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Abstract: In this paper the domain wall solutions of a Ginzburg-Landau non-linear S2-
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using a Bogomolny arrangement in a system of sphero-conical coordinates on the sphere
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1. Introduction

Research on topological defects in Field Theory has been an active topic since now more

than four decades ago [1, 2, 3, 4, 5]. These types of solutions when arising in (1+1)-

dimensional scalar field theory models are generically called kinks whereas vortices and

monopoles are respectively used to name topological defects in the (1+2) and (1+3) di-

mensional Higgs models. All of them are finite energy solutions of the field equations whose

energy densities are localized. In contrast, domain walls are topological defects in (1+d)-

dimensional scalar field theory models which carry finite surface tension. In Cosmological

models of the early Universe domain walls are formed through the Kibble mechanism when

a discrete symmetry is broken at a phase transition; see [4, 6]. These solutions are in-

teresting because the topological constraints guarantee its stability, which prevent them

from decaying into the vacuum sector. These topological defects also play an important

role in Randall-Sundrum scenarios [7], in which space-time is five-dimensional and do-

main walls correspond to extended 3-branes where the particle dynamics is confined; see

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In this context explicit expressions of

BPS multi-walls have been identified in some solvable models inN = 1 supergravity [23, 24].

The formation of domain wall networks and its evolution is also a problem of particular

interest in the physical literature. Both numerical approaches [25] and analytic studies

based on the moduli space [26] have been implemented in order to study the low-energy

dynamics of these networks. The existence of domain walls in two-component scalar field
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theory models when the potential involves several minima have been extensively studied.

The explicit expressions of BPS kinks or domain walls have been identified in the MSTB

model and its generalizations [27, 28, 29, 30, 31, 32], the BNRT model [33, 34, 35, 36], the

Wess-Zumino model [37, 38, 39, 40], etc. Junctions of domain walls, which appear in this

type of models are also addressed, see [41, 42, 43, 44, 45].

In this paper we shall investigate the very rich moduli space of domain walls in a

hybrid of the non-linear S2 sigma model and the Ginzburg-Landau theory of phase transi-

tions. The key feature of these systems is that the target manifold is the sphere S2. This

fact allows these models to have important applications in solid state physics, especially

in the so called spintronics. Phenomena such as exchange, anisotropy, and dipole-dipole

interactions arising in magnetic materials can be responsible for the existence of several

non-collinear ground state configurations in these substances. This situation can give rise

to the presence of topological defects describing spin chains in magnetic materials. For

example, Haldane constructed a O(3) non-linear sigma field theory model to describe the

low-energy dynamics of large-spin one-dimensional Heisenberg antiferromagnets, see [46].

In this paper Haldane semiclassically quantizes the soliton type solution of the model.

In [47, 48] the authors obtain the exact expressions of the spin solitary waves in similar

problems. The computation of the one-loop mass shifts to the classical masses of these

solutions is accomplished in [49]. Other relevant work in this framework is the identifica-

tion of chiral magnetic soliton lattices present on a chiral helimagnet Cr 1
3
NbS2 [50]. An

investigation of these topologically protected magnetic solitons with applications to logical

operations and/or information storage is addressed in [51]. On the other hand, topological

defects in massive non-linear sigma models have also been profusely studied in different

supersymmetric models, see [52, 53, 54, 55]. A remarkable result in this context is that

composite solitons in d = 3+1 of Q-strings and domain walls are exact BPS solutions that

preserve 1
4 of the supersymmetries [56, 57]. Skyrmions can also be found in certain non-

linear sigma models. Indeed, the original Skyrme model [58] can be understood as a (3+1)

dimensional O(4) non-linear sigma model, to which the Skyrme term is added. Skyrmions

also exist in 2+1 dimensional models, which are referred to as the O(3) baby-Skyrmion

models [59, 60, 61, 62].

In particular, the Ginzburg-Landau massive non-linear S2-sigma model discussed in

this paper includes a non-negative homogeneous quartic polynomial contribution in the

fields (modulo the S2-constraint) to the potential energy density. This term spontaneously

breaks the O(3) symmetry of the sigma model down to the Z2×Z2×Z2 symmetry generated

by the reflections φi → −φi with i = 1, 2, 3. As a consequence, six vacuum configurations

emerge in this model, which are maximally separated on the sphere S2. In other words, the

ground state configurations point in the cardinal directions (the six principal directions)

of the three-dimensional space. This system can be understood as a low-energy limit of an

effective field theory derived from a modified Heisenberg model for magnetic crystals. If

the crystal structure is simple cubic there are six nearest neighbors (atoms) for any given

lattice point. A weak anisotropy, which breaks the O(3) symmetry of the ground state

arising in the classical Heisenberg model, can emerge due to interactions of electrons with

the neighbor atoms, fixing the vacua along the principal cube directions. In this framework,
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it seems interesting to investigate possible effective field theories with potentials involving

six ground state configurations.

