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 

Abstract—In this paper it is proposed a 

Proportional-Integral-Derivative (PID) controller 

integrated with a Neural Network (NN) to ensure QoS 

bandwidth requirements in Passive Optical Networks 

(PONs). To the best of our knowledge, this is the first 

time an approach that implements a NN to tune a 

PID to deal with QoS in PONs is used. In contrast to 

other tuning techniques such as Ziegler-Nichols (ZN) 

or genetic algorithms (GA), our proposal allows a 

real-time adjustment of the tuning parameters 

according to the network conditions. Thus, the new 

algorithm provides an online control of the tuning 

process unlike the ZN and the GA techniques, whose 

tuning parameters are calculated offline. The 

algorithm, called NN-SPID (Neural Network Service 

level PID), guarantees minimum bandwidth levels to 

users depending on their SLA (Service Level 

Agreement) and it is compared with a tuning 

technique based on genetic algorithms (GA-SPID). 

The simulation study demonstrates that NN-SPID 

continuously adapts the tuning parameters achieving 

lower fluctuations than GA-SPID in the allocation 

process. As a consequence, it provides a more stable 

response than GA-SPID, since it needs to launch the 

GA to obtain new tuning values. Besides, NN-

SPID guaranties the minimum bandwidth levels 

faster than GA-SPID. Finally, NN-SPID is more robust 

than GA-SPID under real time changes of the 

guaranteed bandwidth levels as GA-SPID shows high 

fluctuations in the allocated bandwidth, especially 

just after the change is made. 

 

Index Terms—Proportional-Integral-Derivative 

(PID); Neural Network (NN), Passive Optical Network 

(PON); Dynamic Bandwidth Allocation (DBA);  
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I. INTRODUCTION 

assive Optical Networks (PONs) and LR-PONS (Large 

Range PONs) are the most deployed access network 

technologies all over the world in the last few years. 

In fact, the report presented in the FTTH Council [1] states 

that in Europe about 22 million homes will be connected by 

the end of 2018, amounting to 10.6% of all homes. 

Moreover, 100 million people in the Asia-Pacific region are 

now subscribed to Fiber to the Home (FTTH) services by 

means of PON infrastructures. In a typical configuration a 

Passive Optical Network follows a tree topology between the 

Optical Line Terminal (OLT), located in the Central Office, 

and an Optical Network Unit (ONU), located at the user’s 

house (Fig. 1).  These access networks use optical fiber as 

the transmission medium and they are provided with two 

channels, that is, two independent wavelengths. In the 

upstream channel (from ONUs to the OLT) PONs have a 

multipoint-to-point connectivity so every ONU share the 

same wavelength. As a consequence, a MAC (Medium 

Access Control) protocol is required to manage data 

collisions of different users (ONUs). Dynamic Bandwidth 

Allocation (DBA) algorithms, based on the TDMA (Time 

Division Multiple Access) protocol, is the most extended 

option, as they dynamically distribute the available 

bandwidth depending on the real time bandwidth demand 

or the Quality of Service (QoS) requirements contracted by 

end users [2-9]. On the other hand, the connectivity in the 

downstream channel (from the OLT to the ONUs) is point-

to-point so the optical splitter (Fig. 1) broadcasts the input 

traffic to every ONU. 
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Figure 1.Typical topology of a PON and LR-PON access 

infrastructure. 

Regarding Quality of Service (QoS), access networks have 

to differ among priority profiles by means of Service Level 

Agreements (SLA) that are contracted by users with service 

providers. Each profile consists of different services and 

applications and the PON should ensure some requirements 

for each service typically associated with minimum 

guaranteed bandwidth levels, maximum delays or 

maximum permitted jitters. These QoS restrictions have to 

be efficiently fulfilled by DBA algorithms and it is highly 

desirable that the performance of these algorithms becomes 

independent from real time network or traffic conditions. In 

this way, the majority of DBA algorithms are focused on 

complying with QoS requirements [10-11] stipulated by 

service providers. The most common type of SLA contract 

regards to ensure minimum bandwidth levels depending on 

the profile priority and its related applications or services, 

so service providers should be provided with robust DBA 

algorithms that comply with these guaranteed bandwidths. 

Authors in [12] proposed an algorithm that allows 

bandwidth and delay bounds for guaranteed service traffic, 

but they do not fulfill the bandwidth for the entire profile. 

In [13], authors proposed a DBA algorithm to provide 

bandwidth guarantees for only high priority subscribers 

based on the contracted SLA while providing best-effort 

service to the remaining subscribers. Moreover, the 

algorithm developed in [14] guarantees fairness among 

users by allocating excess bandwidth proportional to their 

subscription rates. On the other hand, many research 

algorithms apply fixed weighted factors to each SLA to 

comply with its associated minimum bandwidth 

requirements [15-16].  However, these algorithms cannot 

properly react when real time changes are done by service 

providers in the SLA conditions. Therefore, it is desirable 

that the DBA algorithms can be independent from the 

initial weights or bandwidth conditions and they can be 

able to automatically adapt to the new network conditions. 

