} ⊂ Rn where

P (xi) = bi > 0 for i = 1, . . . , n and Q a Borel probability in Rd such that Q� `d then the

V function defined in (3.12) is differentiable and, furthermore, its gradient has the form

∇V (z) = (b1, . . . , bn)− (Q(A1(z)), . . . , Q(An(z))),

with

Aj(z) = {Y ∈ Rd : (xj · Y − zj ≥ max
i 6=j

(xi · Y − zi))}, j = 1, . . . , n.
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We are now going to introduce an iterative algorithm that will allow us to compute

effectively min
z∈B

V (z) with V and z as in Theorem 3.5. The expression

V (z) = E(b · z + max
1≤j≤n

(xj · −zj))

suggests that we use some version of the stochastic approach algorithm that can be found

in Nemirovski et al. (2008). We write

G(z, Y ) = b− (IA1(z), . . . , IAn(z)) (3.14)

and note that EG(z, Y ) = b − (Q(A1(z)), . . . , Q(An(z))) ∈ ∂V (z). Also with probability

1 (provided that Q has a density) G(z, Y ) will be equal to the difference between b and a

vector for which one coordinate is 1 while the others are null. As a result, ‖G(z, Y )‖ ≤
1 + ‖b‖2 and, therefore,

E(‖G(z, Y )‖) ≤ 1 + ‖b‖2.

We are taking now z1 ∈ B. Set N ∈ N and define

γ =
M

(min1≤j≤n bj)
√
N(1 + ‖b‖2)

.

For t = 1, . . . , N − 1 we consider Y1, . . . , YN−1 i.i.d. random variables with law Q and

compute

zt+1 = PrB(zt − γG(zt, Yt)),

where G is defined as in (3.14) and PrB denotes the metric projection over B, this is

PrB(x) = arg min
z∈B

‖y − x‖. Finally we set

z̃N =
1

N

N∑
t=1

zt.

With this notation we obtain the following result.

Theorem 3.7. If V = minz∈B V (z) then

E(V (z̃N )− V ) ≤
M
√

1 + ‖b‖2

(min1≤j≤n bj)
√
N

with M as in Theorem 3.5.

This result follows easily from Proposition 3.6 and equation (2.21) in Nemirovski et al.

(2008).

As a final note, we would like to point out that PrB(z) can be computed easily as

follows. A change of location z 7→ z′ = z + 1
2(‖x1‖2, . . . , ‖xn‖2) reduces the problem to
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projecting on B′, the closed ball centered in the origin with radius m = M/( min
1≤j≤n

bj).

Now, if z′ ∈ B′ then PrB′(z
′) = z′. If, on the other hand, z′ /∈ B′ then

PrB′(z
′) = m

z′

‖z′‖
.

Finally, PrB(z) = PrB′(z
′)− 1

2(‖x1‖2, . . . , ‖xn‖2).

We return now to the problem which focused our interest in this chapter, that of

partial transportation. We can modify Theorem 3.5, Proposition 3.6 and Theorem 3.7 to

deal with the semidiscrete partial transportation problem. We start with a representation

result.

Theorem 3.8. Let P be a probability with finite support {x1, . . . , xn} ⊂ Rn where P (xi) =

bi > 0 for i = 1, . . . , n and Q a Borel probability such that Q� `d, then

W2
2 (Rα(P ), Q) = max

z≥0

[
−1

n(1− α)

n∑
i=1

bizi +

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v)

]
.

Proof: We start from the equality

W2
2 (Rα(P ), Q) = min

P ′∈Rα(P )
W2

2 (P ′, Q).

And, given that the distribution of P is discrete, the optimization problem we are going

to consider is

(P) min
b∈C

W2
2

(
n∑
i=1

biδxi , Q

)

s.t. 0 ≤ bi ≤
1

n(1− α)
, i = 1, . . . , n

n∑
i=1

bi = 1,

where C = {b ∈ Rn : bi ≥ 0,
∑n

i=1 bi = 1}. The Lagrangian function associated with (P)

is the function

L(b, z) =W2
2

(
n∑
i=1

biδxi , Q

)
+

n∑
i=1

zi

(
bi −

1

n(1− α)

)
.
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So, because of the duality of the transportation problem for b ∈ C and z ≥ 0 we have

L(b, z) = min
π∈Π(

∑n
i=1 biδxi ,Q)

∫
‖u− v‖2dπ(u, v) +

n∑
i=1

zi

(
bi −

1

n(1− α)

)

= sup
ϕ≤0,ψ

ϕ(xi)+ψ(v)≤‖xi−v‖2

(
n∑
i=1

biϕ(xi) +

∫
ψdQ

)
+

n∑
i=1

zi

(
bi −

1

n(1− α)

)

=
−1

n(1− α)

n∑
i=1

zi + sup
ϕ≤0,ψ

ϕ(xi)+ψ(v)≤‖xi−v‖2

(
n∑
i=1

bi(zi + ϕ(xi)) +

∫
ψdQ

)
.

If we take ϕ(xi) = −zi we get

L(b, z) ≥ −1

n(1− α)

n∑
i=1

zi + sup
ψ

−zi+ψ(v)≤‖xi−v‖2

∫
ψdQ.

Denoting g(z) = inf
b∈Rn

L(b, z) = inf
b∈C

L(b, z), then for z ≥ 0,

g(z) ≥ −1

n(1− α)

n∑
i=1

zi + sup
ψ

−zi+ψ(v)≤‖xi−v‖2

∫
ψdQ

=
−1

n(1− α)

n∑
i=1

zi +

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v).

On the other hand, for z ≥ 0 if we denote by Π1(Q) to the set of probabilities in Rd with

second marginal Q and first marginal concentrated in {x1, . . . , xn} and if we identify z

with the function z(xi) = zi then

g(z) = inf
b∈C

L(b, z) =
−1

n(1− α)

n∑
i=1

zi + inf
b∈C

[
W2

2

(
n∑
i=1

biδxi , Q

)
+

n∑
i=1

zibi

]

=
−1

n(1− α)

n∑
i=1

zi + inf
π∈Π1(Q)

∫
(‖u− v‖2 + z(u))dπ(u, v)

=
−1

n(1− α)

n∑
i=1

zi +

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v).

A pair (b̄, z̄) is said to be a saddle point for L if L(b̄, z) ≤ L(b̄, z̄) ≤ L(b, z̄) ∀b, z ∈ Rn.

Even more, (b̄, z̄) is a saddle point if and only if

sup
z∈Rn

L(b̄, z) = L(b̄, z̄) = inf
b∈Rn

L(b, z̄) = g(z̄) = max
z∈Rn

g(z). (3.15)

Corollary 28.3 in Rockafellar (1997) implies the existence of a saddle point and by (3.15)

a saddle point is a point (b̄, z̄) with z̄ a maximizer for g, therefore we have

max
z≥0

g(z) = g(z̄) = L(b̄, z̄) =W2
2

(
n∑
i=1

b̄iδxi , Q

)
=W2

2 (Rα(P ), Q) .
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2

So to minimize for P ′ ∈ Rα(P ), W2
2 (P ′, Q)and thus obtain W2

2 (Rα(P ), Q) we must

maximize the function

g(z) =
−1

n(1− α)

n∑
i=1

zi +

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v)

which is a concave function. If we take G = −g then

G(z) =
1

n(1− α)

n∑
i=1

zi −
∫

min
1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v) (3.16)

in a convex function and next we will see that it is also differentiable.

Proposition 3.9. Let P be a probability with finite support {x1, . . . , xn} ⊂ Rn where

P (xi) = bi for i = 1, . . . , n and Q a Borel probability such that Q � `d, then function

G(z) defined as in (3.16) is differentiable and

∇G(z) =
1

n(1− α)
(b1, . . . , bn)− (Q(B1(z)), . . . , Q(Bn(z))), (3.17)

where

Bj(z) = {v ∈ Rd : ‖xi − v‖2 + zj ≤ min
i 6=j

(‖xi − v‖2 + zi)}. (3.18)

Proof: First let’s see that the function G is differentiable. Since the first sum is linear in

z and, therefore, differentiable, it is enough to focus on the second. Let

G̃(z) =

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v),

obviously G(z) =
1

n(1− α)

n∑
i=1

zi − G̃(z). Note that

G̃(z + h)− G̃(z)−
n∑
j=1

hjQ(Bj(z))

=
n∑
j=1

∫
Bj(z)

[
min

1≤i≤n
(‖xi − v‖2 + (zi + hi))− (‖xj − v‖2 + (zj + hj))

]
dQ(v),

and also

0 ≥
[

min
1≤i≤n

(‖xi − v‖2 + (zi + hi))− (‖xj − v‖2 + (zj + hj))

]
IBj(z)(v)

≥
[
(‖xj − v‖2 + zj) + min

1≤i≤n
hi − (‖xj − v‖2 + (zj + hj))

]
IBj(z)(v)

≥ min
1≤i≤n

hi − hj ≥ −2 max
1≤i≤n

|hj |.
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So, when h→ 0,[
min

1≤i≤n
(‖xi − v‖2 + (zi + hi))− (‖xj − v‖2 + (zj + hj))

]
IBj(z)(v)

goes to 0 (except perhaps at the border points of Bj(z)). Then by dominated convergence

we conclude that
G̃(z + h)− G̃(z)−

∑n
j=1 hjQ(Bj(z))

‖h‖
→ 0

when ‖h‖ → 0 this proves that G̃, and also G, are differentiable and that (3.17) holds. 2

In a similar way to how we did in Theorem 3.5 we can write

W2
2 (Rα(P ), Q) = min

0≤bi≤ 1
n(1−α)

b1+···+bn=1

f0(b),

where f0(b) =
n∑
i=1

bi‖xi‖2 +

∫
Rd
‖y‖2dQ(y) − 2 min

z∈Rn
V (z) with Y a random vector with

distribution Q and V (z) =

[
n∑
i=1

bizi +

∫
Rd

max
1≤i≤n

(xj · y − zj)dQ(z)

]
.

Note that if b1 + · · ·+ bn 6= 1 f0(b) = +∞ so that

V (z + k1) = k

(
n∑
i=1

bi − 1

)
+ V (z)

and, choosing k in a suitable way, we manage to get V (z) arbitrarily small. So, if b ≥ 0

and b1 + · · · + bn = 1 then f0(b) = W2
2

(
n∑
i=1

biδxi , Q

)
. Concretely, by Theorem 3.8 we

have that

min
0≤bi≤ 1

n(1−α)
b1+···+bn=1

f0(b) = max
z≥0

[
−1

n(1− α)

n∑
i=1

bizi +

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v)

]
.

Let us denote

G(z) :=
−1

n(1− α)

n∑
i=1

bizi +

∫
min

1≤i≤n

(
‖xi − v‖2 + zi

)
dQ(v)

= − 1

n(1− α)

n∑
i=1

xi +

∫
Rd
‖v‖2dQ(v)

− 2

∫
Rd

max
1≤i≤n

(xi · v −
1

2
(‖xi‖2 + zi))dQ(v). (3.19)

As we saw in Proposition 3.9 this function is differentiable and furthermore

∇G(z) =

[
−1

n(1− α)
+Q(B1(z)), . . . ,

−1

n(1− α)
+Q(Bn(z))

]
,
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where the sets Bj(z) are as in (3.18).

Theorem 3.10. Let P be a probability with finite support {x1, . . . , xn} ⊂ Rn and Q a

Borel probability such that Q� `d, then z̄ minimizes G if and only if z̄∇G(z̄) = 0

Proof: Starting from equality (3.19), if z ≥ 0, 0 ≤ bi ≤ 1
n(1−α) for i = 1, . . . , n and

b1 + · · ·+ bn = 1 then

G(z) ≤ −
n∑
i=1

bizi +

∫
Rd
‖v‖2dQ(v)− 2

∫
Rd

max
1≤i≤n

(xi · v −
1

2
(‖xi‖2 + zi))dQ(v)

= −
n∑
i=1

bizi +

∫
Rd

min
1≤i≤n

(‖xi − v‖2 + zi)dQ(v).

Let Πα(P,Q) be the set of distributions with first marginal P ′ and second one Q being

P ′ ∈ Rα(P ). If π ∈ Πα(P,Q) and we define the function z(xj) = zj ,

−
n∑
i=1

bizi+

∫
Rd

min
1≤i≤n

(‖xi−v‖2 +zi)dQ(v) =

∫
Rd×Rd

−z(u)+ min
1≤i≤n

(‖xi−v‖2 +zi)dπ(u, v).

(3.20)

If we take u = xj then

−z(u) + min
1≤i≤n

(‖xi − v‖2 + zi) ≤ −zj + ‖xj + v‖2 + zj ≤ ‖u− v‖2.

Therefore

−
n∑
i=1

bizi +

∫
Rd

min
1≤i≤n

(‖xi − v‖2 + zi)dQ(v) ≤
∫
Rd×Rd

‖u− v‖2dπ(u, v).

As this reasoning is valid for every π with marginals

n∑
i=1

biδxi and Q we have

−
n∑
i=1

bizi +

∫
Rd

min
1≤i≤n

(‖xi − v‖2 + zi)dQ(v) = W2
2

(
n∑
i=1

biδxi , Q

)

=

∫
Rd
‖v − T (v)‖2dQ(v),

where T (v) = ∇ϕ(v) and ϕ(v) = max
1≤i≤n

(xj ·v−yj) with yj is such a way that Q(Aj(y)) = bj

for Aj(y) = {v ∈ Rd : xj ·v−yj ≥ max
i 6=j

(xi ·v−yi)}. Note that if v ∈ Aj(y) then∇ϕ(v) = xj .
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Coming back to (3.20),

−
n∑
i=1

bizi +

∫
Rd

min
1≤i≤n

(‖xi − v‖2 + zi)dQ(v)

=

∫
Rd

[
−z(∇ϕ(v)) + min

1≤i≤n
(‖xi − v‖2 + zi)

]
dQ(v)

≤
∫
Rd
‖v −∇ϕ(v)‖2dQ(v) =W2

2

(
n∑
i=1

biδxi , Q

)
,

and equality holds if and only if

− z(∇ϕ(v)) + min
1≤i≤n

(‖xi − v‖2 + zi) = ‖v −∇ϕ(v)‖2 Q-almost sure

⇔ −z(∇ϕ(v)) + min
1≤i≤n

(‖xi‖2 − 2xi · v + zi) + ‖v‖2 = ‖v‖2 + ‖∇ϕ(v)‖2 − 2v · ∇ϕ(v)

⇔ −z(∇ϕ(v))− 2 max
1≤i≤n

(xi · v −
1

2
(‖xi‖2 + zi)) = ‖∇ϕ(v)‖2 − 2v · ∇ϕ(v) Q-a.s.

⇔ Q-almost sure in Aj(z) − zj − 2 max
1≤i≤n

(xi · v −
1

2
(‖xi‖2 + zi)) = ‖xj‖2 − 2v · xj

⇔ v · xj −
1

2
(‖xj‖2 + zj) = max

1≤i≤n
(xi · v −

1

2
(‖xi‖2 + zi))

⇔ ‖xj‖2 + zj = yj + C, j = 1, . . . , n

⇔ Q(Bj(z)) = bj .

The last equivalence comes from Theorem 4.2 in del Barrio and Loubes (2017).

Hence z̄ ≥ 0, b̄ ≥ 0 with b̄1 + · · ·+ b̄n = 1 and b̄i ≤ 1
n(1−α) are optimal or, in other words,

G(z̄) = f0(b̄) if and only if (
b̄i −

1

n(1− α)

)
z̄i = 0

and besides

∇G(z̄) +

[
1

n(1− α)
, . . . ,

1

n(1− α)

]
= b̄.

Given that by (3.3)

∂G(z)

∂zj
=

(
b̄i −

1

n(1− α)

)
,

we get that z̄ ≥ 0 is optimal if and only if z̄∇G(z̄) = 0.

2

From this point we could apply a gradient iteration and obtain convergence guarantees

as in Theorem 3.7. We omit details.
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3.4 Application to contaminated model validation

In this section we address the problem of model validation from a particular point of view:

it is admitted that the proposed model is not the ’true’ model, i.e. that the observations

available do not come exactly from a generator within the model. It is a long-standing

fact (Berkson (1938)) that a classic fit test applied on a sufficiently large sample will reject

(that the generator is in the model) even in situations where the model appears to be a

good description of the data. These considerations are behind the distinction between

’statistical significance’ and ’practical significance’ in Hodges and Lehmann (1954), where

the convenience of relaxing the null hypothesis by a broader one consisting of a controlled

deviation from the initial model is suggested. This deviation can be measured in many

possible ways. Here we look at contamination neighbourhoods along the line in Lindsay

and Liu (2009). We remember from section 2.1 that if F is a collection of probabilities,

then the neighbourhood of α-contamination is

Fα = {(1− α)Q+ αR : Q ∈ F and R a probability} .

The type of validation we are considering here, which we will refer to as essential

validation, replaces the rigid model F with the relaxed one Fα. We note that if α is big

enough then P ∈ Fα (it is enough to take α = 1). Then we can understand that F is a

reasonable model for the data generator if P ∈ Fα for α small. Since the sets Fα grow

with α it is of interest the lower level of contamination for which F is an admissible model

for the data, that is,

α∗ = min{α ∈ [0, 1] : P ∈ Fα}.

In Hodges and Lehmann (1954) there are procedures to contrast the null hypothesis α ≤ α0

in a multinomial model. Here we have a similar problem with two fundamental differences.

On one hand we consider simple models, F = {Q} with Q probability in Rd not neces-

sarily with finite support. Another, more fundamental difference is that we will not set

any threshold α0 a priori but we will adopt a model selection viewpoint, measuring the

discrepancy between P and the contaminated model Fα by means of the distance W2.

Since W2(P,Fα) is a function that grows with α (just as it happens with W2(Pn,Fα)) it

is not reasonable to estimate the value of the level of contamination necessary by mini-

mizing in α, W2(Pn,Fα). Instead, we will search appropriate penalizations to ensure that

the value α̂ that minimizes W2(P,Fα) + pen(α) provides a good estimate of the level of

contamination necessary to admit F as a model. The quality of such an estimator will be

guaranteed by an oracle inequality.
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The proposed criterion is applicable since, although we do not know a way to calculate

W2(P,Fα) we will dedicate the first part of this section to prove that

Wp
p (P,Fα(Q)) = (1− α)Wp

p (Rα(P ), Q).

Applying the results of section 3.3 we can calculate numerically W2
2 (Rα(Pn), Q).

The problem we are going to consider next is to find the best approximation to P ,

which we will denote for Pα in Fα(Q). If this probability exists, it must satisfy

Wp(P, Pα) = min
R
Wp(P, (1− α)Q+ αR).

As

inf
R
Wp
p (P, (1− α)Q+ αR) = inf

π∈Π(α)(P,Q)

∫
‖x− y‖pdπ(x, y),

where Π(α)(P,Q) denotes the set of probabilities in Rd × Rd such that

π(A× Rd) = P (A) and π(Rd ×B) ≥ (1− α)Q(A)

for any measurable set A,B, the problem can be formulated as a problem of minimization

of a linear functional over the convex set Π(α)(P,Q). In the following result we will see

that even though the set Π(α)(P,Q) is not uniformly tight, the problem has an equivalent

form in which minimization is performed on a set of probabilities in Rd × Rd uniformly

tight.

Lemma 3.11. For every π ∈ Π(α)(P,Q) exists π̃ ∈ Π(α)(P,Q) such that

π̃(Rd ×B) = (1− α)Q(B) + αR(B) (3.21)

for some R ∈ R1−α(P ) and all measurable sets B and, besides,∫
‖x− y‖pdπ̃(x, y) ≤

∫
‖x− y‖pdπ(x, y).

Proof.We will denote by π2 the second marginal of π and by π(x|y) the conditional

distribution of the first given the second, then

π(A×B) =

∫
B

(∫
A

1dπ(x|y)

)
dπ2(y).

We will define the measures πQ and πP as

πQ(A×B) = (1− α)

∫
B

(∫
A

1dπ(x|y)

)
dQ(y) and

πP (A×B) = P (A ∩B)− πQ((A ∩B)× Rd).
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Note that πP this is a positive measure since for a set C, considering that π2(B) ≥
(1− α)Q(B), we have

πQ(A× Rd) = (1− α)

∫
Rd

(∫
C

1dπ(x|y)

)
dQ(y)

≤
∫
Rd

(∫
C

1dπ(x|y)

)
dπ2(y) = P (C).

Moreover, πP is concentrated in the diagonal set {(x, x) : x ∈ Rd}.
Let us denote by π̃ the sum of these two measures

π̃ = πQ + πP ,

we want to see that π̃ ∈ Π(α)(P,Q). To this end, we have that

π̃(A× Rd) = P (A)− πQ(A× Rd) + πQ(A× Rd) = P (A),

for every measurable set A and, on the other hand,

π̃(Rd ×B) = πQ(Rd ×B) + πP (Rd ×B) = (1− α)Q(B) + πP (Rd ×B).

If we set R(B) = 1
απP (Rd × B) we have a probability R ∈ R1−α(P ) for which (3.21) is

fulfilled.

For the second part of the lemma we see that∫
‖x− y‖pdπ̃(x, y) =

∫
‖x− y‖pdπQ(x, y)

= (1− α)

∫ (∫
‖x− y‖pdπ(x|y)

)
dQ(y)

≤
∫ (∫

‖x− y‖pdπ(x|y)

)
dπ2(y)

=

∫
‖x− y‖pdπ(x, y).

2

As a consequence of this lemma we obtain the existence and uniqueness of the best

approximation of P in Fα(Q) as well as a characterization of it.

Corollary 3.12. If P , Q are probabilities with finite p moment and α ∈ (0, 1) then exists

Pα ∈ Fα(Q) such that

Pα = (1− α)Q+ αP̃α

for some P̃α ∈ R1−α(P ) and

Wp(P, Pα) = min
R∈Fα(Q)

Wp(P,R).

Moreover, if p > 1 and P � `d then that Pα (and consequently, P̃α) is unique.
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Proof. In Lemma 3.11 we saw that

inf
R∈Fα(Q)

Wp(P,R) = inf
R∈R1−α(P )

Wp(P, (1− α)Q+ αR).

Let us see now that the application R 7→ Wp(P, (1−α)Q+αR) is Lipschitz (and, therefore,

continuous) with respect to Wp. Since

|Wp(P, (1− α)Q+ αR1)−Wp(P, (1− α)Q+ αR2)|

≤ Wp((1− α)Q+ αR1, (1− α)Q+ αR2)

≤ α1/pWp(R1, R2),

where we’ve used the fact that

Wp
p ((1− α)Q1 + αR1, (1− α)Q2 + αR2) ≤ (1− α)Wp

p (Q1, Q2) + αWp
p (R1, R2).

The existence of the minimizer is due to the fact that R1−α(P ) is compact for the topology

in Wp (see Proposition 2.8 in Álvarez-Esteban et al. (2011), the statement considers the

case p = 2, but the proof works the same for a general p) and the uniqueness is due to the

strict convexity of R 7→ Wp
p (P,R) for p > 1 when P � `d (see, for example, the Corollary

2.10 in Álvarez-Esteban et al. (2011)). 2

Let us assume now that P̂α ∈ Rα(P ) is such that Wp(P̂α, Q) = Wp(Rα(P ), Q) and

we’re going to denote by π1 the optimal matching of P̂α and Q. Let us also consider the

probability measure on R1−α(P ), P̃α = 1
α(P − (1− α)P̂α). We define π2 as

π2(A×B) = P̃α(A ∩B),

which is the probability in Rd × Rd induced by P̃α through the application x 7→ (x, x),

therefore, it will be the optimal matching between P̃α and itself. If we set π = (1−α)π1 +

απ2, then π ∈ Π(α)(P,Q) and∫
‖x− y‖pdπ(x, y) = (1− α)

∫
‖x− y‖pdπ1(x, y)

= (1− α)Wp
p (P̂α, Q) = (1− α)Wp

p (Rα(P ), Q),

this proves that

Wp
p (P,Fα(Q)) ≤ (1− α)Wp

p (Rα(P ), Q). (3.22)

Next we will see that this inequality is, in fact, an equality, but first we will introduce a

technical lemma.
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Lemma 3.13. If P1, P2 and Q are probabilities in Rd with finite p moment, p ≥ 1 then∣∣Wp(Rα(P1), Q)−Wp(Rα(P2), Q)
∣∣ ≤ (1− α)−1/pWp(P1, P2).

Proof. Assume first that P1 is uniformly distributed in {x1, . . . , xn} and P2 is uniformly

distributed in {y1, . . . , yn}. It is well known that

Wp
p (P1, P2) =

1

n

n∑
i=1

‖xi − yσ(i)‖p,

where σ is the permutation of {1, . . . , n} that minimizes
∑n

i=1 ‖xi − yσ(i)‖p. For b =

(b1, . . . , bn) such that 0 ≤ bi ≤ 1
n(1−α) and b1 + · · ·+ bn = 1 we write P1,b =

∑n
i=1 biδxi and

P2,b =
∑n

i=1 biδyσ(i) . Note that Rα(Pi) is the set of all probabilities Pi,b of that type. Now

|Wp(P1,b, Q)−Wp(P2,b, Q)|p ≤ Wp
p (P1,b, P2,b) ≤

n∑
i=1

bi‖xi − yσ(i)‖p

≤ 1

n(1− α)

n∑
i=1

‖xi − yσ(i)‖p =
1

1− α
Wp
p (P1, P2).

This implies that∣∣Wp(Rα(P1), Q)−Wp(Rα(P2), Q)
∣∣ ≤ (1− α)−1/pWp(P1, P2).

For general P1, P2 we consider P1,n, P2,n of the above type so thatWp(Pi,n, Pi)→ 0 (we can

take, for example, empirical measures in i.i.d. samples of Pi). Then, Wp(Rα(Pi,n), Q) →
Wp(Rα(Pi), Q), i = 1, 2. This is deduced, for example, from Theorem 2.13 in Álvarez-

Esteban et al. (2011) (again, the article considers the case p = 2 but the proof works for

any p). Now we have∣∣Wp(Rα(P1,n), Q)−Wp(Rα(P2,n), Q)
∣∣ ≤ (1− α)−1/pWp(P1,n, P2,2).

By taking n→∞ we get the result. 2

Proposition 3.14. With the previous notation

Wp
p (P,Fα(Q)) = (1− α)Wp

p (Rα(P ), Q). (3.23)

Furthermore, if P̂α ∈ Rα(P ) is such that Wp(P̂α, Q) = Wp(Rα(P ), Q) then, fixing P̃α =
1
α(P − (1− α)P̂α) we have that Pα = (1− α)Q+ αP̃α ∈ F(Q) and

Wp(P, Pα) =Wp(P,Fα(P )).

In particular, if p > 1 and P,Q � `d then the unique probability Pα ∈ Fα(Q) such that

Wp(P,Fα(Q)) =Wp(P, Pα) is Pα = (1−α)Q+αP̃α with P̃α = 1
α(P − (1−α)P̂α) and P̂α

is the unique probability in Rα(P ) such that W(P̂α, Q) =Wp(Rα(P ), Q).
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Proof. We will start by proving (3.23) for the case where the common support of P and

Q is the finite set {x1, . . . , xn} with P{xi} = pi > 0 and Q{xi} = qi > 0, i = 1, . . . , n.

Note that in this case

Wp
p (P,Fα(Q)) = min

π∈C

∑
1≤i,j≤n

ci,jπi,j ,

where ci,j = ‖xi − xj‖p and C is the set of points π = (πi,j)1≤i,j≤n such that πi,j ≥ 0,

1 ≤ i, j ≤ n and
∑n

j=1 πi,j = pi,
∑n

j=1 πj,i ≥ (1 − α)qi, i = 1, . . . , n. By duality in linear

programming (see, for example, Corollary 28.3.1 and Theorem 28.4 in Rockafellar (1997))

we have

Wp
p (P,Fα(Q)) = max

(ϕ,ψ)∈D

[ n∑
i=1

piϕi + (1− α)
∑
j=1

qjψj

]
= (1− α) max

(ϕ,ψ)∈D

[
1

1−α

n∑
i=1

piϕi +
∑
j=1

qjψj

]
, (3.24)

where D is the set of pairs (ϕ,ψ) = ((ϕi)1≤i≤n, (ψj)1≤j≤n) such that ψj ≥ 0, j = 1, . . . , n

and ϕi + ψj ≤ ci,j , 1 ≤ i, j ≤ n. On the other hand,

Wp
p (Rα(P ), Q) = min

π∈C̃

∑
1≤i,j≤n

ci,jπi,j ,

with ci,j = ‖xi−xj‖p as before and C̃ the set of points π = (πi,j)1≤i,j≤n such that πi,j ≥ 0,

1 ≤ i, j ≤ n and
∑n

j=1 πi,j ≤
1

1−αpi,
∑n

j=1 πj,i = (1 − α)qi, i = 1, . . . , n. Duality leads us

to

Wp
p (Rα(P ), Q) = max

(ϕ,ψ)∈D̃

[
1

1−α

n∑
i=1

piϕi +
∑
j=1

qjψj

]
, (3.25)

where D̃ is the set of points ((ϕi)1≤i≤n, (ψj)1≤j≤n) such that ϕi ≤ 0, 1 ≤ i ≤ n and

ϕi + ψj ≤ ci,j , 1 ≤ i, j ≤ n. Then, it is enough to show that the optimal values in

the maximization problems in (3.24) and (3.25) are the same. Now, note that for every

((ϕi)1≤i≤n, (ψj)1≤j≤n) ∈ D we have ϕi + ψi ≤ ci,i = 0 and, hence, ϕi ≤ −ψi ≤ 0. This

proves that D ⊂ D̃ and, as a consequence,

max
(ϕ,ψ)∈D

[
1

1−α

n∑
i=1

piϕi +
∑
j=1

qjψj

]
≤ max

(ϕ,ψ)∈D̃

[
1

1−α

n∑
i=1

piϕi +
∑
j=1

qjψj

]
.