Anisotropy terms of the form han = 1
2BM

2
z have been added to the Heisenberg Hamil-

tonian to describe the behavior of chiral magnetic soliton lattices, see reference [51]. Here,

M = (Mx,My,Mz) is the magnetisation vector field and B is a parameter which measures

the anisotropy degree. In [51] a sine-Gordon equation is derived by the authors in the

continuum limit by using additional simplifying assumptions. The analytical solutions of

this equation are used to analyse spin configurations in chiral helimagnets. The presence

of these solitonic configurations have been experimentally observed on these substances by

using Lorentz microscopy and small-angle electron diffraction, see [50]. In this paper, the

expression han = 1
2

∑3
i=1BijM

2
iM

2
j with i, j = x, y, z is assumed to describe the anisotropy

contributions in simple cubic magnetic crystals. This function breaks the original O(3)

symmetry of the Heisenberg model but preserves a Z2 × Z2 × Z2 symmetry. A non-linear

S2-sigma model with potential V (~φ) = 1
2

∑3
i=1Bijφ

2
iφ

2
j is obtained in the continuum limit.

We are interested in investigating this model for the particular choice B23 = B13 − B12,

where analytical expressions for the solutions can be extracted. It will be proved that

the search for domain walls in this model is tantamount to the search for finite action

trajectories in a Neumann type mechanical system [63], which is completely integrable

[64, 65]. Indeed, separation of variables is obtained for the static field equations by using

sphero-conical coordinates. This fact allows us to identify the analytical expressions of the

whole static domain wall variety. This set comprises two types of basic topological domain

walls. The rest of solutions in this set are non-linear combinations of these two single

topological defects at static equilibrium. In particular, two different families of composite

domain walls are found, which consist of two and four single lumps. Several sum rules are

identified connecting the total energy of the different solutions.

The organization of the paper is as follows. In Section 2 we introduce the model and

the set of vacua is described. In Section 3 the whole domain wall variety is analytically

identified. The exact expressions of the singular domain walls will be established by using

spherical coordinates. The two previously mentioned families of composite domain walls

are also exactly calculated. On this occasion, the use of sphero-conical coordinates and

the Bogomolny approach [66] allows the identification of first order differential equations

describing these solutions, which can be solved. In Section 4 a linear stability study for the

found static domain walls is provided. Last Section will be employed to introduce further

comments and some suggestions for future lines of enquiry.

2. The model

We shall deal with a one-parameter family of (1 + 3)-dimensional O(3) non-linear sigma

models, whose dynamics is governed by the action

S[~φ] =

∫
d4x

{1

2
∂µ~φ · ∂µ~φ− V (~φ;σ)

}
, (2.1)

where ~φ(xµ) is a map from the Minkowski space R1,3 into the S2-sphere of radius R, ~φ :

R1,3 → S2. The Minkowski metric tensor is chosen as gµν = diag(1,−1,−1,−1). The fields,
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space coordinates and parameters introduced in (2.1) are assumed to be dimensionless.

Setting an ortho-normal frame {~ea}a=1,2,3 in R3 with the usual inner product and norm

the field ~φ(xµ) is given by

~φ(xµ) =

3∑
a=1

φa(x
µ)~ea ,

where the field components φa(x
µ) must comply with the constraint

φ2
1(xµ) + φ2

2(xµ) + φ2
3(xµ) = R2 . (2.2)

The introduction of a Ginzburg-Landau type potential energy density V (~φ;σ) in the

action functional (2.1) breaks the O(3) symmetry of the system and leads to a spontaneous

symmetry breaking scenario where domain walls can emerge. An interesting choice of the

function V (~φ, σ) is given by the non-negative homogeneous quartic polynomial

V (φ1, φ2, φ3;σ) =
1

2

[
φ2

1 φ
2
3 + σ4 φ2

2 φ
2
3 + σ̄4 φ2

1 φ
2
2

]
, (2.3)

where σ̄2 = 1 − σ2 and σ ∈ (0, 1). The action functional (2.1) is now invariant under the

symmetry group G = Z2 × Z2 × Z2 generated by the transformations πi : φi → −φi with

i = 1, 2, 3. Moreover, a duality in the family of models can be constructed by simultaneously

swapping the parameter values σ ↔ σ̄ and the field components φ1 ↔ φ3. The study can

thus be restricted to the parameter interval σ2 ∈ (0, 1
2 ] and the results for the rest of cases

can be derived by using this duality.