To overcome this situation, Proportional-Integral-

Derivative (PID) systems provide a robust way to 

automatically control QoS requirements to end users in 

PONs.  PID controllers are able to offer a reliable, stable 

and effective response when controlling different systems 

and they are used in many environments due to their good 

performance [17-20]. However, their implementation in 

optical networks is quite reduced. For example, one PID 

controller was integrated in dynamic optical burst-switched 

networks [21] to model a wavelength-locking loop in order 

to stabilize the output of tunable lasers. In the articles [22-

23] authors designed controllers to manage certain tasks in 

optical grid networks and for the establishment of 

lightpaths in WDM networks. Besides, authors in [24] 

proposed a GA-based PID active queue management control 

design for a class of TCP communication networks. Quite 

recently, we proposed the design of PID and P controllers to 

efficiently deal with bandwidth and delay requirements in 

PONs [25-26]. In particular, the algorithm in [25] proposes 

a PID that controls that different profiles are ensured 

minimum guaranteed bandwidth levels according to their 

contracted SLA. Besides, in [26] we implemented a P 

controller that supports QoS requirements regarding 

maximum delays of high sensitive traffic. Both strategies 

demonstrated best performance and robustness than other 

previous existing DBA algorithms.  

However, PID systems need to be tuned according to the 

system under control. A great number of tuning techniques, 

such as the well-known Ziegler-Nichols frequency response 

method, are manual and based on experiments, so they are 

laborious, quite slow and imprecise. As a consequence, 

many novel tuning approaches implement expert systems 

techniques to automatically tune PID controllers with high 

accuracy and robustness [27] because they provide 

intelligent advice or make intelligent decisions using rule-

based programs or expertise knowledge in one specific field. 

Some of these techniques are fuzzy logic, genetic 

algorithms, artificial intelligence or neural networks.  On 

the one hand, fuzzy logic sometimes bases the reasoning 

and decisions on incomplete information similar to that of 

human beings [28] and if the system is complex, the 

selection of the fuzzy rules and functions may be a laborious 

issue [29-30]. In contrast, genetic algorithms have 

demonstrated better performance, stability and robustness 

than other techniques providing a range of good solutions 

for the tuning parameters, as genetic algorithms select and 

reproduce the best individuals of each population [20] [31-

35]. Consequently, in a recent research study [36] we 

designed and implemented a tuning technique based on a 

genetic algorithm integrated in a P controller to deal with 

QoS delay constraints of high priority services in PONs. 

Although the simulation study showed a very good 

performance to control network parameters, genetic 

algorithms are an offline technique, which means that if 

traffic or network conditions change along the time, it 

should be necessary to launch the genetic algorithm to look 

for the best solutions (tuning parameters) under the new 

conditions. Consequently, it should be quite appealing the 

integration of online tuning techniques to solve this 

problem. Therefore, in this proposal we have selected a 

neural network to design an online and an adaptive tuning 

process along the time [37-39]. However, traditional Neural 

Networks (NN) need to be provided with good examples to 

be trained and consequently the learning process could 

become quite long, because their performance highly 

depends on the amount of data they are trained with [28]. 

In contrast, our proposal focuses on developing a self-

learning and adaptive neural network that permits an 

online and real-time adjustment of the tuning parameters 

of the PID according to the recent working status of the 

network. In fact, there are many algorithms in the 

literature that implement self-adaptive neural networks to 

design intelligent PID controllers [40-43]. In particular, we 

propose to develop an expert and intelligent PID controller 

based on a NN in order to automatically provide minimum 

bandwidth levels to different profiles. To the best of our 
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knowledge this is the first bandwidth allocation algorithm 

that implements a NN technique to optimize the tuning 

process in PID controllers to efficiently provide QoS 

bandwidth guarantees in PONs.  

The rest of this paper is organized as follows. Section II 

describes the PID controller implemented to provide 

bandwidth guarantees to different kind of user profiles. 

Moreover, it is explained the designed Neural Network to 

tune the controller. Section III shows the simulation results 

and the discussion of results. Section IV addresses the 

conclusions of the paper and some future research 

proposals. 

II.  DESIGN OF THE PID CONTROLLER WITH AN AUTO-

ADAPTIVE NEURAL NETWORK TO GUARANTEED MINIMUM 

BANDWIDTH LEVELS TO DIFFERENT PRIORITY PROFILES 

A. Principles of Neural Networks 

Neural Networks are simplified mathematical models 

that try to emulate the human nervous system so they try 

to extract brain capacities to solve complex problems. A 

neural network is a big mesh that propagates signals from 

one neuron to others and it constantly modifies the strength 

of the response in order to activate or inhibit the connection 

between neurons. Artificial neural networks work in the 

same way [44]. Then, each artificial neuron has an internal 

state, called activation level, so each neuron receives 

signals that permit to change its state using the activation 

function and the received signals. The input of one neuron 

is calculated as the sum of every input weighted by a factor, 

as it can be observed in Fig. 2.  

 
Figure 2. Structure of one artificial neuron and a neural network 

Therefore, this synaptic weight (positive, negative, zero) 

defines the strength of the connection between two neurons. 

For example, a positive weight works as a positive 

stimulation and a negative weight acts as an inhibitor. As a 

consequence, by means of the adjustment of the synaptic 

weights the neural network adapts its response to different 

environments. Finally, the input of the neuron is processed 

by the activation function, that provides the output of the 

neuron, and this output is propagated to the next connected 

neurons [44]. On the other hand, the organization of the 

neurons inside the network is the topology and it depends 

on the number of layers, the number of neurons at each 

layer and the degree of connection between neurons. The 

most common neural networks are multilayer, so the input 

layer receives information from outside and the last layer is 

the final output. Furthermore, there are several 

intermediate layers called hidden layers (Fig. 2). 