Now, if ((ϕi)1≤i≤n, (ψj)1≤j≤n) ∈ D̃ we have

ψj ≤ min
1≤i≤n

(ci,j − ϕi) := ψ̃j . (3.26)
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Note that ϕi + ψ̃j ≤ ci,j and also that, as ϕi ≤ 0, we have ψ̃j ≥ min1≤i≤n ci,j = 0, which

means that ((ϕi)1≤i≤n, (ψ̃j)1≤j≤n) ∈ D. But from the inequality in (3.26) we see that

1

1− α

n∑
i=1

piϕi +
∑
j=1

qjψj ≤
1

1− α

n∑
i=1

piϕi +
∑
j=1

qjψ̃j .

This implies that

max
(ϕ,ψ)∈D̃

[
1

1−α

n∑
i=1

piϕi +
∑
j=1

qjψj

]
≤ max

(ϕ,ψ)∈D

[
1

1−α

n∑
i=1

piϕi +
∑
j=1

qjψj

]
and proves (3.23) in this particular case.

Generalizing for any P,Q we set ε > 0, there is Pε, Qε, with finite common support in

such a way that Wp(P, Pε) < ε and Wp(Q,Qε) < ε. For these Pε, Qε we know that

Wp(Pε,Fα(Qε)) = (1− α)1/pWp(Rα(Pε), Qε). (3.27)

Since Wp is a metric we have that

|Wp(Pε,Fα(Qε))−Wp(P,Fα(Qε))| ≤ Wp(P, Pε) < ε

and, for any measure of probability R with finite p moment,

Wp((1− α)Q+ αR, (1− α)Qε + αR) ≤ (1− α)1/pWp(Q,Qε) < (1− α)1/pε.

Hence,

|Wp(P,Fα(Qε))−Wp(P,Fα(Q))| ≤ (1− α)1/pε.

By combining these two things we obtain

|Wp(Pε,Fα(Qε))−Wp(P,Fα(Q))| ≤ ((1− α)1/p + 1)ε.

Similarly, from triangular inequality for Wp we see that

|Wp(Rα(Pε), Qε)−Wp(Rα(Pε), Q)| ≤ ε.

By Lemma 3.13 we have

|Wp(Rα(Pε), Q)−Wp(Rα(P ), Q)| ≤ (1− α)−1/pε,

and, as a consequence,

|Wp(Rα(Pε), Qε)−Wp(Rα(P ), Q)| ≤ (1 + (1− α)−1/p)ε.
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By making ε tend to 0 we get from (3.27) that (3.23) is met for any P,Q.

Finally, if π = (1−α)π1 +απ2 is the transportation plan introduced in the discussion

that led us to t(3.22), then (3.23) implies that π is optimal, or what is the same, that

Wp
p (P,Fα(Q)) = (1− α)Wp

p (Rα(P ), Q).

In particular, π is an optimal pairing of P with its second marginal which is Pα = (1 −
α)Q+ αP̃α and Pα is the best approximation of P by probabilities in Fα(Q). 2

To conclude this section we are going to obtain an oracle inequality that guarantees the

quality of the estimator of the optimal trimming level α̂ that minimizesW2
2 (Rα(Pn), Q) +

pen(α).

Firstly, we study the relationship between the expected value of the distance for the

set of trimmings of the empirical distribution and the distance for the set of trimmings of

theoretical distribution. After this lemma we will obtain the oracle inequality.

Lemma 3.15. Let P , Pn and Q be probabilities with finite second moment, then

0 ≤ E
(
W2

2 (Rα(Pn), Q)
)
−W2

2 (Rα(P ), Q)

≤ 1

1− α
E
(
W2

2 (Pn, P )
)

+ 2W2
2 (Rα(P ), Q)

1√
1− α

√
E
(
W2

2 (Pn, P )
)

(3.28)

Proof. For the first inequality we will use duality

E
(
W2

2 (Rα(Pn), Q)
)

= E

 sup
ϕ≤0

ϕ(x)+ψ(y)≤‖x−y‖2

[
1

1− α

∫
ϕdPn +

∫
ψdQ

]
≥ sup

ϕ≤0
ϕ(x)+ψ(y)≤‖x−y‖2

[
E

(
1

1− α

∫
ϕdPn +

∫
ψdQ

)]

= sup
ϕ≤0

ϕ(x)+ψ(y)≤‖x−y‖2

[
1

1− α

∫
ϕdP +

∫
ψdQ

]
= W2

2 (Rα(P ), Q).

For the second inequality we will use Lemma 3.13,
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E
(
W2

2 (Rα(Pn), Q)−W2
2 (Rα(P ), Q)

)
= E [(W2(Rα(Pn), Q)−W2(Rα(P ), Q)) (W2(Rα(Pn), Q) +W2(Rα(P ), Q))]

= E
[
(W2(Rα(Pn), Q)−W2(Rα(P ), Q))2

]
+ 2W2

2 (Rα(P ), Q)E [(W2(Rα(Pn), Q)−W2(Rα(P ), Q))]

≤ 1

1− α
E
(
W2

2 (Pn, P )
)

+ 2W2
2 (Rα(P ), Q)

1√
1− α

E (W2(Pn, P )) .

Using that E (W2(Pn, P )) ≤
√
E
(
W2

2 (Pn, P )
)

we get (3.28). 2

Theorem 3.16. Let P and Q be two distributions with moment of order two finite and

Q with compact support. Let X1, . . . , Xn be i.i.d. random vectors of dimension d with

distribution P and let Pn be the sample distribution in such a way that E‖X1‖4 < ∞.

Assume that d > 4 and that ∃M ∈ R such that for a given q > 2d
d−2 ,

∫
Rd |v|

qP (dv) ≤M . Let

A = {0, α1, . . . , αmax} be the set of possible trimming levels. If we consider the penalization

function

pen(α) =

√
2C(P,Q)ln(n)

n(1− α)2
, (3.29)

and define

α̂ = arg min
α∈A

(W2
2 (Rα(Pn), Q) + pen(α)), (3.30)

then for two constants C(d, q) and C(P,Q) the following bound holds

E
(
W2

2 (Rα̂(P ), Q)
)
≤ inf

α∈A

{
W2

2 (Rα(P ), Q) + pen(α) +
C(d, q)M

2
q

n
2
d (1− α)

(3.31)

+ 2W2(Rα(P ), Q)
C(d, q)

1
2M

1
q

n
1
d
√

1− α

}
+

√
12πC(P,Q)

n(1− αmax)2
.

Proof. We start from the basic inequality

W2
2 (Rα̂(Pn), Q) + pen(α̂) ≤ W2

2 (Rα(Pn), Q) + pen(α) ∀α ∈ A,

which is satisfied by the definition of α̂. By adding and subtracting the distances for the

theoretical distribution we arrive at

W2
2 (Rα̂(P ), Q) ≤ W2

2 (Rα(P ), Q) + pen(α)

+
(
W2

2 (Rα(Pn), Q)−Rα(P ), Q)
)
− pen(α̂) (3.32)

+
(
W2

2 (Rα̂(P ), Q)−W2
2 (Rα̂(Pn), Q)

)
(3.33)
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Let us bound the two parentheses of the equation above. First we will study the paren-

theses in (3.32) which can be written as

[W2
2 (Rα(Pn), Q)− E(W2

2 (Rα(Pn), Q))] (3.34)

+ [E(W2
2 (Rα(Pn), Q))−Rα(P ), Q)]. (3.35)

Expression (3.34) is bounded by Theorem 3.9 in del Barrio and Matrán (2013) taking

t =
√

z4C(P,Q)
n(1−α)2

, obtaining

P

(
W2

2 (Rα(Pn), Q)− E(W2
2 (Rα(Pn), Q)) ≥

√
z4C(P,Q)

n(1− α)2

)
≤ e−z. (3.36)

To bound (3.35) we are going to use (3.28) combined with Theorem 1 in Fournier and

Guillin (2015) which leads us to

E(W2
2 (Rα(Pn), Q))−W2

2 (Rα(P ), Q) ≤ C(d, q)M
2
q

n
2
d (1− α)

+2W2(Rα(P ), Q)
C(d, q)

1
2M

1
q

n
1
d
√

1− α
. (3.37)

On the other side we are going to bound (3.33). To this end we will use the first inequality

from Lemma 3.15 and, again, Theorem 3.9 in del Barrio and Matrán (2013) this time with

t =
√

(z+ln(n))4C(P,Q))
n(1−α̂)2

:

W2
2 (Rα̂(P ), Q)−W2

2 (Rα̂(Pn), Q)

≤ sup
α∈A

(W2
2 (Rα(P ), Q)−W2

2 (Rα(Pn), Q))

≤ sup
α∈A

(E(W2
2 (Rα(Pn), Q))−W2

2 (Rα(Pn), Q))

Given that by Theorem 3.9 in del Barrio and Matrán (2013) we have that

P

(
E(W2

2 (Rα(Pn), Q))−W2
2 (Rα(Pn), Q) ≥

√
(z + ln(n))4C(P,Q))

n(1− α̂)2

)
≤ 1

n
e−z,

we get

P

(
sup
α∈A

(E(W2
2 (Rα(Pn), Q))−W2

2 (Rα(Pn), Q)) ≥

√
(z + ln(n))4C(P,Q))

n(1− α̂)2

)

≤
∑
α′∈A

P

(
E(W2

2 (R′α(Pn), Q))−W2
2 (R′α(Pn), Q) ≥

√
(z + ln(n))4C(P,Q))

n(1− α̂)2
, α′ = α̂

)

≤
∑
α′∈A

P

(
E(W2

2 (R′α(Pn), Q))−W2
2 (R′α(Pn), Q) ≥

√
(z + ln(n))4C(P,Q))

n(1− α̂)2

)

≤ n 1

n
e−z.



3.4. Application to contaminated model validation 77

The with probability at least 1− e−z

W2
2 (Rα̂(P ), Q)−W2

2 (Rα̂(Pn), Q) ≤

√
2C(P,Q)ln(n)

n(1− α̂)2
+

√
2C(P,Q)z

n(1− α̂)2
. (3.38)

By joining (3.36), (3.37) and (3.38) with the basic inequality of the beginning we get that

with probability at most 1− 2e−z

W2
2 (Rα̂(P ), Q) ≤ W2

2 (Rα(P ), Q) + pen(α) +

√
z4C(P,Q)

n(1− α)2
+
C(d, q)M

2
q

n
2
d (1− α)

+ 2W2(Rα(P ), Q)
C(d, q)

1
2M

1
q

n
1
d
√

1− α
− pen(α̂) +

√
2C(P,Q)ln(n)

n(1− α̂)2

+

√
2C(P,Q)z

n(1− α̂)2
.

Taking as a penalization

pen(α) =

√
2C(P,Q)ln(n)

n(1− α)2
,

we come to

W2
2 (Rα̂(P ), Q) ≤ W2

2 (Rα(P ), Q) + pen(α) +

√
z4C(P,Q)

n(1− α)2
+
C(d, q)M

2
q

n
2
d (1− α)

+ 2W2(Rα(P ), Q)
C(d, q)

1
2M

1
q

n
1
d
√

1− α
+

√
2C(P,Q)z

n(1− α̂)2
.

By bounding α and α̂ by αmax and integrating with respect to z we get that ∀α ∈ A,

E(W2
2 (Rα̂(P ), Q)) ≤ W2

2 (Rα(P ), Q) + pen(α) +
C(d, q)M

2
q

n
2
d (1− α)

+ 2W2(Rα(P ), Q)
C(d, q)

1
2M

1
q

n
1
d
√

1− α
+

√
12πC(P,Q)

n(1− αmax)2
,

and taking the infimum in the set A we come to (3.31). 2

We see in the oracle inequality that if Q is an α-contaminated version of P , then

E(W2
2 (Rα̂(P ), Q)) will tend to 0 when the sample size increases. However, although this

convergence is guaranteed for very large sample sizes, this convergence quickly slows down

when we work with large dimensions as we have a convergence rate of the order of 1

n
1
d

.

With this theorem it is proven that α̂ defined as in (3.30) is a good estimator of optimal

trimming when the sample is large enough. To calculate α̂ we can apply a gradient descent

method that we can obtain from the results of Proposition 3.9 and Theorem 3.10. This
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method has many computational limitations due to the difficulty of explicit calculation

of the gradient. This gradient will be approached by a quasi-Monte Carlo method. The

immense number of calculations required for gradient estimation and calculation of the

optimum by a gradient descent method makes it impossible to calculate the distance for

large samples (over 500 elements).

Because of all this and the fact that the function 1
1−α is strictly convex for α, we believe

that choosing a penalization that depends not only on α but also on the data could lead

to better rates in the oracle inequality and possibly make the calculation of the optimal

trimming more computationally affordable. But this escapes from the objective of this

work and we leave it as a possible line to follow in the future.

Note that the restrictions over d and q on Theorem 3.16 have been imposed for sim-

plicity of the result, but could be relaxed leading to a result that differs from the current

one in a term of size at most logarithmic using Theorem 1 in Fournier and Guillin (2015)

(the same result used in the proof of the theorem). Therefore α̂ will be a good estimator

of the optimal trimming for any dimension.

3.5 Algorithm and simulations

To finish the chapter we will see an example in which we apply the results obtained to

estimate Wasserstein distance between the set of trimmings of a distribution P and a

distribution Q. In the example we are going to consider both distributions will be normal

bivariate centered on the origin and with covariance matrix the identity. To apply the

results obtained in sections 3.3 and 3.4 instead of working with the theoretical distribution

P we will work with its empirical version Pn. In addition to estimating the distance we will

also estimate the optimal trimming level, so we have introduced a 10 percent contamination

to the Pn distribution by substituting 10 percent of the sample elements with others that

come from a normal bivariate with matrix of co-variances identity as before, but now

centered on (4, 4)T .

In Theorem 3.8 we proved that calculatingW2
2 (Rα(Pn), Q) was equivalent to minimiz-

ing the function G(z) defined in (3.16). In addition, in Proposition 3.9 we had obtained

an expression for the gradient of this function, this allows us to use a gradient descent

algorithm for its minimization. Because minimization in (3.16) has a restriction, the usual

stopping criterion (gradient equal to 0) is not valid, but in Theorem 3.10 we obtained a

new criterion for our problem that consists of minimizing the product of vector z with the

value of the gradient at that point.
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Although we have an explicit expression for the calculation of the gradient of G(z), this

gradient cannot be calculated in practice, so we will have to settle for an approximation

of this gradient. For this it we will use a quasi-Monte Carlo method. Likewise, we cannot

calculate the value of G(z) exactly and we will use a similar technique to approximate it. It

should be highlighted that these calculations are very expensive computationally speaking

which limits us a lot when choosing the sample size of Pn that we will consider. In this case

we have taken n = 100. The set of possible trimming levels is A = {0, 0.02, . . . , 0.14, 0.16}.

Figure 3.3: Plots of the sample’s trimmed points for each trimming level in A.

In Figure 3.3 we have represented Pn and the points that the algorithm decides to trim

for each of the values in A. Before viewing the graphs, it is important to note that both

the gradient value and the function value calculations are approximate, so that the stop

criterion cannot be expected to be met exactly. This added to the fact that convergence is

slow and costly makes the value of the weights to be approximate. In addition, convergence

is much slower for smaller α values so the approximation to optimal weights is worse than
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for higher values. For the sake of simplicity, when we talk about weights we are referring

to a scaling of the value of each of them between 0 and 1, obtained by multiplying the

real value of the weight by the factor n(1− α).

Figure 3.4: Values of W2
2 (Rα(Pn), Q) and of W2

2 (Rα(Pn), Q) + pen(α).

In red are displayed in Figure 3.3 the weights with a value of less than 0.5, in black

are the rest. To analyze the results obtained, we will separate the levels of trimming in

3 groups in which the behavior has been the same. First we will treat the result for the

trimming levels 0 and 0.02, then from 0.04 to 0.1 and finally from 0.12 to 0.16. In the first

case the convergence of the method has not been good in spite of having performed many

more iterations of the gradient method than for the rest of the cases, so we may still be

far from the optimal, this is reflected in a bad estimation of the points to be trimmed for

level 0.02. In the second group we see that the algorithm perfectly estimates the number

of points to be trimmed, it can be seen in the weights that have gone from a value of 0

or very close to 0 to values around 1. In the last group it seems that the estimation of

the points to be trimmed is not adequate because we have represented the points with

weights above 0.5 as not trimmed and the points with weights below as trimmed. Seeing

the values of the weights it can be seen that the 10 contaminated points have a weight of

0 and, therefore, the algorithm considers that they should be trimmed. But there is also

a group of about 10 points that have weights surrounding 0.5 and therefore they should

be partially trimmed.

In Figure 3.4 we see in black the value of the distance between the trimming set of

Pn and Q for each of the values in A. In green we see the value of the distance penalized
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by (3.29). Although we consider that the best way to estimate the constant C(P,Q)

is through cross-validation, for this case it is not computationally efficient and we have

taken C(P,Q) = n
2 ln(n) , which means that pen(α) = 1

1−α . We see that although the

distance values are decreasing with the level of trimming, when the penalization is added

this function decreases to a level of trimming of 0.1 and grows from there on. In other

words, our algorithm selects 0.1 as the optimal trimming level that coincides with the

contamination level we had included in the sample. Therefore, we can conclude that our

method correctly selects the optimal trimming level.
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Chapter 4
Deformation models. Applications to signal

alignment

This chapter deals with the problem of aligning deformed signals according to the model

described in section 2.4. Alignment problems find applications in functional data analysis

(for example in Bercu and Fraysse (2012), Dupuy et al. (2011), Gamboa et al. (2007)

or Ramsay and Silverman (2005)), image analysis (see Amit et al. (1991) or Trouve and

Younes (2005)), etc. The deformation model discussed in this chapter assumes that dif-

ferent observed samples Xi,j , i = 1, . . . , n, j = 1, . . . , J (where j indicates the sample and

i refers to the different observations within the sample), come, essentially, from the same

signal, i. e., from the same random generator, µ, but that in each sample the signal has

suffered a certain distortion, so that the observations in the jth sample actually come

from µj , where µj is a distorted version of µ. The alignment problem, then, is to look for

appropriate transformations that will unwarp the original deformations in order to make

the transformed samples as similar as possible.

This chapter is organized as follows. Section 4.1 describes more precisely the de-

formation model considered. A procedure for estimating deformations and establishing

asymptotic properties is proposed in section 4.2. Section 4.3 deals with computational

aspects related to the criterion used. Some examples of deformation models that fit the

general framework described in section 4.1 are shown in section 4.4. Finally, a simulation

study illustrating the behaviour of the proposed alignment procedure is included in section

4.5.

The material included in this chapter has been published in Agulló-Antoĺın et al.

(2015).

83
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4.1 A model for distribution deformation

To describe the deformation model considered in this work we will begin by assuming that

εij , 1 ≤ i ≤ n, 1 ≤ j ≤ J , are random i.i.d. variables with unknown distribution µ defined

in Ia a subset of the separable and complete metric space (X , d). We will assume that we

observe only some deformations of these observations, more specifically, we will consider

a family of invertible deformation functions indexed by parameters λ that deform a point

x into another point ϕλ(x). The shape of the deformation will be modeled by the known

function ϕ while the amount of deformation is characterized by the parameter λ ∈ Rd

with d > 0. Specifically

ϕ : Λ× Ia → Ib

(λ, x) 7→ ϕλ (x)

for Λ an open subset of Rd and Ia, Ib subsets of X that can be unbounded. As we said

before, we consider the model

Xij = ϕθ?j (εij) 1 6 i 6 n, 1 6 j 6 J, (4.1)

where θ∗j is the unknown deformation parameter in Λ ∈ Rd associated with the jth sample

(X1j , . . . , Xnj).

Our objective is to estimate the parameter θ∗ ∈
J∏
j=1

Λ. To this end, we will study

a criteria based on an alignment process for the distribution µj of each i.i.d. sample

(X1j , . . . , Xnj) for all j = 1, . . . , J .

To recover the deformation parameter θ∗ we will minimize the energy needed to align

the distributions µj . A natural distance for measuring the cost of aligning two distributions

is the 2-Wasserstein distance defined in (2.9).

The proposed procedure for aligning the law of observations Xj is as follows:

• For a parameter θ, we compute the image of the observation using the reverse op-

erator to undo the deformation of the observations. In particular, for all candidates

θ = (θ1, . . . , θJ) and for every observation Xij , we apply the inverse deformation

with parameter θj , which is equivalent to computing the following variables

Zij (θ) = ϕ−1
θj

(Xij) , i = 1, . . . , n and j = 1, . . . , J.

• We take the parameter among the chosen ones that minimizes the energy (measured

by 2-Wasserstein distance) needed to align the distribution of the variables once the

deformation has been undone with the distribution of its mean.



4.2. Estimation of the warping parameters 85

We specify the details below. If we denote by µj (θ) the common distribution of the

i.i.d. sample (Z1j (θ) , . . . , Znj (θ)), then µj (θ) = µj ◦ ϕθj . We are going to set µ (θ) =

1

J

J∑
j=1

µj (θ), which is the mean distribution of the µj (θ)’s.

By means of the following quantity we will quantify the cost of aligning the µj (θ)’s

with the mean distribution:

M (θ) =

J∑
j=1

W2
2 (µj (θ) , µ (θ)) , with θ ∈

J∏
j=1

Λ. (4.2)

It is worth remembering that as for every j, µj (θ?) = µ, we have M (θ?) = 0. This function

provides a characterization of our parameter of interest θ∗. Often equality M(θ∗) = 0 is

not enough to characterize θ∗.

For example, we can look at the case of random variables with values in Rd and

location deformations, i.e. ϕλ(x) = x + λ. If the deformation model (4.1) is correct,

then M(θ∗) = 0, however, it is easy to check that if we have θ̃ = (θ∗1 + a, . . . , θ∗J + a),

then M(θ̃) = 0. In order to avoid this type of identifiability problems, we choose the

distribution of the first sample as a reference. This is equivalent to considering that θ∗1 is

known, or to identifying εi1 = Xi1 for every i and then µ(θ∗) = µ1. Therefore, from now

on we will consider as parameter set Θ =

J∏
j=2

Λ.

4.2 Estimation of the warping parameters

The idea that comes naturally is to study the empirical version of criterion (4.2) that we

obtain by considering empirical laws rather than real ones,

Mn (θ) =
J∑
j=1

W 2
2

(
µ

(n)
j (θ) , µ(n) (θ)

)
. (4.3)

Where µ
(n)
j (θ) = 1

n

∑n
i=1 δZij(θ) is the empirical distribution of the sample (Zij (θ))1≤i≤n,

this is, µ
(n)
j (θ) = µ

(n)
j ◦ϕθj with µ

(n)
j = 1

n

n∑
i=1

δXij the empirical law of each sample. On the

other hand, µ(n) (θ) :=
1

J

J∑
j=1

µ
(n)
j (θ) is the mean distribution of the µ

(n)
j (θ)’s (note that it

corresponds to the empirical law of the sample (Zij (θ))1≤i≤n
1≤j≤J

formed by random variables

that are independent but not identically distributed, so that it does not correspond to the

empirical law associated with µ (θ)).
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This leads us to consider as an estimator of the deformation parameters any estimator

within the set

arg min
θ∈Θ

Mn (θ) . (4.4)

Next we will study the asymptotic behaviour of the estimator defined in (4.4). But

first we need to establish some conditions. The deformations to be considered must fulfil

∀λ ∈ Λ, x 7→ ϕλ(x) is invertible from Ia to Ib. (4.5)

∀λ ∈ Λ, ∀j ∈ {1, . . . , J},
∫
X
d(ϕ−1

λ ◦ ϕθ?j (x), x0)2dµ <∞ with x0 ∈ X . (4.6)

We note that the condition (4.6) is equivalent to∫
X
d(x, x0)2dµj (θ) <∞ ∀θ ∈ Θ and x0 ∈ X .

This condition is necessary for the calculation of the Wasserstein distance. The following

is a regularity condition on the deformation functions.

ϕ−1 is continuous in Λ× Ib. (4.7)

The following hypothesis ensures that the mass loaded by law µj (θ) goes to sets where

the probability µj is very small if ‖θj‖ is big. We will denote by B the balls in the space

(X , d) defined as B = B(x0, R) := {x ∈ X : d(x, x0) < R}.

For any ball B and any number ν > 0,

there exists a closed set S and a constant H > 0 such that (4.8)

‖λ‖ > H implies that ϕλ (B) ⊂ S with µj [S] < ν ∀j = 1, . . . , J.

It is important to remark that the set S may not be bounded.

M has a unique minimizer. (4.9)

This assumption is verified only by the existence of a j such that 2 ≤ j ≤ J and ϕ−1
θj
◦ϕθ?j 6=

Id for θ 6= θ? in a set of positive measure µ where Id denotes the identity function.

All these assumptions allow us to obtain the following result on the convergence of the

estimator θ̂(n) defined in (4.4), i.e., θ̂(n) ∈ arg min
θ∈Θ

Mn(θ).

Theorem 4.1. Under conditions (4.5) to (4.9), θ̂(n) → θ? almost surely when n→∞.
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Proof. This proof is inspired by Cuesta and Matrán (1988). We will divide it into three

parts, we will start by proving that ∀θ ∈ Θ, Mn(θ) converges almost surely to M(θ). Then

we shall see that P
(
{θ̂(n)}n∈N is bounded

)
= 1. To finish the proof we will see that with

probability 1, the sequence {θ̂(n)}n∈N has a single accumulation point that will be θ∗.

First part: ∀θ ∈ Θ, Mn(θ) converges almost surely to M(θ).

We will use the characterization for Wasserstein distance seen in Proposition 2.7. By

Varadarajan’s theorem (Theorem 11.4.1 in Dudley (2002)) we have for all j and θ it is

satisfied almost surely that

µ
(n)
j (θ) ⇀ µj(θ). (4.10)

On the other hand, by the Law of Large Numbers,∫
X
d(x, x0)2dµ

(n)
j (θ)

n→∞−−−→
∫
X
d(x, x0)2dµj (θ) . (4.11)

So, using the characterization of convergence in distributions for continuous and bounded

functions, from (4.10), we have that almost surely

µ(n) (θ) =
1

J

J∑
j=1

µ
(n)
j (θ) ⇀

1

J

J∑
j=1

µj (θ) = µ (θ) , (4.12)

and from (4.11), almost surely∫
X
d(x, x0)2dµ(n) (θ)

n→∞−−−→
∫
X
d(x, x0)2dµ (θ) . (4.13)

Using the equivalence (2.11) we get that (4.12) and (4.13) imply that

W2

(
µ(n) (θ) , µ (θ)

)
n→∞−−−→ 0 a.s. .

Gathering now the equivalence (2.11) with (4.10) and (4.11), we conclude that for all j

and θ fixed

W2
2

(
µ

(n)
j (θ) , µj (θ)

)
n→∞−−−→ 0, a.s..

These last two relationships finally lead us to

Mn (θ) =

J∑
j=1

W2
2

(
µ

(n)
j (θ) , µ(n) (θ)

)
n→∞−−−→M (θ) =

J∑
j=1

W2
2 (µj (θ) , µ (θ)) a.s.,

and with this, the first part is proven.

Second part: P
(
{θ̂(n)}n∈N is bounded

)
= 1.
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Since we are assuming that µ1 = µ, and that µ
(n)
1

(
θ̂(n)

)
= µ

(n)
1 because the first sample

is not changed, the previous result together with the properties of empirical distributions

imply that there is a set with probability 1, Ω0, where

W2

(
µ

(n)
1

(
θ̂(n)

)
, µ
)
→ 0, (4.14)

Mn (θ?)→M (θ?) , (4.15)

µ
(n)
j ⇀ µj , para cada j = 1, . . . J. (4.16)

From now on we are going to fix an element in the set Ω0 and we are going to prove that

θ̂(n) ∈ arg min
θ∈Θ

Mn (θ) is bounded by contradiction. Assume that lim sup
n→∞

∥∥∥θ̂(n)
∥∥∥
p(J−1)

=∞

and choose j ∈ {2, . . . , J} such that lim sup
n→∞

∥∥∥θ̂(n)
j

∥∥∥
p

=∞. Consider a subsequence {nh}h≥1

such that lim
h→∞

∥∥∥θ̂(nh)
j

∥∥∥
p

= ∞. With condition (4.8), for all ball B and all ν > 0 there

is a closed set S and an integer h0 such that, for all h ≥ h0, ϕ
θ̂
(nh)
j

(B) ⊂ S and then

µj

[
ϕ
θ̂
(nh)
j

(B)

]
≤ µj [S] ≤ ν. In consequence,

lim sup
h→∞

µ
(nh)
j

[
ϕ
θ̂
(nh)
j

(B)

]
6 lim sup

h→∞
µ

(nh)
j [S] .

By the portmanteau theorem (see, for example, Theorem 11.1.1 in Dudley (2002)), using

convergence in distribution of the measure µ
(nh)
j given in (4.16), we can write

lim sup
h→∞

µ
(nh)
j [S] ≤ µj [S] ,

hence

lim sup
h→∞

µ
(nh)
j

[
ϕ
θ̂
(nh)
j

(B)

]
≤ ν.

This inequality holds for all ν > 0, and we can conclude that, for every ball B

µ
(nh)
j

(
θ̂(nh)

)
[B] = µ

(nh)
j

[
ϕ
θ̂
(nh)
j

(B)

]
h→∞−−−→ 0.

Moreover, by the definition of θ̂(n)

Mnh (θ?) >Mnh

(
θ̂(nh)

)
and, from (4.15) we get

0 = M (θ?) ≥ lim
h→∞

Mnh

(
θ̂(nh)

)
, (4.17)

from where we deduce that

0 = lim
h→∞

W2
2

(
µ

(nh)
1

(
θ̂(nh)

)
, µ(nh)

(
θ̂(nh)

))
,
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This, together with (4.14) implies that µ(nh)
(
θ̂(nh)

)
⇀ µ when h→∞ for the Wasserstein

distance.