The non-linear field equations of the system, obtained from the action (2.1), are given

by

∂2
0φ1 −∇2φ1 = φ1(λ− σ̄4φ2

2 − φ2
3) ,

∂2
0φ2 −∇2φ2 = φ2(λ− σ̄4φ2

1 − σ4φ2
3) , (2.4)

∂2
0φ3 −∇2φ3 = φ3(λ− φ2

1 − σ4φ2
2) ,

where as usual ∇2 = ∇·∇ and ∇ = ∂
∂x1~e1+ ∂

∂x2~e2+ ∂
∂x3~e3. The parameter λ is the Lagrange

multiplier associated with the constraint (2.2), which follows the form

λ =
1

R2

3∑
a=1

[
−(∂0φa)

2 +∇φa · ∇φa
]

+
4

R2
V (φ1, φ2, φ3, σ) .

The spatial integral of the energy density

E [~φ] =
1

2

4∑
µ=0

∂µ~φ · ∂µ~φ+ V (~φ;σ) (2.5)

provides the total energy E of the configuration ~φ(xµ), i.e.,

E[~φ(xµ)] =

∫
R3

d3x E [~φ(xµ)] . (2.6)
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It is clear from (2.3) that the set M of vacua (zero energy static homogeneous solutions)

for our model comprises the six absolute minima of the potential V (~φ;σ)

M =
{
V1a =

(
(−1)aR, 0, 0

)
, V2b =

(
0, (−1)bR, 0

)
, V3c =

(
0, 0, (−1)cR

)}
, (2.7)

where a, b, c = 0, 1. These points are located at the intersection between the Cartesian axes

and the sphere S2. The six vacua of the system are maximally separated on the sphere.

The plane wave expansion around the vacua Vi± lets us identify the particle spectra in the

corresponding quantum theory, which are determined by the mass matrices

M2(V1a) = R2

(
σ̄4 0

0 1

)
, M2(V2b) = R2

(
σ̄4 0

0 σ4

)
, M2(V3c) = R2

(
1 0

0 σ4

)
.

3. Variety of domain walls

Our main goal in this paper is to identify the explicit expressions of the domain wall

solutions which arise in this model. Domain walls are non-singular solutions of the field

equations (2.4) such that their energy densities have a space-time dependence of the form:

E(x0, x1, x2, x3) = E(x1−vx0), where v is a velocity vector in the x1 direction. In addition,

the tension of the wall (2-brane), defined as

Ω(~φ) = lim
L→∞

1

L2

∫ L/2

−L/2
dx3

∫ L/2

−L/2
dx2

∫ ∞
−∞

dx1E [~φ] =

=

∫
dx1
[1

2

d~φ

dx1
· d

~φ

dx1
+ V (~φ)

]
=

∫
dx1ω(x1) , (3.1)

where L2 is the area of a square in the x2 − x3 plane, must be finite. The domain wall

tension density is localized around some certain values of the x1 coordinate. Therefore,

these solutions can be interpreted as solitonic (thick) 2-branes orthogonal to the x1-axis.

Obviously, the choice of the coordinate x1 in the previous definition is a convention and

rotations in the spatial axes can be used to set distinct orientations of the domain walls.

Solutions which consist of a solitary tension density lump will be referred to as single

domain walls. On the other hand, the term composite domain walls will be used when

referring to solutions which can be interpreted as a combination of several single domain

walls.

For the sake of simplicity the notation x0 ≡ t and x1 ≡ x is used from now on.

The Lorentz invariance of the model implies that it suffices to know the t-independent

solutions ~φ(x) in order to obtain the domain walls of the model: ~φ(t, x) = ~φ(x − vt).

Bearing this in mind, the search of domain walls for our model is tantamount to identifying

the stationary points of the tension functional (3.1) belonging to the configuration space

C = {~φ : Maps(R,S2)/Maps(R,point) : Ω(~φ) < +∞}. These requirements lead to the need

of solving the following system of three ordinary differential equations:

d2φ1

dx2
= −φ1(λ− σ̄4φ2

2 − φ2
3) ,
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d2φ2

dx2
= −φ2(λ− σ̄4φ2

1 − σ4φ2
3) , (3.2)

d2φ3

dx2
= −φ3(λ− φ2

1 − σ4φ2
2) ,

under the constraint (2.2). The finite wall tension condition is fulfilled if and only if the

asymptotic conditions

lim
x→±∞

d~φ

dx
= 0 and lim

x→±∞
~φ ∈M (3.3)

hold. Thus, the configuration space C is the union of 36 disconnected sectors determined

by the elements of M reached by each configuration at x → −∞ and x → ∞. Finite

tension walls connecting different vacua will be termed as topological walls, whereas non-

topological walls refer to solutions belonging to sectors joining the same vacuum.

