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Abstract

This paper characterizes the optimal tax rule to regulate a polluting monopoly

when the firm has the possibility of investing in an abatement technology and

the environmental damages are caused by a stock pollutant. The optimal policy

is given by the stagewise feedback Stackelberg equilibrium of a dynamic policy

game between a regulator and a monopolist. The regulator playing as the leader

chooses an emission tax to maximize net social welfare, and the monopolist act-

ing as the follower selects the output and the investment in abatement technol-

ogy to maximize profits. We find that the optimal tax has two components. The

first component is negative and equal to the gap between the marginal revenue

and the price caused by the firm market power; the second component is given

by the difference between the social and private shadow prices of the pollution

stock. Considering a linear-quadratic model we show that if marginal environ-

mental damages are constant, the difference between social and private shadow

prices is positive and the optimal policy consists of taxing emissions at a con-

stant rate if the marginal damages are large enough. However, if the marginal

environmental damages are increasing the numerical exercises carried out show

that this difference is negative at the steady state and the optimal policy gives

the firm a subsidy when approaching the steady state regardless of the impor-

tance of the environmental damages. This result is explained by the negative
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effect that abatement technology accumulation has on the tax. Finally, it can

be pointed out that although both models yield different predictions about the

sign of the optimal policy the dynamics is globally stable for both cases.

Keywords: monopoly, emission tax, pollution stock, abatement capacity,

dynamic games
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1. Introduction

The first papers addressing the use of corrective taxes for a polluting monopoly

in a static setting were published by Buchanan (1969) and Barnett (1980).

Buchanan (1969) showed that if marginal damages are low a Pigouvian tax will

lead to a reduction in welfare instead of implementing the efficient outcome. In

fact, if a tax on emissions is used when marginal damages are low, the optimal

tax rate that maximizes net social welfare is negative playing as a subsidy on

production as was pointed out by Barnett (1980).1 Later on, Benchekroun and

Long (1998, 2002) extended this analysis in two directions. Firstly, they studied

an oligopolist market and, secondly, they focused on the case of a stock pollu-

tant placing the analysis in a dynamic setting. In the first paper, the authors

show for a linear-quadratic case that there exists a stationary linear tax rule

that leads polluting oligopolists to implement the efficient outcome. The au-

thors propose a three-step procedure. First, they assume that the government

announces at the initial period the tax rule that is applicable to all firms, at

all times. Second, the regulated market equilibrium is calculated as a Markov

perfect Nash equilibrium. Finally, the parameters of the linear tax rule are

computed imposing the output strategy selected by the firms to be equal to the

efficient strategy. The authors show that the equations system defined by this

condition has a unique solution and that the tax increases with the pollution

stock and could be negative for low levels of the stock if there are just a few

firms.2

In Benchekroun and Long’s paper the only way to control emissions is reduc-

1In a very interesting paper Cornes et al. (1986) show for the case of a common-property

resource exploited by an oligopoly that there exists an optimal industry size that implements

the efficient outcome as a market equilibrium. Mason and Polasky (1997) analyze this issue

in a dynamic setting.

2Im (2002) and Daubanes (2011) also find that optimal taxation of an exhaustible resource

under monopoly can be negative when elasticity of demand and marginal extractions costs

are constant.
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ing production. For this reason, we consider interesting to extend the analysis

of emission taxation to a polluting monopoly to take into account the possibil-

ity of investing in an abatement technology that we assume to be end-of-pipe

type.3 Following a strategic approach, we characterize the optimal tax as an

equilibrium of a dynamic policy game between a regulator that chooses the tax

to maximize net social welfare and a monopolist that selects the output and

the investment in abatement technology to maximize profits. Specifically, we

calculate the stagewise feedback Stackelberg equilibrium (SFSE) of the game

where the regulator is the leader and the monopolist is the follower. The SFSE

gives the leader only a stagewise first-mover advantage that can be interpreted

as the ability of the regulator to commit in the short run.4

In the first part of the paper, we show that the optimal tax has two com-

ponents. The first component is negative and equal to the gap between the

marginal revenue and the price caused by the market power of the firm; whereas

the second component is given by the difference between the social shadow price

of the pollution stock and its private shadow price. The private shadow price

3This end-of-pipe technology mitigates (net) emissions by absorbing pollution at the end

of the production process (e.g., flue gas desulfurization equipment and activated carbon ad-

sorption equipment are end-of-pipe technologies). Xepapadeas (1992) addresses the effects of

a higher emission tax on the firm’s optimal investment in an abatement technology of this

type. More recently, Menezes and Pereira (2017) also assume an end-of-pipe technology to

investigate the optimal environmental policy in a dynamic setting when two polluting firms,

producing differentiated products, compete in the output marke; and Lambertini at al. (2017)

examine the relationship between competition and abatement investment.
4In fact, it is easy to show that if the regulator does not have the ability of short-run

commitment, its capacity of influencing the market equilibrium using an emission tax disap-

pears. Interestingly, we find that for the game analyzed in this paper the equilibrium when

the monopolist chooses the investment before or at the same time as the regulator selects the

tax coincides with the SFSE when the regulator acts as the leader of the game. This fact

relaxes the commitment requirement because the short-run commitment only implies that the

regulator has the ability to influence the monopolist’s output decision. For a clear explanation

of this type of feedback Stackelberg equilibrium, the interested reader can consult the excellent

book by Haurie et al. (2012).
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is the price the monopolist associates with the pollution stock because the firm

is aware that the optimal policy selected by the regulator depends on the level

of pollution stock. As the first term is negative, the sign of the optimal policy

could be negative even for a positive difference in the shadow prices.

In order to clarify this issue and investigate the dynamics of the optimal

policy, in the second part of the paper we first solve a linear state (LS) policy

game for which marginal environmental damages are constant; and secondly,

we solve a linear-quadratic (LQ) policy game with increasing marginal environ-

mental damages. With constant marginal damages the optimal policy consists

of taxing emissions at a constant rate provided that marginal damages are large

enough. In this case, we find that the social shadow price of the pollution stock

is positive and increasing with respect to the marginal damages. However, the

monopolist’s shadow price is zero. As the optimal tax does not depend on the

pollution stock, the monopolist’s decision on output (gross emissions) will not

influence the regulator decision on the tax and the monopolist does not give any

value to the pollution stock. On the other hand, the LQ game does not have an

analytical solution but our numerical experiments point out that the optimal

policy at the steady state is a subsidy. We find that for all our simulations

both the social and the private shadow price of pollution stock are positive but

the difference is negative. Thus, the tax becomes a subsidy at the steady state

because its two components are negative. Nevertheless, we may point out that

although both games yield different predictions they present the same type of

dynamics: the steady state is globally stable, i.e. for any initial condition of

the pollution stock and the abatement capacity, all the variables of the model

converge asymptotically to their steady-state values.

In order to have a complete view of the divergence between the private and

social assessment of the state variables by the monopolist and the regulator,

we have also computed the difference in the marginal benefit (value) of the

abatement capacity. This difference is positive at the steady state. Thus, we

may conclude that when a monopoly creates a stock externality and the market

is regulated using a price on emissions, the private shadow price of the pollution
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stock is larger than the monopolist’s shadow price of the pollution stock at the

steady state, while the opposite occurs for the marginal values of the abatement

capacity. In this framework, the optimal tax ultimately becomes a subsidy. The

temporal path of the optimal policy is difficult to characterize because it depends

on the initial conditions of the pollution stock and the abatement capacity, but

we can show that it converges to the steady state from above. This means that

the tax becomes a subsidy at some point of time and it is increasing when it

approaches its steady-state value. In fact, we cannot rule out the possibility of

applying a subsidy for the entire time horizon.

This result is explained by the negative effect that the abatement capac-

ity has on the tax. As in Benchekroun and Long’s (1998) paper, we obtain a

stationary linear tax rule with a negative independent term and an increasing

tax with the pollution stock. Without investment in abatement capital, the tax

increases with the pollution stock and if the marginal damages are large enough

the steady-state optimal policy consists of taxing emissions. The optimal policy

is a subsidy when the pollution stock is low, but as the pollution stock converges

to its steady-state value the optimal policy converges to a tax. However, if the

firm invests in an abatement technology, an increase in the abatement capacity

reduces the tax. Our numerical simulations show that in this case as the pol-

lution stock and the abatement capacity tend to their steady-state values the

optimal policy converges to a subsidy. Finally, the negative effect of abatement

capacity accumulation on the tax dominates the positive effect of pollution ac-

cumulation, and therefore, the tax not only decreases but becomes a subsidy

regardless of the importance of marginal damages.