 

B. Design of the PID controller to ensure QoS 

bandwidth requirements in the OLT 

In previous works we have developed several algorithms 

based on PIDs to provide QoS requirements in PON 

networks.  In fact, the DBA algorithm presented in [25], 

called SPID (Service level agreement PID), efficiently 

assigns minimum bandwidth levels using a PID controller. 

The main purpose of PID controllers and its variants (P and 

PI controllers) is to keep the value of a variable close to a 

reference value [18][45]. Thus, the controller calculates the 

error, defined as the difference between the current value of 

the variable under control and its reference value. 

According to this committed error (e[n]), the PID updates 

one control signal (u[n]), following equation (1). This control 

signal is composed by the proportional term (regards the 

current error), the integral term (accumulation of past 

errors), and the derivative term (prediction of future errors). 

Moreover, the variable Kp is the proportional gain, Ti is the 

integral gain and Td is the derivative gain. 

0

[ ] [ ] [ ] ( [ ] [ 1])  
n

sample d

pp p

mi sample

T T
u n K e n K e n K e n e n

T T

           (1) 

To assign bandwidth to each ONUi at every cycle ( )ionu

allocB , 

the algorithm implements a polling policy with a limited 

scheme, the most common and efficient way to allocate 

bandwidth in PON networks [46]. This limited and simple 

scheme is defined as 

 , max ,i i ionu onu onu

alloc requiredB Minimum B B where ionu

requiredB is the 

bandwidth demanded by ONUi in one cycle and max
ionu

B is the 

maximum bandwidth allowed to each ONU at one cycle (to 

avoid the channel monopolization of some ONUs). In order 

to integrate the controller in the bandwidth allocation 

process ( ),ionu

allocB  the term max
ionu

B is constantly updated by 

means of the control signal (u[n]) so that max
ionu

B  can 

dynamically evolve to efficiently ensure the minimum 

bandwidth levels to every profile. The block diagram of the 

algorithm is shown in Fig. 3. As the PID algorithm controls 

the guaranteed bandwidth associated with every ONU, the 

reference value is the minimum guaranteed bandwidth that 

have to be ensured by the service provider depending on the 

contracted SLA ( )isla onu

guaranteedB


. The term under control is the 

mean allocated bandwidth associated with each ONUi 

[ ]( )ionu

alloc nB , so to calculate the instantaneous error (e[n]) 

committed at each ONU, it is necessary to subtract the 

mean allocated bandwidth from its guarantee bandwidth 
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level ( [ ] ).i isla onu onu

guarantee alloce n B B


   Therefore, to update the 

maximum permitted bandwidth (
max

ionu
B ), the control signal 

u[n] is added to the previous maximum permitted 

bandwidth 
max max( [ ])i ionu onu

B B u n   , as it can be observed in 

Fig. 3. In this way, if for example the mean allocated 

bandwidth of ONUi is lower than their guaranteed 

bandwidth level, the error becomes positive and the control 

signal also too, so the algorithm increments its maximum 

permitted bandwidth to allow ONUi to comply with the QoS 

bandwidth restrictions. Finally, a delimiter is included in 

the system to adapt the maximums proportionally to the 

ones calculated by the controller, to fit in the maximum 

cycle time of the EPON standard (2 ms) (Fig. 3). 

 
Figure 3. Block diagram of the designed PID to control the QoS 

bandwidth requirements in PONs 

C. Design of the Neural Network to tune the PID 

controller 

To calculate the tuning parameters of the PID 
controller, the algorithm SPID uses the frequency response 
method proposed by Ziegler-Nichols [18][45]. However, ZN 
is a manual technique that may become a time-consuming 
and a laborious method if the selected values are far from 
the suitable ones, as it was demonstrated in [36]. In 
contrast, in [36] we enhanced the performance of SPID by 
incorporating a genetic algorithm to automate the tuning 
process, the so-called GA-SPID (Genetic Algorithm SPID). 
Althought the GA efficiently automates the tuning process 
and these tuning parameters offer good performance in the 
bandwidth allocation process, this technique does not 
permit a real time adaptation of the tuning parameters in 
case the network or traffic conditions suddely change. 
Therefore, genetic algorithms are consider an offline tuning 
technique. However, it is quite desirable to design one 
method that updates the tuning parameters according to 
whatever change inside the network, that is, an online 
tuning technique. In this way, we propose the integration of 
an auto-adaptive neural network inside the PID controller 
that auto-learns from the last committed errors depending 
on the real time network conditions, called NN-SPID 
(Neural Network SPID) algorithm. 

To design the neural network that tunes the controller 
we apply one alternative formula for the control signal of 
the PID in the discrete time. This expression is represented 
in equation (2), where Kp is the proportional constant, Ki is 
the integral constant and Kd is the derivative constant. In 
this way, the tuning parameters using neural networks will 
be Kp, Ki and Kd. However, the relationship between these 
parameters and the Ti y Td terms of equation (1) is given by 
equation (3), where T is the sample time of the PID (the 
time between two consecutive executions of the PID). 