3.1 Singular domain walls

The existence of domain walls whose orbits are pieces of principal great circles (defined

by the intersection between the principal planes and the sphere S2) is investigated in this

section. These solutions are called singular domain walls because modulo the translational

symmetry they are either the only solutions in its topological sector or the extremal member

of a continuous family of solutions.

The system of spherical coordinates

φ1 = ρ sin θ cosϕ , φ2 = ρ sin θ sinϕ , φ3 = ρ cos θ , θ ∈ [0, π], ϕ ∈ (−π, π] , (3.4)

is used to address this problem. The constraint (2.2) is immediately satisfied by imposing

the restriction ρ = R. The evolution equations (2.4) read

∂2θ

∂t2
− ∂2θ

∂x2
+

1

2
sin(2θ)

((
∂ϕ

∂x

)2

−
(
∂ϕ

∂t

)2
)

=

= −R
2

2
sin(2θ)

(
σ4 + (1− σ4) cos2 ϕ− 2 sin2 θ

(
σ2 + σ̄2 cos2 ϕ

)2)
∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ 2 cot θ

(
∂θ

∂t

∂ϕ

∂t
− ∂θ

∂x

∂ϕ

∂x

)
=

=
R2

2
sin(2ϕ)

(
1− σ4 − 2σ̄2 sin2 θ (σ2 + σ̄2 cos2 ϕ)

)
, (3.5)

in the new variables. Rajaraman’s trial orbit method [1] can be successfully applied to the

equations (3.5) for the previously mentioned trajectories. We find three types of singular

domain walls:

1. Equatorial domain walls: These domain walls connect the four vacua V1a and V2b

(a, b = 0, 1) following the equator of the sphere S2. If the condition θ = π
2 is plugged

into (3.5) the resulting sine-Gordon equation

∂2ϕ

∂t2
− ∂2ϕ

∂x2
= − σ̄4R

2

4
sin (4ϕ) (3.6)

– 6 –



provides us with the profile of this type of solutions. The one-soliton solution of (3.6)

characterizes the following eight domain walls

θ(x) =
π

2
, ϕ(x) = (−1)b ·

[
aπ + (−1)a arctan

(
e
qRσ̄2 x̄−vt√

1−v2

)]
,

q = ±1

a, b = 0, 1
.

Lorentz invariance allows us to consider only the case v = 0 without loss of generality.

In the original Cartesian coordinate system the solutions are written as

φ1(x) =
(−1)aR√
1 + e2Rσ̄2qx̄

, φ2(x) =
(−1)bR√

1 + e−2Rσ̄2qx̄
, φ3(x) = 0 . (3.7)

Here, x̄ stands for x̄ = x − x0 where x0 ∈ R is the domain wall center, and a, b =

0, 1. The value of q distinguishes between walls and anti-walls. The translational

symmetries and spatial parity underlie the presence of the parameters x0 and q in

(3.7). The quadrant of the equator where the topological defect is defined is labeled

by the pair (a, b). Indeed, a particular solution in (3.7) asymptotically joins the

vacuum points V1a and V2b. For the sake of conciseness the equatorial domain walls

will be denoted as K
(q,a,b)
1 (x). The tension density of the K

(q,a,b)
1 (x) solutions

ω[K
(q,a,b)
1 (x)] =

R4σ̄4

4
sech2

(
Rq σ2 x

)
is confined to a small region, see Figure 1. Therefore, the solutions K

(q,a,b)
1 (x) describe

single solitary thick 2-branes. This fact is pointed out in the previous notation by

means of the subscript 1. The total wall tension amounts to:

Ω[K
(q,a,b)
1 (x)] =

1

2
R3 σ2 .

In addition to the previously described single domain walls, the multisoliton and

breather solutions of the equations (3.6) can be exploited to construct complex evolv-

ing domain walls. We will not explore this type of solutions in this paper because we

are interested in studying the structure of the domain wall variety coming from the

two-dimensionality of the internal space.

Figure 1: Profile of the Cartesian field components (left), wall tension density (middle) and orbits

for the K
(q,a,b)
1 (x) domain walls (right).