This result plays against the application of an emission tax to regulate a

polluting monopoly when marginal damages are increasing because the optimal

tax simply becomes a subsidy on emissions. Something that is difficult to justify

as an environmental policy. Thus, our analysis suggests that the use of a tax

to control pollution when the market is strongly concentrated as occurs in the

energy markets and in particular in the electricity markets does not seem to be

a very good proposal, not only because it is a second-best policy that does not
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implement the maximum net social welfare, but also because taxation could not

be an optimal policy in this context and then the use of a tax would have a

negative impact on net social welfare as was already pointed out by Buchanan

(1969) for the case of a flow pollutant.

1.1. Literature Review

The literature addressing the taxation of polluting firms with market power

in a dynamic framework includes only a few papers: Xepapadeas (1992), Kort

(1996), Stimming (1999) Feenstra et al. (2001), Daubanes (2008), Yanese

(2009), and more recently Menezes and Pereira (2017).5 The first four papers

assume that damages are caused by a flow pollutant and focus on the investment

in an abatement technology. For these papers the environmental policy is ex-

ogenously determined and the research assesses the effects of a stricter environ-

mental policy and the comparison of taxes vs emission standards on investment

in abatement technology. In comparison with this literature, our paper consid-

ers that damages are caused by a stock pollutant and the environmental policy

is endogenously determined. Daubanes (2008) extends the analysis developed

by Benchekroun and Long (1998, 2002) to the case of a polluting exhaustible

resource supplied by an oligopoly but the author does not take into account

the possibility of investing in an abatement technology. Maybe, Yanese (2009)

is the first paper where the environmental policy is endogenously determined

although the focus of the research is different from ours and as in Daubanes

(2008) the paper does not consider the possibility of increasing the abatement

capacity. The author examines a non-cooperative policy game between national

governments in a model of international pollution control of a stock pollutant in

which duopolists compete myopically in a third country and expense resources

in abatement activities. Menezes and Pereira (2017) study the dynamic com-

petition between two firms in supply schedules for a stock pollutant using an

5Biglaiser et al. (1995) is a very interesting paper where pollution regulation is examined

in a dynamic setting but assuming perfect competition.
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abatement technology as the one we assume in this paper. They consider a

model with linear damages and technological spillovers and focus on the char-

acterization of the first-best policy, the mix of emissions tax and R&D subsidy,

assuming that the regulator can commit for the entire temporal horizon and

that the firms’ abatement capital is given by its steady-state value when the

regulator decides the optimal policy. Although our model presents the same

ingredients that those used by these authors, our analysis differs from theirs

in several aspects. We assume that the regulator cannot commit for the entire

temporal horizon and look for time-consistent policy rules. We focus on the

characterization of a second-best tax rule and develop the stability analysis of

the steady state that is not done by Menezes and Pereira (2017), and mainly

we show that with quadratic damages the result obtained for linear damages do

not hold. Thus, to the best of our knowledge, our paper characterizes for the

first time the optimal taxation for a polluting monopoly with a stock pollutant

and investment in abatement technology.

More recently, Wirl (2014) investigated a differential policy game between a

monopoly that provides a clean technology for a polluting competitive industry

and a regulator that uses an emission tax or standard to control a flow pollu-

tant.6 Thus, when the regulator uses a tax, the monopoly is forced to provide

the clean technology at a price equal to the emission tax. For this model, the

Markov perfect Nash equilibria (MPNE) when the regulator applies a tax and

when it uses a standard are compared. The analysis shows that the efficient

solution cannot be implemented using only one instrument, but that the tax

and the standard are equivalent. However, our model presents some differences

with respect to Wirl’s paper. Mainly, we consider the case where damages are

caused by a pollution stock whereas Wirl (2014) analyzes the case of a flow

pollutant. Moreover, we assume that the polluting industry is a monopoly that

6Golombek et al. (2010) consider that the supply of abatement equipment services is

monopolistic competitive. They show in a two-period model that the first-best outcome can

be reached through a technology subsidy and carbon taxes.
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can devote resources directly to abatement activities.

Finally, we would like to comment on the papers by Saltari and Travaglini

(2011) and Karp and Zhang (2012) where both the abatement capital and the

pollution stock are taken into account in the analysis of the firm’s investment

decisions as we do in our paper. Saltari and Travaglini (2011), following the

approach adopted by the previous literature, assume that the emission tax is

exogenously determined and constant. In their model, the pollution stock affects

negatively the production function, and a single price-taker firm has to decide

about the use of a polluting factor and the abatement investment taking as

given the dynamics of the pollution stock that evolves according to a geometric

Brownian motion.7

Karp and Zhang (2012) analyze a two-stage game where in the first stage a

representative firm selects the emissions that maximize its current profits, and in

the second stage the firm and the regulator play a simultaneous non-cooperative

game. In the second stage, the firm decides the level of investment to reduce

abatement costs and the regulator chooses the level of the policy instrument.

They solve the game numerically using a linear-quadratic model for an appli-

cation to climate change. The paper focuses on comparing taxes vs emission

standards. Although the model and strategic approach adopted by Karp and

Zhang (2012) is very similar to the one we follow in this paper, there are some

differences that clearly differentiate our analysis from their analysis. Karp and

Zhang (2012) do abstraction from the type of competition that operates in the

output market, focus on investment to reduce abatement costs and look at a

global environmental problem as the global warming is.

The remainder of the paper is organized as follows. Section 2 presents the

ingredients of the differential game we study in this paper. Section 3 character-

izes the optimal policy. In Section 4 a policy game with linear environmental

damages is solved, while in Section 5 it is assumed that damages are given by

7In a more recent paper, Saltari and Travaglini (2017) characterize the optimal growth

path of an economy with investment in abatement and productive capital stocks.
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a quadratic function. Section 6 offers some concluding remarks and points out

lines for future research.

2. The Model

We consider a monopoly that faces a market demand represented by the

decreasing inverse demand function P (q(t)) where q(t) is the output at time t.

The firm produces the output at a constant unit cost c ≥ 0 and the produc-

tion process generates emissions of pollutants. After an appropriate choice of

measurement units we can say that each unit of output generates one unit of pol-

lution. The emissions can be reduced without declining output if the monopoly

employs an abatement technology that we assume to be end-of-the-pipe type.

For this type of abatement technology the emission function is s(t) = q(t)−y(t)

where y(t) stands for the installed abatement capacity.8 This capacity can be

increased by w(t) at an increasing cost given by the convex function C(w(t)).

Thus, the dynamics of the abatement capacity is defined by the differential

equation

ẏ(t) = w(t)− δyy(t), y(0) = y0 ≥ 0, (1)

where δy > 0 stands for the depreciation rate of the abatement technology. The

focus of the paper is on a stock pollutant that evolves according to the following

differential equation

ẋ(t) = s(t)− δxx(t) = q(t)− y(t)− δxx(t), x(0) = x0 ≥ 0, (2)

8We are aware that the linear specification of the emissions function could lead to negative

emissions. However, for analytical tractability we keep this specification that allows us to have

a linear-quadratic differential game. We do not impose a priori a non-negativity constraint

on emissions, although in the numerical exercise we check a posteriori that the optimal time

paths of emissions always take positive values. The inclusion of the non-negativity condition

on emissions would come at the cost of losing the global character of the strategies. Moreover,

the non-negativity constraint on emissions q(t) ≥ y(t) in our model implies one control (q)

and one state variable (y), and hence, if a corner solution is possible q(t) = y(t), then the

firm would only retain one control variable, the investment in abatement capacity. The two

previous points make the study of the corner solutions even more complex.
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where x(t) stands for the pollution stock and δx > 0 for the decay rate of

pollution. The environmental damages are given by a function D(x(t)) with

Dx > 0 and Dxx ≥ 0.

The objective of the firm is to choose output and investment in abatement

capacity in order to maximize the discounted present value of net profits given

by the following expression

max
{q(t),w(t)}

∫ ∞
0

e−rt {P (q(t))q(t)− cq(t)− C(w(t))− τ(t)(q(t)− y(t))} dt (3)

subject to differential equations (1) and (2), initial conditions and the usual

non-negativity constraints, where τ(t) stands for the emission tax imposed by

the regulator and r is the time discount rate.9

On the other hand, the environmental regulator chooses the temporal path

of the emission tax with the aim of maximizing net social welfare defined as

the sum of consumer surplus and monopoly net profits plus tax revenues mi-

nus environmental damages subject to differential equations (1) and (2), initial

conditions and the usual non-negativity constraints. As firm tax expenses and

regulator tax revenues cancels out, the dynamic optimization problem for the

regulator can be written as follows

max
{τ(t)}

∫ ∞
0

e−rt
{∫ q

0

P (z(t))dz − cq(t)− C(w(t))−D(x(t))

}
dt. (4)

Thus, the optimal tax rate is given by the solution to a dynamic policy game

defined by (3), (4) and differential equations (1) and (2).