                 1 1 2 1 2p i du k u k K e k e k K e k K e k e k e k               (2) 

i p

i

T
K K

T
   d

d p

T
K K

T
             (3) 

Therefore, the general scheme of the controlled process 

using a NN is shown in Fig. 4. As it can be observed in the 

picture the tuning parameters Kp, Ki and Kd, are provided 

by the output of the neural network. Furthermore, our 

proposed method needs to know the real time error of the 

PID controller (equation (2)) to efficiently update the tuning 

parameters. Consequently, this error is provided by the PID 

controller, so both of them are constantly interchanging 

information inside the OLT, as it can be noticed in Fig. 3. In 

fact, this error corresponds to the absolute value of the 

difference between the guaranteed bandwidth of each ONU 

( )isla onu

guaranteedB


 and its mean allocated bandwidth [ ]( )ionu

alloc nB , 

that is,   [ ]i isla onu onu

guarantee alloce k B nB
  . Finally, it is worth saying 

that the PID controller and the NN are integrated in the 

OLT, since the bandwidth allocation process of the entire 

EPON is carry out inside this active component. 

On the other hand, to design the architecture of the 

neural network it is necessary to select some parameters, 

such as the number of layers, neurons, activation functions 

and training methods. Regarding the number of layers, the 

literature reveals that many algorithms implement one 

hidden layer (apart from the input and the output layer), 

because it provides a simple structure and good 

performance [37-39]. The number of neurons at the output 

layer accords with the tuning parameters of the PID, so it is 

set to three (Kp, Ki and Kd,) and the number of neurons in 

the input layer is three because the tuning parameters are 

calculated based on the three last errors, e[k], e[k-1] and e[k-

2] (following equation (2)). Finally, the number of neurons 

in the hidden layer depends on the accuracy we want to 

achieve, but literature points that a number between one 

and four times the number of inputs is enough, so we select 

five neurons (simulations have been done to demonstrate 

this selection) [37-39].  

 

Figure 4. Flow diagram of the designed Neural Network to control 

QoS bandwidth requirements in NN-SPID.  

Moreover, we have added a bias signal at the 

intermediate and at the output layers to look for a more 

stable response of the system. Then, the feedforward 

artificial neural network is a multilayer perceptron that 

maps sets of input data onto a set of appropriate outputs, 

that is, good tuning parameters according to the errors (Fig. 

4). Furthermore, the selection of the activation function is 

based on the range of values of the desirable results.  In 
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this way, the sigmoid function is chosen for the input layer 

since it is one of the most classical and extended. For the 

output layer, although the sigmoid function is the most 

used, we select the lineal function since we need a large 

number of values for the tuning parameters (Kp, Ki and Kd) 

and the values of the sigmoid function are limited by a 

lower and a maximum threshold.  

Traditional neural networks use learning techniques in 

which the network is provided with a set of good examples 

to efficiently learn and work and they keep weights between 

neurons with fix values. In contrast, our proposal constantly 

auto-learns from the last errors (applying an incremental 

learning technique) so it constantly changes the weights 

between neurons. The mathematical study used to 

increment the matrix of weights is based on several 

published studies [40-43]. In this way, the backpropagation 

(BP) NN is one of the most implemented neural networks at 

many systems. It uses the backpropagation learning 

algorithm applied in two stages: data feedforward and error 

backpropagation. In the data feedforward phase, the error 

of the PID controller (e[k], e[k-1] and e[k-2]) is inserted in 

the input layer and propagated to the next layers (hidden 

and output layers), and the algorithm obtains the new 

tuning parameters for the next cycles. On the other hand, in 

the error backpropagation stage, with the last output values 

(tuning parameters) it is calculated the committed error 

(typically using the quadratic performance index) and they 

are propagated backward (from output to input). Therefore, 

the weights between neurons are adjusted using some 

method, typically the gradient descent algorithm, based on 

these errors. These two phases are continuously repeated 

along the time to ensure a good performance of the 

bandwidth allocation process. In particular, in our proposal 

at each number of iterations of the PID, called n, the tuning 

parameters are updated (feedforward algorithm). Besides, 

at each number of iterations of the PID (called m), the 

matrix of weights is also updated (backpropagation 

algorithm). The value of m has to be higher than n because 

the tuning parameters have to be updated taken into 

account the new matrix of weights. If not, it may exist 

periods with changes in the matrix of weights that are not 

reflected in the calculation of the new tuning parameters. 

In table I… 

TABLE I 

TABLE OF NOTATIONS REGARDING THE NEURAL NETWORK 

Notation Definition 

2 0.046169 

4 0.04882 

5 0.0497220 

6 0.067423 

8 0.05567 

   

In particular, the feedforward-propagating algorithm 

calculates the input and output values of each layer 

according to the current weights and the last inputs of the 

NN (the last three errors and the bias signal), achieving the 

new tuning parameters at the output of the NN. Then, the 

input layer follows equation (4), in which the inputs x(i) 

corresponds to e[k], e[k-1], e[k-2] and the bias input and 
(1) ( )jO k is the output of the layer.  The superscripts in the 

different equations (1, 2, 3) are associated with the layer, 

that is, input, hidden and output layer. Moreover, the 

superscript of the weights refers to weights between two 

layers, for example
(1,2)

ijw correspond to the weights between 

the input and the hidden layer. 