2. (±π
2 )-Meridian domain walls: In this case the trial orbit, which will be inserted

into the equations (3.5), is the great circle formed by the meridians with longitude
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ϕ = ±π
2 . Now, the behavior of the polar variable θ is set by the sine-Gordon equation

∂2θ

∂t2
− ∂2θ

∂x2
= −R

2σ4

4
sin(4θ) , (3.8)

which leads to the one-soliton domain walls

θ(x) = cπ + (−1)c arctan
(
eRσ

2 q x̄
)

, ϕ(x) =
(−1)bπ

2
,

q = ±1

b, c = 0, 1
.

These eight topological defects, which join the vacuum points V2b and V3c with b, c =

0, 1, read

φ1(x) = 0 , φ2(x) =
(−1)bR√

1 + e−2Rσ2 qx
, φ3(x) =

(−1)cR√
1 + e2Rσ2qx

,

in the original variables. These solutions will be denoted as K
(q,b,c)
1 (x) where the

parameters q, b and c play the same role as in the previous case. The total wall

tension carried by these solutions

Ω[K
(q,b,c)
1 (x)] =

1

2
R3σ2

is obtained by integrating the domain wall tension density

ω[K
(q,b,c)
1 (x)] =

R4σ4

4
sech2

(
Rqσ2x̄

)
along the x1-coordinate. The distribution of this density implies that the K

(q,b,c)
1 (x)-

walls are single thick 2-branes, see Figure 2.

Figure 2: Profile of the Cartesian field components (left), wall tension density (middle) and orbits

for the K
(q,b,c)

1 (x) domain walls (right).

Multisoliton domain walls can also be identified in this context by using different

solutions of the sine-Gordon equation.

3. Prime Meridian domain walls: The orbits of this type of solutions are defined on the

orthodrome composed of the meridian with azimuthal angle ϕ = 0 and its antimerid-

ian. These trial orbits lead again to a sine-Gordon equation

∂2θ

∂t2
− ∂2θ

∂x2
= −R

2

4
sin(4θ) , (3.9)
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which provides us with the eight domain wall solutions

θ(x) = cπ + (−1)c arctan
(
eRq x̄

)
, ϕ(x) = aπ, a, c = 0, 1 .

In Cartesian coordinates these topological defects follow the form

φ1 =
(−1)aR√

1 + e−2Rq x
, φ2 = 0, φ3 =

(−1)cR√
1 + e2Rqx

. (3.10)

As before, q = ±1 distinguishes between walls and anti-walls. On the other hand,

a, c = 0, 1 determine if the solution lives in the Northern or Southern Hemisphere

and in the Western or Eastern Hemisphere, respectively.

The solutions (3.10) connect the four vacua V1a and V3c and will be represented by

the symbol K
(q,a,c)
2 (x). The K

(q,a,c)
2 (x) domain wall tension density

ω[K
(q,a,c)
2 (x)] =

R4

4
sech2 (Rq x) (3.11)

is concentrated around the wall center x = x0. However, these solutions are the

extremal members of a continuous family of composite domain walls and can be

interpreted as the overlap of the two solitary wall tension lumps K
(q,a,b)
1 (x) and

K
(q,b,c)
1 (x) previously described, see Figure 3. This fact is supported by the energy

sum rule

Ω[K
(q,a,c)
2 (x)] = Ω[K

(q,a,b)
1 (x)] + Ω[K

(q,b,c)
1 (x)] =

1

2
R3 (3.12)

and will be analytically justified in next sections.

Figure 3: Profile of the Cartesian field components (left), wall tension density (middle) and orbits

for the K
(q,a,c)
2 (x) domain walls (right).

3.2 Families of composite domain walls

In this section the description of the static domain wall manifold for this non-linear S2-

sigma model is completed. We find two one-parameter families of composite domain walls,

whose orbits are dense in the sphere S2. In order to deal with this problem, sphero-conical

coordinates on the sphere

φ2
1 =

R2

σ̄2
λ1λ2 , φ2

2 =
R2

σ2σ̄2
(σ̄2 − λ1)(λ2 − σ̄2) , φ2

3 =
R2

σ2
(1− λ1)(1− λ2) (3.13)

are introduced. The range of the coordinates λ1 and λ2 in (3.13) is given by the rectangle

C ≡ {(λ1, λ2) : 0 < λ1 < σ̄2 < λ2 < 1}. The map (3.13) is thus a coordinate chart between
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C and an octant of the S2. The change of coordinates is eight-to-one and eight charts are

demanded to cover the whole sphere. Piecewise solutions can be constructed by demanding

smoothness in the transitions between octants.