3. The Reference Differential Game and the Second-Best Emission

Tax

As we are interested in characterizing a time-consistent tax, we assume

that the regulator cannot commit in the long run to future taxes and conse-

9As the model is in continuous time we are assuming implicitly that the regulator can

change the tax at every point in time. However, other more realistic alternatives as the one

that would allow the regulator to update the tax from time to time would be much more

difficult to analyze.
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quently we compute a subgame perfect equilibrium in Markov strategies using

the Hamilton-Jacobi-Bellman (HJB) equations. However, it is straightforward

from (4) that if the regulator does not have the ability of short-run commit-

ment its capacity of influencing the monopolist’s decisions vanishes. For this

reason, we assume that output selection occurs after the choice of the tax and

investment.

We assume that the firm is a forward looking agent that realizes of its dy-

namic strategic interdependence with the regulator, because it is aware that the

dynamics of the pollution stock and the abatement capacity that depends on

output (gross emissions) and investment, respectively, will be taken into account

by the regulator to set up the tax. Then the output selection must satisfy the

following HJB equation10

rV (x, y) = max
{q}

{
P (q)q − cq − C(w)− τ(q − y) +

∂V (x, y)

∂x
(q − y − δxx)

+
∂V (x, y)

∂y
(w − δyy)

}
,

where V (x, y) stands for the maximum discounted present value of net profits

for the current values, x and y, of the pollution stock and abatement capacity.

From the first-order condition for the maximization of the right-hand side

of the HJB equation, we get

P ′q + P = c+ τ − ∂V

∂x
, (5)

where the left-hand side of the condition stands for the marginal revenue of

output and the right-hand side represents the marginal costs. These costs in-

clude the marginal cost of production, the tax and the firm’s shadow price of

pollution stock. The latter is given by the reduction in the discounted present

value of the firm’s profits because of an increase in the pollution stock coming

from an increase in production. Condition (5) implicitly defines the dependence

of the production with respect to the tax and the two state variables: q(τ, x, y).

10Time argument will be eliminated when no confusion arises.
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It is straightforward to see that if the marginal revenue is decreasing, then an

increase in the tax for given values of the stocks leads to a decrease in output.

The reference differential game

Once we have implicitly defined the dependence of the output with respect to

the tax, we can obtain the optimal tax as the solution to the following differential

game

max
{w}

∫ ∞
0

e−rt {P (q(τ, x, y))q(τ, x, y)− cq(τ, x, y)− C(w)− τ(q(τ, x, y)− y)} dt,

max
{τ}

∫ ∞
0

e−rt

{∫ q(τ,x,y)

0

P (z)dz − cq(τ, x, y)− C(w)−D(x)

}
dt, (6)

subject to

ẋ = q(τ, x, y)− y − δxx, x(0) = x0 ≥ 0,

ẏ = w − δyy, y(0) = y0 ≥ 0.

We call this differential game, the reference differential game of the model.

Now, expression (6) clearly recognizes the dependence of net social welfare on

the tax because the regulator can influence the market equilibrium through the

imposition of the emission tax.

Next, we calculate the Markov perfect Nash equilibrium (MPNE) of this

reference differential game. The selection of the tax must satisfy the following

HJB equation

rW (x, y) = max
{τ}

{∫ q(τ,x,y)

0

P (z)dz − cq(τ, x, y)− C(w)−D(x)

+
∂W (x, y)

∂x
(q(τ, x, y)− y − δxx) +

∂W (x, y)

∂y
(w − δyy)

}
, (7)

whereW (x, y) stands for the maximum discounted present value of the net social

welfare for the current values, x and y, of the pollution stock and abatement

capacity.

From the first-order condition for the maximization of the right-hand side

of the HJB equation (7), we get

P (q(τ, x, y)) = c− ∂W (x, y)

∂x
. (8)
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This condition establishes that the price must be equal to marginal costs that

include the marginal cost of production plus the social shadow price of the

pollution stock.

On the other hand, the selection of the investment in abatement technology

must satisfy the following HJB equation

rV (x, y) = max
{w}
{P (q(τ, x, y))q(τ, x, y)− cq(τ, x, y)− C(w)− τ(q(τ, x, y)− y)

+
∂V (x, y)

∂x
(q(τ, x, y)− y − δxx) +

∂V (x, y)

∂y
(w − δyy)

}
. (9)

Taking into account that the output does not depend on investment we obtain

the following condition

Cw(w) =
∂V (x, y)

∂y
. (10)

The left-hand side represents the marginal investment cost. The right-hand side

is the marginal benefit that is given by the increase in the discounted present

value of net profits coming from the increase in the abatement capacity i.e.,

the monopolist’s marginal value of abatement capacity. These two conditions

(8) and (10) implicitly define the optimal strategies for the tax and investment

that characterize the MPNE of the reference differential game. At this point

we should highlight that according to (8) and (10) the optimal policy does not

depend on firm’s investment and the optimal investment does not depend of the

tax what allows us to conclude that

Proposition 1. The stagewise feedback Stackelberg equilibria (SFSE) of the ref-

erence differential game coincide with the MPNE.

The SFSE gives the leader only a stagewise first-mover advantage that can

be interpreted as the ability to commit in the short run. Backward induction

is applied to characterize the equilibrium, substituting the follower’s reaction

function in the leader’s HJB equation, and computing the optimal strategy of

the leader by maximizing the right-hand side of this equation. The reaction

functions given by (8) and (10) are orthogonal and, therefore, directly yield the

optimal strategies for the tax and investment. The tax defined by (8) does not

14



depend on investment and, on the other hand, the investment defined by (10)

does not depend on the tax. Thus, the backward induction procedure does not

provide any difference with respect to the optimal strategies that characterize

the MPNE regardless of how is the leader of the reference differential game.11

From the previous result it is straightforward to show that

Corollary 1. The SFSE when the regulator is the leader of the game is consis-

tent both in the short run and in the long run.

The short-run consistency is explained by the fact that the two Stackelberg

equilibria of the reference differential game (one when the regulator is the leader

and the other one when it is the follower) coincide. The tax selected by the reg-

ulator when it acts as the leader is the same as the one it chooses when it is the

follower. The equilibrium when the regulator chooses the tax before the mo-

nopolist selects the investment and output is identical to the equilibrium when

the regulator chooses the tax after the monopolist has decided the investment

but before the monopolist selects the output, so that the SFSE is consistent in

the short run. In the long run, the tax is also time consistent because a sub-

game perfect equilibrium in Markov strategies is computed. Notice that when

the regulator is the leader of the reference differential game is also the leader of

the complete differential game defined in the previous section and consequently

Corollary 1 also applies in this case.

Finally, we characterize the tax of the SFSE when the regulator is the leader

of the policy game. Using (5) and (8) we obtain

τ = −(P −MR)−
(
∂W

∂x
− ∂V

∂x

)
, (11)

where MR represents the marginal revenue. Thus, the second-best emission tax

is equal to minus the difference between the price and the marginal revenues

11In Rubio (2006) the conditions that explain this coincidence in economic applications of

differential games are studied. An example of a paper where this coincidence occurs that

addresses an issue related with the one analyzed in this paper is Wirl (2014).
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plus the difference between the social and private valuations of the pollution

stock. The first term reflects the distortion created by the market power of the

firm that leads the firm to value the output at the marginal revenue instead of

valuing it at the market price. The second term reflects the difference between

the social shadow price of the pollution stock, −∂W/∂x, and the monopolist’s

shadow price of the pollution stock, −∂V/∂x. Unfortunately, at this point we

cannot advance in the analysis of the tax components and sign without giving

more structure to our model because at this level of generality the shadow prices

of the pollution stock are given by unknown value function derivatives. For this

reason, in the next two sections, we investigate this issue solving, first, the policy

game set up in this section when marginal damages are constant; and second,

when they are increasing. We will see that the equilibrium tax rate changes

remarkably with the specification of the environmental damages.

4. The Linear-State (LS) Policy Game

The LS differential game we analyze in this section considers a monopolist

that faces a linear (inverse) demand function given by P = a− q, and operates

with a quadratic investment cost function C(w) = γw2/2, γ > 0. On the

other hand, the environmental damages are given by the linear function D(x) =

dx, d > 0.