 
(1) ( ) ( ) ( 0,1...)jO k x j j         (4) 

For the hidden layer (subscript 2), the inputs 
(2)( ( ))iI k  and 

outputs 
(2)( ( ))iO k  follow equation (5) and (6). In this 

equations, 
(1,2)

ijw  are the weights between the input layer 

and the hidden layer. As it was said before, the sigmoid 

function (with positive and negative symmetry) is chosen as 

the activation function for this 

layer ( ) tanh( )
x x

x x

e e
f x x

e e





 
  

 
. 

(2) (1,2) (1)( )i ij j

j

I k w O     (5) 

(2) (2)( ) ( ( )) ( 0,1...)i iO k f I k i    (6) 

Finally, the inputs and outputs of the output layer 

follow equation (7) and (8). The output of this layer 

corresponds with the three tuning parameters (Kp, Ki and 

Kd) and the activation function for this layer is the linear 

function  ( )g x x . However, the lineal function is 

truncated for avoiding negative values since tuning 

parameters have to be positive. The terms 
(2,3)

ijw are the 

weights between the hidden layer and the output layer. 

(3) (2,3) (2)( ) ( )l li i
i

I k w O k              (7) 

(3) (3)

(3)

1
(3)

2
(3)

3

( ) ( ( )) ( 0,1,..)

:

( )

( )

( )

i l

p

i

d

O k g I k l

So

O k k

O k k

O k k

 







        (8) 

On the other hand, the backpropagation algorithm 

modifies the weighted factors in the NN, starting from the 

output layer to the input layer.  To update the weights in 

the neural network, it is used the quadratic performance 

index of error (equation (9)), based on the parameter under 

control (guaranteed bandwidth levels). Furthermore, 

weights are modified using the gradient descent method. 

Then, the increments are adjusted according to the negative 

gradient direction to the weighting coefficients, equation 

(10), so an inertia term (a) and a learning rate 

coefficient (h)  directly impact on the evolution and the 

convergence speed of the NN. Although both parameters are 

initially set to 0.1 (following the literature) in the results 

section we will analyze their impact on the NN. 

Furthermore, 
(3) ( )liW k denote the last increments achieved 

in the last weights modification between the hidden and the 

output layers. 

 2 2

1

1 1
( )

2 2
i isla onu onu

guarantee allocJ e k B B
   

     
           

(9)

 

(2,3) (2,3)1

(2,3)
( ) ( 1)li li

li

J
w k w k

w
 


     


      (10) 
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To calculate 1

(2,3)

li

J

w




, we follow equation (11). In this 

equation the term 
( )

( )

y k

u k




is unknown so we replace it by 

the 
( )

sgn
( )

y k

u k

 
 
 

approximation (the lack of accuracy can 

be rectify by  ), as it is considered in several studies [40-

43]. 

(3) (3)

1 1

(2,3) (3) (3) (2,3)

( ) ( )( ) ( )
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Taken into account equation (2) and (8) we obtain the 

expressions for 
(3)

( )

( )l

u k

O k




 (equation (12)).  
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Finally, with these expressions we can simplify the 

formula for the weighted factors 
(2,3) ( )liw k of the output 

layer, as it is shown in (equation (13)). 

 

(2,3) (3) (2) (2,3)

(3) ' (3)

(3)

( ) ( ) ( 1)

( )
( )sgn ( )

( ) ( )

li l i li

l i

l

w k O k w k

u ky k
where e k g I k

u k O k

 



    

 
       

 (13) 

In the same way as the output layer, we modify the 

weighted factors at the hidden layer, following the 

expressions of equation (14).
  

(1,2) (2) (1) (1,2)

3
(2) ' (2) (3) (2,3)

1

( ) ( ) ( 1)

( ) ( )

ij i j ij

i i l li

l

w k O k w k

f I k w k

 

 


    

   

      (14) 

 

III. SIMULATION RESULTS 

A. Simulation Scenario 

Simulations have been carried out in an EPON (based on 

the Ethernet protocol) network with 16 ONUs and one user 

connected to each ONU using OMNeT++ 4.2 [47]. The 

network scenario has similar characteristics proposed by 

other DBA algorithms in PONs [2-9]. Regarding the packet 

and traffic distribution, a self-similar traffic based on 

alternating Pareto-distributed on/off periods with a Hurst 

parameter of H=0.8 is used to emulate the practical 

Internet traffic, using the self-similar traffic generator 

developed in [48]. Then, it is assumed Ethernet packets 

between 64 and 1518 bytes and symmetry in the traffic load 

of every ONU, as the majority of existing DBA algorithms 

[16][21]. In this research study we compare the performance 

of GA-SPID and NN-SPID, that is, an offline and an online 

tuning technique, respectively. Moreover, both algorithms 

(GA-SPID and NN-SPID) dynamically modify the maximum 

permitted bandwidth of every profile (SLAs) depending on 

the committed error when guaranteeing the minimum 

stipulated bandwidth levels to each of them. Therefore, it is 

assumed three SLAs (SLA0, SLA1, SLA2) in the EPON 

network and different QoS minimum bandwidth levels to 

each profile in order to check the algorithms’ performance. 

However, the main scenario considers100 Mbps for SLA0 

profile, 75 Mbps for SLA1 profile and 50 Mbps for SLA2 

profile. Finally, results are contained within 95% of 

confidence level. 