The four vertices of the rectangle C are distinguished points in our model. The corner

(λ1, λ2) = (0, σ̄2) corresponds to the vacua V3c, the point (λ1, λ2) = (0, 1) is mapped to the

vacua V2b and (λ1, λ2) = (σ̄2, 1) goes to the points V1a, where a, b, c = 0, 1. The remaining

vertex (λ1, λ2) = (σ̄2, σ̄2) represents the four points

Fac = ((−1)aR σ̄, 0, (−1)cRσ) a, c = 0, 1

in Cartesian coordinates. They are the foci of the “elliptical” curves defined by the sphero-

conical coordinate isolines. In summary, the vacua of our model together with the foci of

the coordinate curves of the sphero-conical coordinate system are mapped to the vertices of

C. The principal great circles become straight lines in the sphero-conical coordinate plane.

In particular, the equator is represented by the segment E = {(λ1, 1) : 0 < λ1 < σ̄2}, the

(±π
2 ) meridians are characterized by E = {(0, λ2) : σ̄2 < λ2 < 1} and the Prime meridian

and its antimeridian by the concatenation of the remaining edges {(λ1, σ̄
2) : 0 < λ1 <

σ̄2} ∪ {(σ̄2, λ2) : σ̄2 < λ2 < 1}.
The wall tension can be written as

Ω(λ1, λ2) =

∫
dx
[1

2
g11(λ1, λ2)

(dλ1

dx

)2
+

1

2
g22(λ1, λ2)

(dλ2

dx

)2
+ V (λ1, λ2)

]
in the new variables where the metric factors g = (gij) are defined as

g11(λ1, λ2) = g−1
11 (λ1, λ2) =

4λ1(σ̄2 − λ1)(1− λ1)

R2(λ2 − λ1)
,

g22(λ1, λ2) = g−1
22 (λ1, λ2) =

4λ2(λ2 − σ̄2)(1− λ2)

R2(λ2 − λ1)
.

The reason behind the use of the sphero-conical coordinates is unveiled when writing the

potential energy density in these variables

V (λ1, λ2) =
R4

2(λ2 − λ1)

[
λ1(1− λ1)(σ̄2 − λ1) + λ2(1− λ2)(λ2 − σ̄2)

]
.

A Bogomolny arrangement can now be applied to the expression of the wall tension

Ω(λ1, λ2), which can be written as

Ω(λ1, λ2) =

∫
dx
[1

2

2∑
i=1

gii

(dλi
dx

)2
+

1

2

2∑
i=1

gii
(∂W
∂λi

)2]
=

=

∫
dx

1

2

2∑
i=1

gii

(dλi
dx
− gii∂W

∂λi

)2
+
∣∣∣ ∫ dx

2∑
i=1

∂W

∂λi

∂λi
dx

∣∣∣ , (3.14)

where the superpotential W (λ1, λ2) is chosen as

W (λ1, λ2) =
1

2
R3(−1)α[λ1 + (−1)βλ2] with α, β = 0, 1.
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For configurations belonging to the space C, the last term in (3.14)

T =
∣∣∣ ∫ dx

2∑
i=1

∂W

∂λi

∂λi
dx

∣∣∣
is a topological charge, which is conserved during the evolution of the configuration. There-

fore, the static domain walls, which are stationary points of the wall tension functional

Ω(λ1, λ2), must comply with the system of first order differential equations

dλ1

dx
= g11∂W

∂λ1
= (−1)α

2Rλ1(1− λ1)(σ̄2 − λ1)

λ2 − λ1
, (3.15)

dλ2

dx
= g22∂W

∂λ2
= (−1)α+β 2Rλ2(1− λ2)(λ2 − σ̄2)

λ2 − λ1
, (3.16)

which can be solved for the values α, β = 0, 1. The integration of the equations (3.15) and

(3.16) leads to the expressions

σ̄2 − λ1

λσ
2

1 (1− λ1)σ̄2
·
[ λ2 − σ̄2

λσ
2

2 (1− λ2)σ̄2

](−1)β

= e2Rσ2γ , (3.17)

σ̄2 − λ1

1− λ1
·
[λ2 − σ̄2

1− λ2

](−1)β

= e(−1)α2Rσ2x . (3.18)

The pair of relations (3.17) and (3.18) determine two distinct families of domain walls
~φ(x, γ) parameterized by the value of the integration constant γ ∈ R and β = 0, 1. The

relation (3.17) sets the domain wall orbits whereas (3.18) determines the spatial dependence

of the solution. Walls and antiwalls are obtained as solutions of (3.15) and (3.16) with

different values of α. A direct manipulation of the equations (3.17) and (3.18) allows us to

write them in a simpler form:

σ̄2 − λ1

1− λ1
·
[λ2 − σ̄2

1− λ2

](−1)β

= e(−1)α2Rσ2x = A(x) , (3.19)

λ1

1− λ1
·
[ λ2

1− λ2

](−1)β

= e2R[(−1)αx−γ] = B(x) . (3.20)

where for sake of simplicity in subsequent expressions we have introduce the functions A(x)

and B(x) to denote the exponentials in (3.19) and (3.20).