For this specification of the model, the first-order conditions that character-

ize the SFSE, (5), (8) and (10) can be written as follows

a− 2q = c+ τ − ∂V

∂x
, a− q = c− ∂W

∂x
, γw =

∂V

∂y
,

that yield the optimal strategies for the output and the investment

q = a− c+
∂W

∂x
, w =

1

γ

∂V

∂y
. (12)

Then by difference we can obtain the emissions

s = q − y = a− c− y +
∂W

∂x
. (13)
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Finally, the resulting tax using the two first conditions is given by the fol-

lowing expression

τ =
∂V

∂x
− 2

∂W

∂x
− (a− c). (14)

This expression can be rewritten as in (11) yielding

τ = −
(
a− c+

∂W

∂x

)
−
(
∂W

∂x
− ∂V

∂x

)
= −q −

(
∂W

∂x
− ∂V

∂x

)
, (15)

where −q is the difference between the marginal revenue and the price for a

linear demand function, and the second term is the difference between the social

shadow price and the firm’s shadow price for the pollution stock.

Next, we substitute the production and investment given in (12) in the reg-

ulator’s HJB equation defined by (7) and after rearranging terms the following

nonlinear partial differential equation is obtained

rW =
1

2

(
a− c+

∂W

∂x

)2

− 1

2γ

(
∂V

∂y

)2

−dx−(y+δxx)
∂W

∂x
+

1

γ

∂W

∂y

∂V

∂y
−δyy

∂W

∂y
.

(16)

Substituting in the monopolist’s HJB equation defined by (9) the following

nonlinear partial differential equation is obtained

rV =

(
a− c+

∂W

∂x

)2

−(a−c)y−2y
∂W

∂x
+

1

2γ

(
∂V

∂y

)2

−δxx
∂V

∂x
−δyy

∂V

∂y
. (17)

In order to solve this pair of equations, we propose linear representations for

the value functions12

W (x, y) = Drx+ Ery + Fr, V (x, y) = Dmx+ Emy + Fm,

that yields ∂W/∂x = Dr, ∂W/∂y = Er, ∂V/∂x = Dm, ∂V/∂y = Em with

Dr, Er, Fr, Dm,

Em and Fm unknowns to be calculated.

SubstitutingW, ∂W/∂x, ∂W/∂y, V, ∂V/∂x, ∂V/∂y into (16) and (17) yields

a system of algebraic Riccati equations that presents a unique solution for the

12Where the subscripts r and m stand for regulator and monopoly, respectively.
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coefficients of the value functions

D∗r = − d

r + δx
, E∗r =

d

(r + δx)(r + δy)
,

D∗m = 0, E∗m =
2d− (a− c)(r + δx)

(r + δx)(r + δy)
.

From these coefficients, we can obtain the optimal strategies defined by

(12).13

Proposition 2. The optimal strategies for the production and investment are

q∗ = a− c− d

r + δx
,

w∗ =
2d− (a− c)(r + δx)

γ(r + δx)(r + δy)
.

The two variables satisfy the non-negativity constraint provided that

1

2
(a− c)(r + δx) ≤ d ≤ (a− c)(r + δx). (18)

Notice that if d is too large, it does not make sense to produce the good

from an economic perspective because the environmental damages are extremely

huge. Instead if d is too low, it does not pay to invest in abatement capacity

because the marginal value of abatement capacity, ∂V/∂y = E∗m, is negative.

Moreover, it is straightforward to see that an increase in marginal damages re-

duces production and increases investment and consequently leads to a decrease

in the steady-state pollution stock and to an increase in abatement capacity as

can be checked below.

Next, we analyze the dynamics of the state variables given by the following

system of differential equations

ẋ = a− c− d

r + δx
− y − δxx, (19)

ẏ =
2d− (a− c)(r + δx)

γ(r + δx)(r + δy)
− δyy. (20)

13We omit coefficients F ∗
r and F ∗

m because they do not affect the results we obtain in this

section.
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The steady state of the system is given by

x∗SS =
(a− c)(r + δx)(1 + (r + δy)γδy)− d(γδy(r + δy) + 2)

γδxδy(r + δx)(r + δy)
,

y∗SS =
2d− (a− c)(r + δx)

γδy(r + δx)(r + δy)
,

that yield the following value for the steady-state emissions: s∗SS = q∗ − y∗SS =

δxx
∗
SS .

The steady-state values are non-negative provided that

1

2
(a− c)(r + δx) ≤ d ≤ (a− c)(r + δx)(1 + (r + δy)γδy)

γδy(r + δy) + 2
, (21)

where the upper bound is lower than the upper bound in (18).

Next, we calculate the characteristic equation of the homogeneous system

corresponding to the two linear first-order differential equations (19) and (20):

λ2 + (δx + δy)λ+ δxδy = 0. (22)

The equation has two negative real roots λ1 = −δy and λ2 = −δx and the

general solution for the dynamic system (19) and (20) provided that δy 6= δx

is14

x(t) =
y0 − ySS
δy − δx

e−δyt +

(
x0 − xSS −

y0 − ySS
δy − δx

)
e−δxt + xSS , (23)

y(t) = (y0 − ySS)e−δyt + ySS . (24)

Thus, we can conclude that

Proposition 3. The system of differential equations for the stock of pollution

and abatement capacity has a unique positive steady state provided that d belongs

to the interior of interval (21). The steady state is a stable node and is globally

stable, i.e. for any initial (x0, y0) the system converges asymptotically to the

steady state.

As usual the dynamics of the abatement capacity depends on its initial value.

If y0 is lower than the steady-state value, the abatement capacity increases.

14The particular case δx = δy is analyzed in the Appendix in the proof of Prop.5.
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However, if y0 is higher than the steady-state value, the opposite occurs. Given

this dynamics we can write the dynamics of emissions as follows

s(t) = q∗ − y(t) = q∗ − y0e−δyt − (1− e−δyt)y∗SS .

If d belongs to the interval (21), the steady-state emissions are positive and

consequently q∗ is larger than y∗SS so that s(t) is positive provided that y0 is

lower than q∗ i.e. that the initial abatement capacity is lower than the gross

emissions (production).15

The dynamics of the pollution stock is more complex because it depends

on the relationship between the initial values of the state variables and their

corresponding steady-state values and also on the relationship between δx and

δy. The following proposition summarizes the dynamics of the model and Figures

1 and 2 illustrate it. The proof is presented in the Appendix.

Proposition 4. Along the optimal time paths,

• The abatement capacity increases (decreases) if the initial abatement ca-

pacity is lower (larger) than its steady-state value.

• The stock of pollution increases (decreases) if the initial stock is lower

(larger) than its steady-state and the initial point (x0, y0) is above (below)

isocline ẏ = 0 and below (above) isocline ẋ = 0.

• In all other cases, the temporal evolution depends on how characteristic

roots −δx and −δy compare.

– If δx ≥ δy, the pollution stock first increases (decreases) until isocline

ẋ = 0 is reached and decreases (increases) afterwards provided that

y0 < (>)y∗SS .

15As building an abatement capacity has a cost for the firm and no benefit in an unregulated

market we should expect y0 = 0. However, in order to have a complete view of the dynamics,

we keep the assumption y0 ≤ q∗, that implies that the initial stock can be greater than or

lower than its steady-state value.
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– If δx < δy, the pollution stock first increases (decreases) until isocline

ẋ = 0 is reached and decreases (increases) afterwards provided that

y0 < (>)y∗SS and the initial point is below (above) the straight line

y − y∗SS = (x − x∗SS)(δy − δx). If this is not the case and the initial

point is above (below) the straight line y− y∗SS = (x− x∗SS)(δy − δx),

the pollution stock is monotonically increasing (decreasing).

Figure 1 shows the phase diagram when δx ≥ δy. In this case, the pollution

stock is increasing (decreasing) only when the initial values of the abatement

capacity and pollution stock are below (above) isocline ẋ = 0 and above (below)

isocline ẏ = 0. In the other cases, if the steady-state abatement capacity is lower

(higher) than its steady-state value, the temporal path of the pollution stock has

a maximum (minimum) with a first phase in which the pollution stock increases

(decreases) and a second phase with a decreasing (an increasing) pollution stock.
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Figure 1: Dynamics of the LS game for δx ≥ δy (left) and δx < δy (right)

The dynamics of the model for δx < δy is also represented in Figure 1. The

dynamics is richer with six areas that define different temporal paths. Now, the

pollution stock is increasing (decreasing) when the initial values of the abate-

ment capacity and pollution stocks are below (above) isocline ẋ = 0 and above

(below) the straight line that passes through the steady state and has as di-

rection vector the eigenvector (1, δy − δx). In these two cases, the abatement
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capacity can increase or decrease depending on whether the initial value is be-

low or above the steady-state value. If the initial values of the state variables

are in the other two areas, the temporal paths have the same profile than in the

previous case when δx ≥ δy. Finally, it should be pointed out that in this case

if the initial values of state variables are on the straight line with positive slope

that crosses the steady state, the ratio y(t)/x(t) will be constant throughout

the optimal paths that converge to the steady state.