B. Selection of parameters for the Neural Network 

The first simulation study regards the selection of some 

parameters to model the neural network. This selection has 

been done running simulations and choosing the values 

that allows a good performance. The first parameter to 

analyze is the number of neurons in the hidden layer, so 

Table II collects the standard deviation of the mean 

allocated bandwidth of each ONU over its guaranteed 

bandwidth in Mbps (ONUs of the same SLA show same 

performance). The standard deviation provides a good 

measure of the algorithm’s performance, as low deviations 

imply high accuracy. Then, the collected data in Table II 

show that results considering different number of neurons 

are quite similar and very low, less than 0.05 Mbps. As 

literature points that a number between one and four times 

the number of inputs (three) is enough, we chose an 

intermediate value of 5 neurons that also allows a very low 

deviation.  

TABLE II 

STANDARD DEVIATION OF 
onui
allocB  OVER isla onu

guaranteeB 
 IN MBPS 

CONSIDERING DIFFERENT NUMBER OF NEURONS IN THE HIDDEN LAYER 

Number of 

neurons 

Standard 

deviation SLA0 

(Mbps) 

Standard 

deviation SLA1 

(Mbps) 

Standard 

deviation SLA2 

(Mbps) 

2 0.046169 0.0378122 0.02310 

4 0.04882 0.030392 0.023456 

5 0.0497220 0.0297659 0.0234553 

6 0.067423 0.02963 0.02432 

8 0.05567 0.028723 0.022764 

On the other hand, another issue to analyze is the 

evolution speed of the matrix of weights, as it can be noticed 

in equation (13). As the goal is to minimize the objective 

function of the problem, there is a tradeoff between some 

parameters ( , ), because low values allow a slow 

convergence to the objective but very high steps can allow 

that the problem does not properly converge to the correct 

values. The inertia coefficient   in equation (13) highly 

affects the convergence speed in the equation, since it 

multiplies the previous increment of the weighted factors. 

Then, Fig. 5 (a) and (b) show the impact of this parameter 

in the evolution of the maximum permitted bandwidth 

periodically updated by the PID controller and in the real 

time evolution of the tuning parameters (we select Kp to 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

reduce the number of graphs). As it can be observed in the 

graphs, high values of    2,4  , allows an bad 

convergence response of the PID controller that manage the 

bandwidth allocation process to efficiently ensure the 

minimum bandwidth levels (Fig. 5 (a)). This same 

performance (high fluctuations and incorrect convergence) 

is translated into the evolution of the Kp values as it can be 

observed in (Fig. 5 (b)). On the other hand, low values of the 

inertia coefficient  0.05,0.1   provide a more stable PID 

response and lower oscillations of the tuning parameter Kp. 

Therefore, as many research works use a typical value of 

0.1 we select the same value [40-43]. 
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Figure 5. Parameters of the neural network in NN-SPID with 

different values (a) Real time evolution of the maximum 

permitted bandwidth (b) Real time evolution of Kp. 

On the other hand, Fig. 6 shows the impact of the 

learning coefficient in the real time evolution of the tuning 

parameters (assuming 0.1  ).  
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Figure 6. Real time evolution of the Kp, Ti and Td tuning 

parameters considering different values of  . 

As it can be observed in the graph, the performance of 

 does not highly impact on the evolution of the tuning 

parameters as the  parameter does. However, it can be 

noticed more oscillations for very low values ( 0.0001)   

and for very high values ( 4)  , so we select an 

intermediate value of 0.1 that it is also adopted in many 

research works [40-43]. 

C. Performance of NN-SPID algorithm in comparison 

with GA-SPID 

One of the most important characteristics in both 

algorithms is the convergence speed to calculated good 

tuning parameters. Regarding the genetic algorithm, the 

number of iterations of the PID to update the fitness value, 

the population size and the number of generations of the 

stop criterion have to be fixed, in order to simultaneously 

allow good performance and short tuning time. As it was 

said before, the genetic algorithm is offline, so once it 

calculates the best tuning parameters the PID starts to 

work with these values. The tuning time employed by the 

genetic algorithm is given by equation (15), where N is the 

population size of the genetic algorithm, m is the number of 

iterations of the PID in which each individual is tested to 

obtain its fitness, Tsample is the sample time used by the PID 

controller to calculate the committed error and NGen is the 

number of generations of the stop criterion.   
 

tuning sample GenT N m T N                  (15) 

 

One of the parameters to analyze the performance of the 

tuning time in GA-SPID is Tsample. Fig. 7 (a) shows the real 

time evolution of the mean allocated bandwidth when 

assuming a set of Tsample values for the SLA2 profile (the 

performance is the same for SLA0 and SLA1). As it can be 

noticed in the figure, if Tsample is high (30 s) the evolution to 

the guarantee bandwidth requirements for this profile, 50 

Mbps, becomes more slow and instable. In contrast, a low 

value for Tsample (50 ms) makes the adaptation difficult to 

control as the PID lacks of enough samples to properly 

update the error to evolve to the guarantee bandwidth 

levels. Therefore, intermediate values (2 or 3 s) show a 

robust and a fast achievement of the stipulated bandwidth 
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requirements, so as we desire a low tuning time, we chose 