In summary, the relations (3.17) and (3.18), or its equivalent ones (3.19) and (3.20),

determine two one-parameter families of domain walls distinguished by the value of β. We

shall discuss separately each of these families in the following subsections.

3.2.1 Family of two-lump composite domain walls

In this section the domain walls extracted from (3.19) and (3.20) with β = 0 are described.

It is a straightforward, albeit tedious, computation to check that

λi(x) =
1

2(A(x) + σ̄2 +B(x)σ2)

(
A(x) + σ̄4 + (1− σ̄4)B(x)+

+(−1)i
√
A(x)2 + 2A(x)σ̄4 + σ̄8 + 2A(x)B(x)σ4 − 2B(x)σ̄4σ4 +B(x)2σ8

)
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where i = 1, 2. In Figure 4 the domain wall

Figure 4: Orbits for several members of the

family K
(q,a,b,c)
2 (x̄, γ) (left) and field compo-

nents (right) graphically represented in sphero-

conical coordinates.

orbits in the sphero-conical plane have been

depicted for several values of γ together with

the profile of its components. This type of

solutions asymptotically connects the vacua

V3c and V1a with a, c = 0, 1 and are confined

to a sphere octant. Notice that the compo-

nents λ1(x) and λ2(x) takes values on the

corresponding ranges of the sphero-conical co-

ordinates. In the Cartesian coordinates, the

domain walls follow the form

φ
(a,b,c)
1 (x, γ) = (−1)aRσ

√
B(x)

A(x) + σ̄2 +B(x)σ2
,

φ
(a,b,c)
2 (x, γ) = (−1)bR

√
A(x)

A(x) + σ̄2 +B(x)σ2
, (3.21)

φ
(a,b,c)
3 (x, γ) = (−1)cRσ̄

1√
A(x) + σ̄2 +B(x)σ2

,

where the values a, b, c = 0, 1 determine the sphere octant where these domain walls are

confined. In Figure 5 the orbits of several members of this family have been plotted on the

sphere S2. In this figure the graphics of the Cartesian field components and the domain

wall tension densities have also been included.

Figure 5: Orbits for several members of the family K
(q,a,b,c)
2 (x̄, γ) (left), field components (middle)

and wall tension densities (right) graphically represented in Cartesian coordinates.

We shall denote these one-parameter families of domain walls as K
(q,a,b,c)
2 (x̄, γ), where

as before q = ±1 distinguishes between walls and antiwalls. The distribution of the tension

densities shows that the members of this family can be interpreted as the combination

of two separated single domain walls K
(q,a,b)
1 (x) and K

(q,b,c)
1 (x), where the parameter γ

measures the distance between these tension density lumps. In a more technical way, the

single domain walls can be obtained from the family (3.21) by taking specific limits in the

parameter space (γ, x0). It can be checked that

lim
γ → −∞

γ + (−1)ασ2x0 ≡ constant

K
(q,a,b,c)
2 (x, γ) = K

(q,a,c)
2 (x) ,
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which means that the singular domain walls K
(q,a,c)
2 (x) introduced in the previous section

are extremal members of the one-parameter family K
(q,a,b,c)
2 (x, γ). On the other hand,

lim
γ →∞

x0 constant

K
(q,a,b,c)
2 (x, γ) = K

(q,b,c)
1 (x) ,

lim
γ →∞

γ + (−1)αx0 ≡ constant

K
(q,a,b,c)
2 (x, γ) = K

(q,a,b)
1 (x) .

The energy sum rule (3.12) is now extended as

Ω[K
(q,a,b,c)
2 (x̄, γ)] = Ω[K

(q,a,c)
2 (x̄)] = Ω[K

(q,a,b)
1 (x)] + Ω[K

(q,b,c)
1 (x)] =

1

2
R3 .

In summary, the family of K
(q,a,b,c)
2 (x̄, γ)-domain walls can be understood as two solitonic

thick 2-branes which are separated by a distance fixed by the value of the family parameter

γ. The singular member K
(q,a,c)
2 (x̄) arises when the two previously mentioned solitary

domain walls are maximally overlapped.