Next, using coefficient D∗r , we can obtain the optimal tax defined by (14).

Proposition 5. The optimal emission tax is

τ∗ = −(a− c− d

r + δx
) +

d

r + δx
,

which is positive provided that condition (21) is satisfied.

According to expression (15), the first component of the tax is the output

that gives the difference between the marginal revenue and the price for a linear

demand function, and the second component is the difference between the social

shadow price of the pollution stock, −∂W/∂x = −D∗r = d/(r + δx), that is

positive, and the private shadow price of the pollution stock, ∂V/∂x = D∗m,

that for constant marginal damages is zero. Thus, the second component of

the emission tax is positive and the sign of the tax depends on the importance

of marginal damages. If these damages are large enough to justify a positive

investment in abatement capacity, the tax is positive and increases with the

marginal damages. In any case, we have that the tax is lower than the social

shadow price of the pollution stock.

On the other hand, the fact that the monopolist’s shadow price is zero in-

dicates that as the tax is constant the optimal decision on output is given by

the maximization condition of current net profits. Thus, for constant marginal

damages the reference differential game can be defined assuming that the firm

myopically selects the output level. However, as we will see in the next section

this is not the case when marginal damages are increasing.
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Finally, the analysis developed in this section shows that although the marginal

damages determine the level of the steady-state values of the different variables

of the model, the dynamics depends on the relationship between the deprecia-

tion rate of the abatement technology and the decay rate of pollution, although

in any case the steady state is globally stable.

5. The Linear-Quadratic (LQ) Policy Game

In this section we assume that environmental damages are quadratic, D(x) =

dx2/2, d > 0, implying that marginal damages increase with the pollution stock.

The first-order conditions (5), (8) and (10) that characterize the SFSE do

not depend explicitly on environmental damages. Therefore, the expressions

characterizing the optimal strategies for production, investment and the tax are

the same expressions as those we obtained for the linear policy game. Thus, the

differential equations we obtain substituting the optimal strategies in the HJB

equations are also the same equations as those we obtained for the LS policy

game, except that in (16) the linear term representing the damages must be

substituted by the quadratic term we have just defined.

In order to solve the pair of equations (16) and (17), we propose linear-

quadratic representations for the value functions

V (x, y) = Amx
2 +Bmy

2 + Cmxy +Dmx+ Emy + Fm,

W (x, y) = Arx
2 +Bry

2 + Crxy +Drx+ Ery + Fr,

implying

∂V

∂x
= 2Amx+ Cmy +Dm,

∂V

∂y
= 2Bmy + Cmx+ Em,

∂W

∂x
= 2Arx+ Cry +Dr,

∂W

∂y
= 2Bry + Crx+ Er,

where all the coefficients of the value functions are unknowns to be determined.

SubstitutingW, ∂W/∂x, ∂W/∂y, V, ∂V/∂x, ∂V/∂y into (16) and (17) yields

a system of algebraic Riccati equations that must hold for every x and y. Then if

this system of equations for the coefficients of the value functions has a solution,
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from (12) and (13) the optimal strategies for output, investment and emissions

would be

q(x, y) = a− c+Dr + 2Arx+ Cry, (25)

w(x, y) =
1

γ
(Em + Cmx+ 2Bmy), (26)

s(x, y) = q(x, y)− y = a− c+Dr + 2Arx+ (Cr − 1)y. (27)

Finally, using (14) we obtain the optimal strategy for the emission tax16

τ(x, y) = Dm − 2Dr − (a− c) + 2(Am − 2Ar)x+ (Cm − 2Cr)y. (28)

Unfortunately, the system of Riccati equations has not an analytical solution.

For this reason, we develop a numerical exercise to investigate the dynamics

of the system and in particular of the tax when environmental damages are

quadratic.

Numerical exercise

We have solved the model for the following values of the parameters: a =

1000, c = 20, r = 0.05, γ ∈ {2.5, 5, 10, 20}, d ∈ {2.5, 5, 10, 20} and three

combinations of δx and δy, (δx = 0.05, δy = 0.10), (δx = 0.10, δy = 0.10) and

(δx = 0.10, δy = 0.05), amounting to a total of 48 combinations.

We find that for all combinations of parameter values, the system of Riccati

equations has a unique (globally) stable solution and for all solutions the dif-

ferent terms of the optimal strategies have the same sign given by the following

expressions:17

Output

q(0, 0) = a− c+Dr > 0,
∂q

∂x
= 2Ar < 0,

∂q

∂y
= Cr > 0. (29)

16The derivation of the dynamics of the model has been relegated to the Appendix.
17The system of Ricatti equations and the results of the numerical exercise are presented in

the Appendix. Although we restrict ourselves in this paper to the analysis of linear strategies,

we would like to mention that as has been pointed out among others by Rowat (2007) a

continuum of non-linear strategies may exist for our LQ policy game.
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Investment

w(0, 0) =
Em
γ

> 0,
∂w

∂x
=
Cm
γ

> 0,
∂w

∂y
=

2Bm
γ

< 0.

Emissions

s(0, 0) = a− c+Dr > 0,
∂s

∂x
= 2Ar < 0,

∂s

∂y
= Cr − 1 < 0.

Tax/subsidy

τ(0, 0) = Dm − 2Dr − (a− c) < 0,

∂τ

∂x
= 2(Am − 2Ar) > 0,

∂τ

∂y
= Cm − 2Cr < 0. (30)

In words, output decreases with the pollution stock, but increases with the

abatement capacity, while the opposite occurs for investment. On the other

hand, emissions are decreasing both with respect to the pollution stock and

with respect to the abatement capacity. Finally, (30) shows that the tax in-

creases with the pollution stock but decreases with the abatement capacity.

The numerical analysis also points out that when the two state variables are

zero, the tax becomes a subsidy. To have a better understanding of what drives

the policy rule to give a subsidy when the two state variables are zero, we ob-

serve the second component of the tax given by (15): the difference between

the social shadow price of the pollution stock and the firm’s shadow price of

the pollution stock, because we already know that the first component is always

negative. This difference is defined by the following expression

−
(
∂W

∂x
− ∂V

∂x

)
= Dm −Dr + 2(Am −Ar)x+ (Cm − Cr)y, (31)

and our results establish that

Dm −Dr < 0, Am −Ar > 0, Cm − Cr > 0.

Thus, the tax becomes a subsidy for x = y = 0 because the difference between

the social shadow price of the pollution stock, −∂W (0, 0)/∂x = −Dr > 0, and

its private shadow price, −∂V (0, 0)/∂x = −Dm > 0 is negative. Notice that
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when marginal damages are increasing the firm’s shadow price of pollution stock

is positive. The monopolist is aware of the dependence of the optimal policy

with respect to the evolution of the pollution stock and takes into account this

dependence when it chooses the levels of output and investment associating a

shadow price with the pollution stock equal to the negative effect of an (in-

finitesimal) increase in the pollution stock on the discounted present value of

net profits. According to the optimal policy rule given by (28) and the signs

determined by (30), this negative effect is given by the fact that an increase

in the pollution stock increases (decreases) the tax (subsidy). Then, we can

conclude that the sign of the optimal policy will depend on the initial values

of the pollution stock and the abatement capacity and on the dynamics of the

system. However, for all the numerical simulations we have carried out, the

sign of the optimal policy at the steady state as well as the difference in the

shadow prices are also negative. The tax operates as a subsidy at the steady

state because its two components are negative as it occurs when x = y = 0.

Thus, we find that the divergence between the shadow prices of the pollution

stock strengthens the divergence between the price and the marginal revenue

of output.18 In any case, as established by (15) the subsidy is larger than the

difference between the social and private valuations of the pollution stock.

In order to have a complete view of the divergence between the private and

social assessment of the state variables by the monopolist and the regulator,

we have also computed the difference in the marginal benefit (value) of the

abatement capacity. This difference is given by the following expression

∂W

∂y
− ∂V

∂y
= Er − Em + (Cr − Cm)x+ 2(Br −Bm)y.