Take δ > 0 and x0 ∈ X fixed, using (4.2), we know that for every H ∈ N, we can find a

rH such that for all h ≥ rH

µ
(nh)
j

(
θ̂(nh)

)
[B (x0;H)] ≤ δ, (4.18)

and we can build a new subsequence (to which we will continue to call nh for simplicity)

so that for every H ≥ 0, (4.18) is valid and

µ(nh)
(
θ̂(nh)

)
⇀ µ.

As µ(nh)
(
θ̂(nh)

)
is a sequence of measures in a complete and separable metric space that

converge in distribution, is a tight sequence. As a result, for all ν > 0 there is a compact

set K such that µ(nh)
(
θ̂(nh)

)
[K] ≥ 1 − ν for all h ∈ N. However, since K is bounded,

there is M such that K ⊂ B (x0,M). Then

ν ≥ µ(nh)
(
θ̂(nh)

)
[Kc] ≥ µ(nh)

(
θ̂(nh)

)
[B (x0,M)c]

≥ 1

J
µ

(nh)
j

(
θ̂(nh)

)
[B (x0;M)c] ≥ 1− δ

J
.

Taking ν = 1−δ
2J , we have a contradiction. Therefore, we can conclude that in Ω0,

lim sup
n→∞

∥∥∥θ̂(n)
∥∥∥
p(J−1)

<∞.

Third part: With probability 1, the unique accumulation point of {θ̂(n)}n∈N will be θ∗.

As the sequence
{
θ̂(n)

}
is bounded in Ω0 we just have to prove that if θ0 is the limit of

a subsequence of
{
θ̂(n)

}
n≥1

, then θ? = θ0. For simplicity, we will denote the subsequence

by θ̂(n) and assume that θ̂(n) → θ0.

Starting from inequality (4.17) we have that for each j = 1, . . . , J ,

lim
n→∞

W2

(
µ

(n)
j

(
θ̂(n)

)
, µ(n)

(
θ̂(n)

))
= 0.

Then,

W2

(
µ

(n)
j

(
θ̂(n)

)
, µ(n)

(
θ̂(n)

))
n→∞−−−→ 0, for each j = 1, . . . , J. (4.19)

Applying this to j = 1 and (4.14), we get

W2

(
µ(n)

(
θ̂(n)

)
, µ
)

n→∞−−−→ 0.

Now, if j = 1, . . . , J , with this and (4.19) we have that

µ
(n)
j

(
θ̂(n)

)
⇀ µ. (4.20)
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On the other hand, (4.16) is satisfied, which allows us to apply Skorohod’s Theorem (see,

for example, Theorem 11.7.2 in Dudley (2002)) to obtain random vectors Zn, n = 0, 1, . . .

such that, sequence {Zn} converges almost surely to Z0 and the distribution of Z0 is µj

and the distribution of Zn is µ
(n)
j . As θ̂(n) → θ0, the assumption (4.7) gives us that

ϕ−1

θ̂
(n)
j

(Zn)
n→∞−−−→ ϕ−1

θ0j
(Z0), a.s..

And, then, we have

µ
(n)
j

(
θ̂(n)

)
⇀ µj

(
θ0
)
.

This, together with (4.20), means that µj
(
θ0
)

= µ for all j. Finally, given that M
(
θ0
)

=

0 = M (θ?), from assumption (4.9) it follows that θ0
j = θ∗j and that concludes the proof of

this third part and of the theorem. 2

To conclude this section we prove that the average aligned empirical distribution, i.e.,

µ(n)
(
θ̂(n)

)
=

1

J

J∑
j=1

µ
(n)
j

(
θ̂(n)

)
is a good estimator of the original distribution before deformations, µ. To do this we need

to establish two new assumptions, for simplicity we assume that the metric space (X , d)

is a closed subset of Rd.

∀x ∈ Ib, ϕ−1
λ :

Λ → Ia

λ 7→ ϕ−1
λ (x)

is continuously differentiable, (4.21)

and

∀j, the family
(
∂ϕ−1

λ (·)
)
λ∈Λ

has an envelope in L2 (µj) . (4.22)

This means sup
λ∈Λ

∥∥∂ϕ−1
λ (x)

∥∥ 6 H(x), H ∈ L2 (µj). With these assumptions we can

establish the following proposition.

Proposition 4.2. Under assumptions (4.5) to (4.9), (4.21) and (4.22),

W2

(
µ(n)

(
θ̂(n)

)
, µ
)

n→+∞−−−−−→ 0 almost surely.

Proof. From the proof of Theorem 4.1, it follows that µ
(n)
j

(
θ̂(n)

)
⇀ µ almost surely. Let

ε be a random variable with the same distribution as the variables εij introduced in (4.1).

We will prove that,

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2
n→∞−−−→ E

[
‖ε‖2

]
a.s.
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Using the Strong Law of Large Numbers, we know that

lim
n→∞

1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

= lim
n→∞

1

n

n∑
i=1

‖εij‖2 = E
[
‖ε‖2

]
a.s.,

it will therefore suffice to prove that lim
n→∞

1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

= lim
n→∞

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

.

We have ∣∣∣∣∣∣
√√√√ 1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

−

√√√√ 1

n

n∑
i=1

∥∥∥ϕ−1
θ?j

(Xij)
∥∥∥2

∣∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)− ϕ−1
θ?j

(Xij)

∥∥∥∥2

≤

√√√√ 1

n

n∑
i=1

‖H (Xij)‖2
∥∥∥θ̂(n)

j − θ
?
j

∥∥∥ .
which converges, almost surely, to 0 using the Strong Law of Large Numbers and Theorem

4.1. Hence, almost surely,

lim
n→∞

1

n

n∑
i=1

∥∥∥∥ϕ−1

θ̂
(n)
j

(Xij)

∥∥∥∥2

= E
[
‖ε‖2

]
.

Using the characterization of convergence in Wasserstein distance given in (2.11) the propo-

sition is proven. 2

4.3 Computational aspects

When the template measure, µ, is defined in some subset of R, the value of the criterion Mn

defined in (4.3) is easily calculable by the expression of 2-Wasserstein distance as distance

L2 between quantum functions and the order statistics of the deformed observations.

Remember that if Fn is the empirical distribution associated with the sample (Y1, . . . , Yn),

then

F−1
n (t) = Y(i), for

i− 1

n
< t ≤ i

n
,

where Y(1), . . . , Y(n) denote the associated order statistics. In the same way we will de-

note by Z(k) (θ) the kth order statistic of the whole sample (Zij (θ))1≤i≤n
1≤j≤J

, and Z(k)j the

corresponding statistic in the sample (Zij (θ))1≤i≤n, which brings us to

Mn (θ) =
1

J

J∑
j=1

1

Jn

n∑
i=1

J∑
k=1

[
Z(i)j (θ)− Z(J(i−1)+k) (θ)

]2
.
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An equivalent closed formula for the calculation of Mn is not available in higher di-

mension. Instead, we resort to solving linear programming problems of the type discussed

in section 3.2 with α1 = α2 = 0. More specifically, if P and Q are uniform laws in

A = {x1, . . . , xnJ} and B = {y1, . . . , yn} respectively, then

W 2
2 (P,Q) = min

c∈C
L(A,B, c),

where

C =

{
c = (cik)1≤i≤nJ

1≤k≤n
: cik ≥ 0;

nJ∑
i=1

cik =
1

n
;

n∑
k=1

cik =
1

nJ
∀i, k

}
and

L(A,B, c) :=

(nJ,n)∑
(i,k)=(1,1)

d (xi, yk)
2 cik.

Then for θ ∈ Θ we will follow this procedure to calculate, for all j, a sequence cj(θ)

such that

W 2
2

(
µ

(n)
j (θ) , µ(n) (θ)

)
= L

(
(Zij (θ))1≤i≤n

1≤j≤J
, (Zij (θ))1≤i≤n , c

j (θ)

)
,

and we get Mn (θ) = 1
J

∑J
j=1 L

(
(Zij (θ))1≤i≤n

1≤j≤J
, (Zij (θ))1≤i≤n , c

j (θ)

)
.

4.4 Examples

In this section we show examples of admissible deformations that satisfy the hypotheses

(4.5) to (4.9), (4.21) and (4.22).

Example 4.1. Location/scale model,

ϕλ (x) =
x

λ2
+ λ1.

In this case we are considering that X = Rd. While λ2 6= 0, ϕλ is invertible in Rd

hence Λ ⊂ Rd × R− {0} and

ϕ−1
λ (x) = λ2x− λ1λ2 = ϕ(−λ1λ2, 1

λ2
)(x).

Then

ϕ−1
λ (ϕβ (x)) =

λ2

β2
x+ β1 − λ1λ2

is in L2 (µ) if µ ∈ W2

(
Rd
)
. Therefore the assumptions (4.5), (4.6), (4.7) and (4.9) will be

satisfied as long as µ is in W2

(
Rd
)
.
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We now study the condition (4.8). Assume µ has a bounded density with respect to

Lebesgue’s measure. So for all ν > 0, we can find η such that for all x, µj
(
B̄(x, η)

)
< ν

and M such that µj (B(0,M)c) < ν.

We have ϕλ (B(y0, r)) = B( 1
λ2
y0+λ1,

1
|λ2|r). Then, with |λ2| → ∞, if ‖λ‖ is sufficiently

large, ϕλ (B(y0, r)) ⊂ B̄(xλ, η). Now, if ‖λ1‖ → ∞, then ϕλ (B(y0, r)) ⊂ B(0,M)c if

|λ2| ≥ α > 0. Therefore, (4.8) shall be valid if, in addition, Λ ⊂ Rd× (−∞,−α]∪ [α,+∞)

with α > 0.

Example 4.2. Logarithmic transformation, here X ⊂ (0,+∞) and

ϕλ(x) =
1

λ
ln(x).

Function ϕλ is invertible from (0,+∞) to R for all λ 6= 0. Then Λ ∈ (0,+∞) and the

support of µ must be contained in (0,+∞). We have that

ϕ−1
λ (x) = exp (xλ)

and ϕ−1
λ (ϕβ(x)) = exp

(
λ ln(x)
β

)
= x

λ
β . Then ϕ−1

λ ∈ L
2 (X1j) if E

[
e

2λ
θ?
j

]
<∞ for all λ ∈ Λ.

To sum up, the conditions (4.5), (4.6), (4.7) and (4.9) will be satisfied provided that the

support of µ is contained in (0,+∞) and that E

[
e

2λ
θ?
j

]
<∞ for all λ ∈ Λ.

In this case we have more restrictive conditions on the law of µ than in the previous

example. However, the exponential distribution, for example, satisfies them.

Again, hypothesis (4.8) has yet to be verified. For y0 and r such that B(y0, r) ⊂
(0,+∞), we have that ln(B(y0, r)) ⊂ ln

(
B̄(y0, r)

)
⊂ B̄(z0, R) for some z0 as the image

of a compact set by a continuous function remains compact. Therefore, ϕλ (B(y0, r)) ⊂
B̄
(
z0
λ ,

R
|λ|

)
and the condition is satisfied if µ(0) = 0.

Example 4.3. Affine transformation,

ϕλ(x) = A−1x+ b.

As in Example 4.1 We will consider X = Rd and λ = (A, b) ∈ GL
(
Rd
)
× Rd, where

GL(Rd) denotes the space of invertible matrices d× d with real coefficients. We have got

ϕ−1
λ (x) = A (x− b) .

Then ϕ−1
λ1
◦ϕλ2(x) = A1

(
A−1

2 x+ b2 − b1
)
, hence if µ is inW2

(
Rd
)

hypothesis (4.5), (4.6),

(4.7) and (4.9) will be satisfied.

For y0 ∈ Rd and r > 0 we have ϕλ(B(y0, r)) ⊂ B
(
A−1y0 + b, r

∥∥A−1
∥∥). Then, as in

Example 4.1, condition (4.8) it will be verified if we take µ with bounded density with
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respect to Lebesgue measure and if we choose the matrix A in a subset of GL
(
Rd
)

with

‖A‖ ≥ α > 0.

Example 4.4. Composition,

ϕλ(x) = f ◦ ϕ̃λ(x).

Consider a function ϕ̃λ(x), a law µ and a parameter θ? that satisfies assumptions

(4.5) to (4.9). Then, if f is a homeomorphism from Ib to Ic the deformation function

ϕλ(x) = f ◦ ϕ̃λ(x) with the same law µ and a parameter θ? also verifies these assumptions

by replacing Ib with Ic, let us see this. Assumptions (4.5) and (4.7) are easy to check. We

have

ϕ−1
λ ◦ ϕβ = ϕ̃−1

λ ◦ f
−1 ◦ f ◦ ϕ̃β = ϕ̃−1

λ ◦ ϕ̃β.

Then µ̃j (λ) = µ ◦ ϕ̃−1
θ?j
◦ ϕ̃λ = µ ◦ ϕ−1

θ?j
◦ ϕλ = µj (λ) and hypothesis (4.6) and (4.9) will

also be met. In addition, the criterion M̃ (θ) corresponding to ϕ̃ is exactly the same as

the criterion M (θ) corresponding to ϕ.

Again, it remains to be checked that assumption (4.8) is also met. We choose ν > 0, a

ball B and a closed set S such that ϕ̃λ (B) ⊂ S with µ̃j [S] < ν for all j with λ sufficiently

large. We have that ϕλ (B) ⊂ f (S) is closed because f is a homeomorphism. Even more,

µj [f (S)] = µ̃j [S] < ν.

This allows us to consider new deformations. For example, in the same framework of

the scale model we can consider the logit model with the deformation function ϕλ (x) =

(1 + exp (x/λ))−1.

4.5 Simulations

To conclude, we present a simulation study to test the operation of the described method.

Samples of independent random variables εij of size n are generated with a standard

normal distribution where j = 1, . . . , J and i = 1, . . . , n. For given parameters θ?j that

we are going to estimate, we simulate the observations Xij = ϕθ?j (εij). In order to obtain

the estimation of the deformation parameters, the criterion defined in (4.4) is minimized.

The main difficulty comes from minimizing the Wasserstein distance. To do this we are

going to use the software R, namely the function optim of the package stats with the L-

BFGS-B option that minimizes a function with a quasi-Newton method and the function

Partial.Transport described in section 3.2.1. Simulations are very fast at first, but the

computational complexity increases with sample and parameter sizes. We have considered

two different types of deformation functions:
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1. A localization and scale model as in the Example 4.1:

ϕθ∗j (x) =
x

θ∗1
+ θ∗2

The simulations have been made for 5 pairs of parameters (θ?1, θ
?
2): (2,1), (7,2),

(2.5,2), (5,5) and (10,8).

2. A matrix as a scale parameter, corresponding to the affine transformation of Exam-

ple 4.3:

ϕθ∗j (x) = (θ∗1)−1x+ θ∗21.

where x = (x1, x2)T ∈ R2, θ∗1 is

(
θ∗11 0

0 θ∗12

)
∈ GL(R2) and θ∗2 ∈ R. Here λ =

(θ11, θ12, θ2). The simulations have been made for 4 sets of parameters which are

(2,2,1), (4,3,2), (2.5,3,1.5) and (5,2,2).

All simulations have been made for J = 2 and sample sizes n = 20, 50, 100, 200, 300.

To analyze the estimation error, we can see in figures 4.1 to 4.5 the boxplots of these

errors.
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Figure 4.1: Model 1(location/scale). Estimation error. λ = (2, 1).

As expected, the error decreases with sample size leading to good estimators for suf-

ficiently large samples. We would like to draw attention to the fact that the estimation

is better for the localization parameter than for the scale parameter. This can be seen in

tables 4.1 and 4.2 showing the mean and standard deviation of these parameters for the

different sample sizes.

Note that in the case of the location parameter, the mean of the estimator in simu-

lations is very close to the actual value of the deformation parameter and the standard
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Figure 4.2: Model 1(location/scale). Estimation error. λ = (7, 2).
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Figure 4.3: Model 1(location/scale). Estimation error. λ = (2.5, 7).

deviation is small even for small-sized samples. For the scale parameter the results are not

as good for smaller samples, but improve significantly with the increase of sample size.

We now consider model 2, affine transformation. As before, figures 4.6, 4.7, 4.8 and

4.9 present the boxplots with the error in the estimation of each parameter.

As expected, something similar to the case of localization and scale transformation

happens, the error is fastly reduced by increasing sample size and is much smaller for the

localization parameter than for the scale parameter. This can be seen more clearly in

Tables 4.3, 4.4 and 4.5.

In conclusion, the simulations show a good behavior of the alignment procedure de-

scribed in this chapter and, in particular, the consistency of the proposed estimators.

The procedure works for single or multivariate data. In the latter case, the algorithm

introduced in chapter 3 is essential for the practical implementation of the method.
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Figure 4.4: Model 1(location/scale). Estimation error. λ = (5, 5).
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Figure 4.5: Model 1(location/scale). Estimation error. λ = (10, 8).

●

●

●

●

●

●

n=20 n=50 n=100 n=200 n=300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Error in first scale parameter estimation

Sample Sizes

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

n=20 n=50 n=100 n=200 n=300

0.
0

0.
5

1.
0

1.
5

Error in second scale parameter estimation

Sample Sizes

●

●

●
● ●

●

●

●●

●

n=20 n=50 n=100 n=200 n=300

0.
0

0.
1

0.
2

0.
3

Error in location parameter estimation

Sample Sizes

●

●
● ● ●

Figure 4.6: Model 2 (affine transformation). Estimation error. λ = (2, 2, 1).
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Table 4.1: Model 1(location/scale). Scale parameter estimation.

Mean

Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8

20 1,627 2,084 4,167 5,968 8,389

50 1,778 2,262 4,470 6,430 9,211

100 1,892 2,378 4,708 6,536 9,379

200 1,922 2,398 4,791 6,725 9,669

300 1,950 2,435 4,875 6,810 9,719

Standard Deviation

Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8

20 0,324 0,364 0,772 1,182 1,549

50 0,184 0,219 0,421 0,785 1,008

100 0,122 0,148 0,315 0,491 0,698

200 0,098 0,105 0,257 0,359 0,525

300 0,098 0,096 0,215 0,233 0,425

Table 4.2: Model 1(location/scale). Location parameter estimation.

Mean

Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8

20 1,002 6,994 5,003 1,998 7,998

50 0,994 7,001 5,004 2,004 7,999

100 0,996 7,003 4,997 2,000 7,999

200 1,001 6,999 4,999 2,001 8,000

300 1,001 6,997 5,001 1,999 8,000

Standard Deviation

Sample Size\Parameters 2,1 2.5,7 5,5 7,2 10,8

20 0,130 0,101 0,049 0,041 0,026

50 0,074 0,057 0,033 0,023 0,014

100 0,048 0,041 0,020 0,014 0,009

200 0,039 0,028 0,015 0,010 0,008

300 0,031 0,022 0,012 0,008 0,006
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Figure 4.7: Model 2 (affine transformation). Estimation error. λ = (2, 4, 3).
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Figure 4.8: Model 2 (affine transformation). Estimation error. λ = (2.5, 3, 1.5).
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Figure 4.9: Model 2 (affine transformation). Estimation error. λ = (5, 2, 2).

Table 4.3: Model 2 (affine transformation). First scale parameter estimation.

Mean

Sample Size\Parameters 2,2,1 2.5,3,1.5 5,2,2 2,4,3

20 1,743 2,128 4,261 1,721

50 1,803 2,315 4,629 1,839

100 1,888 2,383 4,697 1,903

200 1,956 2,392 4,851 1,933

300 1,940 2,418 4,884 1,931

Standard Deviation

Sample Size\Parameters 2,2,1 2.5,3,1.5 5,2,2 2,4,3

20 0,482 0,577 1,656 0,513

50 0,296 0,361 0,648 0,281

100 0,225 0,261 0,514 0,203

200 0,137 0,232 0,316 0,145

300 0,117 0,131 0,283 0,109
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Table 4.4: Model 2 (affine transformation). Second scale parameter estimation.

Mean

Sample Size\Parameters 2,2,1 2.5,3,1.5 5,2,2 2,4,3

20 1,762 2,449 1,734 3,351

50 1,850 2,775 1,836 3,845

100 1,885 2,846 1,876 3,830

200 1,939 2,826 1,940 3,905

300 1,958 2,919 1,942 3,918

Standard Deviation

Sample Size\Parameters 2,2,1 2.5,3,1.5 5,2,2 2,4,3

20 0,596 0,713 0,546 0,990

50 0,309 0,498 0,297 0,564

100 0,163 0,352 0,182 0,445

200 0,139 0,273 0,148 0,293

300 0,132 0,177 0,112 0,271

Table 4.5: Model 2 (affine transformation). Location parameter estimation.

Mean

Sample Size\Parameters 2,2,1 2.5,3,1.5 5,2,2 2,4,3

20 0,977 1,491 1,992 3,013

50 0,995 1,495 2,005 2,997

100 1,001 1,498 2,001 2,997

200 0,999 1,503 1,997 2,998

300 0,998 1,499 1,998 2,998

Standard Deviation

Sample Size\Parameters 2,2,1 2.5,3,1.5 5,2,2 2,4,3

20 0,154 0,094 0,090 0,109

50 0,067 0,058 0,038 0,049

100 0,048 0,039 0,028 0,034

200 0,035 0,034 0,017 0,022

300 0,029 0,021 0,016 0,018
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Chapter 5
Partial classification problems

This chapter introduces a new robust approach to the classic classification problem de-

scribed in section 2.2. The main motivation is that the usual methods of obtaining clas-

sification rules can be seriously affected by the presence of atypical observations in the

training sample. Searching for a classification rule for samples of this type can lead us to

find unnecessarily complex rules. In this chapter we will address the problem of finding

simpler classification rules by relaxing the objective of classifying the entire sample to

classifying only a fraction of it. This problem will be referred to as partial classification

problem. The first section of this chapter is devoted to formally addressing this problem.

Later, section 5.2 discusses the problem in detail from the point of view of the 0/1

loss. A penalized classification method is proposed that allows the proportion of atypical

observations to be adequately detected and an appropriate rule to be selected. The quality

of the rules obtained with this method is guaranteed by oracle inequalities that will be pre-

sented in this section. The effective calculation of these rules is, however, computationally

problematic. This leads to the consideration of a convex loss function in the adaptation of

previous ideas to a computationally feasible environment developed in section 5.3. Finally,

in section 5.4, new strategies are explored for the resolution of the partial classification

problem, which were either discarded due to the poor results they provided, or have been

left as future work.

The methods proposed in this thesis consider only the problem of binary classification,

although most methods and results could be extended to multiclass classification problems.

This extension is beyond the scope of this work.

103
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5.1 Problem statement

When the number of observations is very large, or we have samples in a high dimension,

some of the observations may contain errors and should be considered as contaminating

observations. The presence of such observations, if not eliminated, hampers the efficiency

of the classifiers, because many of the existing classification methods are very sensitive

to atypical observations. Moreover, if the training set is too contaminated, training a

classifier in this set will lead us to classifiers with a high classification error. Hence there

is a growing need for robust classification methods to tackle such issue.

One solution to cope with this issue is to allow the classifier not to classify all points

and to reject some observations that seem too difficult to classify. This point of view is

addressed in Herbei and Wegkamp (2006) and Bartlett and Wegkamp (2008). Another

idea is to eliminate a proportion of the contaminated data in such a way that we guarantee

the robustness of the obtained rule. These observations are known as outliers in the sense

that they are far from the model used to generate the data. However, the automatic

detection of outliers is a complicated task, its definition is not unique and specific criteria

are often used depending on the applications of interest. For example, in the case of

SVM classification, it is proposed to remove atypical ones using an ’outlier map’. In

Debruyne (2009) the authors propose a function that measures the impact of distribution

contamination on the classification error obtained by minimizing empirical risk. In the

regression framework, LASSO estimators also suffer in the presence of outliers. Several

modifications have been proposed to strengthen the estimators, for example, see Chen et al.

(2010), Maronna (2011) or Alfons et al. (2013) where points with the highest residuals are

discarded.

Moving from data analysis to a probabilistic framework, removing observations that

achieve bad classification error, corresponds to trimming the initial distribution of the

observations and replacing it by a trimmed distribution Q. Although research on trimming

methods has been carried out for many years, there are still very few theoretical results

that allow us to choose a clear limit between an acceptable observation and an outlier.

Moreover, in this case little is known about whether or how this choice modifies the

classification error. Both for a practical and theoretical purpose, this choice must be

guided to take into account the variability generated by the contaminated data.

In this chapter we provide some theoretical guarantee to choose the level of data to be

removed. For this we consider the set of trimmed distributions obtained from the initial

distribution of the data and look for an automatic rule that reduces the classification

error of a collection of classifiers by removing some properly selected observations. The
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more data is removed, the easier it becomes to classify the data, leading to a perfect

classification if the classification error is small enough. Yet, removing too much data

reduces the interest of the classification procedure. If too many observations are left aside

then the chosen classification rule may be good for a distribution which is possibly very

far from the true distribution of the data. In this section we provide an empirical rule that

automatically selects the minimum level of trimming to reduce the classification error for

a class of classifiers. Simultaneously, the best classifier for the trimmed set of observations

is chosen among a collection of classification rules.

When quantifying the generalization error, we use a loss function. In this work we

are going to study two different functions. First of all, we will study the case in which

the loss is 0/1, meaning that we only consider two possibilities, whether an observation

is well classified or not. This is possibly the most natural loss function and the easiest

to interpret. We will show that the proposed rules related to this loss function have

interesting theoretical properties. However, the 0/1 loss leads to minimization problems

with a non-convex (not even continuous) target function. This means that in practice the

calculation of the minimum is very costly, making it impossible to calculate the optimal

rule even for small samples. To fix this problem, we are going to consider a convex loss

function, namely the hinge function. This function is related to the SVM method we saw

in section 2.2.2 and is not limited to considering whether an observation is well or poorly

classified. In case of misclassification also gives a measure of how bad this classification is.

5.2 Partial Classification with 0/1 loss

From now on we will focus on a single loss function, the 0/1 function. The results of this

section can be found in Agulló-Antoĺın et al. (2017).

First of all, we will study how the generalization error (minimum) affects the modi-

fication of the previous problem in such a way that we do not have as our objective the

classification based on P , but we will settle for a good classification for a fraction of P ,

that is, for a trimming of P . In other words, we are faced with the problem of calculating

(or characterizing) the Bayes trimmed error :

Errα(P ) := inf
Q∈Rα(P )

Err(Q).

In this chapter we will keep the notation introduced in section 2.2 in which we identified

the probability of a measurable set A ⊂ {0, 1}×Rd with three probabilities p0, P0 and P1
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so that

P (A) = p0P0(A0) + (1− p0)P1(A1),

where p0 = P ({0} × Rd), P0(A0) = P ({0} × A0)/p0 and P1(A1) = P ({1} × A1)/(1 − p0)

with Ai = {x ∈ Rd : (i, x) ∈ A}, i = 0, 1. Similarly, we are going to describe the set

Rα(P ) in terms of the identification P ↔ (p0, P0, P1). This identification is independent

of the loss function we are using and will be kept throughout the entire chapter.

Lemma 5.1. With the previous notation, if Q ≡ (q0, Q0, Q1) with q0 ∈ (0, 1), then Q ∈
Rα(P ) if and only if

q0 ≤
p0

1− α
, 1− q0 ≤

1− p0

1− α
, Q0 ∈ R1− q0

p0
(1−α)(P0) and Q1 ∈ R1− 1−q0

1−p0
(1−α)

(P1).

(5.1)

Proof. Note first that q0 = Q({0}×Rd), Q ∈ Rα(P ) implies q0 ≤ 1
1−αP ({0}×Rd) = p0

1−α .

The same argument shows that 1− q0 ≤ 1−p0
1−α if Q ∈ Rα(P ). Observe that the conditions

q0 ≤ p0
1−α and 1−q0 ≤ 1−p0

1−α guarantee that 0 ≤ 1− q0
p0

(1−α) ≤ 1 and 0 ≤ 1− 1−q0
1−p0 (1−α) ≤ 1,

hence the trimming sets in the statement are well defined. Moreover, if Q ∈ Rα(P ) then

Q0(A0) =
Q({0} ×A0)

q0
≤ 1

(1− α)q0
P ({0} ×A0) =

1

(1− α) q0p0
P0(A0),

which proves that Q0 ∈ R1− q0
p0

(1−α)(P0). In a similar way it can be proven that Q1 ∈
R

1− 1−q0
1−p0

(1−α)
(P1), which proves that the assumptions (5.1) are necessary. To prove the

sufficiency note that if we have (5.1) then q0Q0(A0) ≤ 1
1−αP0(A0), (1 − q0)Q1(A1) ≤

1
1−αP1(A1) and hence

Q(A) = q0Q0(A0) + (1− q0)Q1(A1)

≤ 1

1− α
(p0P0(A0) + (1− p0)P1(A1)) =

1

1− α
P (A).

which completes the proof. 2

Assume now that P0, P1 are absolutely continuous with respect to the measure µ,

with densities f0, f1. If Q ∈ Rα(P ) then Qi is also absolutely continuous with respect

to µ. We denote the corresponding densities by gi, i = 0, 1. As a consequence of Lemma

5.1 q0g0 ≤ p0f0
1−α and (1 − q0)g1 ≤ (1−p0)f1

1−α . If we denote u0 = q0g0, u1 = (1 − q0)g1 then

the Bayes error associated with Q is
∫
Rd min(u0, u1)dµ. With this notation we have that∫

Rd(u0 + u1)dµ = 1, u0 ≤ p0f0
1−α and u1 ≤ (1−p0)f1

1−α . Of course, the formulation in terms of

gi is trivially recovered from ui. This proves the next result.
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Lemma 5.2. With the previous notation

Errα(P ) = inf

{∫
Rd

min(u0, u1)dµ : 0 ≤ u0 ≤
p0f0

1− α
, 0 ≤ u1 ≤

(1− p0)f1

1− α
, (5.2)∫

Rd
(u0 + u1)dµ = 1

}
. (5.3)

Later, we will check that the minimum on the right-hand side of (5.2) is attained, that

is, there is a probability Q ∈ Rα(P ) that minimizes Bayes error. This trimming will be

the best possible for the classification problem when all rules are admissible.