Tsample=2 s. Once we select the minimum and efficient value 

of Tsample, we have to determine the remaining parameters 

that directly impact on the tuning time. Then, Fig. 7 (b) 

represents the mean committed error (in bits) of the best 

individual in each generation when considering different 

population sizes and number of iterations. As it was deeply 

described in [36] GA-SPID follows the main steps of genetic 

algorithms. Then, each chromosome corresponds with the 

three tuning parameters (Kp, Ti, Td) coded in a binary chain 

(16 bits per parameter). Furthermore, we have to evaluate 

each individual (chromosome) using he objective function in 

order to calculated the fitness of each of them. This 

objective function is based on the committed error of the 

PID using this individual (Kp, Ti, Td), during m iterations of 

the PID, defined as 
0

1 1
[ ]

onusN

i

m ionus

F e m
m N 

   . As a 

consequence, if we observe Fig. 7 (b) the committed error is 

reduced as long as the number of generations increases for 

every combination of population size and number of 

iterations. However, the worst performance is achieved for a 

population of 15 individuals and a number of iterations 

equal to 2. For the other combinations, the results are quite 

similar. Thus, as we require the lowest tuning time, we 

select a population of 20 individuals with 2 iterations. 

Furthermore, as the committed error becomes quite stable 

for a number of generations higher than 10, we can select 

this value for our genetic algorithm. As a consequence, 

taken into account these previous values and substituting 

them in equation (15), GA-SPID provides a total tuning 

time (Ttuning) equal to 800 seconds. 
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Figure 7. Parameters of the genetic algorithm in GA-SPID (a) 

Evolution of the mean allocated bandwidth when assuming 

different values of Tsample (b) Evolution of the mean committed 

error of the best individual of each generation when considering 

different population sizes and number of iterations of the PID. 

In contrast, our new proposal based on Neural Networks, 

NN-SPID, permits an online modification of the tuning 

parameters, because it constantly adapts these values 

according to the network state to ensure the minimum 

guarantee bandwidth levels to every profile. In order to 

show the tuning time required by NN-SPID to achieve the 

guarantee bandwidth levels, Fig. 8 (a) and (b) represent the 

real time evolution of the mean allocated bandwidth for 

every profile. We check the performance for two different 

guaranteed bandwidth scenarios (Scenario 1: SLA0=100 

Mbps, SLA1=75 Mbps, SLA2=50 Mbps and Scenario 2: 

SLA0=80 Mbps, SLA1=60 Mbps, SLA2=60 Mbps). For both 

scenarios, it can be noticed than NN-SPID is faster than 

SPID since it only needs around 100 seconds to ensure the 

minimum bandwidth levels for every profile in Scenario 1 

(Fig. 8 (a)) and less than 50 seconds for Scenario 2 (Fig. 8 

(b)). In Scenario 1 SLA0 is given around 90 Mbps since its 

load is 0.9 (90 Mbps) so NN-SPID gives all demanded 

bandwidth to this profile. On the contrary, GA-SPID 

requires 800 seconds to provide good individuals to tune the 

PID. Consequently, it is demonstrated that NN-SPID 

provides the QoS bandwidth requirements faster than GA-

SPID independently from the considered bandwidth 

scenario. 
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Figure 8. Real time evolution of the mean allocated bandwidth of 

NN-SPID for different Scenarios (a) Scenario 1 (b) Scenario 2. 

Furthermore, Fig. 9 (a) (b) (c) shows the real time 

evolution of the tuning parameters (Kp, Ti, Td) for NN-SPID 

and GA-SPID in order to observe the differences between an 

adaptive and a not adaptive technique. It can be noticed 

that NN-SPID periodically adapts the tuning parameters, 

so it modifies the control signal of the PID to face real time 

changes in the network conditions. In contrast, the genetic 

algorithm does not modify the tuning parameters and it 

cannot immediately react when changes in the network 

conditions may appear. 
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(c) 

Figure 9. Real time evolution of the tuning parameters for NN-

SPID and GA-SPID (a) Kp (b) Ti (c) Td. 

On the other hand, to compare the robustness of both 

algorithms Fig. 10 represents the real time evolution of the 

maximum permitted bandwidth (periodically updated by 

the PID) when comparing NN-SPID and GA-SPID assuming 

different good individuals for GA-SPID (Scenario 1: kp=1, 

Ti=2, Td=5 and Scenario 2: kp=1, Ti=2, Td=2). In order to 

simplify the number of graphs we only represent SLA1 and 

SLA2, although the performance is similar for SLA0. As it 

can be noticed in the graph, NN-SPID shows lower 
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oscillations than GA-SPID for both profiles, minimizing 

every abrupt fluctuation that appears in GA-SPID. This 

performance demonstrates that NN-SPID provides a more 

stable and robust response in the bandwidth allocation 

process than GA-SPID since the neural network applies a 

real time reconfiguration of the tuning parameters 

according to the network state. In contrast, the genetic 

algorithm has to be periodically launched to update the 

tuning parameters according to the last network conditions 

and this process can take a long time (around 800 s).  
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Figure 10. Real time evolution of the maximum permitted 

bandwidth for SLA1 and SLA2 comparing NN-SPID and GA-SPID. 