The numerical analysis establishes that

Er − Em > 0, Cr − Cm < 0, Br −Bm > 0.

18In some cases, the difference in the shadow prices can be positive when the stock increases,

but it becomes negative as the system approaches the steady state. We present the relative

weight of this difference on the subsidy at the steady state in Tables 5 and 6 in the Appendix.
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Now, when the initial values of the pollution stock and the abatement capacity

are zero, the regulator’s marginal benefit of the abatement capacity is larger

than the monopolist’s marginal benefit of the abatement capacity. Furthermore,

we also find that this difference is positive at the steady state. Thus we can

conclude that when a monopoly creates a stock externality and the market is

regulated using an emission tax, the private shadow price of the pollution stock

is larger than the social shadow price of the pollution stock at the steady state,

while the opposite occurs for the marginal values of the abatement capacity. In

this framework the optimal tax ultimately becomes a subsidy.

Next, we present the results of the sensitivity analysis of steady-state values

with respect to environmental damages and investment costs, i.e., with respect

to parameters d and γ. For the three combinations of δx and δy we consider

in this numerical exercise, we find that an increase in d reduces the pollution

stock, increases the abatement capacity, negatively affects output, and increases

the subsidy. This positive effect on the subsidy is clearly understood taking into

account that according to the signs given by (30) for the different terms of the

optimal strategy of the tax, the subsidy decreases with the pollution stock and

increases with the abatement capacity. Thus, if d reduces the pollution stock and

expands the abatement capacity an increase in the subsidy should be expected.

On the other hand, an increase in γ reduces both the pollution stock and the

abatement capacity and negatively affects both output and the subsidy. In this

case, the reduction in the pollution stock increases the subsidy, but the decrease

in the abatement capacity reduces it. The numerical exercise shows that the

net effect is a decrease in the subsidy. The effects on steady-state emissions and

investment are the same that those obtained for the pollution stock and the

abatement capacity.

We close this section analyzing the dynamics of the model. We would want to

point out that for all the cases analyzed in our numerical exercise the following

inequalities apply:

dy

dx

∣∣∣∣
ẋ=0

= −2Ar − δx
Cr − 1

< 0,
dy

dx

∣∣∣∣
ẏ=0

= − Cm
2Bm − γδy

> 0.
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Thus, the slope of isocline ẋ = 0 is negative as in the case with constant marginal

damages, but the slope of isocline ẏ = 0 is positive. Then, if the combina-

tion (x, y) is below (above) isoclines ẋ = 0 and ẏ = 0 , then both variables

increase (decrease). In the other cases one variable increases but the other

decreases. Moreover, the coefficients of characteristic equation (B.5) are both

positive yielding two negative roots with λ2 < λ1 < 0 and the dynamics of the

system coincides with the one described in Prop. 5 for δx > δy and represented

in Fig. 1.19 Suppose now that the initial abatement capacity is lower than its

steady-state value. If the initial pollution stock is below isocline ẋ = 0, then the

sign of the initial tax and its dynamics remain undetermined. The sign of the

initial tax depends on the initial values of the state variables and the dynam-

ics could be increasing or decreasing because both the abatement capacity and

the pollution stock are increasing and according to policy rule (28), τ increases

with the pollution stock but decreases with the abatement capacity. However,

once the optimal path of the state variables cuts isocline ẋ = 0 in the phase

diagram of Fig. 1, τ will decrease because the pollution stock will fall and the

abatement capacity will continue to grow. Then given that τ is negative at the

steady state, τ will necessarily take a negative value when the state variables

approach the steady state. Thus, we cannot reject that during a first phase,

when the pollution stock is increasing, the optimal policy is to tax emissions,

but once it reaches its maximum value and begins to decrease the sign of the

policy will change. If the initial pollution stock is above isocline ẋ = 0 initially a

tax could be applied because the initial pollution stock is high, but as the stock

decreases the tax also decreases and will finally become a subsidy. Nevertheless,

we cannot rule out the possibility of applying a subsidy at all t.20

Finally, we would like to point out that the only relevant change in the

optimal paths when the initial pollution stock is above the isocline ẋ = 0 is

that the initial value for τ is higher than its steady-state value.

19Notice that in the linear model λ1 = −δy and λ2 = −δx, and if δx > δy , then λ2 < λ1.
20In the Appendix we present an example.
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6. Conclusions

This paper characterizes the optimal policy rule for regulating a polluting

monopoly when the firm has the option of investing in an abatement technology.

We obtain the policy rule by characterizing the stagewise feedback Stackelberg

equilibrium (SFSE) of a dynamic policy game between a regulator and a monop-

olist. The regulator acting as the leader chooses an emission tax to maximize

net social welfare, and the monopolist playing as the follower selects the out-

put and the investment to maximize profits. The SFSE gives the leader only a

first-mover advantage in the short run.

In the first part of the paper, we find that the optimal tax is lower than the

difference between the social and private valuations of the pollution stock. In

order to deepen our understanding of the properties of the tax, in the second

part of the paper, we first solve a linear-state (LS) policy game and, secondly, a

linear-quadratic (LQ) policy game. The results obtained from these two games

are remarkably different although in both cases the steady state is a stable node

and is globally stable. With constant marginal damages the optimal policy

consists of taxing emissions at a constant rate if the marginal damages are

important enough. The difference between the social and private shadow prices

of the pollution stock is positive and larger than the negative component of the

tax, given by the difference between the marginal revenue and the price implied

by the firm’s market power. Unfortunately, the LQ policy game does not have

an analytical solution but a numerical exercise allows us to find some patterns in

the range of parameter values we have considered. The numerical analysis shows

that according to the optimal policy rule the tax increases with the pollution

stock, decreases with the abatement capacity and takes a negative value when

the two state variables are zero. Moreover, we obtain that at the steady state

the two components of the tax are negative. Our numerical simulations show

that the optimal policy is a subsidy at the steady state. This result is the

combination of two forces. First, the monopolist evaluates the output at the

marginal revenue when the regulator evaluates it according to the price; second,
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the shadow price that the monopolist associates with the pollution stock is larger

than the shadow price the regulator uses to evaluate the pollution stock. The

optimal temporal path of the optimal policy is difficult to characterize because

it depends, among other things, on the initial conditions. However, we have

found that it converges to the steady state from above, i.e. the optimal policy is

an increasing subsidy when it approaches the steady state. This result is driven

by the negative effect that the accumulation of abatement capacity has on the

tax.

Thus, our analysis establishes that ultimately the optimal environmental

policy consists of subsidizing emissions, although we cannot reject that the

subsidy could be applied for the entire temporal horizon. Obviously, this type

of policy recommendation is difficult to fit from an environmental perspective.

For this reason, it would be very interesting to investigate whether an alternative

policy instrument as an emission standard could work as well as a subsidy in

terms of welfare to regulate a firm with market power that has the possibility of

investing in an abatement technology. This is an issue we point out for future

research. It would be also very interesting to characterize the first-best policy

that implements the efficient outcome. Another extension we would like to

address is to consider other types of abatement technologies different from the

end-of-pipe type in order to check how general is the result we have obtained

in this paper when marginal damages are increasing. Two more issues could

be in the agenda. First, to introduce into the analysis that the abatement

technology can be subject to stochastic innovation or that there is uncertainty

on environmental damages. And, second, it would be also interesting, following

Lambertini et al. (2017), to know how an increase in competition can modify

the results obtained in this paper.
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Appendix A. Proof of Proposition 5

In order to evaluate the dynamics of the pollution stock, we calculate the

first derivative of (23) that can be rearranged as follows

ẋ(t) = (x∗SS − x0)δxe
−δxt − y0 − y∗SS

δx − δy

(
δx
eδxt
− δy
eδyt

)
. (A.1)

To evaluate the sign of this derivative and to know whether the stock is in-

creasing or decreasing, we begin studying whether ẋ(t) = 0 has a solution. For

ẋ(t) = 0, expression (A.1) yields

(x∗SS − x0)δx =
y0 − y∗SS
δx − δy

(
δx − δye(δx−δy)t

)
. (A.2)

On the left-hand side we have a constant and on the right-hand side a function

of t with the following features: initial value, y0 − y∗SS ; first derivative, −(y0 −

y∗SS)δye
(δx−δy)t; and second derivative, −(y0−y∗SS)δy(δx−δy)e(δx−δy)t. Thus, the

existence of a solution for this equation depends on the sign of the differences:

x∗SS − x0, y0 − y∗SS and δx − δy.