Next we will study the minimum value of α needed to achieve a perfect separation,

i.e., Errα(P ) = 0. We know that if, for example, α > min(p0, 1 − p0) then Errα(P ) = 0,

but that bound can be improved as we will see below. Assume now that we have a given

classification rule g, its generalization error in terms of identification P ↔ (p0, P0, P1) is

R(g) = p0P0({x ∈ Rd : g(x) = 1}) + (1− p0)P1({x ∈ Rd : g(x) = 0}).

In analogy to how we defined the trimmed Bayes error we are now going to define the

trimmed generalization error for a given rule.

Definition 5.1. We define the trimmed generalization error of a rule g as,

Rα(g) := inf
Q∈Rα(P )

Q(g(X) 6= Y ).

Specifically, we are interested in studying the relationship between the trimmed clas-

sification error and the classification error of the same classifier g for the whole sample.

As we will see below, we can determine the trimmed error from the generalization error

and the trimming level. To simplify the proof, we have divided the following result into

Lemma 5.3 and Proposition 5.4.

Lemma 5.3. With the previous notation

Rα(g) = min
1− 1−p0

1−α ≤q0≤
p0

1−α

[(
q0 −

p0

1− α
P0({x ∈ Rd : g(x) = 0})

)
+

+

(
1− q0 −

1− p0

1− α
P1({x ∈ Rd : g(x) = 1})

)
+

]
. (5.4)

Proof. The first step consists in writing the probability Q in terms of (q0, Q0, Q1)

Q(g(x) 6= y) = q0

∫
{x∈Rd:g(x)=1}

dQ0

dµ
dµ+ (1− q0)

∫
{x∈Rd:g(x)=0}

dQ1

dµ
dµ

=

∫ (
q0I({x∈Rd:g(x)=1})

dQ0

dµ
+ (1− q0)I({x∈Rd:g(x)=0})

dQ1

dµ

)
dµ. (5.5)
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We are looking for the probability that minimizes the probability of error among all the

probabilities Q ∈ Rα(P ), this means we are looking for Q0 and Q1 that minimize (5.5).

We are going to make the calculations for Q0, Q1 can be treated similarly.

As we are minimizing, we are going to concentrate the probability Q0 in the set (g(x) = 0).

By Lemma 5.1 we know that Q0 ≤ p0
q0(1−α)P0, so the value of Q0 depends on the value of

P0. There are two possibilities,

1. P0(g(x) = 0) ≥ q0
p0

(1− α): As p0
q0(1−α)P0 ≥ 1 we can concentrate all the probability

Q0 in the set {x ∈ Rd/g(x) = 0} and hence Q0(g(x) = 0) = 1.

2. P0(g(x) = 0) < q0
p0

(1−α): Now we cannot give probability 1 to Q0(g(x) = 0) because

we would be violating the condition in Lemma 5.1, hence Q0(g(x) = 0) = P0(g(x)=0)
q0
p0

(1−α)
.

And in the optimum we will have

Q0({x ∈ Rd : g(x) = 0}) = min

(
P0({x ∈ Rd : g(x) = 0})

q0
p0

(1− α)
, 1

)
.

We are focusing in Q0(g(x) = 1), as Q0 is a distribution,

Q0(g(x) = 1) =

(
1− p0

q0(1− α)
P0(g(x) = 0)

)
+

,

analogously

Q1(g(x) = 0) =

(
1− 1− p0

(1− q0)(1− α)
P1(g(x) = 1)

)
+

.

So for a fixed q0 and Q0, Q1 as in Lemma 5.1

min
Q0,Q1

Q(g(x) 6= y) = q0

(
1− p0

q0(1− α)
P0(g(x) = 0)

)
+

+ (1− q0)

(
1− 1− p0

(1− q0)(1− α)
P1(g(x) = 1)

)
+

.

Using that q0 and 1− q0 are positive lead to (5.4). 2

To determine the relationship between R(g) and Rα(g), we have only to determine the

value of q0 that minimizes (5.4).
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Proposition 5.4. For a given classification rule g the trimmed error attains its minimum

value in

q0 ∈


[
1− 1−p0

1−α P1({x : g(x) = 1}), p0
1−αP0({x : g(x) = 0})

]⋂[
1− 1−p0

1−α ,
p0

1−α

]
if R(g) ≤ α

[
p0

1−αP0({x : g(x) = 0}), 1− 1−p0
1−α P1({x : g(x) = 1})

]⋂[
1− 1−p0

1−α ,
p0

1−α

]
if R(g) > α

,

(5.6)

Q0({x ∈ Rd : g(x) = 1}) =

(
1− p0

q0(1− α)
P0({x ∈ Rd : g(x) = 0})

)
+

and

Q1({x ∈ Rd : g(x) = 0}) =

(
1− 1− p0

(1− q0)(1− α)
P1({x ∈ Rd : g(x) = 1})

)
+

.

This minimum value is

Rα(g) =
1

1− α
(R(g)− α)+. (5.7)

Proof. In Lemma 5.3 we have obtained the expression (5.4) of Rα(g) in which we only

need to minimize for q0.

First see that Rα(g) = 0 if and only if

1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1}) ≤ p0

1− α
P0({x ∈ Rd : g(x) = 0}).

As we are adding two positive terms, the sum is equal to 0 only if both terms are equal

to 0, leading to(
q0 −

p0

1− α
P0({x ∈ Rd : g(x) = 0})

)
+

≤ 0 ⇔ q0 ≤
p0

1− α
P0({x ∈ Rd : g(x) = 0}),

in a similar way we obtain(
1− q0 −

1− p0

1− α
P1({x : g(x) = 1})

)
+

≤ 0 ⇔ q0 ≥ 1− 1− p0

1− α
P1({x : g(x) = 1}).

Hence Rα(g) = 0 if and only if

1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1}) ≤ p0

1− α
P0({x ∈ Rd : g(x) = 0})

.

Now consider the case where this inequality does not hold, this means,

1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1}) > p0

1− α
P0({x ∈ Rd : g(x) = 0}).

The first term of (5.4) is a stepwise lineal function with value 0 up to p0
1−αP0({x ∈ Rd :

g(x) = 0}) and increasing with slope 1 from then on. The second term is also stepwise
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linear, in this case it decreases with slope −1 until it reaches 0 in 1 − 1−p0
1−α P1({x ∈ Rd :

g(x) = 1}) with value 0 from that point on.

In the image you can see that in this case the interval[
p0

1− α
P0({x ∈ Rd : g(x) = 0}), 1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1})

]
provides us with the minimum value of (5.4), in the case that 1− 1−p0

1−α P1({x ∈ Rd : g(x) =

1}) < 1− 1−p0
1−α or p0

1−αP0({x ∈ Rd : g(x) = 0}) > p0
1−α we would eliminate from the optimal

set the unfeasible values of q0, hence the set of values of q0 that minimizes Rα(g) is (5.6).

Let us see this. We are going to suppose, for simplicity, that we are in the case

1− 1− p0

1− α
≤ p0

1− α
P0({x ∈ Rd : g(x) = 0})

< 1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1}) ≤ p0

1− α
.

Take

I1 =

[
1− 1− p0

1− α
,
p0

1− α
P0({x ∈ Rd : g(x) = 0})

]
,

I2 =

[
p0

1− α
P0({x ∈ Rd : g(x) = 0}), 1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1})

]
,

I3 =

[
1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1}), p0

1− α

]
,

denote

Ri = min
q0∈Ii

[(
q0 −

p0

1− α
P0({x ∈ Rd : g(x) = 0})

)
+

+

(
1− q0 −

1− p0

1− α
P1({x ∈ Rd : g(x) = 1})

)
+

]
,

for i = 1, 2, 3. Obviously Rα(g) = minRi.
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In I1 the first term is 0 because q0 ≤ p0
1−αP0({x ∈ Rd : g(x) = 0}) and the second term is

1− 1−p0
1−α P1({x ∈ Rd : g(x) = 1})− q0. As we are looking for a minimization of this value

and q0 has a negative sign, we will give to it the biggest value it can take, that is, the

upper bound of the interval. Hence,

R1 = 1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1})− p0

1− α
P0({x ∈ Rd : g(x) = 0})

= 1− (1− p0)(1− P1({x ∈ Rd : g(x) = 0})) + p0(1− P0({x ∈ Rd : g(x) = 1}))
1− α

= 1− 1−R(g)

1− α
.

If we are in I2 none of the terms is going to be 0. The first one is q0 − p0
1−αP0({x ∈ Rd :

g(x) = 0}) and the second one is 1 − 1−p0
1−α P1({x ∈ Rd : g(x) = 1}) − q0, when we add

them, the q0 in both terms cancels out and we obtain

R2 = 1− p0

1− α
P0({x ∈ Rd : g(x) = 0})− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1})

= 1− 1−R(g)

1− α
.

Last, in I3 it is the second term which becomes 0, while the first one is q0 − p0
1−αP0({x ∈

Rd : g(x) = 0}). In this case q0 is positive and we want to give it the minimum value

possible so

R3 = 1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1})− p0

1− α
P0({x ∈ Rd : g(x) = 0})

= 1− 1−R(g)

1− α
.

And, as we have already said, the minimum is attained at[
1− 1− p0

1− α
P1({x ∈ Rd : g(x) = 1}), p0

1− α
P0({x ∈ Rd : g(x) = 0})

]
.

Moreover, since R1 = R2 = R3, the value of this minimum will be

Rα(g) = 1− 1−R(g)

1− α
.

Putting together both cases we have that Rα(g) attains its minimum in (5.6) and, since

condition 1 − 1−p0
1−α P1({x ∈ Rd : g(x) = 1}) > p0

1−αP0({x ∈ Rd : g(x) = 0}) holds if and

only if R(g) > α, we have that Rα(g) = 0 ⇔ R(g) ≤ α and hence,

Rα(g) =
1

1− α
(R(g)− α)+.

2
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As a result, we will see that the relationship established in Proposition 5.4 is maintained

for Errα(P ) and Err(P ). In the proof we will use that, if we denote the Bayes classifier by

gB, we can write Err(P ) = R(gB).

Corollary 5.5. With the previous notation, if α ∈ [0, 1)

Errα(P ) =
(Err(P )− α)+

1− α
.

Proof: By definition

Errα(P ) := inf
Q∈Rα(P )

Err(Q) = inf
Q∈Rα(P )

inf
g
Q({(y, x) : g(x) 6= y})

= inf
g

inf
Q∈Rα(P )

Q({(y, x) : g(x) 6= y}) = inf
g
Rα(g)

= min
g

(R(g)− α)+

1− α
.

The minimum is attained (recall Proposition 5.4). We also know that this error is minimal

for the Bayes classifier, hence

Errα(P ) =
(R(gB)− α)+

1− α
=

(Err(P )− α)+

1− α
.

2

From the equality in the previous corollary we can deduce that if Err(P ) ≤ α then

Errα(P ) = 0, but if Err(P ) > α then Errα(P ) =
(Err(P )−α)

+

1−α > 0, which indicates that

Errα(P ) = 0 if and only if Err(P ) ≤ α,

That is, the minimum α that gives us a perfect separation is Bayes error.

Theorem 5.6. There is Qα ∈ Rα(P ) such that Errα(P ) = Err(Qα). Besides Qα is the

probability from Proposition 5.4 with g = gB (gB the original Bayes rule, which is also the

trimmed Bayes rule).

Proof: By definition

Errα(P ) = inf
Q∈Rα(P )

Err(Q)

and

Err(P ) = inf
g
R(g) = inf

g
P ({(y, x) : g(x) 6= y}).

Then

Errα(P ) = inf
Q∈Rα(P )

inf
g
Q({(y, x) : g(x) 6= y}) = inf

g
inf

Q∈Rα(P )
Q({(y, x) : g(x) 6= y}),
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by definition again,

inf
Q∈Rα(P )

Q({(y, x) : g(x) 6= y}) =
(R(g)− α)+

1− α
,

where the last equality comes from (5.7). Then

Errα(P ) = inf
g

(R(g)− α)+

1− α

and, given that f(x) = (x−α)+
1−α is increasing for x, (R(g)−α)+

1−α will attain its minimum when

R(.) attains it, which happens when g is Bayes rule.

The value of Qα is obtained from applying directly Proposition 5.4. 2

As stated at the beginning, the interest in Bayes estimator is merely theoretical due

to the impossibility of its calculation in practice. Usually we don’t look for the optimal

classifier among all possible classifiers but restrict ourselves to a smaller class. We will

consider G a class of classifiers and ĝ ∈ G the classifier that gives us the minimum classifi-

cation error in that class. In analogy to (2.3), we define the trimmed generalization error

of a class G and denote it by Rα(G), this is, Rα(G) := min
g∈G

Rα(g).

Corollary 5.7. The relationship between the trimmed error and the generalization error

is also maintained for the generalization error of a class:

Rα(G) = min
g∈G

(R(g)− α)+

1− α
=

(R(G)− α)+

1− α
,

This result is a direct consequence of Proposition 5.4. We can see that the classifier,

g, which minimizes Rα(G) is the same that minimizes R(G).

To calculate the generalization error we need to know the distribution of the training

sample, which usually does not occur. Therefore, we have to estimate the value of Rα.

The most natural choice for such estimation is given by the empirical trimmed error.

Definition 5.2. We define the empirical trimmed error of a rule g as

Rn,α(g) := min
Q∈Rα(Pn)

Q(g(X) 6= Y ) (5.8)

where Pn is the empirical distribution associated with the training sample.

Observe that

Rn,α(g) = min
Wα

n∑
j=1

wiI(g(xj)6=yj) (5.9)
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with

Wα = {(w1, . . . , wn)/ 0 ≤ wi ≤
1

n(1− α)
; i = 1, . . . , n ∧

n∑
i=1

wi = 1}. (5.10)

Proposition 5.4 can be trivially extended to the empirical error by using Definition 5.2.

Corollary 5.8. Let g be a classifier, α a preset trimming level and n ∈ N the sample size,

Rn,α(g) =
1

1− α
(Rn(g)− α)+. (5.11)

As in Proposition 2.4, there is a bias/variance decomposition for the trimmed error.

If we denote by ĝn,α = arg min
g∈G

Rn,α(g), gB = arg ming Rα(g) and ĝ0 = arg ming∈G Rα(g),

the optimal empirical classifier of the trimmed sample, Bayes Classifier and the best clas-

sifier in the class for the trimmed sample (which we saw before are the same as for the

complete sample) respectively (we assume for simplicity that Rα(g) has a unique mini-

mizer in G; the general case can be treated with minimal changes). Then the trimmed

excess risk defined by Eα(G) := min
g∈G

Rα(g) − Rα(gB) can be bounded by the excess risk

defined in Proposition 2.4,

Eα(G) =
(R(ĝ0)− α)+

1− α
− (R(gB)− α)+

1− α

≤ R(ĝ0)−R(gB)

1− α
=
E(G)

1− α
, (5.12)

as a consequence we obtain the bias/variance decomposition.

Proposition 5.9. Let α be a given trimming level, then

Rα(ĝn,α)−Rα(gB) ≤ 2

1− α
sup
g∈G
|Rn(g)−R(g)|+ Eα(G)

≤ 1

1− α

[
2 sup
g∈G
|Rn(g)−R(g)|+ E(G)

]
.

Proof.

Rα(ĝn,α)−Rα(gB) = (Rα(ĝn,α)−Rn,α(ĝn,α)) + (Rn,α(ĝn,α)−Rα(ĝα))

+ (Rα(ĝα)−Rα(gB))

≤ sup
g∈G
|Rn,α(g)−Rα(g)|+ (Rn,α(ĝα)−Rα(ĝα)) + Eα(G)

≤ sup
g∈G
|Rn,α(g)−Rα(g)|+ sup

g∈G
|Rn,α(g)−Rα(g)|+ Eα(G)

≤ 2 sup
g∈G
|Rn,α(g)−Rα(g)|+ Eα(G). (5.13)
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The first term in (5.13), by Proposition 5.4 and Corollary 5.8 will be

sup
g∈G
|Rn,α(g)−Rα(g)| = sup

g∈G

∣∣∣∣ 1

1− α
(Rn(g)− α)+ −

1

1− α
(R(g)− α)+

∣∣∣∣
≤ sup

g∈G

1

1− α
|(Rn(g)− α− (R(g)− α))|

=
1

1− α
sup
g∈G
|Rn(g)−R(g)| .

Replacing (5.12) in inequality (5.13) we obtain the desired result. 2

There are analogous versions of Proposition 5.9 for the case in which we compare the

risk of the best empirical rule with the optimal risk within a restricted class. In the classic

case (without trimmings)

R(ĝn)−R(ĝ0) ≤ 2 sup
g∈G
|Rn(g)−R(g)|,

see Lugosi (2002). By means of the following proposition we adapt this inequality to the

trimmed errors.

Proposition 5.10. For a given trimming level α

Rα(ĝn,α)−Rα(ĝ0) ≤ 2

1− α
sup
g∈G
|Rn(g)−R(g)|.

Proof.

Rα(ĝn,α)−Rα(ĝ0) = Rα(ĝn,α)−Rn,α(ĝn,α) +Rn,α(ĝn,α)−Rα(ĝ0)

≤ sup
g∈G
|Rn,α(g)−Rα(g)|+Rn,α(ĝ0)−Rα(ĝ0)

≤ 2 sup
g∈G
|Rn,α(g)−Rα(g)|

= 2 sup
g∈G

∣∣∣∣(Rn(g)− α)+

1− α
− (R(g)− α)+

1− α

∣∣∣∣
≤ 2

1− α
sup
g∈G
|Rn(g)− α− (R(g)− α)|

=
2

1− α
sup
g∈G
|Rn(g)−R(g)|.

2

It is well known (see, for example, Lugosi (2002)) that E(Rn(g)) = R(g), but this

equality does not generally hold when working with trimmed errors, although we can find

a relationship between both quantities. In the following proposition we will see that the

empirical trimmed error is an estimator with small positive bias that tends to 0 when the

sample size increases.
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Proposition 5.11. For a given trimming level α and a given classifier g,

0 ≤ E(Rn,α(g))−Rα(g) ≤
√
R(g)√

2n(1− α)
.

Proof. The first inequality can be proved by

E(Rn,α(g)) = E

(
(Rn(g)− α)+

1− α

)
=

1

1− α
E ((Rn(g)− α)+)

≥ 1

1− α
(E(Rn(g))− α)+ =

1

1− α
(R(g)− α)+ = Rα(g),

where we have used (5.11) for the first equality and the property E(Rn(g)) = R(g) and

(5.7) for the two last ones. The inequality comes from applying Jensen inequality, and

this is possible due to the fact that (.)+ is a convex function.

For the second inequality we need Proposition 5.4 and by Corollary 5.8,

E(Rn,α(g))−Rα(g) =
E((Rn(g)− α)+)− (R(g)− α)+

(1− α)
(5.14)

Denoting X = Rn(g), then E(X) = R(g). Take ϕ(x) = (x− α)+. ϕ is a convex function,

so Jensen’s inequality can be applied to get ϕ(E(X)) ≤ E(ϕ(X)). This function also

is 1-Lipschitz and increasing, so it satisfies the property ϕ(y) − ϕ(x) ≤ (y − x)+. As

consequence we get

E((Rn(g)− α)+)− (R(g)− α)+ = E(ϕ(X))− ϕ(E(X))

= E(ϕ(X)− ϕ(E(X))) ≤ E((X − E(X))+).

Let now Y be an independent copy of X. If we denote by EX the expected value condi-

tioned by X, then by independence we will have E(Y ) = EX(Y ). This implies,

E((X − E(X))+) = E((X − E(Y ))+) = E((X − EX(Y ))+)

= E((EX(X − Y ))+) ≤ E(EX((X − Y )+)) = E((X − Y )+).

Now, as X − Y is a symmetric and centered random variable,

E((X − Y )+) =
1

2
E(|X − Y |) ≤ 1

2
(V ar(X − Y ))1/2

=
1

2
(V ar(X) + V ar(Y ))1/2 =

1√
2

(V ar(X))1/2.

Finally, we observe that nX ∼ b(n,R(g)) and, hence,

1√
2

(V ar(X))1/2 =
1√
2

(
1

n2
V ar(nX))1/2 =

1√
2

(
1

n2
nR(g)(1−R(g)))1/2

=
1√
2n

√
R(g).
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This, together with (5.14) gives

E(Rn,α(g))−Rα(g) ≤
√
R(g)√

2n(1− α)
.

2

5.2.1 Optimal trimming level selection

Trimmed models allow us to reduce classification error so that the loss of information

because we do not use the entire sample can be quantified and controlled. As in any

robust procedure, our aim is to select the amount of information we are going to remove,

which in our problem corresponds to selecting the optimal trimming level. In fact, our

goal is to find a data driven α̂ so that the classification error is minimized without having

to remove too much information from the initial distribution.

It is obvious that the more we trim, the smaller the generalization error will be, but

less information our model will have. To find a balance we are going to introduce a

penalization. In order to facilitate the understanding of the role of this penalization, we

will initially consider a simple case in which the class of admissible rules has only one

element. Then the penalization will only be related to the level of trimming. We will

then deal with the most realistic case in which the class of admissible rules is greater and

even the case in which there are different types of admissible rules with different levels of

complexity. In the simple class case our main result is the following.

Theorem 5.12. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P which take values in {0, 1} × Rd. Let g be a given classifier. Take

αmax ∈ [0, 1). If we consider the penalization function

pen(α) =
1

(1− α)

√
ln(n)

2n

and define

α̂ = arg min
α∈[0,αmax]

Rn,α(g) + pen(α),

the following bound holds,

E(Rα̂(g)) ≤ inf
α∈[0,αmax]

(
Rα(g) + pen(α) +

√
R(g)√

n(1− α)

)

+
1

(1− αmax)

√
2π

n
+

1

n(1− αmax)2
. (5.15)



118 Chapter 5. Partial classification problems

This theorem allows us to understand the effect of trimming on the classification error.

For a given classifier g we set a maximum trimming level of αmax that we do not want

to exceed. This level would have to be set by the investigator and would represent the

maximum permissible level of deviation in terms of contamination from the sample, or

the original generator of the data. Then the automatic penalized rule for choosing the

trimming level leads to an oracle inequality that guarantees that the best classification

error is achieved in essence. Similarly to model selection rules (see Massart (2007)) the

price to pay is a term of order 1/
√
n which does not hamper the classification error. In

particular, if classifier g has a small classification error, in the sense that R(g) is smaller

than α < αmax, we can eliminate the incorrectly classified elements which leads to a null

trimmed classification error. In this case, if R(g) < αmax, we could bound (5.15) by

1

1− αmax

√
ln(n)

2n
+

√
αmax√

n(1− αmax)
+

1

(1− αmax)

√
2π

n
+

1

n(1− αmax)2
,

and then, for a constant C,

E(Rα̂(g)) ≤ C√
n
.

The proof of the above theorem is based on the following technical result.

Proposition 5.13. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P that take values in {0, 1}×Rd. Let g be a given classifier. Let k0 < n be

a natural number and A the set of possible trimmings, A = {0, 1
n ,

2
n , . . .

k0
n }. If we consider

the penalization function

pen(α) =
1

(1− α)

√
ln(n)

2n

and define

α̂ = arg min
α∈A

Rn,α(g) + pen(α),

the following bound holds,

E(Rα̂(g)) ≤ inf
α∈A

(
Rα(g) + pen(α) +

√
R(g)√

n(1− α)

)
+

1

(1− k0
n )

√
2π

n
.

Proof. By definition α̂ satisfies that ∀α ∈ A

Rn,α̂(g) + pen(α̂) ≤ Rn,α(g) + pen(α).

Starting from this inequality, as we want to look for bounds for the theoretical trimmed

error and this does not appear in the basic equation, we will introduce it adding and

subtracting in both terms. Hence,

Rα̂(g)−Rα̂(g) +Rn,α̂(g) + pen(α̂) ≤ Rα(g)−Rα(g) +Rn,α(g) + pen(α).
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or equivalently

Rα̂(g) ≤ Rα(g) + pen(α) + (Rn,α(g)−Rα(g))− pen(α̂) + (Rα̂(g)−Rn,α̂(g)). (5.16)

Let us focus now on the expression inside the parenthesis,

Rn,α(g)−Rα(g) = [Rn,α(g)− E(Rn,α(g))] + [E(Rn,α(g))−Rα(g)]

by Proposition 5.11 the second bracket can be bounded by

√
R(g)√

2n(1−α)
. For the first bracket

we will apply McDiarmid’s inequality (see Massart (2007)) taking Rn,α(g) = F (ξ1, . . . , ξn)

where ξi = (Yi, Xi). As

|F (ξ1, . . . , ξi, . . . , ξn)− F (ξ1, . . . , ξ
′
i, . . . , ξn)| ≤ 1

n(1− α)

we can apply the inequality and hence

P (Rn,α(g)− E(Rn,α(g)) ≥ t) ≤ e−2t2n(1−α)2 .

Let z > 0 be given, taking t =
√

z
2n(1−α)2

, we get

P

(
Rn,α(g)− E(Rn,α(g)) ≥

√
z

2n(1− α)2

)
≤ e−z.

Combining this with (5.16), we get that except in a set of probability at most e−z

Rα̂(g) ≤ Rα(g)+pen(α)+

√
R(g)√

2n(1− α)
+

√
z

2n(1− α)2
−pen(α̂)+(Rα̂(g)−Rn,α̂(g)). (5.17)

Let us consider now Rα̂(g)−Rn,α̂(g). Applying again McDiarmid’s inequality but taking

this time t =
√

ln(n)+z
2n(1−α)2

we have ∀α′ ∈ A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
ln(n) + z

2n(1− α′)2

)
≤ 1

n
e−z. (5.18)

On the other side,

P

(
Rα̂(g)−Rn,α̂(g) ≥

√
ln(n) + z

2n(1− α̂)2

)

= P

(
Rα̂(g)−Rn,α̂(g)−

√
ln(n) + z

2n(1− α̂)2
≥ 0

)

≤ P

(
sup
α′∈A

(
Rα′(g)−Rn,α′(g)−

√
ln(n) + z

2n(1− α′)2

)
≥ 0

)

≤
∑
α′∈A

P

(
Rα′(g)−Rn,α′(g) ≥

√
ln(n) + z

2n(1− α′)2

)

≤
∑
α′∈A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
ln(n) + z

2n(1− α′)2

)
≤ n 1

n
e−z ≤ e−z.
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So with probability at least 1− e−z

Rα̂(g)−Rn,α̂(g) ≤

√
ln(n) + z

2n(1− α̂)2
≤

√
ln(n)

2n(1− α̂)2
+

√
z

2n(1− α̂)2
.

If we take as penalization

pen(α) =

√
ln(n)

2n(1− α)2

and replace it in (5.17), we get that except in a set of probability at most 2e−z

Rα̂(g) ≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+

√
z

2n(1− α)2
+

√
z

2n(1− α̂)2
.

Moving to the left side the terms that do not depend on z and bounding 1
1−α and 1

1−α̂ by
1

1− k0
n

we get

Rα̂(g)−Rα(g)− pen(α)−
√
R(g)√

2n(1− α)
≤
√

2z

n(1− k0
n )2

,

integrating this with respect to z leads us to

E

(
Rα̂(g)−Rα(g)− pen(α)−

√
R(g)√

2n(1− α)

)
≤ 1

1− k0
n

√
2π

n
.

Or equivalently, ∀α ∈ A

E(Rα̂(g)) ≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+

1

1− k0
n

√
2π

n
,

by taking the infimum on the right side of the inequality we get (5.23). 2

The last ingredient necessary for the proof of the theorem is the following proposition

which states that when two trimming levels are close, the difference between the error of

generalization associated with each of them (either theoretical or empirical) is small.

Proposition 5.14. Let α1, α2 be two trimming levels such that α2 ∈ [α1, α1 + 1
n ], let

αmax be such that α1 ≤ α2 ≤ αmax < 1 and let g be a given classifier, then

Rα1(g)−Rα2(g) ≤ 1

n(1− αmax)2
and Rn,α1(g)−Rn,α2(g) ≤ 1

n(1− αmax)2
.
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Proof. We will prove this only for the theoretical loss function, the proof is identical for

the empirical function.

Rα1(g)−Rα2(g) =
(R(g)− α1)+

(1− α1)
− (R(g)− α2)+

(1− α2)

=
((1− α2)(R(g)− α1))+ − ((1− α1)(R(g)− α2))+

(1− α1)(1− α2)

≤ 1

(1− α1)(1− α2)
|R(g)− α1 − α2R(g) + α1α2

− (R(g)− α2 − α1R(g) + α1α2)|

=
1

(1− α1)(1− α2)
| − α1 − α2R(g) + α2 + α1R(g)|

=
1

(1− α1)(1− α2)
|(R(g)− 1)(α1 − α2)|

=
1

(1− α1)(1− α2)
|R(g)− 1||α1 − α2|

Given that |α1 − α2| ≤ 1
n and for each value of α, 1

1−α ≤
1

1−αmax , we can conclude that

Rα1(g)−Rα2(g) ≤ 1

n(1− αmax)2
.

2

With this proposition we are already in a position to prove Theorem 5.12.