Finally, the speed and stability of NN-SPID and GA-

SPID become very important when service providers 

require real time changes in the guaranteed bandwidth 

levels. To demonstrate the performance of both algorithms 

in this situation, simulations have been carried out 

changing the guaranteed bandwidth levels at 150 seconds 

(Table III). Hence, Fig. 11 shows the evolution of the 

maximum permitted bandwidth along the time for the 

considered guaranteed bandwidth levels. As it can be 

noticed, both algorithms dynamically modify the maximum 

permitted bandwidth so that values can evolve to the new 

guaranteed bandwidth levels. However, the stability of both 

algorithms is quite different since GA-SPID shows high 

fluctuations in the allocation process when the guaranteed 

bandwidth levels change at 150 seconds, especially for the 

lowest priority profile SLA2. On the contrary, NN-SPID 

exhibits a more stable response in the evolution of the 

maximum permitted bandwidth than GA-SPID, since it 

makes a real time adaptation of the tuning parameters 

according to the real time bandwidth requirements. 

TABLE III 

DIFFERENT GUARANTEED BANDWIDTH LEVELS FOR EVERY PROFILE 

ALONG THE TIME 

Time (s) 

Guaranteed 

Bandwidth 

SLA0 

Guaranteed 

Bandwidth 

SLA1 

Guaranteed 

Bandwidth 

SLA2 

0-150 s 100 Mbps 70 Mbps 50 Mbps 

Higher 

than 150s 
70 Mbps 40 Mbps 60 Mbps 
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Figure 11. Variation of the mean allocated bandwidth of every 

profile when the guaranteed bandwidth levels vary along the time. 

  

On theotherhand,DaSPIDisperfectlyapplicableto PONs 

ofdifferent coverages. Todemonstrateit, Fig. 15(a) and (b) 

shows the meanpacketdelayofDaSPIDforeach SLA (SLA0, 

SLA1 and SLA2) forP0 and P1 respectively,when considering 

severalendtoenddistances(25,50,75,and 

100km).Asitcanbenoticed,forbothclassesofservice the 

meanpacketdelaysarealwaysbelowtheestablished bound 

foreachSLA,independentlyoftheconsidered distance. 

Thus,thepresentedalgorithmcanbeapplied in PONsofdifferent 

coverages without gettingworse performance. 
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Figure 12. Variation of the mean allocated bandwidth of every 

profile when the guaranteed bandwidth levels vary along the time. 

 

 

 

IV. CONCLUSION 

In this research a PID control strategy based on an auto-

adaptive neural network to control QoS requirements has 

been presented. The developed algorithm, called NN-SPID, 

has been designed to control the bandwidth allocation 

process so that different profiles are provided with 
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minimum bandwidth levels according to their contracted 

SLA. The control of quality of service in access network has 

never been implemented using a neural network integrated 

in a PID. The proposed algorithm has been compared with 

GA-SPID, a published algorithm designed for the same 

purpose than NN-SPID but it uses a genetic algorithm to 

automatically tune the PID controller. In this way, GA-

SPID is an offline technique as it launches the genetic 

algorithm to calculate the best individuals (tuning 

parameters) for the controller and after that the PID starts 

the allocation process using these tuning parameters. In 

contrast, NN-SPID applies an online strategy to tune the 

controller since the values of the tuning parameters are 

constantly evolving to the best ones based on the last 

network state. Furthermore, the designed neural network 

does not use a learning technique in which the network is 

provided a priori with a set of good examples to learn and 

work, but NN-SPID applies an incremental learning 

technique so it adaptively learns from the real time network 

conditions modifying the associated weights of every layer 

of the neural network, in contrast to traditional neural 

networks that keep constant these weights along the time. 

The results of the simulation study have demonstrated 

that NN-SPID ensures the minimum guarantee bandwidth 

levels to every profile faster than GA-SPID and 

independently from the QoS requirements. In fact, 

depending on the network scenario, NN-SPID is able to 

reduce up to ten times the required time to achieve the 

stipulated guaranteed bandwidth requirements. 

Furthermore, NN-SPID periodically adapts the tuning 

parameters, so it modifies the control signal of the PID to 

face real time changes in the network or traffic conditions. 

On the contrary, GA-SPID does not adapt the tuning 

parameters and it cannot efficiently react when changes in 

the network state happens. This performance was 

demonstrated when the guaranteed bandwidth levels were 

changed by service providers along the time. Results 

exhibited how GA-SPID shown higher oscillations than NN-

SPID in the bandwidth allocation process especially just 

after the change appeared in the network. As a 

consequence, it can be stated that NN-SPID shows more 

stability and robustness than GA-SPID in case service 

providers require real time changes in the guaranteed 

bandwidth levels without interruptions in the offered 

services. 

The integration of PID controllers and neural networks 

has never been proposed to provide QoS in PONs networks. 

Hence, in this paper we have developed an automatic and 

online PID tuning technique to efficiently ensure bandwidth 

requirements to different priority profiles using an auto-

adaptive neural network. One interesting future research is 

focus on controlling other QoS parameters using this 

technique, such as the jitter, the packet delay of sensitive 

traffic or the packet loss ratio. On the other hand, we are 

also working in the implementation of this auto-adaptive 

algorithm to provide QoS requirements in the Second 

Generation PONs (NG-PON2), called TWDM-PON, which 

combine a more complex architecture based on a 

simultaneous time and wavelength division multiplexing 

[49-50]. 
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