We initiate the analysis considering δx > δy and y0 < y∗SS . In this case, the

function on the right-hand side of (A.2) is an increasing convex function with

a negative initial value, and consequently equation (A.2) has a unique positive

solution provided that (x∗ss − x0)δx > y0 − y∗SS . This condition is satisfied if

y∗SS − δx(x0 − x∗SS) < y0, i.e. if vector (x0, y0) is below isocline ẋ = 0. Notice

that isocline ẋ = 0 is a straight line with slope −δx, so that we can write it

as follows y − y∗SS = −δx(x − x∗SS). Thus, we can conclude that if (x0, y0) is

below isoclines ẋ = ẏ = 0, the stock of pollution first increases until line ẋ = 0

is reached and decreases afterwards. However, if (x0, y0) is below isocline ẏ = 0

but above isocline ẋ = 0, the pollution stock is a monotone decreasing function

of time. Next, we suppose that y0 > y∗SS . In this case, the function on the

right-hand side of (A.2) is a decreasing concave function with a positive initial

value, and then equation (A.2) has a unique positive solution provided that

(x∗SS − x0)δx < y0 − y∗SS , i.e. if vector (x0, y0) is above isocline ẋ = 0. This

implies that if (x0, y0) is above isoclines ẋ = ẏ = 0, the stock of pollution first
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decreases until line ẋ = 0 is reached and increases afterwards. But in the case

that (x0, y0) is below isocline ẋ = 0 and above isocline ẏ = 0, the pollution

stock is a monotone increasing function of time. The dynamics we have just

described is represented in Fig. 1 (left) of the main text.

We continue the analysis considering δx < δy and y0 < y∗SS . In this case,

the right-hand side of (A.2) is an increasing concave function of time with a

negative initial value that converges to the following value

lim
t→+∞

y0 − y∗SS
δx − δy

(
δx − δye(δx−δy)t

)
=
y0 − y∗SS
δx − δy

δx > 0.

In this case, equation (A.2) has a unique positive solution if

y0 − y∗SS < (x∗SS − x0)δx <
y0 − y∗SS
δx − δy

δx. (A.3)

This condition implies, on the one hand, that y0 < y∗SS−δx(x0−x∗SS) and, on the

other hand, that y0 < y∗SS+(x0−x∗SS)(δy−δx) that requires that (x0, y0) is below

isocline ẋ = 0 and below the straight line that passes through the stationary

point (x∗SS , y
∗
SS) and has as direction vector the eigenvector (1, δy − δx). If this

is the case, the pollution stock first increases until isocline ẋ = 0 is reached and

decreases afterwards. When this condition is not satisfied because the initial

point is above isocline ẋ = 0, the pollution stock is a monotone decreasing

function; while if it is not satisfied because the initial point is above the line

y − y∗SS = (x − x∗SS)(δy − δx), the pollution stock is a monotone increasing

function.

Next, we suppose that y0 > y∗SS . When the initial value of the abatement

capacity is larger than its steady-state value, the right-hand side of (A.2) is a

decreasing convex function of time with a positive initial value that converges

to the negative value: (y0− y∗SS)δx/(δx− δy). Now, equation (A.2) has a unique

positive solution provided that

y0 − y∗SS
δx − δy

δx < (x∗SS − x0)δx < y0 − y∗SS .

This condition holds now if (x0, y0) is above isocline ẋ = 0 and line y − y∗SS =

(x − x∗SS)(δy − δx). If this is the case, the pollution stock first decreases until
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isocline ẋ = 0 is reached and increases afterwards. When this condition does

not hold, two possibilities arise. In the first possibility the initial point is below

isocline ẋ = 0, and then the pollution stock is a monotone increasing function of

time. In the second possibility the initial point is below the line with direction

vector (1, δy−δx), and in this case the stock of pollution is a monotone decreasing

function of time. Fig. 1 (right) in the main text represents the dynamics we

have just characterized.

Finally, we address the case δx = δy.When the decay rate of the pollution

stock is equal to the depreciation rate of the abatement capacity the two roots

of the characteristic equation (22) are identical and equal to δ. Then, there are

no changes in the solution of differential equation (24) that can be written as

follows

y(t) = (y0 − y∗SS)e−δyt + y∗SS .

However, now the solution for the differential equation of the pollution stock

reads

x(t) = x0e
−δt + (1− e−δt)x∗SS − (y0 − y∗SS)te−δt.

For this solution the first derivative is

ẋ(t) = e−δt ((x∗SS − x0)δ − (y0 − y∗SS)(1− tδ)) ,

so that equation ẋ(t) = 0 has a positive solution provided that the following

expression is positive

t =
1

δ
+
x0 − x∗SS
y0 − y∗SS

. (A.4)

It is obvious that this expression is positive if x0 > x∗SS and y0 > y∗SS or if

x0 < x∗SS and y0 < y∗SS . When x0 > x∗SS and y0 < y∗SS , (A.4) is positive if

y0 < y∗SS − δ(x0 − x∗SS), i.e. if the initial point is below isocline ẋ = 0. When

x0 < x∗SS and y0 > y∗SS , (A.4) is positive if y0 > y∗SS − δ(x0 − x∗SS), i.e. if the

initial point is above isocline ẋ = 0. Thus, if the initial point is below (above)

isoclines ẋ = ẏ = 0, the pollution stock first increases (decreases) until isocline

ẋ = 0 is reached and then begins to decrease (increase). In the other cases,
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the pollution stock increases (decreases) if the initial stock is below (above) its

steady-state value. This is the type of dynamics represented in Fig. 1 (left).

Appendix B. The dynamics of the LQ policy game

Finally, we derive the dynamics of the state variables in terms of the coeffi-

cients of the value functions substituting (25) and (26) in (1) and (2):

ẋ = a− c+Dr + (2Ar − δx)x+ (Cr − 1)y, (B.1)

ẏ =
1

γ
(Em + Cmx+ (2Bm − γδy) y). (B.2)

The steady state of the system is given by

xSS =
(Cr − 1)Em − (a− c+Dr)(2Bm − γδy)

(2Ar − δx)(2Bm − γδy)− Cm(Cr − 1)
, (B.3)

ySS =
Cm(a− c+Dr)− (2Ar − δx)Em

(2Ar − δx)(2Bm − γδy)− Cm(Cr − 1)
. (B.4)

In order to study the stability of this dynamic system, we calculate the

characteristic equation of the homogeneous system corresponding to the pair of

linear first-order differential equations (B.1) and (B.2).

λ2 +
1

γ
(γ(δx + δy)− 2(γAr +Bm))λ

+
1

γ
(4ArBm − 2(γδyAr + δxBm) + γδxδy − (Cr − 1)Cm) = 0.(B.5)

Then if λ1 6= λ2, the general solution to the dynamic system is

x(t) =
1

λ1−λ2
((2Ar−δx−λ2)(x0−xSS) + (Cr−1)(y0−ySS)) eλ1t

+
1

λ1−λ2
((λ1−(2Ar−δx))(x0−xSS)− (Cr−1)(y0−ySS)) eλ2t+xSS ,

y(t) =
λ1−(2Ar−δx)

(Cr−1)(λ1−λ2)
((2Ar−δx−λ2) (x0−xSS) + (Cr−1)(y0−ySS))eλ1t

+
λ2−(2Ar−δx)

(Cr−1)(λ1−λ2)
((λ1−(2Ar − δx))(x0−xSS)−(Cr−1)(y0−ySS)) eλ2t+ySS .

Appendix C. Riccati equations and steady-state values

Substituting the linear-quadratic representations of the value functions in the

system of partial differential equations (16) and (17), we obtain the following
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system of Riccati equations for the monopolist

8γA2
r + C2

m − 2γ(2δx + r)Am = 0, (C.1)

γ(Cr − 2)Cr + 2B2
m − γ(2δy + r)Bm = 0, (C.2)

−4Arγ + 2CmBm + 4ArCrγ − Cmγ(δx + δy + r) = 0, (C.3)

CmEm + 4Ar(a− c)γ − (δx + r)γDm + 4ArγDr = 0, (C.4)

−(a−c)γ−2γDr+2EmBm+2Cr(a− c)γ−γ(δy+r)Em+2CrγDr = 0, (C.5)

E2
m + 2γ (a− c+Dr)

2 − 2γrFm = 0, (C.6)

and for the regulator

4γA2
r − 2γ(2δx + r)Ar − C2

m − γd+ 2CrCm = 0, (C.7)

γC2
r − 4B2

m − 2γCr + 8BrBm − 2γ(2δy + r)Br = 0, (C.8)

2γArCr−2BmCm−2γAr+2BrCm+2CrBm−γ(δy+δx+r)Cr = 0, (C.9)

−2γAr (a− c+Dr) + CmEm + γ(δx + r)Dr − CmEr − CrEm = 0, (C.10)

−γCr (a−c+Dr)+2BmEm+γDr−2BmEr−2BrEm+γ(δy+r)Er = 0, (C.11)

−γ (a− c+Dr)
2

+ E2
m − 2ErEm + 2γrFr = 0. (C.12)

This system can be solved sequentially. The first three equations of the two

systems, (C.1)-(C.3) and (C.7)-(C.9), are independent of the rest of equations

and yield the values for coefficients Am, Bm, Cm, Ar, Br and Cr. Given these

values the fourth and fifth equations, (C.4)-(C.5) and (C.10)-(C.11), allow us

to calculate Dm, Em, Dr and Er. Finally the last equation of each system,

(C.6) and (C.12), yields Fm and Fr, respectively. For the 48 cases evaluated in

this numerical exercise, the system of the first three equations gives four real

solutions for each case but in all the cases only one solution is globally stable i.e.,

the roots of the characteristic equation (B.5) are both negative.21 For the other

solutions, the roots are both positive or one positive and the other negative.