Proof of Theorem 5.12. Take A = {0, 1
n , . . . ,

k0
n } with k0 = [nαmax]. We will reason

as in the proof of Proposition 5.13. Set α ∈ [0, αmax], let z > 0 be given. From the basic

inequality

Rn,α̂(g) + pen(α̂) ≤ Rn,α(g) + pen(α).

one can deduce, as in (5.17), that, with probability at least 1− e−z

Rα̂(g) ≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+

√
z

2n(1− α)2
− pen(α̂) + (Rα̂(g)−Rn,α̂(g))

and likewise for each α′ in A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
ln(n) + z

2n(1− α′)2

)
≤ 1

n
e−z,

which implies that in a set of probability at least 1− e−z

E(Rn,α′(g))−Rn,α′(g) ≤

√
ln(n) + z

2n(1− α′)2
for all α′ ∈ A. (5.19)
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If α′ ∈ [0, αmax] then there is α′′ ∈ A such that α′′ ≤ α′ ≤ α′′ + 1
n . Then by Proposition

5.14, in the set where it is satisfied (5.19) we have

E(Rn,α′(g))−Rn,α′(g) = E(Rn,α′′(g))−Rn,α′′(g) + E(Rn,α′(g)−Rn,α′′(g))

− (Rn,α′(g)−Rn,α′′(g))

≤

√
ln(n) + z

2n(1− α′′)2
+

1

n(1− αmax)2

≤

√
ln(n) + z

2n(1− α′)2
+

1

n(1− αmax)2

≤

√
ln(n)

2n(1− α′)2
+

√
z

2n(1− α′)2
+

1

n(1− αmax)2

for all α′ ∈ [0, αmax]. Since, by Proposition 5.11, Rα′(g) ≤ E(Rn,α′(g)), we conclude that,

with probability at least 1− 2e−z

Rα̂(g) ≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+

√
z

2n(1− α)2
− pen(α̂)

+

√
ln(n) + z

2n(1− α′)2
+

1

n(1− αmax)2

≤ Rα(g) + pen(α) +

√
R(g)√

2n(1− α)
+ 2

√
z

2n(1− αmax)2
+

1

n(1− αmax)2
.

Integrating with respect to z and taking the infimum for α ∈ [0, αmax] we conclude that

E(Rα̂(g)) ≤ inf
α∈[0,αmax]

(
Rα(g) + pen(α) +

√
R(g)√

n(1− α)

)

+
1

(1− αmax)

√
2π

n
+

1

n(1− αmax)2
.

2

A more realistic case is the situation in which we consider a class of classification

rules from which we will choose the optimal rule. Moreover, it is common for a rule to

be searched within a class or model and different candidate models to be considered. A

complex class will usually lead us to rules with a small bias in the sense that they classify

the elements in the training sample well at the expense of a large variance, which usually

leads to an over-adjustment of the classification model (see bound (2.5)). In this new

partial classification context, to control the complexity of the model, penalizations will

now depend not only on the trimming level but also on the complexity of the classifier

class. To measure the complexity of the model we will use the Vapnik-Chervonenkis
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dimension introduced in section 2.2.1. Next we will prove an extension of Theorem 5.12 in

this more realistic situation. In this theorem, penalizations are considered to be a function

of the trimming level, the complexity of the class and a collection of weights that can be

chosen in a very general way. Subsequently, in Example 5.1 we show a possible choice of

these weights for the case of linear classifiers.

Theorem 5.15. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P which take values in {0, 1}×Rd. Let {Gm}m∈N be a family of classifier

classes with Vapnik-Chervonenkis dimension VGm <∞ for all m ∈ N. Take αmax ∈ [0, 1).

Let Σ be a non-negative constant and consider {xm}m∈N a family of non-negative weights

such that ∑
m∈N

e−xm ≤ Σ <∞.

If we consider the penalization function

pen(α,Gm) =

√
ln(n) + xm
2n(1− α)2

+
2

(1− α)

√
VGm ln(n+ 1) + ln(2)

n

and define

(α̂, m̂) = arg min
(α,m)∈[0,αmax]×N

Rn,α(Gm) + pen(α,Gm),

the following bound holds:

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×N

(
Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)

)

+
1 + Σ

2(1− αmax)

√
π

2n
+

1

n(1− αmax)2
.

The proof of this theorem is based on that of Proposition 5.17 below. In turn, in the

proof of this proposition we will use the following elementary technical lemma.

Lemma 5.16. Given two functions f and g and a real number k > 0,

|f(x)− g(x)| ≤ k ⇒ | sup
x
f(x)− sup

x
g(x)| ≤ k,

|f(x)− g(x)| ≤ k ⇒ |min
x
f(x)−min

x
g(x)| ≤ k.
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Proposition 5.17. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P which take values in {0, 1}×Rd. Let {Gm}m∈N be a family of classifier

classes with Vapnik-Chervonenkis dimension VGm < ∞ for all m ∈ N. Let k0 < n be a

natural number and A the set of possible trimming values, A = {0, 1
n ,

2
n , . . .

k0
n }. Let Σ be

a non-negative constant and consider {xm}m∈N a family of non-negative weights such that∑
m∈N

e−xm ≤ Σ <∞.

If we consider the penalization function

pen(α,Gm) =

√
ln(n) + xm
2n(1− α)2

+
2

(1− α)

√
VGm ln(n+ 1) + ln(2)

n

and define

(α̂, m̂) = arg min
(α,m)∈A×N

Rn,α(Gm) + pen(α,Gm) and g′ := arg min
g∈Gm

Rα(g),

the following bound holds:

E(Rα̂(Gm̂)) ≤ min
(α,m)∈A×N

(
Rα(Gm) + pen(α,Gm) +

√
R(g′)√

2n(1− α)

)
+

1 + Σ

2(1− k0
n )

√
π

2n
.

Proof. By definition α̂ and m̂ satisfy that ∀α ∈ A and ∀m ∈ N

Rn,α̂(Gm̂) + pen(α̂,Gm̂) ≤ Rn,α(Gm) + pen(α,Gm).

Adding and subtracting Rα̂(Gm) and Rα(Gm) and by rearranging the terms we obtain the

following inequality:

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) + (Rn,α(Gm)−Rα(Gm))

− pen(α̂,Gm̂) + (Rα̂(Gm̂)−Rn,α̂(Gm̂)).

First we want to bound

Rn,α(Gm)−Rα(Gm) = min
g∈Gm

Rn,α(Gm)− min
g∈Gm

Rα(Gm) ≤ Rn,α(g′)−Rα(g′)

with g′ := arg min
g∈Gm

Rα(g). We are now in the same condition as in Proposition 5.13 and

we can bound these quantities except in a set of probability at most e−z, with z > 0 given,

by

Rn,α(g′)−Rα(g′) ≤ R(g′)√
2n(1− α)

+

√
z

2n(1− α)2
,
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which leads us to

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +

√
R(g′)√

2n(1− α)
+

√
z

2n(1− α)2

− pen(α̂,Gm̂) + (Rα̂(Gm̂)−Rn,α̂(Gm̂)). (5.20)

Now we want to bound

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤ sup
(α′,m′)∈A×N

(Rα′(Gm′)−Rn,α′(Gm′))

≤ sup
(α′,m′)∈A×N

sup
g∈Gm′

(Rα′(g)−Rn,α′(g)).

Let us focus on

sup
g∈Gm

(Rα(g)−Rn,α(g)) = E

(
sup
g∈Gm

(Rα(g)−Rn,α(g))

)
(5.21)

+

[
sup
g∈Gm

(Rα(g)−Rn,α(g))− E

(
sup
g∈Gm

(Rα(g)−Rn,α(g))

)]
. (5.22)

In order to bound (5.22) we will use McDiarmid’s inequality, first we need to see that it

fulfills the condition of the bounded differences.

We define Z := f(ξ1, . . . , ξn) = sup
g∈Gm

(Rα(g)−Rn,α(g)) and Z(i) := f(ξ1, . . . , ξ
′
i, . . . , ξn), we

want to prove that

|Z − Z(i)| ≤ ci, (5.23)

for certain constants ci. The empirical error Rn,α(g) is defined as in (5.9) and we also

define R
(i)
n,α(g) as the empirical error associated with the sample ξ1, . . . , ξ

′
i, . . . , ξn. We

start from

|(Rα(g)−Rn,α(g))− (Rα(g)−R(i)
n,α(g))|

to come, by applying Lemma 5.16, to (5.23).

|Rn,α(g)−R(i)
n,α(g)| =

∣∣∣∣∣∣ min
(w1,...,wn)

∑
j

wjI(g(Xj)6=Yj) − min
(w1,...,wn)

∑
j

wjI(g(X′j) 6=Y ′j )

∣∣∣∣∣∣ ,
where (Y ′, X ′) refers to the sample ξ1, . . . , ξ

′
i, . . . , ξn. For a vector satisfying the conditions

of (5.9), (w1, . . . , wn),∣∣∣∣∣∣
∑
j

wjI(g(Xj)6=Yj) −
∑
j

wjI(g(X′j) 6=Y ′j )

∣∣∣∣∣∣ = wj

∣∣∣(I(g(Xi)6=Yi) − Ig(X′i) 6=Y ′i )
∣∣∣ ≤ 1

n(1− α)
.

And by using the second implication in Lemma 5.16 we come to

|Rn,α(g)−R(i)
n,α(g)| ≤ 1

n(1− α)
,
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or, equivalently,

|(Rα(g)−Rn,α(g))− (Rα(g)−R(i)
n,α(g))| ≤ 1

n(1− α)
.

Applying Lemma 5.16 again, we get (5.23) with ci = 1
n(1−α) . Now we can use McDiarmid’s

inequality to prove that

P

(
sup
g∈Gm

(Rα(g)−Rn,α(g))− E( sup
g∈Gm

(Rα(g)−Rn,α(g))) ≥

√
ln(n) + z + xm

2n(1− α)2

)
≤ 1

n
e−z−xm . (5.24)

To bound (5.21) we will use Vapnik-Chervonenkis’ theory. Before we can apply this theory

we need to use equalities (5.7) and (5.11) and that the positive part function is Lipschitz

to transform our functions into proper functions.

E

(
sup
g∈Gm

(Rα(g)−Rn,α(g))

)
=

1

1− α
E

(
sup
g∈Gm

((R(g)− α)+ − (Rn(g)− α)+)

)

≤ 1

1− α
E

(
sup
g∈Gm

|R(g)−Rn(g)|

)

≤ 2

1− α

√
VGm ln(n+ 1) + ln(2)

n
. (5.25)

The latest inequality comes from (2.8). By putting together (5.24) and (5.25) we obtain

∀α′ ∈ A and ∀m′ ∈ N

P

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) ≥

√
ln(n) + z + xm′

2n(1− α′)2
+

2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n

)
≤ 1

n
e−z−xm′ . (5.26)
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Therefore,

P

(
Rα̂(Gm̂)−Rn,α̂(Gm̂)−

√
ln(n) + z + xm̂

2n(1− α̂)2
− 2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n
≥ 0

)

≤ P

(
sup

(α′,m′)∈A×N

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))−

√
ln(n) + z + xm′

2n(1− α′)2

− 2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n

)
≥ 0

)

≤
∑
α′∈A

∑
m′∈N

P

(
Rα′(g)−Rn,α′(g) ≥

√
ln(n) + z + xm′

2n(1− α′)2

+
2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n

)
≤
∑
α′∈A

∑
m′∈N

1

n
e−z−xm′ ≤

∑
m′∈N

e−z−xm′ ≤ Σe−z.

And we can conclude that with probability at least 1− Σe−z

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤

√
ln(n) + z + xm̂

2n(1− α̂)2
+

2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n

≤

√
ln(n) + xm̂
2n(1− α̂)2

+

√
z

2n(1− α̂)2

+
2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n
.

Returning to (5.20), except in a set of probability not greater than (Σ + 1)e−z

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)
+

√
z

2n(1− α)2

− pen(α̂,Gm̂) +

√
ln(n) + xm̂
2n(1− α̂)2

+

√
z

2n(1− α̂)2

+
2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n
.

Considering

pen(α,Gm) =

√
ln(n) + xm
2n(1− α)2

+
2

(1− α)

√
VGm ln(n+ 1) + ln(2)

n
,

we have

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)
+

√
z

2n(1− α)2
+

√
z

2n(1− α̂)2

≤ Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)
+

√
2z

n(1− k0
n )2

.
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Now proceeding as we did in Proposition 5.13, grouping and integrating with respect to

z,

E(Rα̂(Gm̂)) ≤ min
(α,m)∈A×N

(
Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)

)
+

1 + Σ

2(1− k0
n )

√
π

2n
.

2

Proof of Theorem 5.15. This proof is identical to that of Proposition 5.17 until (5.26).

To bound Rα̂(Gm̂) −Rn,α̂(Gm̂), we define the set A = {0, 1
n ,

2
n , . . .

k0
n } with k0 = [nαmax]. If

α′ ∈ [0, αmax], then ∃α′′ ∈ A such that α′′ ≤ α′ ≤ α′′+ 1
n . By Theorem 5.17 we know that

with probability at least 1− 1
ne
−z−xm ∀α′′ ∈ A

sup
g∈Gm′

(
Rα′′(g)−Rn,α′′(g)

)
≤

√
ln(n) + z + xm′

2n(1− α′′)2
+

2

1− α′′

√
VGm′ ln(n+ 1) + ln(2)

n
,

then for all α′ ∈ [0, αmax]

sup
g∈Gm′

(
Rα′(g)−Rn,α′(g)

)
= sup

g∈Gm′

(
Rα′(g)−Rn,α′(g) +Rα′′(g)−Rα′′(g) +Rn,α′′(g)−Rn,α′′(g)

)
= sup

g∈Gm′

(
[Rα′′(g)−Rn,α′′(g)] + [Rα′(g)−Rα′′(g)] + [Rn,α′′(g)−Rn,α′(g)]

)
≤

√
ln(n) + z + xm′

2n(1− α′′)2
+

2

1− α′′

√
VGm′ ln(n+ 1) + ln(2)

n
+

1

n(1− αmax)2

≤

√
ln(n) + xm′

2n(1− α′)2
+

√
z

2n(1− α′)2
+

2

1− α′

√
VGm′ ln(n+ 1) + ln(2)

n

+
1

n(1− αmax)2
.

Where the penultimate inequality comes from applying Proposition 5.14 and fromRn,α′(g) ≤
Rn,α′′(g) and hence Rn,α′(g)− Rn,α′′(g) ≤ 0 and the last one from α′′ ≤ α′. We can con-

clude that

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤

√
ln(n) + z + xm̂

2n(1− α̂)2
+

2

1− α̂

√
VGm̂ ln(n+ 1) + ln(2)

n
+

1

n(1− αmax)2
.

In the same way as in Proposition 5.17 we get the bound

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×N

(
Rα(Gm) + pen(α,Gm) +

√
R(Gm)√

2n(1− α)

)

+
1 + Σ

2(1− αmax)

√
π

2n
+

1

n(1− αmax)2
.

2
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Example 5.1. Let (Y1, X1), . . . , (Yn, Xn) be i.i.d. observations where Xi ∈ Rd and Yi ∈
{0, 1}. We are going to consider {Gm}m∈{1,...,p} the model collection where for each m, Gm
is the class of linear classifiers built using only a selection of variables formed by the first

m components of Xi. We call X(i) = [X
(i)
1 . . . X

(i)
i ]T if X

(i)
j = [Xj1 . . . Xji]

T and we define

the set of possible classifiers as

Gm =
{
g : g(x) = I[aTX(m)+b≥0]; a ∈ Rm; b ∈ R

}
.

Let Am be the collection of all sets of the form

{{0} × {x : gm(x) = 1}}
⋃
{{1} × {x : gm(x) = 0}}

and Bm the collection of sets {
x ∈ Rd : gm(x) = 1

}
where gm is in Gm.

By Theorem 13.1 and Corollary 13.1 in Devroye et al. (1996), VAm = VBm = m + 1.

Then the bound (2.8) is now

E

(
sup
g∈G
|R(g)−Rn(g)|

)
≤ 2

√
(m+ 1) ln(n+ 1) + ln(2)

n
.

This bound is only good when the dimension m is not close to the number of observations

n. This bound directly influences the size of the penalization we will choose in Proposition

5.17 and in Theorem 5.15.

We are going to choose the family of non-negative weights xm = ln(p) m = 1, . . . , p

and the universal constant Σ = 1, if we define

(α̂, m̂) = arg min
(α,m)∈[0,αmax]×{1,...,p}

Rn,α(Gm) +

√
ln(np)

2n(1− α)2

+
2

(1− α)

√
(m+ 1) ln(n+ 1) + ln(2)

n
,

leads us to the following oracle inequality

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×{1,...,p}

(
Rα(Gm) +

√
ln(np)

2n(1− α)2

+
1

(1− α)

√
(m+ 1) ln(n+ 1) + ln(2)

n
+

√
R(Gm)√

2n(1− α)

)

+
1

(1− αmax)

√
π

2n
+

1

n(1− αmax)2
.
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First of all we would like to point out that trimming reduces the classification error that

can even disappear whenever αmax is sufficiently large. As in model selection techniques

the last three terms on the right side of the previous inequality are of order 1/
√
n while

for a fixed m the third term will be of order
√
m ln(n)/n. Finally the second term is of

order
√

ln(n)/n+ ln(p)/n. Thus, as long as ln(p) is smaller than n, the expected value

for the best trimmed classification error for the best class will decrease as the number of

observations increases.

On the other hand, it is important to consider the case that although we have many

variables (d of the order of nk with k > 1), only m0 of them contribute information to

the problem, that is, [Y,X1, . . . , Xm0 ] is independent of [Xm0+1, . . . , Xp]. We consider the

simple case of the Bayes rule which is defined as (see Lugosi (2002)),

gB(x) =


1 if η(x) ≤ 1/2

0 other case

where

η(x) = E(Y |X = x) = P (Y = 1|X1 = x1, . . . , Xm0 = xm0 , . . . , Xp = xp)

= P (Y = 1|X1 = x1, . . . , Xm0 = xm0).

Similarly, it can be extended for the best classifier in a class that, as we saw before, it is

the best trimmed classifier in the class. This implies that ∀m ≥ m0, R(Gm) = R(Gm0)

and Rα(Gm) = Rα(Gm0) so taking m ∈ {m0 + 1, . . . , p} will get a worse bound without

any gain in the classification error. Therefore, solving this problem for m ∈ {1, . . . , p} is

equivalent to solving it for m ∈ {1, . . . ,m0}.

5.3 Partial SVM classification

The minimization of Rn,α(G) is computationally very expensive as soon as the class G is

slightly complex. If G is a linear classifiers class as in Example 5.1, then the objective

function

Rn,α(G) = min
w∈Wα,β∈Rd+1

∑
i

wiI[(β0 + β1xi1 + . . .+ βdxid)(yi −
1

2
) < 0],

with Wα as in (5.10), is not convex in β (not even continuous) and this generates compu-

tational problems.
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To solve this problems we propose to use a positive convex loss function. Concretely, we

will use the hinge loss function, this is, γ(x) = (1−x)+ (until we get to oracle inequalities

we will consider the more general case of a positive convex function). This function is

associated with support vector methods. For convenience, in this section we will change

the labels to {−1, 1}. We will describe the changes observed when switching from loss

function 0/1 to this new loss function in the partial classification problem and we will

propose a similar penalized criteria for which we will prove oracle inequalities in a model

selection context. We also study the numerical aspects for the implementation of the

penalized criteria.

We will consider in this section that (Y,X) (and also (Yi, Xi)) are random vectors with

values in {−1, 1} × Rd. In most of the section, γ : R 7→ R+ will be any positive convex

function. Let g : Rd 7→ R with associated classifier g̃(x) = sgn(g(x)) (with the convention

that when g(x) = 0, g̃(x) = 1). For simplicity we will refer to g as a classification rule,

and we will measure the classification cost by γ(Y g(X)).

The change of labels in {0, 1} to {−1, 1} motivates a change in notation. Notation

p1 and P1 will continue as before, but now we will substitute p0 and P0 by p−1 and P−1

respectively. Now we have

p−1 = P (Y = −1), p1 = P (Y = 1) = 1− p−1,

P−1(A) = P (A|Y = −1) and P1(A) = P (A|Y = 1).

Lemma 5.1 can be adapted to this situation with obvious changes.

The concepts associated with 0/1 loss have equivalent concepts in this new setting.

For example, the risk associated to rule g will be given by

R(g) = E(γ(Y g(X))).

Our first result from this section is a reformulation of the risk associated to rule g in terms

of the parametrization (p−1, P−1, P1).

Lemma 5.18. Given g : Rd 7→ R+,

R(g) = p−1

∫ +∞

0
P−1({x ∈ Rd : γ(−g(x)) ≥ t})dt

+ p1

∫ +∞

0
P1({x ∈ Rd : γ(−g(x)) ≥ t})dt.
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Proof. Since γ is a positive function, conditioned by the value of Y we have

R(g) =

∫ +∞

0
P ({(y, x) : γ(yg(x)) ≥ t})dt

=

∫ +∞

0
[P ({(y, x) : γ(yg(x)) ≥ t}|Y = −1)P (Y = −1)

+ P ({(y, x) : γ(yg(x)) ≥ t}|Y = 1)P (Y = 1)] dt

=

∫ +∞

0

[
p−1P−1({x ∈ Rd : γ(−g(x)) ≥ t})

+ p1P1({x ∈ Rd : γ(−g(x)) ≥ t})
]
dt.

2

Definition 5.3. The trimmed risk associated to classifier g is

Rα(g) = inf
Q∈Rα(P )

EQ(γ(Y g(X))). (5.27)

In the following results we will see that the infimum in (5.27) is attained. Furthermore,

we will use the expression of this minimum to obtain a relationship between the risk and

the trimmed risk. For sake of simplicity of the proof we have divided the result into Lemma

5.19 and Proposition 5.20.

Lemma 5.19. Given a classifier g and a trimming level α ∈ [0, 1) we have

Rα(g) = min
1− 1−p−1

1−α ≤q−1≤
p−1
1−α

[∫ +∞

0

(
q−1 −

p−1

1− α
P−1({x ∈ Rd : γ(−g(x)) ≤ t})

)
+

dt

+

∫ +∞

0

(
1− q−1 −

1− p−1

1− α
P1({x ∈ Rd : γ(−g(x)) ≤ t})

)
+

dt

]
.

Proof. By Lemma 5.1, (q−1, Q−1, Q1) ∈ Rα(p−1, P−1, P1) if and only if

q−1 ∈
[
1− 1− p−1

1− α
,
p−1

1− α

]
Q−1(A) ≤ p−1

q−1(1− α)
P−1(A) ∀A (5.28)

Q1(A) ≤ 1− p−1

(1− q−1)(1− α)
P1(A) ∀A.

Set q−1 ∈
[
1− 1−p−1

1−α , p−1

1−α

]
. If Q−1 satisfies (5.28) then

Q−1({x ∈ Rd : γ(−g(x)) ≤ t}) ≤ p−1

q−1(1− α)
P−1({x ∈ Rd : γ(−g(x)) ≤ t}).
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From here we deduce that

Q−1({x ∈ Rd : γ(−g(x)) > t}) ≥
(

1− p−1

q−1(1− α)
P−1({x ∈ Rd : γ(−g(x)) ≤ t})

)
+

for each t. On the other hand, take

tα = inf

{
t : P−1({x ∈ Rd : γ(−g(x)) ≤ t}) ≥ q−1(1− α)

p−1

}
.

Then

P−1({x ∈ Rd : γ(−g(x)) ≤ tα}) ≤
q−1(1− α)

p−1
≤ P−1({x ∈ Rd : γ(−g(x)) ≤ tα}).

Let A = {x ∈ Rd : γ(−g(x)) < tα} and B ⊂ {x ∈ Rd : γ(−g(x)) = tα} be such that, if

C = A ∪B then P−1(C) = q−1(1−α)
p−1

. Finally, we define Q̂−1 with the inequality

Q̂−1(D) =
P−1(D ∩ C)

P−1(C)
∀D.

Then, clearly, Q̂−1 is a probability in Rd that satisfies (5.28). On the other hand, it is

easy to check that if t ≥ tα then

Q̂−1({x ∈ Rd : γ(−g(x)) > t}) = 0,

while if t < tα then

Q̂−1({x ∈ Rd : γ(−g(x)) > t})

=

(
1− p−1

q−1(1− α)
P−1({x ∈ Rd : γ(−g(x)) ≤ t})

)
> 0.

As a consequence we conclude that, for a fixed q−1,

min
Q−1∈R

1−
q−1

p−1(1−α)
(P−1)

∫ +∞

0
Q−1({x ∈ Rd : γ(−g(x)) > t})dt

=

∫ +∞

0
Q̂−1({x ∈ Rd : γ(−g(x)) > t})dt

=

∫ +∞

0

(
1− p−1

q−1(1− α)
P−1({x ∈ Rd : γ(−g(x)) ≤ t})

)
+

dt.

With a similar argument for Q1 the proof is completed.

2

Proposition 5.20. For a given classification rule g and a trimming level α ∈ [0, 1), then

Rα(g) =

∫ ∞
0

(P ({(y, x) : γ(yg(x)) > t})− α)+

1− α
dt. (5.29)
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Proof. This proof will follow the same scheme of Lemma 5.19. If Q ∈ Rα(P ), then

Q({(y, x) : γ(yg(x)) ≤ t}) ≤ 1

1− α
P ({(y, x) : γ(yg(x)) ≤ t}),

or, equivalently,

Q({(y, x) : γ(yg(x)) > t}) ≥ 1− 1

1− α
P ({(y, x) : γ(yg(x)) ≤ t})

=
P ({(y, x) : γ(yg(x)) > t})− α

1− α
,

then

Q({(y, x) : γ(yg(x)) > t}) ≥ (P ({(y, x) : γ(yg(x)) > t})− α)+

1− α
.

And, by (5.27), we get

Rα(g) ≥ 1

1− α

∫ +∞

0
(P ({(y, x) : γ(yg(x)) > t})− α)+dt.

If F (t) = P ({(y, x) : γ(yg(x)) ≤ t}) and we take tα = F−1(1− α) in such a way that

P ({(y, x) : γ(yg(x)) < tα}) ≤ 1− α ≤ P ({(y, x) : γ(yg(x)) ≤ tα}).

Let A = {(y, x) : γ(yg(x)) < tα} and B ⊂ {(y, x) : γ(yg(x)) = tα} be such that, if

C = A ∪B, P (C) = 1− α. Take

Q̂(D) =
P (C ∩D)

P (C)
.

Clearly Q̂ ∈ Rα(P ). Furthermore∫
{−1,1}×Rd

γ(yg(x))dQ̂(y, x) =

∫ +∞

0
Q̂({(y, x) : γ(yg(x)) > t})dt.

Take now D = {(y, x) : γ(yg(x)) ≤ t}. If t < tα then D ∩ C = {(y, x) : γ(yg(x)) ≤ t}
which implies

Q̂({(y, x) : γ(yg(x)) ≤ t}) =
1

1− α
(1− P ({(y, x) : γ(yg(x)) > t}))

and hence

Q̂({(y, x) : γ(yg(x)) > t}) = 1− 1

1− α
(1− P ({(y, x) : γ(yg(x)) > t}))

=
(P ({(y, x) : γ(yg(x)) > t})− α)+

1− α
.

On the other hand, if t > tα then, D ∩ C = C so Q̂({(y, x) : γ(yg(x)) ≤ t}) = 1 and,

consequently,

Q̂({(y, x) : γ(yg(x)) > t}) = 0.
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But as t > tα, P ({(y, x) : γ(yg(x)) > t}) ≤ α and

(P ({(y, x) : γ(yg(x)) > t})− α)+ = 0.

Hence

Q̂({(y, x) : γ(yg(x)) > t}) =
(P ({(y, x) : γ(yg(x)) > t})− α)+

1− α
∀t 6= tα (at least).

This implies that∫ +∞

0
Q̂({(y, x) : γ(yg(x)) > t})dt =

1

1− α

∫ +∞

0
(P ({(y, x) : γ(yg(x)) > t})− α)+dt.

2

For some convex loss functions, the optimal classifier coincides with the optimal clas-

sifier for 0/1 loss (see Lemma 2.1 in Lin (2002)), specifically, this occurs for hinge loss

(Lemma 3.1 in Lin (2002)). In this sense, it is said that a loss function whose optimal

classifier coincides with the one from 0/1 loss is consistent.

Rarely we will know the distribution of P in order to obtain optimal classifiers and we

will have to estimate them from a training sample. We will chose as estimators those that

minimize the empirical risk which in this case is defined by

Rn(g) :=
1

n

n∑
i=1

γ(Yig(Xi)).

As happened before with (5.8) and (5.9), we define the trimmed empirical risk as

Rn,α(g) := inf
Q∈Rα(Pn)

EQ(γ(Y g(X)))

and

Rn,α(g) := min
Wα

n∑
i=1

wiγ(yig(xi)),

where Wα is as in (5.10).

As a consequence of Proposition 5.20, the trimmed empirical risk can be calculated by

means of the following expression

Rn,α(g) =

∫ +∞

0

(Pn({(y, x) : γ(yg(x)) ≥ t})− α)+

1− α
dt. (5.30)

The empirical risk is an unbiased estimator for the theoretical risk. Even though, as

we saw in Proposition 5.11, we know this does not occur when we work with trimmed

risks, we can find a bound for the difference between both quantities.
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Proposition 5.21. Let α be a trimming level and g a given classifier,

0 ≤ E(Rn,α(g))−Rα(g)

≤ 1

1− α

∫ +∞

0

√
P ({(y, x) : γ(yg(x)) ≥ t})(1− P ({(y, x) : γ(yg(x)) ≥ t}))

n
dt.

Proof.

E(Rn,α(g))−Rα(g)

=
1

1− α

∫ +∞

0
[E(Pn({(y, x) : γ(yg(x)) ≥ t})− α)+

− (P ({(y, x) : γ(yg(x)) ≥ t}) ≥ t)− α)+]dt

Let h(z) = z+ which is a convex and 1-Lipschitz function. By Jensen’s inequality we

know that E(h(z)) ≥ h(E(z)), if we take Z(t) = Pn({(y, x) : γ(yg(x)) ≥ t})− α we know

that E(Z(t)) = P ({(y, x) : γ(yg(x)) ≥ t})− α. Recovering the last equality and applying

Jensen’s inequality we get

E(Rn,α(g))−Rα(g) =
1

1− α

∫ +∞

0
[E(h(Z(t))− h(E(Z(t))))]dt ≥ 0.

Let us now consider the second inequality, starting from the previous equality we have

1

1− α

∫ +∞

0
[E(h(Z(t))− h(E(Z(t))))]dt

=
1

1− α

∫ +∞

0
E(h(Z(t))− h(E(Z(t))))dt

=
1

1− α

∣∣∣∣∫ +∞

0
E(h(Z(t))− h(E(Z(t))))dt

∣∣∣∣
≤ 1

1− α

∫ +∞

0
E|h(Z(t))− h(E(Z(t)))|dt.

As h is 1-Lispchitz we have that |h(Z(t))− h(E(Z(t)))| ≤ |Z(t)− E(Z(t))| and following

a reasoning as in the proof of Proposition 5.11 we come to

E|Z(t)− E(Z(t))| ≤ 1√
2n

√
V ar(Z(t))

=

√
P ({(y, x) : γ(yg(x)) ≥ t})(1− P ({(y, x) : γ(yg(x)) ≥ t}))

2n
.

2
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5.3.1 Optimal trimming selection

We have repeatedly pointed out in this work the importance of getting oracle inequalities

for the expected value of trimmed risk. As we said at the beginning of this section, from

now on we are going to focus on the hinge loss function.

Again, for the sake of simplicity, we are going to consider first the case in which the

class of classifiers in formed by a unique element, so the penalization we are considering

will only depend on the trimming level. Subsequently we will extend this result to the

more realistic case in which many classes of classifiers are considered each one with a

different complexity level. Now we are enunciating our principal result for this simple

case.

Theorem 5.22. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P where ξi = (Yi, Xi) such that Yi ∈ {−1, 1} and Xi ∈ Rd. Let g be a

given classifier so that |g(Xi)| ≤ K with K ∈ R+ a positive constant. Take αmax ∈ (0, 1].

If we consider the penalization function

pen(α) =
K

1− α

√
2 ln(n)

n

and define

α̂ = arg min
α∈[0,αmax]

Rn,α(g) + pen(α),

then the following bound holds,

E(Rα̂(g)) ≤ min
α∈[0,αmax]

(
Rα(g) + pen(α) +

1 +K√
n(1− α)

)
+

1 +K

n(1− αmax)
+

2K

1− αmax

√
2π

n
. (5.31)

For technical reasons, to prove Theorem 5.22 is necessary to begin by proving the

following variant in which the set of admissible trimming levels is finite.

Proposition 5.23. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P with ξi = (Yi, Xi) where Yi ∈ {−1, 1} and Xi ∈ Rd. Let g be a given

classifier such that |g(Xi)| ≤ K with K ∈ R+ a positive constant. Let k0 < n be a natural

number and A = {0, 1
n ,

2
n , . . .

k0
n } the set of admissible trimming levels. If we consider the

penalization function

pen(α) =
K

1− α

√
2 ln(n)

n

and define

α̂ = arg min
α∈A

Rn,α(g) + pen(α),
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the following bound holds,

E(Rα̂(g)) ≤ min
α∈A

(
Rα(g) + pen(α) +

1 +K√
n(1− α)

)
+

2K

1− αmax

√
2π

n
.

Proof. We will start from the basic inequality

Rn,α̂(g) + pen(α̂) ≤ Rn,α(g) + pen(α), (5.32)

from there, adding and subtracting terms we come to

Rα̂(g) ≤ Rα(g) + pen(α) + [(Rn,α(g)− E(Rn,α(g))) + (E(Rn,α(g))−Rα(g))]

+ (Rα̂(g)−Rn,α̂(g))− pen(α̂). (5.33)

We will study the behaviour of each term separately, we begin with E(Rn,α(g))− Rα(g).

To bound this quantity we will use Proposition 5.21 and inequality 1− yg(x) ≤ 1 + |g(x)|,
then if t > 1 +K we have that P ({(y, x) : (1− yg(x))+ ≥ t}) = 0 and hence, the integral

in (5.31) becomes∫ 1+K

0

√
P ({(y, x) : (1− yg(x))+ ≥ t})(1− P ({(y, x) : (1− yg(x))+ ≥ t}))

n
dt,

and we can deduce that

E(Rn,α(g))−Rα(g) ≤ 1 +K√
n(1− α)

. (5.34)

We are going now to work with (Rn,α(g) − E(Rn,α(g))). For this term we will use Mc-

Diarmid’s inequality. In first place we have to check the conditions to use it. We define

F (ξ1 . . . , ξn) := Rn,α(g) with ξi = (Yi, Xi), then if W = (w1, . . . , wn) is such that
∑
wi = 1

and 0 ≤ wi ≤ 1
n(1−α) and X ′1, . . . , X

′
n are random variables independent form each other

and independent from X1, . . . , Xn we have

|F (ξ1 . . . , ξi, . . . , ξn)− F (ξ1 . . . , ξ
′
i, . . . , ξn)|

=

∣∣∣∣∣∣min
W

n∑
j=1

wj(1− Yjg(Xj))+ −min
W

∑
j∈{1,...,n}\i

wj(1− Yjg(Xj))+ + wi(1− Y ′i g(X ′i))+

∣∣∣∣∣∣
≤
∣∣ŵi((1− Yig(Xi))+ − (1− Y ′i g(X ′i))+)

∣∣
≤ 1

n(1− α)

∣∣(1− Yig(Xi))+ − (1− Y ′i g(X ′i))+

∣∣
≤ 1

n(1− α)

∣∣Yig(Xi)− Y ′i g(X ′i)
∣∣

≤ 1

n(1− α)

(
|Yig(Xi)|+

∣∣Y ′i g(X ′i)
∣∣) ≤ 2K

n(1− α)
,
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with (ŵ1, . . . , ŵn) = arg min
W

∑
j={1,...,n}\i

wj(1− Yjg(Xj))+ + wi(1− Y ′i g(X ′i))+.

Taking t =
√

2K2z
n(1−α)2

and applying McDiarmid’s inequality we obtain

P

(
Rn,α(g)− E(Rn,α(g)) ≥

√
2K2z

n(1− α)2

)
≤ e−z.

That is, except for a set of probability less than e−z

Rn,α(g)− E(Rn,α(g)) ≤

√
2K2z

n(1− α)2
(5.35)

With this we have controlled the first two terms in (5.33). Now we look at Rα̂(g) −
Rn,α̂(g). Applying again McDiarmid’s inequality, this time over the right side of the

previous inequality, with t =
√

2K2(ln(n)+z)
n(1−α′)2 we get that for all α′ ∈ A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
2K2(ln(n) + z)

n(1− α′)2

)
≤ 1

n
e−z.

Hence,

P

(
Rα̂(g)−Rn,α̂(g)−

√
2K2(ln(n) + z)

n(1− α′)2
≥ 0

)

≤ P

(
sup
α′∈A

(
Rα′(g)−Rn,α′(g)−

√
2K2(ln(n) + z)

n(1− α′)2

)
≥ 0

)

≤
∑
α′∈A

P

(
Rα′(g)−Rn,α′(g) ≥

√
2K2(ln(n) + z)

n(1− α′)2

)

≤
∑
α′∈A

P

(
E(Rn,α′(g))−Rn,α′(g) ≥

√
2K2(ln(n) + z)

n(1− α′)2

)
≤ n 1

n
e−z ≤ e−z.

Then, with probability at least 1− e−z we have that

Rα̂(g)−Rn,α̂(g) ≤

√
2K2(ln(n) + z)

n(1− α̂)2
≤

√
2K2 ln(n)

n(1− α̂)2
+

√
2K2z

n(1− α̂)2
. (5.36)

Choosing the penalization function as in the statement along with (5.34), (5.35) and (5.36),

imply that with probability at least 1− 2e−z

Rα̂(g) ≤ Rα(g) +
K

1− α

√
2 ln(n)

n
+

1 +K√
n(1− α)

+

√
2K2z

n(1− α)2
+

√
2K2z

n(1− α̂)2
.
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Grouping together terms we get

Rα̂(g)−Rα(g)− K

1− α

√
2 ln(n)

n
− 1 +K

n(1− α)
≤ 2

√
2K2z

n(1− αmax)2
.

Reasoning as in the proof of Proposition 5.13, we conclude that

E(Rα̂(g)) ≤ min
α∈A

(
Rα(g) +

K

1− α

√
2 ln(n)

n
+

1 +K√
n(1− α)

)
+

2K

1− αmax

√
2π

n
.

2

To complete the proof of Theorem 5.22 we need to justify that when two trimming

levels are close, the difference between trimming risks in small. This is our next result.

Proposition 5.24. Let α1, α2 be two trimming levels such that α2 ∈ [α1, α1 + 1
n ], let

αmax ∈ [0, 1) be such that α1 ≤ α2 ≤ αmax < 1 and let g be a given classifier. If we denote

by F (t) = P ({(y, x) : (1 − yg(x))+ ≤ t}) and by Fn(t) = Pn({(y, x) : (1 − yg(x))+ ≤ t}),
then

Rα1(g)−Rα2(g) ≤ F−1(1− α1)

n(1− αmax)
and Rn,α1(g)−Rn,α2(g) ≤ F−1

n (1− α1)

n(1− αmax)
.

Proof. Using equality (5.29), we start from

Rα1(g)−Rα2(g) =
1

1− α1

∫ +∞

0
(1− F (t)− α1)+dt−

1

1− α2

∫ +∞

0
(1− F (t)− α2)+dt.

As for t > F−1(1− α1), (1− F (t)− α1)+ = 0 and the same happens for t > F−1(1− α2)

and (1− F (t)− α2)+, the integrals above turn into

Rα1(g)−Rα2(g) =
1

1− α1

∫ F−1(1−α1)

0
(1− α1 − F (t))dt

− 1

1− α2

∫ F−1(1−α2)

0
(1− α2 − F (t))dt

=
1

(1− α1)(1− α2)

∫ F−1(1−α2)

0
[(1− α2)(1− α1 − F (t))− (1− α1)(1− α2 − F (t))] dt

+
1

1− α1

∫ F−1(1−α1)

F−1(1−α2)
(1− α1 − F (t))dt

=
1

(1− α1)(1− α2)

∫ F−1(1−α2)

0
F (t)(α2 − α1)dt+

1

1− α1

∫ F−1(1−α1)

F−1(1−α2)
(1− α1 − F (t))dt

≤ (1− α2)F−1(1− α2)

n(1− α1)(1− α2)
+

1

1− α1

∫ F−1(1−α1)

F−1(1−α2)
(1− α1 − F (t))dt

≤ F−1(1− α2)

n(1− αmax)
+

1

1− α1

∫ F−1(1−α1)

F−1(1−α2)
(1− α1 − F (t))dt.
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Now, as for all t ∈ [F−1(1− α2), F−1(1− α1)], F (t) ≥ 1− α2, then

1

1− α1

∫ F−1(1−α1)

F−1(1−α2)
(1− α1 − F (t))dt

≤ 1

1− α1

∫ F−1(1−α1)

F−1(1−α2)
(1− α1 + α2 − 1)dt

=
(α2 − α1)

1− α1
(F−1(1− α1)− F−1(1− α2))

≤ (F−1(1− α1)− F−1(1− α2))

n(1− αmax)
.

And, hence,

Rα1(g)−Rα2(g) ≤ F−1(1− α2)

n(1− αmax)
+

(F−1(1− α1)− F−1(1− α2))

n(1− αmax)
=
F−1(1− α1)

n(1− αmax)
.

The proof is exactly the same for Rn,α1(g)−Rn,α2(g) starting from (5.30).

2

Proof of Theorem 5.22. As we did in the proof of Theorem 5.12, we will replicate

the proof of Proposition 5.23 up to inequality (5.35). From there, we can deduce with

probability of at least 1− e−z

Rα̂(g) ≤ Rα(g)+pen(α)+
1 +K√
n(1− α)

+

√
2K2z

n(1− α)2
−pen(α̂)+[Rα̂(g)−Rn,α̂(g)]. (5.37)

We define the set A = {0, 1
n , . . . ,

k0
n } where k0 = [nαmax] and, as in the proposition, we

have that for all α′ ∈ A, with a probability of at least 1− e−z,

E(Rn,α′(g))−Rn,α′(g) ≤

√
2K2(ln(n) + z)

n(1− α′)2
. (5.38)

If α′ ∈ [0, αmax), then ∃α′′ ∈ A such that α′′ ≤ α′ ≤ αmax. By Proposition 5.24, in the set

where (5.38) is satisfied we have that, if we denote Fn(t) = Pn({(y, x) : (1−yg(x))+ ≤ t}),
as for any p, F−1(p) ≤ 1 +K, then

E(Rn,α′(g))−Rn,α′(g)

= E(Rn,α′′(g))−Rn,α′′(g) + E(Rn,α′(g))− E(Rn,α′′(g)) +Rn,α′′(g)−Rn,α′(g)

= (E(Rn,α′′(g))−Rn,α′′(g)) + E(Rn,α′(g)−Rn,α′′(g))− (Rn,α′(g)−Rn,α′′(g))

≤

√
2K2(ln(n) + z)

n(1− α′′)2
+
F−1
n (1− α′′)
n(1− αmax)

≤

√
2K2(ln(n) + z)

n(1− α′)2
+

1 +K

n(1− αmax)

≤

√
2K2 ln(n)

n(1− α′)2
+

√
2K2z

n(1− α′)2
+

1 +K

n(1− αmax)
.
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And, hence,

Rα̂(g)−Rn,α̂(g) ≤

√
2K2 ln(n)

n(1− α̂)2
+

√
2K2z

n(1− α̂)2
+

1 +K

n(1− αmax)
.

Going back to (5.37) and choosing the penalization as in the statement we have that, with

probability at least 1− 2e−z,

Rα̂(g) ≤ Rα(g) + pen(α) +
1 +K√
n(1− α)

+

√
2K2z

n(1− α)2
− pen(α̂)

+

√
2K2z

n(1− α̂)2
+

1 +K

n(1− αmax)
.

Integrating with respect to z and bounding α̂ by αmax we come to

E(Rα̂(g)) ≤ min
α∈[0,αmax)

(
Rα(g) +

K

1− α

√
2 ln(n)

n
+

1 +K√
n(1− α)

)

+
2K

1− αmax

√
2π

n
+

1 +K

n(1− αmax)
.

2

Now, we will consider the more realistic case in which instead of a class formed by a

unique classifier we have to chose between several complex models each one of them with

various classifiers. The penalization now will depend both, on the complexity of the model

and in the trimming level. Again, to simplify the proof we divide the result.

Theorem 5.25. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P where ξi = (Yi, Xi) with Yi ∈ {−1, 1} and Xi ∈ Rd. Let {Gm}m∈N be a

family of classifiers classes with Vapnik-Chervonenkis dimension VGm <∞ for all m ∈ N
and such that |g(Xi)| ≤ K, with K ∈ R+ a positive constant, for all g ∈ Gm and for all

m ∈ N. Take αmax ∈ (0, 1) and let Σ a positive constant and consider {xm}m∈N a family

of non negative weights such that ∑
m∈N

e−xm ≤ Σ <∞.

If we consider the penalization function

pen(α,Gm) =

√
2K2(ln(n) + xm)

n(1− α)2
+

2(1 +K)

1− α

√
4VGm ln(n+ 1) + ln(2)3

n ln(2)2
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and define

(α̂, m̂) = arg min
(α,m)∈[0,αmax]×N

Rn,α(Gm) + pen(α,Gm), g′ := arg min
g∈Gm

Rα(g),

then the following bound holds:

E(Rα̂(Gm̂)) ≤ min
(α,m)∈[0,αmax]×N

(
Rα(Gm) + pen(α,Gm) +

1 +K

n(1− α)

)
+

K(1 + Σ)

(1− αmax)

√
π

2n
+

1 +K

n(1− αmax)
. (5.39)

The proof of this theorem is based on the technical result below.

Proposition 5.26. Let ξ1, . . . , ξn be n independent and identically distributed observations

with distribution P where ξi = (Yi, Xi) with Yi ∈ {−1, 1} and Xi ∈ Rd. Let {Gm}m∈N a

family of classes of classifiers with Vapnik-Chervonenkis dimension VGm <∞ for all m ∈ N
in such a way that |g(Xi)| ≤ K, with K ∈ R+, for all g ∈ Gm and for all m. Let k0 < n

be a natural number and A the set of admissible trimmings, A = {0, 1
n ,

2
n , . . .

k0
n }. Let Σ

be a positive constant and consider {xm}m∈N a family of non negative weights such that∑
m∈N

e−xm ≤ Σ <∞.

Consider the penalization function

pen(α,Gm) =

√
2K2(ln(n) + xm)

n(1− α)2
+

2(1 +K)

1− α

√
4VGm ln(n+ 1) + ln(2)3

n ln(2)2
.

Suppose that

(α̂, m̂) = arg min
(α,m)∈A×N

Rn,α(Gm) + pen(α,Gm),

then, the following bound holds:

E(Rα̂(Gm̂)) ≤ min
(α,m)∈A×N

(
Rα(Gm) + pen(α,Gm) +

1 +K√
n(1− α)

)
+
K(1 + Σ)

(1− k0
n )

√
π

2n
.

Proof. We will start from the basic inequality (5.32) to come to

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) + (Rn,α(Gm)−Rα(Gm))

− pen(α̂,Gm̂) + (Rα̂(Gm̂)−Rn,α̂(Gm̂)). (5.40)

This inequality is the starting basic inequality in the proof of Proposition 5.17 so this

proof will be similar. As before, we are looking for bounds for the quantities inside
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the parenthesis. First, we will bound (Rn,α(Gm) − Rα(Gm)) that, by definition of both

quantities, is

Rn,α(Gm)−Rα(Gm) = min
g∈Gm

Rn,α(g)− min
g∈Gm

Rα(g).

Suppose that Rα(g′) := min
g∈Gm

Rα(g), then we have that

min
g∈Gm

Rn,α(g)− min
g∈Gm

Rα(g) ≤ Rn,α(g′)−Rα(g′)

= (E(Rn,α(g′))−Rα(g′)) + (Rn,α(g′)− E(Rn,α(g′))).

As we are in the same conditions than in Proposition 5.23 we can use the same reasoning

and bound the first term by (5.34) and the second one by (5.35). Thus, with a probability

greater than 1− e−z we have

Rn,α(Gm)−Rα(Gm) ≤ 1 +K√
n(1− α)

+

√
2K2z

n(1− α)2
. (5.41)

For controlling the second line in (5.40), we need to adapt the proof of Proposition 5.17

because we don’t have the same equalities for Rα(g) and Rn,α(g) as before. We begin with

the same chain of inequalities we had then,

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤ sup
(α′,m′)∈A×N

(
Rα′(Gm′)−Rn,α′(Gm′)

)
≤ sup

(α′,m′)∈A×N

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))

)
.

First we will focus in the supremum inside the parenthesis that becomes

sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) = E

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))

)
(5.42)

+

[
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))− E

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))

)]
. (5.43)

For bounding (5.43) we will use McDiarmid’s inequality, we begin by proving that the

bounded differences condition is met. Denote by Z := f(ξ1, . . . , ξn) = sup
g∈Gm′

(Rα′(g) −

Rn,α′(g)) and define Z(i) := f(ξ1, . . . , ξ
′
i, . . . , ξn), we want to prove that |Z − Z(i)| ≤ ci

where ci are constants. We will denote by R
(i)
n,α′(g) the empirical risk associated to the

sample ξ1, . . . , ξ
′
i, . . . , ξn, then

|(Rα′(g)−Rn,α′(g))− (Rα′(g)−R(i)
n,α′(g))| = |R(i)

n,α′(g)−Rn,α′(g)| ≤ 2K

n(1− α′)
,
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where the last inequality was obtained in the proof of Theorem 5.23. By Lemma 5.16 we

have that |Z−Z(i)| ≤ 2K
n(1−α′) for all i = 1, . . . , n and we can apply McDiarmid’s inequality

to conclude that

P

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))− E

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))

)

≥

√
2K2(ln(n+ 1) + z + xm)

n(1− α′)2

)
≤ 1

n
e−z−xm . (5.44)

Now we bound the right hand side of (5.42). If for a classifier g we denote by Fg(t) =

P ({(y, x) : (1 − yg(x))+ ≤ t}) and Fg,n(t) = Pn({(y, x) : (1 − yg(x))+ ≤ t}), then by

Proposition 5.20 and given that (1− yg(x))+ ≤ 1 +K we have,

Rα′(g)−Rn,α′(g)

=
1

1− α′

∫ +∞

0

[
(1− Fg(t)− α′)+ − (1− Fg,n(t)− α′)+

]
dt

=
1

1− α′

∫ 1+K

0

[
(1− Fg(t)− α′)+ − (1− Fg,n(t)− α′)+

]
dt

≤ 1

1− α′

∫ 1+K

0
|(1− Fg(t)− α′)+ − (1− Fg,n(t)− α′)+|dt

≤ 1

1− α′

∫ 1+K

0
|Fg,n(t)− Fg(t)|dt.

Taking the expected value of the supremum we get

E

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g))

)
≤ 1

1− α′

∫ 1+K

0
E

(
sup
g∈Gm′

|Fg,n(t)− Fg(t)|

)
dt.

Fix t and call Ag := {(y, x) : t < 1− yg(x)} and define Am = {Ag : g ∈ Gm}. By Lemma

5.27 we know that VAm ≤
4V 2
Gm

ln(2)2
. Then, by (2.7),

∫ 1+K

0
E

(
sup
g∈Gm′

|Fg,n(t)− Fg(t)|

)
dt =

∫ 1+K

0
E

(
sup

Ag∈Am′
|P (Ag)− Pn(Ag)|

)
dt

≤
∫ 1+K

0
2

√
VAm′ ln(n+ 1) + ln(2)

n
dt

= 2(1 +K)

√
VAm′ ln(n+ 1) + ln(2)

n

≤ 2(1 +K)

√√√√ 4V 2
Gm′

ln(2)2
ln(n+ 1) + ln(2)

n
. (5.45)
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Equation (5.44) together with (5.45) say that ∀α′ ∈ A and ∀m′ ∈ N,

P

(
sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) ≥

√
2K2(ln(n+ 1) + z + xm)

n(1− α′)2

+
1 +K

1− α′

√√√√ 4V 2
Gm′

ln(2)2
ln(n+ 1) + ln(2)

n

 ≤ 1

n
e−z−xm .

Using this we can deduce that,

P

 ⋃
(α′,m′)∈A×N

sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) ≥

√
2K2(ln(n+ 1) + z + xm)

n(1− α′)2

+
2(1 +K)

1− α′

√√√√ 4V 2
Gm′

ln(2)2
ln(n+ 1) + ln(2)

n


≤
∑
α′∈A

∑
m′∈N

P

(
Rα′(g)−Rn,α′(g) ≥

√
2K2(ln(n+ 1) + z + xm)

n(1− α′)2

+
2(1 +K)

1− α′

√√√√ 4V 2
Gm′

ln(2)2
ln(n+ 1) + ln(2)

n


≤
∑
α′∈A

∑
m′∈N

1

n
e−z−xm′ ≤

∑
m′∈N

e−z−xm′ ≤ Σe−z.

We can conclude that with probability at least 1− Σe−z

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤

√
2K2(ln(n+ 1) + z + xm)

n(1− α̂)2

+
2(1 +K)

1− α̂

√
4VGm̂ ln(n+ 1) + ln(2)3

n ln(2)2

≤

√
2K2(ln(n) + xm̂)

n(1− α̂)2
+

√
2K2z

n(1− α̂)2
+

2(1 +K)

1− α̂

√
4VGm̂ ln(n+ 1) + ln(2)3

n ln(2)2
.

With all this we can ensure that except in a set of probability not greater than (Σ + 1)e−z

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +

√
2K2z

n(1− α)2
+

1 +K√
n(1− α)

− pen(α̂,Gm̂) +

√
2K2(ln(n) + xm̂)

n(1− α̂)2
+

√
2K2z

n(1− α̂)2

+
2(1 +K)

1− α̂

√
4VGm̂ ln(n+ 1) + ln(2)3

n ln(2)2
.
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Considering the penalization in the statement as

Rα̂(Gm̂) ≤ Rα(Gm) + pen(α,Gm) +
1 +K√
n(1− α)

+

√
2K2z

n(1− α)2
+

√
2K2z

n(1− α̂)2

≤ Rα(Gm) + pen(α,Gm) +
1 +K√
n(1− α)

+

√
8K2z

n(1− k0
n )2

.

Grouping and integrating with respect to z we arrive to,

E(Rα̂(Gm̂)) ≤ min
(α,m)∈A×N

(
Rα(Gm) + pen(α,Gm) +

1 +K√
n(1− α)

)
+
K(1 + Σ)

(1− k0
n )

√
π

2n
.

2

In this proof we have used the following result in which a relationship is established

between the dimension VC of the class Gm and that of the sets of the form Am = {{(y, x) :

t < 1− yg(x)} : g ∈ Gm}.

Lemma 5.27. Let Am = {{(y, x) : t < 1 − yg(x)} : g ∈ Gm} with t fixed and Gm be a

class of classifiers, then

VAm ≤
4V 2
Gm

ln(2)2
.

Proof. The set Am can be written

Am =
{
{x : g(x) < 1− t} × {1}

⋃
{x : g(x) > t− 1} × {−1} : g ∈ Gm

}
.

Define

Ãm =
{
{x : g(x) < 1− t} × {1}

⋃
{x : g̃(x) > t− 1} × {−1} : g ∈ Gm, g̃ ∈ Gm

}
,

obviously Am ⊂ Ãm and, hence, SAm(n) ≤ SÃm(n). If we consider the sets

Ãm,1 = {{x : g(x) < 1− t}}g∈Gm ,

Ãm,2 = {{x : g(x) > t− 1}}g∈Gm ,

then Ãm = Ãm,1 ∪ Ãm,2 and, by Theorem 13.5 in Devroye et al. (1996), SAm(n) ≤
SÃm,1(n)SÃm,2(n). Let us prove that VÃm,i ≤ VGm with i = 1, 2.

Take I ⊂ {(u1, x1), . . . , (un, xn)}; there exists g such that I = {(u1, x1), . . . , (un, xn)} ∩
{g(x) > u}. Then, g(xi) > ui if (ui, xi) ∈ I but g(xi) ≤ ui if (ui, xi) /∈ I. If VGm = l,

then there is not a set of l + 1 points (u1, x1), . . . , (ul+1, xl+1) that can be fully extracted

with intersections with sets of the form {g(x) > u}. In particular, there is not a set of

l + 1 points (t − 1, x1), . . . , (t − 1, xl+1) that can be fully extracted with intersections of
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sets of the form {g(x) > t−1}. This implies that VÃm,2 ≤ VGm , which in turn implies that

SÃm,2(l+ 1) < 2l+1. By section (iv) from Lemma 2.6 in van der Vaart and Wellner (1996)

and Exercise 2.6.10 in the same book, SÃm,1(l) = SÃm,2(l). Then

SAm(l + 1) ≤ SÃm,1(l + 1)SÃm,2(l + 1),

and, by Theorem 13.3 in Devroye et al. (1996)

SÃm,1(l + 1)SÃm,2(l + 1) ≤ n2VGm .

As for all n

n

ln(n)
>

2VGm
ln(2)

,

n2VGm < 2n and

n

ln(n)
>
√
n >

2VGm
ln(2)

,

then

VAm ≤
4V 2
Gm

ln(2)2
.

2

Proof of Theorem 5.25. As in every extension to a continuous interval before, we are go-

ing to replicate the proof of the previous result defining for that the set A = {0, 1
n , . . . ,

k0
n }

where k0 = [nαmax]. We arrive to (5.41) in an identical way as how we did it in Propo-

sition 5.26 because the type of interval does not affect the proof up to that point. As in

the proposition we have that with a probability of at least 1− 1
ne
−z−xm

sup
g∈Gm′

(Rα′(g)−Rn,α′(g)) ≤

√
2K2(ln(n+ 1) + z + xm)

n(1− α′)2

+
2(1 +K)

1− α′

√
4VGm′ ln(n+ 1) + ln(2)3

n ln(2)2
,

with α′ ∈ A. Then for all α′′ ∈ [0, αmax] we can find α′ ∈ A in such a way that α′ ≤ α′′ <
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α′ + 1
n and

sup
g∈Gm′

(Rα′′(g)−Rn,α′′(g))

= sup
g∈Gm′

([Rα′(g)−Rn,α′(g)] + [Rα′′(g)−Rα′(g)] + [Rn,α′ −Rn,α′′(g)])

≤

√
2K2(ln(n+ 1) + z + xm)

n(1− α′)2
+

2(1 +K)

1− α′

√
4VGm′ ln(n+ 1) + ln(2)3

n ln(2)2

+
1 +K

n(1− αmax)

≤

√
2K2(ln(n+ 1) + xm)

n(1− α′)2
+

√
2K2z

n(1− α′)2

+
2(1 +K)

1− α′

√
4VGm′ ln(n+ 1) + ln(2)3

n ln(2)2
+

1 +K

n(1− αmax)
,

where we have applied Proposition 5.24 and that the trimmed generalization risk decreases

when the trimming level is increased. From here, proceeding like in Proposition 5.26 we

have that

Rα̂(Gm̂)−Rn,α̂(Gm̂) ≤

√
2K2(ln(n+ 1) + xm)

n(1− α′)2
+

√
2K2z

n(1− α′)2

+
2(1 +K)

1− α′

√
4VGm′ ln(n+ 1) + ln(2)3

n ln(2)2
+

1 +K

n(1− αmax)
,

with a probability greater than 1− Σe−z.

Taking the penalization as in the statement and integrating with respect to z we have

(5.39). 2

5.3.2 Algorithm

Next we will describe the algorithm that implements the above criterion in the statistical

language R. To do this, we will use the coordinate descent minimization algorithm that is

described, for example, in Bühlmann and van de Geer (2011) and in section 2.5.2 and the

C-Steps algorithm that can be found in Rousseeuw and Driessen (2006) and Alfons et al.

(2013) and that we reviewed in section 2.5.3.