Using the solution that is globally stable coefficients Dm, Em, Dr and Er are

21Notice that the coefficients that appear in the characteristic equation are given by this

system of six equations.

35



calculated and the signs (29)-(30) of the optimal strategies terms are determined.

The steady-state values for the pollution stock and the abatement capacity are

obtained calculating the stationary point of the dynamic system (B.1)-(B.2)

and finally substituting in the optimal strategies, the steady-state values for

production and the tax are derived.22 Next tables show the steady-state values

for these variables for two combinations of depreciation rates (δx = 0.05, δy =

0.10) and (δx = 0.10, δy = 0.05). We omit the values for the combination

(δx = 0.10, δy = 0.10) to save space. Nevertheless, they are available from the

authors upon request.

d/γ 2.5 5.0 10 20

2.5 102.8, 477.0 81.3, 469.2 64.2, 453.5 51.2, 424.3

5.0 54.7, 478.9 42.7, 470.7 33.3, 454.6 26.3, 425.2

10 28.8, 479.9 22.2, 471.5 17.1, 455.2 13.4, 425.9

20 15.0, 480.4 11.4, 471.9 8.8, 455.5 6.8, 425.9

Table C.1: Pollution stock and abatement capital (δx = 0.05, δy = 0.10)

d/γ 2.5 5.0 10 20

2.5 113.0, 478.0 92.4, 476.8 76.1, 472.2 63.5, 461.9

5.0 60.2, 482.3 48.5, 480.3 39.5, 475.1 32.7, 464.2

10 31.6, 484.6 25.2, 482.1 20.3, 476.5 16.7, 465.4

20 16.4, 485.7 13.0, 483.0 10.4, 477.3 8.5, 466.1

Table C.2: Pollution stock and abatement capital (δx = 0.10, δy = 0.05)

Using the figures in Tables C.1-C.4, we elaborate the sensitivity analysis

22Observe that at the steady state, the investment is given by wSS = δyySS and the

emissions by sSS = δxxss. For this reason, we do not find necessary to show these values in

this Appendix.
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δx = 0.05, δy = 0.1 δx = 0.1, δy = 0.05

d/γ 2.5 5.0 10 20 2.5 5.0 10 20

2.5 482.2 473.3 456.7 426.9 489.3 486.0 479.8 468.2

5.0 481.7 472.9 456.3 426.5 488.3 485.1 479.0 467.5

10 481.4 472.6 456.1 426.3 487.7 484.6 478.6 467.1

20 481.2 472.5 456.0 426.2 487.4 484.3 478.3 466.9

Table C.3: Output

δx = 0.05, δy = 0.1 δx = 0.1, δy = 0.05

d/γ 2.5 5.0 10 20 2.5 5.0 10 20

2.5 1710.1 1329.5 1009.0 730.1 1520.3 1233.1 1000.0 807.7

5.0 1815.7 1393.7 1046.5 750.9 1610.2 1289.7 1034.7 828.5

10 1906.5 1447.2 1076.9 767.5 1688.1 1337.1 1063.0 845.1

20 1981.6 1490.1 1100.7 780.4 1752.7 1375.3 1085.4 858.0

Table C.4: Subsidy

d/γ 2.5 5.0 10 20

2.5 1227.9(71.8) 856.2(64.4) 552.3(54.7) 303.2(41.5)

5.0 1334.0(73.5) 920.8(66.1) 590.2(56.4) 324.4(43.2)

10 1425.2(74.8) 974.6(67.3) 620.8(57.7) 341.2(44.5)

20 1500.4(75.7) 1017.6(68.3) 644.8(58.6) 354.2(45.4)

Table C.5: Differences in shadow prices (δx = 0.05, δy = 0.10)

d/γ 2.5 5.0 10 20

2.5 1031.0(67.8) 747.1(60.6) 520.2(52.0) 339.5(42.0)

5.0 1121.9(69.7) 804.5(62.4) 555.7(53.7) 361.0(43.6)

10 1200.3(71.1) 852.5(63.8) 584.5(54.9) 378.0(44.7)

20 1265.3(72.2) 891.0(64.8) 607.0(55.9) 391.1(45.6)

Table C.6: Differences in shadow prices (δx = 0.1, δy = 0.05)

37



δx = 0.05, δy = 0.1 δx = 0.1, δy = 0.05

d/γ 2.5 5.0 10 20 2.5 5.0 10 20

2.5 542.1 725.2 947.7 1180.0 554.5 754.5 1019.4 1351.0

5.0 532.0 716.4 940.3 1174.1 543.1 744.2 1010.1 1342.7

10 525.9 711.3 936.2 1170.8 536.4 738.2 1005.0 1338.2

20 522.4 708.5 933.9 1169.1 532.5 734.9 1002.2 1335.9

Table C.7: Differences in abatement capacity marginal value

presented in Section 5. Tables C.5 and C.6 show the absolute value of the dif-

ferences in shadow prices at the steady state and the percentage of the subsidy

that is explained by this difference. Table C.7 displays the positive difference

in the marginal values of abatement capital: ∂W/∂y − ∂V/∂y. Observe that

the difference in the shadow prices of the pollution stock decreases with γ and

increases with d, while the opposite occurs for the difference of the marginal

values of abatement capacity. Thus, the divergence in the assessment of the

pollution stock by the players increases with the environmental damages and

the divergence in the marginal value of abatement capital increases with the

investment costs.

Appendix D. An example with a subsidy for the entire temporal hori-

zon

We plot in the next two figures the optimal temporal paths of x and τ for

x0 = 0, y0 = 200, r = 0.05, δx = 0.05, δy = 0.10, d = 2.5 and γ = 20.23 For

these parameter values the optimal temporal path of τ presents negative values

23This case is characterized by a high inertia of the pollution stock and large investment

cost. Nevertheless, we would like to point out that changes in the parameters in the value

range of this numerical exercise do not affect the profile of the temporal paths, although the

levels do change. Notice that the argument we have just presented applies for all the cases we

have analyzed, because for all these cases the characteristic roots are negative and the optimal

strategy for the tax has the same properties.

38



for the entire temporal horizon. The red lines represent the steady-state values.
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Figure D.2: The optimal paths of pollution stock (left) and τ (right)

The figures show the coincidence between the temporal profile of x and τ.

As the pollution stock increases, τ also increases. As the abatement capacity is

also increasing, the maximum τ is negative in this case, and the optimal policy

consists of applying a subsidy for all t.

In Figure D.3 we draw the optimal temporal trajectories of output and emis-

sions. Emissions are initially decreasing as a result of a decreasing output (gross

emissions) and an increasing abatement capacity, but the recovery of output

brings also a recovery of emissions that converge to their steady-state value

from below as also happens with output. Although initial emissions are de-

creasing, they are large enough to more than cover the decay of the pollution

stock resulting in an increase in this stock until its maximum value is reached.

From this point, emissions take values below the decay of the pollution stock

and this stock decreases converging to its steady-state value from above. Ob-

serve that the increase in the abatement capacity makes compatible an increase

in gross emissions (output) with a decrease in the pollution stock.

We omit the representation of the temporal paths for the abatement capacity

and the investment because the first one is always increasing and the second one

is always decreasing.

39



0 2 4 6 8 10

280

300

320

340

360

380

400

420

440
q

t
1 2 3 4 5 6

0

2

4

6

8

10

12

14

16

18

20

t

s

Figure D.3: The optimal paths of output (left) and emissions (right)
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