Assume we have a sample consisting of n pairs ξi = (Yi, Xi) where Yi is a label that

has values 1 or −1 and Xi is the attribute which has associated label Yi and will be a

vector in Rd. The classifiers we are going to consider are linear classifiers, so we have that
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g(Xi) = Xiβ where β = (β1, . . . , βp) and we will choose the family of weights xm = ln(p).

By Theorem 5.25 we know that, under certain conditions, if we choose

(α̂, m̂) = arg min
(α,m)∈[0,αmax]×{1,...,p}

Rn,α(Gm) + pen(α,Gm) (5.46)

= arg min
(α,m)∈[0,αmax]×{1,...,p}

[
min
W

n∑
i=1

wi(1− Yig(Xi))+ +

√
2K2(ln(n) + ln(p))

n(1− α)2

+
2(1 +K)

1− α

√
4VGm ln(n+ 1) + ln(2)3

n ln(2)2

]

with W =
{

(w1, . . . , wn) : 0 ≤ wi ≤ 1
n(1−α) ;

∑
wi = 1

}
, the empirical trimmed generaliza-

tion risk for the model m̂ will be small.

First of all, we will explain how to calculate min
W

n∑
i=1

wi(1−Yig(Xi))+ using the iterative

C-Steps algorithm and in each iteration we will use the coordinate descent algorithm.

Then, we will explain the method to obtain the minimum for the penalized criteria.

The first step is to apply Algorithm 7 to calculate the minimum empirical trimmed

risk for a given class of linear functions. In each iteration of the method, the vector of

parameters that we want to estimate is of the form

β̂k = arg min
β∈Rm

Q(Hk, β) = arg min
β∈Rm

∑
i∈Hk

(1− YiXiβ)+ (5.47)

and the risks that used to be quadratic residuals are now

rki = (1− YiXiβ̂k)+.

To calculate β̂k in each iteration we will use Algorithm 6. The function that we are

going to minimize is

Q(H,β) =
1

n

∑
i∈H

(1− YiXiβ)+,

which is a non-differentiable function, so we will have to work with a subgradient of this

one that will be of the form

Gj(H,β) =
1

n

∑
i∈H

(1− YiXi)I(YiXiβ≤1).

In Friedman et al. (2007) it is proven that the coordinate descent algorithm is efficient for

problems of this type leading to an optimal solution in a short time.

The aim of the algorithm is to minimize (5.46). So far we have seen how to obtain

the best classifier of the trimmed sample when we have preset the level of trimming and
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the class in which to look for that classifier. For computational convenience we’ll look for

the optimal trimming size within A = {0, 1
n ,

2
n , . . . , αmax}. As we have already seen in

Proposition 5.26 the oracle inequality is valid in this case and in fact our results guarantee

that, essentially, nothing is lost by restricting the search to this set.

For each element in the grid formed by A and the set {1, . . . , p}, we will calculate

(5.47) and pen(α,Gm). To calculate the penalization we still need to fix two elements, VGm

and K. The first of these is calculated as in Example 5.1. We will treat K as a parameter

to be chosen by cross validation following the method proposed in section 7.10 in Hastie

et al. (2009), dividing the sample into 5 parts. With all this we just have to calculate the

sum of (5.47) and pen(α,Gm) and choose the smallest value. The trimming level and the

dimension that provides the minimum amount shall be (α̂, m̂).

5.3.3 Simulations

To evaluate the performance of our algorithm, we have carried out a series of simulations.

First of all, we wanted to examine the way in which the selection of the dimension works

(there is no trimming involved). To do this we have simulated data from two normal

d-dimensional distributions where the signal is concentrated in the first dreal dimensions

and the rest of dimensions are noise. The first distribution is a normal one centered at

(0, . . . , 0), the second one is centered at µ̄ = (µ, . . . , µ, 0, . . . , 0) and the two with covariance

matrix the identity. As we want to prove the effectiveness of our method when samples

are not linearly separable, we will take µ so that the risk of classification when we choose

the Bayes rule is 0.1. If, as before, we denote this rule by gB,

R(gB) = P (gB(X) 6= Y ) =
1

2
P (gB(X) = −1|Y = 1) +

1

2
P (gB(X) = 1|Y = −1)

= P (gB(X) = 1|Y = −1) = P

(
µTZ >

1

2
‖µ̄‖2

)
= P

(
µ̄TZ

‖µ̄‖
>

1

2
‖µ‖

)
= 1− Φ(

‖µ̄‖
2

)

where Z v Nd(0, Id). So we’ll choose µ so that 1− Φ(µdreal√
2

) = 0.1.

Different combinations of sample size n, data dimension d, and effective dimension dreal

have been considered. For each of these combinations, five datasets have been simulated

with 50% of observations for each group. The optimal K has been selected by cross-

validation. The results are presented in tables 5.1, 5.2, 5.3. The tables contain the

estimated dimension and estimation of the optimal classifier coefficients βi. Note that

these coefficients are not unique since multiplying each by the same number would provide

us with an equivalent classifier (uniqueness is given up to multiplications).
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We have taken into account three possible situations, in the first of them we have the

signal concentrated in 3 variables and we have added 7 noise variables (table 5.1), in this

case it can be seen how, even for small samples, the estimation of the dimension is correct.

We want to point out how close to the Bayes classifier the classifiers chosen by the algorithm

are when the sample size is large enough. Secondly, we have kept the signal concentrated

in 3 variables, but we have increased the noise to 97 variables. Despite the large increase

in the size of the problem it can be observed, table 5.2, that the estimation of the real

dimension is correct and, again, the coefficients β also comes close to the value of the

Bayes classifier when the dimension grows. Although the increase in the number of noise

variables does not affect the results obtained, it does affect the computational complexity

of the problem. This is why we have not included results for very large samples as in the

previous example. Finally, we wanted to consider a case in which the number of variables

on which the signal is concentrated is the same as the noise variables. In this case we

have considered that we have 5 variables of each type. The results obtained for this case

are not as good as the previous ones for small samples. But you can see in table 5.3 that

when the dimension is large enough, the estimation of the dimension is correct and the

coefficients βi approximate those of Bayes classifier.

We now deal with the simultaneous performance of optimal trimming and dimension

selection. Our goal is to study the behavior of the partial classification rule when the sam-

ple contains poorly classified individuals. The main objective of the partial classification

rules is to ensure a correct classification of most of the data, bearing in mind that the

possible presence of outliers could seriously damage the classification capacity of the rules

obtained by classical methods. A particularly important situation in practice is when the

training sample contains poorly classified individuals, which is often the case in medical

studies for example. The partial SVM classification ability to handle these situations is il-

lustrated by the simulation corresponding to table 5.4. In this case the simulated data are

of dimension 10 with the signal concentrated in the first 3 dimensions and the other 7 as

additional noise. The data simulated with the label 1 is mostly normal of mean (0, . . . , 0)

and identity covariance matrix. The simulated data with label −1 is mostly normal with

mean (2, 2, 2, 0, . . . , 0) and identity covariance matrix. In both groups we have included a

10% of individuals with characteristics specific to the other group (these are our misdiag-

nosed). To test the utility of our algorithm, we have compared the results obtained with

trimming and dimension selection with those obtained when we do not allow trimming

and only allow to select the dimension as in the previous examples.

Table 5.4 has a similar structure to the previous ones but includes, in addition to the
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Table 5.1: Dimension selection with 3 real variables and 7 of noise

n d real d estimated d Beta

200 10 3

2 -1.67 1.28 1.04

3 -1.88 0.70 0.80 0.86

3 -2.25 1.08 1.18 0.86

3 -2.44 0.76 1.13 1.19

3 -2.40 1.04 0.79 1.16

500 10 3

3 -2.24 0.95 1.05 1.08

3 -2.55 1.16 1.07 0.87

3 -2.40 0.86 0.93 1.06

3 -2.31 0.98 1.04 0.88

3 -2.10 1.03 1.02 1.06

1000 10 3

3 -2.10 0.95 0.93 1.10

3 -2.37 1.02 0.92 1.05

3 -2.34 1.04 0.97 1.00

3 -2.36 1.04 0.92 1.07

3 -2.44 0.96 0.96 1.04

2000 10 3

3 -2.46 0.95 1.06 0.98

3 -2.51 0.99 1.05 0.93

3 -2.37 1.00 1.02 1.06

3 -2.41 0.95 1.03 1.02

3 -2.41 0.92 1.04 1.07

5000 10 3

3 -2.39 1.04 0.95 0.99

3 -2.39 0.97 0.99 1.03

3 -2.37 1.01 1.00 1.00

3 -2.41 0.96 1.02 1.03

3 -2.37 1.03 0.97 0.97

10000 10 3

3 -2.37 1.01 1.00 1.01

3 -2.37 1.01 0.98 1.01

3 -2.35 1.02 0.99 1.00

3 -2.40 0.97 0.99 1.04

3 -2.41 1.01 0.99 0.99
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Table 5.2: Dimension selection with 3 real variables and 97 of noise

n d real d estimated d Beta

200 100 3

3 -2.64 0.80 1.04 1.26

3 -2.84 1.16 1.14 1.18

3 -2.06 0.74 1.01 0.74

3 -1.97 0.63 1.11 1.06

3 -2.16 0.81 1.24 0.80

500 100 3

3 -2.36 0.92 0.96 1.10

3 -2.43 1.06 1.01 1.11

3 -2.68 1.25 1.08 0.94

3 -2.41 1.00 1.06 0.98

3 -2.64 1.08 0.97 1.28

1000 100 3

3 -2.41 0.93 0.96 1.14

3 -2.46 0.99 1.07 0.95

3 -2.39 1.06 1.02 0.86

3 -2.32 1.05 0.88 0.90

3 -2.17 0.97 0.98 1.03

2000 100 3

3 -2.37 0.99 1.01 1.00

3 -2.31 0.98 0.99 0.99

3 -2.36 0.97 1.03 0.97

3 -2.45 0.99 1.05 0.98

3 -2.41 0.91 1.08 0.98

5000 100 3

3 -2.39 0.99 1.04 0.97

3 -2.37 0.99 1.02 0.99

3 -2.35 1.00 0.99 1.00

3 -2.41 1.09 0.94 0.96

3 -2.44 0.98 1.03 0.96
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Table 5.3: Dimension selection with 5 real variables and 5 of noise

n d real d estimated d Beta

200 10 5

4 -3.61 1.36 1.28 0.93 1.27

5 -3.64 0.94 1.00 0.85 1.09 1.19

4 -3.91 1.38 0.94 1.00 1.10

4 -3.40 0.88 0.91 1.14 1.11

3 -2.27 1.03 1.14 1.03

500 10 5

4 -3.27 0.99 1.15 1.03 0.82

5 -4.00 1.16 0.98 1.03 1.10 0.89

3 -2.50 1.14 1.01 1.13

5 -4.23 1.00 0.96 0.95 1.19 1.05

5 -4.54 1.12 1.19 1.08 1.00 1.01

1000 10 5

5 -4.04 1.06 0.98 1.12 0.98 1.13

5 -4.12 0.79 1.03 0.92 1.00 1.20

5 -3.70 0.94 0.82 0.90 1.07 0.96

5 -3.74 1.05 1.13 0.85 0.85 1.05

5 -3.77 0.85 1.15 0.90 0.81 1.01

2000 10 5

5 -4.01 1.13 0.84 1.03 1.05 0.87

5 -3.89 1.01 0.96 0.99 1.03 0.92

5 -4.09 1.06 0.99 0.98 0.96 1.00

5 -3.92 0.95 0.89 1.05 1.04 1.12

5 -3.94 0.97 1.03 0.93 0.99 1.03

5000 10 5

5 -4.11 1.01 0.98 1.01 1.02 0.96

5 -3.93 1.00 0.98 0.99 0.99 0.99

5 -4.03 0.93 0.99 1.04 0.98 0.99

5 -3.95 0.98 1.05 0.95 0.97 0.97

5 -4.00 1.04 1.04 0.99 0.96 1.01

10000 10 5

5 -4.10 0.99 1.00 0.98 1.01 1.01

5 -3.97 1.01 0.95 1.02 0.96 1.00

5 -3.99 0.99 1.00 0.93 1.06 0.98

5 -3.97 1.03 1.00 0.95 1.00 0.96

5 -3.96 0.99 0.96 0.99 0.99 0.98
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Table 5.4: Optimal trimming and dimension selection with misclassified individuals

n
No trimming allowed With trimming

est d Emp R Beta est d trim Emp R Beta

500

2 0.484 -1.95 0.74 0.95 4 0.06 0.193 -2.80 1.07 0.92 1.11 -0.43

2 0.495 -2.02 0.76 0.91 3 0.06 0.202 -2.79 0.77 0.92 0.85

2 0.464 -2.00 0.74 0.92 3 0.08 0.130 -3.06 0.89 1.15 0.92

2 0.461 -1.99 0.80 0.96 3 0.08 0.106 -3.14 0.84 1.13 0.92

2 0.441 -1.88 0.86 0.76 3 0.1 0.080 -2.87 1.30 0.92 0.93

1000

2 0.483 -1.91 0.73 0.96 3 0.08 0.128 -2.81 0.92 1.04 0.92

1 0.549 -1.02 1.02 3 0.08 0.121 -3.14 1.09 1.01 0.91

1 0.556 -1.11 1.00 3 0.08 0.133 -2.90 1.00 0.93 0.97

2 0.474 -1.95 0.81 0.90 3 0.1 0.079 -3.11 1.12 1.04 0.99

2 0.470 -2.06 0.78 0.93 3 0.08 0.116 -3.27 0.97 0.98 1.14

2000

2 0.457 -1.97 0.82 0.88 3 0.1 0.072 -3.03 1.13 0.92 1.00

2 0.479 -2.05 0.78 0.93 3 0.06 0.194 -3.22 0.91 1.10 0.91

2 0.459 -1.96 0.79 0.93 3 0.08 0.135 -3.10 0.98 0.93 1.04

2 0.459 -1.97 0.77 0.94 3 0.06 0.194 -3.13 0.91 1.08 0.93

1 0.510 -0.98 0.95 3 0.08 0.120 -2.76 0.97 0.95 0.98

5000

2 0.463 -2.02 0.85 0.89 3 0.08 0.124 -3.06 1.08 0.97 0.98

2 0.489 -2.04 0.82 0.91 3 0.1 0.090 -3.06 1.06 0.98 1.06

2 0.466 -1.99 0.78 0.93 3 0.1 0.080 -2.96 1.03 1.04 0.99

2 0.465 -2.03 0.81 0.93 3 0.06 0.184 -3.15 0.93 1.02 0.93

2 0.467 -1.95 0.79 0.95 3 0.06 0.181 -3.01 0.95 1.05 0.96

estimated dimension and estimated coefficients, the empirical risk (which we recall is a

superior bound for the generalization error) associated with the chosen rule and the level of

trimming selected in the case of partial classification. In the application of the procedure,

αmax = 0.12 has been set. This table shows that the untrimmed SVM classification can

produce very poor results with an empirical risk, which we use as an approximation of the

population risk, around 0.5. This is an indicator of how bad classical classification can be

in this scenario. In addition, we can see that even for large sample sizes the dimension is

not selected correctly. On the other hand, we see that when we allow ourselves to trim a

part of the sample, the classification rule is close to the optimal one for large samples and,

in any case, a correct estimation of the dimension is made. Note that not in all cases the

algorithm needs to remove all contamination to provide good results and that in none of
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the cases does the level of trimming exceed that of contamination.

Finally, we wanted to check how the algorithm works under a different type of con-

tamination. We now consider a design similar to the previous one but with the same

contamination in both groups. In a medical study this would correspond to the situation

in which certain variables have predictive capacity for most individuals but not for a small

subgroup. More specifically, we will consider that the simulated data comes from the same

normal distributions as in the previous case. Now the contamination, which remains at

10% for each population, comes from a normal distribution centered in (1, 1, 1, 0, . . . , 0)

and with covariance matrix 3 times the identity. As before, we want to see if the results

obtained with the algorithm are good and, to do this, we will compare them with those

obtained if we do not allow trimmings.

Table 5.5: Optimal trimming and dimension selection with contamination

n
No trimming allowed With trimming

est d Emp R Beta est d Trim Emp R Beta

500

2 0.340 -1.90 0.86 0.95 3 0.08 0.061 -2.81 1.01 1.16 0.89

1 0.446 -0.97 1.12 3 0.02 0.181 -2.73 0.89 0.77 0.95

3 0.247 -2.83 0.97 0.83 1.01 3 0.02 0.161 -3.02 1.13 0.97 1.08

2 0.338 -2.30 1.04 0.95 3 0.02 0.054 -2.96 1.29 0.74 0.94

3 0.268 -3.07 0.84 0.94 1.11 3 0.02 0.168 -3.07 0.95 0.97 1.15

1000

3 0.256 -3.19 0.96 0.84 0.97 3 0.04 0.113 -3.195 1.08 0.88 1.01

3 0.247 -2.89 0.79 0.99 1.01 3 0.02 0.154 -2.84 0.89 0.99 1.06

3 0.275 -3.14 0.96 0.86 0.93 3 0.06 0.059 -3.14 1.07 1.09 0.97

3 0.224 -2.23 0.73 0.72 0.79 3 0.04 0.088 -2.89 1.01 1.15 0.97

3 0.292 -2.89 0.76 0.84 1.03 3 0.02 0.182 -2.89 0.86 0.89 1.11

2000

2 0.327 -2.07 0.92 0.99 3 0.02 0.159 -3.19 1.06 0.96 1.04

3 0.269 -3.01 0.81 0.95 1.01 3 0.04 0.106 -3.00 0.97 1.06 1.03

3 0.276 -3.07 0.87 0.98 0.97 3 0.04 0.113 -2.96 1.03 1.01 0.98

3 0.294 -2.95 0.84 0.97 0.96 3 0.04 0.119 -2.94 1.05 1.01 1.04

2 0.359 -2.01 0.93 0.93 3 0.02 0.171 -3.01 0.97 0.93 1.07

5000

3 0.274 -3.03 0.85 0.92 0.99 3 0.1 0.026 -2.98 1.15 1.00 0.97

3 0.271 -3.04 0.86 0.92 0.97 3 0.04 0.115 -3.03 1.00 1.04 1.03

3 0.263 -3.00 0.83 0.99 0.91 3 0.04 0.109 -3.00 1.00 1.03 1.02

3 0.276 -2.95 0.88 0.94 0.97 3 0.04 0.118 -2.93 1.04 1.03 1.01

3 0.268 -2.98 0.88 0.91 1.01 3 0.02 0.163 -2.88 0.97 0.92 1.04

The results shown in table 5.5 are similar to those in table 5.4. Classical methods have
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more difficulty in estimating the correct signal size and produce worse results in terms of

both estimated risk and the quality of the estimation of the optimal rule.

5.3.4 Example with real data

Once the method has been tested with simulated data, we will use it with a real sample.

We are going to analyze a set of medical data in which 16 features of 43 patients with

liver disease are analyzed. This data set was provided by Professor Remy Burcelin of

the Institute of Cardiovascular and Metabolic Diseases at Paul Sabatier University in

Toulouse. This is a pilot study and the sample size is probably too small for partial

classification methods to produce significant benefits. The collaboration with Professor

Remy Burcelin continues, but for the time it was a question of assessing the potential of

the partial SVM method for detecting incorrect diagnoses. We would like to thank prof.

Burcelin for the opportunity he has provided to show the applicability of our methods on

real data.

Patients are classified in two groups, those who have fibrosis (Y = 1) and those who

have a mild form of the disease or no fibrosis at all (Y = −1). This disease is characterized

by episodes of illness interspersed with episodes of good health, so there are often individu-

als who have been misclassified. We want to analyze the data to determine which variables

we should consider and which individuals are misclassified and likely to be re-diagnosed.

Since our algorithm is designed in such a way that it only considers keeping subsets

of variables arranged in ascending order (for reasons of computational efficiency), we will

reorder the variables in such a way that we will first consider those that have the least

apparent error when considering the model in which we classify only one variable. Once

the variables have been rearranged, we will scale them since each one is measured on a

different scale and the variables that are measured in larger magnitudes will have a much

greater risk associated with the hinge loss.

When it comes to normalizing variables, since we do not want the solution to be

affected by outliers, we have used the median instead of the mean and the interquartile

range instead of the standard deviation.

After the described normalization we have applied the partial SVM classification al-

gorithm with αmax = 0.2 and possible trimming levels in A = {0, 0.01, 0.02, . . . , 0.2}. The

parameter K in the penalization has been chosen by cross-validation in the same way as

in previous simulation studies. As mentioned above, the sample size seems too small to

guarantee a good performance of the method. The chosen rule retains 13 variables (only

3 are deleted). The estimation of the coefficients of the selected rule is probably very
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Figure 5.1: Minimal penalized risk for each trimming level in A.

unstable. On the positive side, we note that the partial SVM method has allowed one of

the individuals in the study to be trimmed. In Figure 5.1, shows the minimum penalized

empirical risk that is reached with each trimming level in A. Analyzing the individual

trimmed a posteriori we have been able to verify that it presented incorrect values for

some of the variables such as, for example, a cholesterol of 0mg/dL. Therefore the partial

SVM method has succeeded in detecting an individual whose values do not correspond to

their real values even for such a small sample.

5.4 Extensions

In this section we include a series of alternative approaches to the problems seen through-

out this chapter that we have considered and that we have either discarded for not giving

convenient results, or we leave as work to develop in the future.

First, we have considered another way of choosing the penalty based on the trimmed

model and not on the trimming level. What we are proposing is to move from the paradigm

of Massart (2007) to the LASSO style of Bühlmann and van de Geer (2011). The reason

for considering this alternative is the computational advantage, since at the same time

that a single estimator calculation is made, the model selection is made. To study the

behavior of the problem we will focus, as before, on the simple case in which we have a

single g classifier. In this case, we will look for a trimming Q that minimizes the Q-risk

plus a penalization related to the amount of deviation of Q from P .
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So far we have considered the problem of calculating

α̂ = min
α
Rα(g) + Pen(α), where

Rα(g) = min
Q∈Rα(P )

EQ(`(g;Y,X)),

with `(g;Y,X) a positive loss function. Now, the problem we are going to consider is of

the form

min
Q∈Rαmax (P )

EQ(`(g;Y,X)) + Pen(Q),

where the penalization we consider will be a measure of the discrepancy between P and Q

and αmax a pre-set value in (0, 1]. As we have done throughout the chapter we will work

with the empirical version of the problem, that is,

min
(w1,...,wn)

n∑
i=1

wi`(g; yi, xi) + Pen(w1, . . . , wn),

where the vector (w1, . . . , wn) consists of the weights associated with the probability∑n
i=1wiδ(yi,xi).

We have explored the possible advantages or disadvantages of this approach by con-

sidering two different penalties to measure the similarity between P and Q, the Kullback

divergence and the Wasserstein distance.

5.4.1 Penalization based on Kullback’s divergence

Kullback’s divergence,

K(Q,P ) =

∫
ln

(
dQ

dP

)
dQ,

is one of the most widely used measures in statistics to assess deviation from a model. In

this section we will study the problem of minimizing

EQ(`(g;Y,X)) + LK(Q,P )

and, concretely, we will study the behaviour of the empirical version of this criteria, i.e.,

the problem of minimizing

n∑
i=1

wi`(g; yi, xi) + LK(W,Pn),

with W = (w1, . . . , wn). Here, trimmings of Pn are probabilities with the same support as

Pn which give a mass of wi to the point (yi, xi) and can be codified by the vector W . Now

K(W,Pn) =

n∑
i=1

wi ln(wi) + ln(n),
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in the following we ignore the term ln(n) in our calculations, this will not affect the final

result. In our analysis we have set αmax = 1.

Obviously we can express the penalization function as the sum of n separated functions

each of them depending only in the value of a single wi. Hence, we may apply the

decomposition principle described in Rockafellar (1997) to obtain a simple expression of

the optimal weights. Now we are going to describe the principal aspects in that theory.

The decomposition principle we are talking about has to do with the general problem

of minimizing a convex function with convex restrictions. More concretely, we consider

the optimization problem

(P1) min
x∈C

f0(x)

s.t. fj(x) ≤ 0, j = 1, . . . , r,

fj(x) = 0, j = r + 1, . . . ,m,

where f0, f1, . . . , fm are convex functions (and, by simplicity, we assume here that are also

differentiable). The Lagrangian associated to problem (P1) is

L(λ, x) =


f0(x) + λ1f1(x) + · · ·+ λmfm(x) if λ ∈ Er, x ∈ C
−∞ if λ /∈ Er, x ∈ C
+∞ if x /∈ C

,

where the convex set C is the domain of f0 and

Er = {λ = (λ1, . . . , λm) ∈ Rm : λi ≥ 0, i = 1, . . . , r} .

It is said that a vector λ is a Kuhn-Tucker vector if it belongs to Er and, besides, has the

property that the minimum of f0(x) with the restrictions is attained in the same points

as the minimum of f0(x) + λ1f1(x) + · · · + λmfm(x). Each variable λi is known as the

Lagrange multiplier associated with the ith restriction in (P1).

The following result which establishes the existence of a Kuhn-Tucker vector is Corol-

lary 28.2.2 in Rockafellar (1997).

Corollary 5.28. Let (P) be an ordinary convex optimization problem with only linear

restrictions. If the optimal value of (P) is not −∞ and (P) has a feasible solution in the

relative interior of C, with C the domain of the function we are optimizing, then there

exists a Kuhn-Tucker vector for (P).

With the following result, that corresponds to Theorem 28.3 in Rockafellar (1997),

sufficient and necessary conditions for the optimality of x̄ ∈ Rd for (P1) are established.
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Theorem 5.29. Take λ ∈ Rm and x̄ ∈ Rd. A necessary and sufficient condition for λ

to be a Kuhn-Tucker vector and for x̄ to be an optimal solution for (P1), is that (λ, x̄)

satisfies Kuhn-Tucker’s optimality conditions, this is,

λi ≥ 0, fi(x̄) ≤ 0 and λifi(x̄) = 0, i = 1, . . . , r,

fi(x̄) = 0, i = r + 1, . . . ,m,

0 ∈ [∂f0(x̄) + λ1∂f1(x̄) + · · ·+ λm∂fm(x̄)].

As we have guaranteed the existence of a Kuhn-Tucker vector by Corollary 5.28, we

have to look for a vector x̄ ∈ Rd that satisfies the conditions in the theorem.

We are focusing now in the simpler problem in which both the restrictions and the

objective function in (P1) are separable functions. This means, fi(x) = qi1(x1) + · · · +
qin(xn) with i = 0, . . . ,m. Now (P1) is equivalent to

min
x∈Rn

f0(x) + λ1f1(x) + · · ·+ λmfm(x)

without restrictions, where λ = (λ1, . . . , λm) is a Kuhn-Tucker vector. Take λ0 = 1, then

f0(x) + λ1f1(x) + · · ·+ λmfm(x) =
m∑
i=0

n∑
j=1

λiqij(xj)

= (q01(x1) + λ1q11(x1) + · · ·+ λmqm1(x1)) + · · ·

+ (q0n(xn) + λ1q1n(xn) + · · ·+ λmqmn(xn)).

This establish a decomposition principle. The optimization problem over Rn can be

reduced to n independent optimization problems in R.

We apply this idea to the minimization of a convex function of separated variables in

the positive octant over the simplex {x :
∑
xi = 1, xi ≥ 0}. For dividing the problem it is

used the method introduced in chapter 28 in Rockafellar (1997). Define the functions

f0j(xj) =


q0j(xj) if xj ≥ 0

+∞ if xj < 0

(5.48)

for each j ∈ {1, . . . , n} and

f1j(xj) = xj with j = 1, . . . , n− 1, (5.49)

f1n(xn) = xn − 1. (5.50)
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We can express problem (P1) in terms of this functions,

(P) min
x∈Rn

f0(x) = f01(x1) + · · ·+ f0n(xn)

s.t. f1(x) = f11(x1) + · · ·+ f1n(xn) = 0.

Given that the infimum of (P) is finite and that in the interior of the domain of f0 exist

points which make f1(x) = 0 we can apply Corollary 5.28 to ensure the existence of a

Kuhn-Tucker vector, that, in this case in which we only have a restriction, is formed by a

single coefficient λ. This coefficient is, see page 288 in Rockafellar (1997),

λ = arg min
v
{v + f∗01(−v) + . . .+ f∗0n(−v)}, (5.51)

where for each j = 1, . . . , n

f∗0j(z) = sup
x∈R
{xz − f0j(x)}. (5.52)

If the coefficient λ can be calculated, solving the problem (P1) is equivalent to solving n

problems of the form

min
xj
{f0j(xj) + λf1j(xj)}.

We apply now this principle to our problem in which we have to minimize the function

HK(w1, . . . , wn) =
n∑
i=1

(wi`(g; yi, xi) + Lwi ln(wi)) .

The optimization problem is now of the form

(P) min
(w1,...,wn)∈Rn

HK(w1, . . . , wn) = q1(w1) + · · ·+ qn(wn)

s.t. w1 + · · ·+ wn − 1 = 0,

wi ≥ 0, i = 1, . . . , n,

with

qj(wj) = wjcj + Lwj ln(wj)

and cj = `(g; yj , xj) with yj ∈ R and xj ∈ Rd.
Functions (5.48) now will be

f0j(wj) =


wjcj + Lwj ln(wj) if wj ≥ 0

+∞ if wj < 0

,
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while functions (5.49) and (5.50) remain unchanged. To calculate Kuhn-Tucker’s coeffi-

cient we need to calculate first (5.52):

f∗0j(z) = sup
x≥0
{xz − xcj − Lx ln(x)}.

If we call i(x) := xz − xcj − Lx ln(x),

∂i(x)

∂x
= z − cj − L(ln(x) + 1) = 0 if and only if x̂ = e

z−cj
L
−1.

Obviously x̂ ≥ 0, hence

f∗0j(z) = ze
z−cj
L
−1 − cje

z−cj
L
−1 − Le

z−cj
L
−1

(
z − cj
L
− 1

)
and

f∗0j(−λ) = −λe
−λ−cj
L
−1 − cje

−λ−cj
L
−1 − Le

−λ−cj
L
−1

(
−λ− cj

L
− 1

)
.

last, we have to calculate (5.51). Taking l(v) := v + f∗01(−v) + . . .+ f∗0n(−v) then

∂l(λ)

∂λ
= 1−

n∑
j=1

[
e
−λ−cj
L
−1 +

λ

L
e
−λ−cj
L
−1 − cj

L
e
−λ−cj
L
−1

+ e
−λ−cj
L
−1

(
−λ− cj

L
− 1

)
− e

−λ−cj
L
−1

]
= 1−

n∑
j=1

e
−λ−cj
L
−1

[
−λ
L
− cj
L

+
λ

L
+
cj
L

+ 1

]
= 1−

n∑
j=1

e
−λ−cj
L
−1

= 1− e
−λ
L

e

n∑
j=1

e
−cj
L = 0.

Solving this equation we have that the Lagrange multiplier for our problem is

λ∗ = L

ln

 n∑
j=1

e
−cj
L

− 1

 .

Now we can solve the n equivalent problems. For j ∈ {1, . . . , n− 1}, we want to calculate

min
wj≥0

wjcj + Lwj ln(wj) + wjL

(
ln

(
n∑
i=1

e
−ci
L

)
− 1

)
.

If we call h(x) the function we want to minimize,

∂h(wj)

∂wj
= cj + L(ln(wj) + 1) + L

(
ln

(
n∑
i=1

e
−ci
L

)
− 1

)
= 0←→ ŵj =

e
−cj
L

n∑
i=1

e
−ci
L

.
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As f1n(wn) is different from the rest, the function to minimize for j = n is

min
wn≥0

wncj + Lwn ln(wn) + (wn − 1)L

(
ln

(
n∑
i=1

e
−ci
L

)
− 1

)
.

But, as what we add to the function is constant with respect to wn, when we derive it will

vanish and we will obtain the same result for the optimum of the nth observation. Hence

ŵj =
e
−cj
L

n∑
i=1

e
−ci
L

≥ 0

for j = 1, . . . , n.

Given that the value of the weights in the optimum is determined by an exponential

function, it does not matter how bad an observation is, this procedure will never assign a

weight 0 and, hence, it will never be completely removed. We conclude that a penalization

based on Kullback’s divergence does not seem a good election for detecting and eliminating

outliers. In the case of classification with 0/1 loss we can see more clearly that this type

of penalization does not remove atypical observations. For this reason we abandon this

line and chose to study another type of penalizations.

5.4.2 Penalization based on Wasserstein distance

Once we have discarded the option of Kullback’s divergence, we intend to use as a pe-

nalization Wasserstein distance between distributions PX and QX that are the marginal

distributions for the attributes. This is, if B ∈ Rd, then

PX(B) = P ({(y, x) : x ∈ B}) = P ({(0, x) : x ∈ B}) + P ({(1, x) : x ∈ B}),

and, if we define the object (p0, P0, P1) as in Lemma 5.1, then

PX(B) = p0P0(B) + (1− p0)P1(B).

In this section we are working with the penalized trimmed generalization error asso-

ciated to a probability Q ∈ Rα(P ) for a given α that we define as

R(Q) := Q({(y, x) : g(x) 6= y}) + LW2
2 (PX , QX) (5.53)

where L is a real positive factor and g is a given classification function.

We want to see that exists a probability Q ∈ Rα(P ) that minimizes this quantity and,

besides, that this probability is unique. Observe that there is not a probability Q different
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from P in Rα(P ) such that R(Q) = 0, except that ∃Q ∈ Rα(P ) with QX = PX and

Q({(y, x) : g(x) 6= y}) = 0.

As we can obtain a null penalized trimmed generalization error now we will see that

we can find a probability that minimizes that error.

Proposition 5.30. If P is such that P (∂Ag) = 0 with Ag = {(y, x) : g(x) 6= y}, then the

map Q 7→ R(Q) is continuous in Rα(P ) with respect to W2 and convex in F2({0, 1}×Rd)
(the set of probabilities in {0, 1}×Rd with finite second moment). Even more, if for every

Q1, Q2 ∈ Rα(P ) we have that Q1,X = Q2,X ⇒ Q1 = Q2 the convexity will be strict.

Observe that the condition P (∂Ag) = 0 is equivalent to P0(∂{x : g(x) 6= 0}) = 0 and

P1(∂{x : g(x) 6= 1}) = 0 and this conditions is met if g is linear and P0 and P1 have a

density.

To simplify the proof of the previous result we need first the following lemma.

Lemma 5.31. Let Q,Qn be two probabilities in {0, 1} × Rd with Q ≡ (q0, Q0, Q1) and

Qn ≡ (qn,0, Qn,0, Qn,1) as in Lemma 5.1, then

Qn →W2 Q⇐⇒


qn,0 → q0

Qn,0 →W2 Q0

Qn,1 →W2 Q1

(5.54)

Proof.

(⇐)

For the proof of this implication we will apply Proposition 2.7. The conditions over Qn,0

and Qn,1 imply that for i = 0, 1,∫
Rd
‖x‖2dQn,i(x)

n→∞−→
∫
Rd
‖x‖2dQi(x).

By (2.2), ∫
{0,1}×Rd

‖(y, x)‖2dQn(y, x) = qn,0

∫
Rd
‖x‖2dQn,0(x)

+ (1− qn,0)

∫
Rd

(‖x‖2 + 1)dQn,1(x)

n→∞−→
∫
{0,1}×Rd

‖(y, x)‖2dQ(y, x).

For applying Proposition 2.7 we still have to verify that Qn ⇀ Q. For this we will apply

the definition of weak convergence,

Qn ⇀ Q if and only if

∫
{0,1}×Rd

hdQn −→
∫
{0,1}×Rd

hdQ ∀h bounded and continuous.
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Applying decomposition (2.2),∫
{0,1}×Rd

hdQn = q0,n

∫
Rd
h(0, x)dQn,0(x) + (1− q0,n)

∫
Rd
h(1, x)dQn,1(x)

−→ q0

∫
Rd
h(0, x)dQ0(x) + (1− q0)

∫
Rd
h(1, x)dQ1(x)

=

∫
{0,1}×Rd

hdQ.

(⇒)

AS Qn →W2 Q we have that∫
{0,1}×Rd

h(y, x)dQn(y, x) −→
∫
{0,1}×Rd

h(y, x)dQ(y, x) (5.55)

for every function h bounded and continuous and, concretely, for h(y, x) = ‖(y, x)‖2.

On the other hand∫
{0,1}×Rd

h(y, x)dQ(y, x) = q0

∫
Rd
h(0, x)dQ0(x) + (1− q0)

∫
Rd
h(1, x)dQ1(x)

and the same stands for Qn.

We take h(y, x) = max(min(1 − y, 1), 0) which is bounded and continuous. Then (5.55)

implies that q0,n → q0. Let f : Rd → R be any bounded and continuous function and,

now, h(y, x) = max(min(1− y, 1), 0)f(x) which is bounded and continuous in {0, 1}×Rd.
Besides, h(0, x) = f(x) and h(1, x) = 0, which by (5.55) implies that

q0,n

∫
Rd
f(x)dQ0,n(x) −→ q0

∫
Rd
f(x)dQ0(x).

In this way, given that q0 > 0, we can deduce that Q0,n ⇀ Q0. In a similar way we can

prove that

q0,n

∫
Rd
‖x‖2dQ0,n(x) −→ q0

∫
Rd
‖x‖2dQ0(x)

and we conclude that Q0,nW2Q0. Convergence Q1,n →W2 Q1 is proved in a similar way.

2

Proof of Proposition 5.30. First we prove the convexity. The map Q 7→ Q({(y, x) :

g(x) 6= y}) es lineal. Hence, it suffices to prove that the map Q 7→ W2
2 (PX , QX) is

strictly convex. Given that PX has a density by hypothesis, the map Q̃ 7→ W2
2 (PX , Q̃) is

strictly convex in Q (see Álvarez-Esteban et al. (2011)). Hence, for each γ ∈ (0, 1) and

Q1, Q2 ∈ Rα(P ),

W2
2 (PX , γQ1,X + (1− γ)Q2,X) ≤ γW2

2 (PX , Q1,X) + (1− γ)W2
2 (PX , Q2,X)
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and the inequality is strict except if Q1,X = Q2,X . But in this case we will have Q1 = Q2.

This proves that R is strictly convex in Rα(P ).

To prove the continuity of R we will prove the continuity of each of the terms in the sum

separately. Let us see first the continuity for W2
2 (P, .). Let us define the mapping

H : Q 7→ W2(P,Q),

we want to prove that if W2(Q,Qn)→ 0 then H(Qn)→ H(Q). Obviously

|H(Qn)−H(Q)| = |W2(Qn, P )−W2(Q,P ))| ≤ |W2(Qn, Q)|

and the continuity of that part is proved.

On the other hand, condition P (∂Ag) = 0 implies that Q(∂Ag) = 0 for every Q ∈ Rα(P )

(for every α < 1). Then if Qn ⇀ Q where Q ∈ Rα(P ), necessarily Qn(Ag)→ Q(Ag). So,

the mapping Q 7→ Q(Ag) is continuous in Rα(P ) for the metric W2.

The map Q 7→ QX is continuous for W2 and the map R 7→ W2
2 (PX , R) too. This proves

that Q 7→ R(Q) is continuous in Rα(P ). 2

By Proposition 2.1 we know that the set Rα(P ) is compact. Hence, as we are look-

ing for a probability in a compact set that minimizes a continuous and strictly convex

function, we can ensure that the minimum exists and will be unique. We will denote by

P̂α := arg min
Q∈Rα(P )

R(Q), then when P̂α is unique it can be estimated consistently by means

of P̂n,α := arg min
Q∈Rα(Pn)

Rn(Q) where P̂n,α is the empirical penalized trimming generalization

error associated with a distribution Q ∈ Rα(Pn) with given α and we define it as

Rn(Q) :=
n∑
i=1

wiδξi + λW2
2 (Pn,X , QX),

where QX =
∑n

i=1wiδXi with 0 ≤ wi ≤ 1
n(1−α) .

As

W2
2 (Pn,X , QX) = min

πi,j

n∑
i=1

n∑
j=1

πij ‖ Xi −Xj ‖2

s.t.
n∑
j=1

πij = wi, i = 1, . . . , n

n∑
i=1

πij =
1

n
, j = 1, . . . , n.
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Then

Rn(Q) = min
πi,j

n∑
i=1

n∑
j=1

πij`(g; yi, xij) + L
n∑
i=1

n∑
j=1

πij ‖ Xi −Xj ‖2

s.t.
n∑
j=1

πij ≤
1

n(1− α)
, i = 1, . . . , n

n∑
i=1

πij =
1

n
, j = 1, . . . , n,

or, what is the same

Rn(Q) = min
πi,j

n∑
i=1

n∑
j=1

πijcij

s.t.
n∑
j=1

πij ≤
1

n(1− α)
, i = 1, . . . , n

n∑
i=1

πij =
1

n
, j = 1, . . . , n,

with cij = `(g; yi, xij)+L ‖ Xi−Xj ‖2 where `(g; yi, xij) is a positive loss function. Hence,

we can express Rn(Q) as an optimal partial transportation problem in the same way as

the ones we saw in section 3.2 and, for its resolution, we can apply the algorithm described

in section 3.2.1.

Further that the computability of the criteria, the analysis of the statistical properties

of this penalized method is left as future work.

5.4.3 Other loss functions

Another alternative we are considering is exploring new loss functions. Instead of 0/1 loss

or SVM loss we are going to use a L2 loss as the one used in regression problems. Our

objective is to find a function that minimizes the regression error defined as

R(g) = E(‖ Y − g(X) ‖2).

We want to study the effect that looking for a function that explains the relation

between variables for a fraction of the population instead of for the whole population

will have in the regression error. This is, instead of calculating the error in terms of a

probability P we will do it in terms of a trimming of P .

Definition 5.4. For a given trimming level α we define the trimmed regression error as

Rα(g) = inf
Q∈Rα(P )

EQ(‖ Y − g(X) ‖2).
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In the same way we did for classification problem we want to find the relationship

existent between R(g) and Rα(g). In first place we will characterize Q̂ ∈ Rα(P ), which is

the trimmed probability that gives us the minimal trimmed error, this is,

Q̂ = arg min
Q∈Rα(P )

Rα(P ).

Repeating essentially the argument of Proposition 5.20 we can check that the mini-

mizers Q̂ are trimmings concentrated in zones of low values of the loss function, so

Q̂({(y, x) :‖ y − g(x) ‖2> t}) =
(P ({(y, x) :‖ y − g(x) ‖2> t})− α)+

1− α
. (5.56)

Besides, if F (t) = P ({(y, x) :‖ y − g(x) ‖2≤ t}) and λ = F−1(1− α), then

Rα(g) =
1

1− α

[
R(g)− λα−

∫ ∞
λ

(1− F (t))dt

]
.

Note that given a trimming level α ∈ [0, 1) and a function g,

Rα(g) ≤ R(g).

Normally we do not have a fixed regression rule, we look for the best regressor in a class

G. This is, we look for that function which gives the optimal trimmed regression error in

the class,

min
(α,g)∈(0,αmax]×G

Rα(g).

In the rest of this section we will assume that the class G is the class of linear functions.

This is, is the class formed by functions of the form

g(x) = βTx

with β ∈ Rd. More specifically, we will discuss the computational difficulties associated

with the practical implementation of a regression method with trimmings.

As in classification, it is very rare that we know the distribution of the variables, so

we will have to settle for working with the empirical version of these.

We now have n observations Xi ∈ Rd and n dependent variables Yi ∈ R, the goal is to

minimize in β and W = (w1, . . . , wn) the function

Gα,n(β,W ) =

n∑
i=1

(Yi − βTXi)
2wi,

with β ∈ Rd, W ∈ Rn, 0 ≤ wi ≤ 1
n(1−α) and

∑
wi = 1.
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A possible strategy is to fix W to obtain H(W ) = min
β∈Rd

Gα,n(β,W ). We can write

Gα,n(β,W ) in a matrix form. Take W = diag(W ),

H(W ) = min
β∈Rd

(W 1/2Y −W 1/2Xβ)T (W 1/2Y −W 1/2Xβ),

reaching the minimum in

β =
(

(W 1/2X)T (W 1/2X)
)−1

(W 1/2X)TW 1/2Y =
(
XTWX

)−1
XTW 1/2W 1/2Y.

Hence,

H(W ) = Y TW 1/2
(
I −W 1/2X

(
XTWX

)−1
XTW 1/2

)
W 1/2Y.

To complete the minimization we should now minimize H(W̄ ). We observe that H is a

concave function (because it is the minimum of a collection of linear functions).

More precisely, the calculation of the risk of trimmed regression can be expressed as

the problem of concave minimization.

min Y TW 1/2
(
I −W 1/2X

(
XTWX

)−1
XTW 1/2

)
W 1/2Y (5.57)

s.t. w1 + · · ·+ wn = 1

w1 −
1

n(1− α)
≤ 0

· · ·

wn −
1

n(1− α)
≤ 0

wi ≥ 0 i = 1, . . . , n.

There are methods for calculating solutions to such problems. One possibility is the so-

called simple external approach algorithm (see chapter 6 in Tuy (1998) ). We briefly

describe the application of this algorithm. We start from the polytope with which we

are going to start the algorithm is P1 = Rn+
⋂
{w1 + . . . + wn = 1} being its vertexes set

the one formed by the vectors of the canonical base in Rn, that is, V1 = {e1, . . . , en}.
For each of these vectors, its neighbours are formed by the rest of vectors of V1, this is,

N(ei) = {ej : j 6= i, j = 1, . . . , n} with i = 1, . . . , n.

In each iteration the algorithm selects which restriction is the most violated and in-

corporates it into the feasible polytope, eliminating the vertex that does not meet that

restriction of the feasible polytope and looks for the vertices of the new polytope. We will

assume by convenience in the notation that the restriction that enters into the feasible

polytope in iteration k is the k + 1 restriction of the problem (5.57). At the beginning of
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iteration k the set of vertices is of the form

Vk = {ek, . . . , en}
⋃{

ei
n(1− α)

+

(
1− 1

n(1− α)

)
ej : i = 1, . . . , k − 1; j = k, . . . , n

}
⋃{

ei + ej
n(1− α)

+

(
1− 2

n(1− α)

)
el : i = 1, . . . , k − 2; j = i+ 1, . . . , k − 1; l = k, . . . , n

}
⋃
· · ·
⋃{

e1 + . . .+ ek−1

n(1− α)
+

(
1− k − 1

n(1− α)

)
el : l = k, . . . , n

}
.

The algorithm will at least need to perform dn(1−α)e iterations to achieve the optimum

that will be {
ei1 + . . .+ eit
n(1− α)

+

(
1− t

n(1− α)

)
eit+1 :

it+1 ∈ {1, . . . , n}; i1, . . . , it ∈ {1, . . . , n} \ it+1; i1 < · · · < it} ,

if t /∈ N or {
ei1 + . . .+ eit
n(1− α)

: i1, . . . , it ∈ {1, . . . , n}; i1 < · · · < it

}
if t ∈ N where t = bn(1− α)c.

The resulting algorithm is computationally very expensive making the calculation un-

feasible even for samples of size 10. This makes it completely useless for solving our

problem. A possible alternative would be to use a concentration algorithm of the type

described in section 2.5.3 and used in section 5.3.2. The adaptation of this idea, as well

as the getting oracle inequalities in the style of sections 5.2.1 and 5.3.1 for the problem of

partial regression is left as future work.



Chapter 6
Conclusions and future work

6.1 Conclusiones y trabajo futuro

Finalizamos este documento con un breve esbozo de las principales conclusiones de esta

investigación, junto con una descripción de las futuras ĺıneas de investigación vinculadas

a las ideas y resultados presentados en este trabajo.

Nuestro principal objetivo en este proyecto fue explorar el uso de ideas y técnicas

de recorte en diferentes aplicaciones estad́ısticas. Se han considerado dos configuraciones

principales: validación de modelos y aprendizaje supervisado. El primero condujo a un

enfoque nuevo y robusto a lo que llamamos validación esencial de modelos. El segundo

llevó a un enfoque diferente de la clasificación binaria en el que buscamos un clasificador

asumiendo que posiblemente estamos tratando con datos con ruido y nos conformamos con

un clasificador que funciona bien para la mayoŕıa de los datos. Durante la investigación

tuvimos que tratar con problemas de transporte óptimo y esto llevó a considerar una apli-

cación adicional para el alineamiento en una configuración de distribuciones deformadas.

La validación esencial de modelos consiste en evaluar si un modelo es apropiado para

una fracción dada de los datos. Esto se hace en términos de la distancia de Wasserstein

entre los conjuntos de recorte. Es conocida la relación entre la distancia de Wassertein y

los planes de transporte óptimos, pero el problema al que nos enfrentamos no era exacta-

mente el problema de transporte clásico, era un problema de transporte parcial que tiene

una estructura similar pero diferente. En este trabajo hemos estudiado este problema de

transporte parcial con vistas a las aplicaciones estad́ısticas. En particular, hemos prestado

atención al cálculo de las versiones emṕıricas de los costes parciales de transporte. Esto

incluyó dos configuraciones diferentes. En primer lugar, tratamos el problema completa-

173
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mente discreto que es más adecuado para aplicaciones con dos o más muestras de muestra.

Hemos demostrado que este problema de transporte parcial discreto podŕıa reformularse

como un problema de transporte equilibrado al que se pueden aplicar algoritmos eficientes

de programación lineal. En el caso del transporte parcial entre una medida emṕırica y

un modelo continuo (el caso que surge naturalmente en la validación esencial de modelos)

tuvimos que tratar un problema semidescreto. En este caso demostramos que el problema

podŕıa ser reformulado en términos de minimización convexa. Propusimos un algoritmo de

gradiente estocástico convergente e ilustramos su funcionamiento a través de algunos ex-

perimentos numéricos. El algoritmo estocástico podŕıa mejorarse con una estrategia cuasi

Monte-Carlo para una evaluación más eficiente del gradiente. Sin embargo, este enfoque

teńıa algunas limitaciones. Las búsqueda de nuevas estrategias conducentes a soluciones

más eficientes del problema de minimización se dejan para investigación futura. Estos

resultados se han aplicado al problema de validación esencial de modelos con un enfoque

basado en el paradigma de selección de modelos. Hemos proporcionado garant́ıas de su

desempeño con una desigualdad oráculo. Consideramos como trabajo futuro también el

estudio de nuevas formas para la función de penalización.

Mientras estudiábamos estos problemas de transporte, resultó que los métodos numéricos

que estábamos desarrollando para resolver el problema del transporte parcial eran una

herramienta útil para resolver los problemas de alinemaiento de distribuciones. Hemos

desarrollado un criterio basado en la minimización de la distancia de Wasserstein para

estimar los parámetros de deformación con el fin de recuperar la forma original de las

distribuciones deformadas.

En la teoŕıa de clasificación, muchas reglas de clasificación se ven afectadas por la

presencia de puntos at́ıpicos que son muy dif́ıciles de clasificar. Cuando se trata de obser-

vaciones de alta dimensión o cuando el número de observaciones es grande, esta situación

ocurre con bastante frecuencia y puede obstaculizar drásticamente el rendimiento de los

clasificadores que tienen en cuenta todos los datos. Uno puede estar tentado a centrarse

en estos puntos y modificar la regla de clasificación para aumentar su clasificación para

estos puntos especiales. Este es el punto de vista de los algoritmos de potenciación, por

ejemplo, tal como se describe en Freund and Schapire (1995) por ejemplo. Sin embargo,

esto se hace a menudo a expensas de la complejidad de la regla y de su capacidad de gen-

eralizarse. Por lo tanto, una solución práctica y quizás pragmática es considerar algunos

de estos puntos como valores at́ıpicos y simplemente eliminarlos. Los estad́ısticos son rea-

cios a descartar las observaciones, pero en muchas aplicaciones, en particular cuando se

enfrentan a grandes cantidades de observaciones, esto permite elaborar reglas más fáciles
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de interpretar y que pueden proporcionar una mejor comprensión del fenómeno estudiado,

siempre que no se retiren demasiados datos de la muestra de formación. Esta es la elección

t́ıpica que se hace en varios documentos, pero no se dice mucho sobre la forma en que se

seleccionan los valores anómalos y su impacto en el rendimiento de la clasificación.

Esta es la razón por la que hemos proporcionado en este documento un marco es-

tad́ıstico para una clasificación robusta mediante la eliminación de algunas observaciones.

Hemos proporcionado un método que para considerar los datos como valores anómalos se

basa en su error de clasificación por un clasificador o una clase dada de clasificadores. En

este marco, este procedimiento permite seleccionar de forma dirigida por los datos una

proporción óptima de observaciones que deben eliminarse para lograr un mejor error de

clasificación. El nivel de recorte y el mejor clasificador se seleccionan simultáneamente y

hemos obtenido una desigualdad oráculo para evaluar la calidad de este procedimiento.

Creemos que este resultado puede proporcionar algunas pautas para eliminar los valores

at́ıpicos para los problemas de clasificación con garant́ıas teóricas.

Primero nos basamos en la minimización de una función de pérdida 0/1 penalizada

que es computacionalmente dif́ıcil de manejar. A continuación se estudia una versión de

este procedimiento de recorte para funciones convexas que conduce a una forma factible

de calcular los pesos. Hemos obtenido una forma de detectar valores anómalos y elim-

inarlos de tal manera que el error de clasificación con este nuevo conjunto de datos se

controlará teóricamente. También hemos proporcionado un algoritmo que obtiene la regla

óptima y elimina los valores at́ıpicos en un tiempo factible. Como trabajo futuro en esta

dirección queremos mejorar la cota dada en el Lema 5.27 que puede aportar mejoras en el

rendimiento del algoritmo antes mencionado. Por último, en la sección 5.4, hemos intro-

ducido dos problemas que nos gustaŕıa continuar en el futuro. El primero es la selección de

modelos para la clasificación basada en el modelo recortado y no en el nivel de recorte, es

decir, considerando una función de penalización que depende de la desviación del modelo

recortado respecto al modelo original y no en el nivel de recorte. Aunque hemos encon-

trado que penalizar con la divergencia de Kullback conduce a malos resultados, creemos

que usar la distancia de Wasserstein entre los modelos como penalización puede dar buenos

resultados usando algoritmos de transporte óptimos para resolver el problema. Por otro

lado, hemos tocado el problema de la regresión parcial, pero sólo hemos dado los primeros

pasos en el proceso. Como trabajo futuro nos gustaŕıa extender los resultados obtenidos

para el problema de la clasificación parcial a esta configuración de regresión obteniendo

un método para seleccionar los regresores óptimos para una fracción de los datos, aśı como

los cotas oráculo y un algoritmo eficiente.
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6.2 Conclusions and future work

We end this document with a brief outline of the main conclusions of this research, together

with a description of future lines of investigation linked to the ideas and results presented

in this work.

Our main goal in this project was to explore the use of trimming ideas and techniques in

different statistical applications. Two main setups have been considered: model validation

and supervised learning. The first one led to a new, robust approach to what we call

essential model validation. The second led to a different approach to binary classification

in which we look for a classifier assuming that we are possibly dealing with noisy data and

settle for a classifier that works well for most of the data. During the research we had to

deal with optimal transportation problems and this led to consider a further application

to registration in a setup of warped distributions.

Essential model validation consists in assessing whether a model is appropriate for a

given fraction of the data. This is done in terms of Wasserstein distance between trim-

ming sets. It is well known the relationship between Wasserstein distance and optimal

transportation plans, but the problem we were facing was not exactly the classical trans-

portation problem, it was a partial transportation problem which has a similar but different

structure. In this work we have studied this partial transportation problem with a view

towards statistical applications. In particular we have paid attention to the computation

of empirical versions of the partial transportation cost. This included two different se-

tups. First we dealt with the completely discrete problem that is more suitable for two

or k-sample applications. We have shown that this discrete partial transportation prob-

lem could be reformulated as a balanced transportation problem to which efficient linear

programming algorithms can be applied. We turned this algorithms into efficient C-code

callable from R. In the case of partial transportation between an empirical measure and a

continuous model (the case which arises naturally in essential model validation) we had to

deal with a semidiscrete problem. In this case we showed that the problem could be recast

in terms of convex minimization. We proposed a convergent stochastic gradient algorithm

and illustrated its performance through some numerical experiments. The stochastic algo-

rithm could be enhanced with a quasi Monte-Carlo strategy for a more efficient evaluation

of the gradient. However, this approach had some limitations. New strategies leading to

more efficient solutions of the minimization problem are left for future research. This re-

sults have been applied to the essential model validation problem with an approach based

on the model selection paradigm. We have provided guarantees of its performance with

an oracle inequality. We consider as future work as well the study of new forms for the
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penalization function.

While we were studying these transportation problems it turned out that the numerical

methods we were developing for solving the partial transportation problem were a useful

tool to solve distribution registration problems. We have developed a criterion based on

Wasserstein distance minimization to estimate deformation parameters in order to recover

the original form of warped distributions.

In classification theory, many classification rules are affected by the presence of atypical

points which are very difficult to classify. When dealing with high dimensional observa-

tions or when the number of observations is large, this situation occurs quite often and

may drastically hamper the performance of classifiers which take into account all the data.

One may be tempted to focus on these points and modify the classification rule to increase

their classification ranking for these special points. This is the point of view of boosting

algorithms for instance, as described in Freund and Schapire (1995) for example. Yet this

is often done at the expense of the complexity of the rule and its ability to be generalized.

Hence a practical and maybe pragmatic solution is to consider some of these points as

outliers and to simply remove them. Statisticians are reluctant to discard observations,

yet in many applications, in particular when confronted to large amounts of observations,

this enables to produce rules that are easier to interpret and that can provide a better

understanding of the phenomenon which is studied, provided not too many data are re-

moved from the training sample. This is the typical choice made in several papers but not

much is said about the way the outliers are selected and its impact on the classification

performance.

This is the reason why we have provided in this work a statistical framework to robust

classification by removal of some observations. We have provided a method that considers

data as outliers based on their classification error by a classifier or a given class of classifiers.

Within this framework this procedure enables to select in a data driven way an optimal

proportion of observations to be removed in order to achieve a better classification error.

The level of trimming and the best classifier are selected simultaneously and we have

obtained an oracle inequality to assess the quality of this procedure. We think that this

result may provide some guidelines to remove outliers for classification problems with

theoretical guarantees.

First we relied on a minimization of a penalized 0/1 loss function which is computa-

tionally difficult to handle. A version of this trimming procedure for convex functions that

lead to a feasible way of computing the weights is studied later. We have obtained a way

of detecting outliers and removing them such that the classification error with this new
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data set will be theoretically controlled. We also have provided an algorithm that gets

the optimal rule and removes outliers in a feasible time. As future work in this direction

we want to improve the bound given in Lemma 5.27 that can bring improvements in the

performance of the algorithm just mentioned. Finally, in section 5.4, we have introduced

two problems that we would like to continue in the future. The first one is model selection

for classification based on the trimmed model and not on the trimming level, that is, con-

sidering a penalization function that depends on the deviation of the trimmed model from

the original one and not in the trimming level. Although we have found that penalizing

with Kullback’s divergence leads to bad results, we believe that using Wasserstein distance

between the models as penalization may give good results using optimal transportation

algorithms to solve the problem. On the other hand we have touched upon the partial

regression problem but we have only taken the first steps in the process. As future work

we would like to extend the results obtained for the partial classification problem to this

regression setup obtaining a method to select optimal regressors for a fraction of the data

as well as oracle bounds and an efficient algorithm.



Bibliography
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[5] Álvarez-Esteban, P. C., del Barrio, E., Cuesta-Albertos, J. A., & Matrán, C. (2008).

Trimmed comparison of distributions. J. Amer. Statist. Assoc., 103(482):697–704.
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