3.2.2 Family of four-lump composite domain walls

In order to finish the identification of the static domain wall manifold the equations (3.19)

and (3.20) with β = 1 must be solved for the sphero-conical variables. The spatial depen-

dence of these variables is given by the expressions

λ1(x) =
B(x)(1 +A(x))σ̄2

B(x) +A(x)B(x)σ̄2 +A(x)σ2
, λ2(x) =

(1 +A(x))σ̄2

A(x) + σ̄2 +B(x)σ2
,

The trajectories and the field components

Figure 6: Orbits for several members of

the family K
(q,a,b,c)
4 (x̄, γ) (left) and field com-

ponents (right) graphically represented in

sphero-conical coordinates.

of this type of solutions are graphically repre-

sented in the sphero-conical plane for several

values of γ in Figure 6. In the sphero-conical

rectangle C all the orbits begin at the vertex

V2b and monotonically reach the foci Fac. In-

deed a particular solution arrives at Fac when

x = (−1)αγ, where α distinguishes between

walls and antiwalls. In the original fields the

tangent vector at the foci Fac is

d~φ

dx
= (−1)αR2σσ̄

(
(−1)aσ tanh(σ2Rγ),−sign(φ2) sech(σ̄2Rγ),−(−1)c tanh(σ2Rγ)

)
At this point in C the solutions carry non-vanishing potential tension density and

continue to the next sphere octant represented by the same rectangle C. In order to

complete the domain wall orbit a new piece of trajectory is needed, which must be chosen

in such a way that the smoothness of the solutions is guaranteed. From the previous

expression it is clear that this can be achieved by concatenating the previous solution with

the one obtained from the equations (3.17) and (3.18) with the opposite value of α and γ.

Despite this fact, the global expression

– 13 –



φ
(a,b,c)
1 (x, γ) = (−1)aRσ̄(1 +A(x))

√
B(x)

(B(x) +A(x)B(x)σ̄2 +A(x)σ2)(A(x) + σ̄2 +B(x)σ2)
,

φ
(a,b,c)
2 (x, γ) = (−1)bRσσ̄(1−B(x))

√
A(x)

(B(x) +A(x)B(x)σ̄2 +A(x)σ2)(A(x) + σ̄2 +B(x)σ2)
,

φ
(a,b,c)
3 (x, γ) = (−1)cRσ(A(x) +B(x))

1√
(B(x) +A(x)B(x)σ̄2 +A(x)σ2)(A(x) + σ̄2 +B(x)σ2)

,

can be found for the field components in the Cartesian coordinates. All the orbits asymp-

totically start at a vacuum point V2b (b = 0, 1), later cross the Prime Meridian, passing to

a new sphere octant through one of the foci Fac and asymptotically arrive at the antipodal

vacuum, see Figure 7. We shall use the notation K
(q,a,b,c)
4 (x, γ) to denote this family of

topological defects. The wall tension distribution is also illustrated in Figure 7. These

domain walls carry four tension lumps. In particular, the K
(q,a,b,c)
4 (x, γ) solutions consist

of a non-linear combination of a single K
(q,b,c)
1 (x) and a single K

(q,a,b)
1 (x) domain walls,

which are separated by a K
(q,a,c)
2 (x)-meridian domain wall in the middle, see Figure 7,

where b = (b+ 1)mod 2. In addition, the central lump K
(q,a,c)
2 (x) can be understood as the

overlapping of the two single walls K
∗(q,b,c)
1 (x) and K

(q,a,b)
1 (x) or K

∗(q,b,c)
1 (x) and K

(q,a,b)
1 (x),

where the asterisk as a superscript in the previous notation stands for the anti-wall of the

involved solution. Notice that the configuration of four single domain walls that conform

the K
(q,a,b,c)
4 (x, γ)-solutions always involves the presence of a wall and its antiwall.

Figure 7: Orbits for several members of the family K
(q,a,b,c)
4 (x̄, γ) (left), field components (middle)

and wall tension densities (right) graphically represented in Cartesian coordinates.

The following energy sum rules

Ω[K
(q,a,b,c)
4 (x̄, γ)] = Ω[K

(q,a,b)
1 (x)] + Ω[K

(q,a,c)
2 (x)] + Ω[K

(q,b,c)
1 (x)] =

= 2 Ω[K
(q,a,b)
1 (x)] + 2 Ω[K

(q,b,c)
1 (x)] = R3

hold in this case. In summary, the family of K
(q,a,b,c)
4 (x̄, γ)-domain walls can be understood

as four solitonic thick 2-branes, two of them (of different type) equally separated from a

superposition of the other two at a distance fixed by the value of the family parameter γ.

It can be checked that the γ →∞ limits

lim
γ →∞

x0 constant

K
(q,a,b,c)
4 (x, γ) = K

(−q,b,c)
1 (x) ,
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lim
γ →∞

γ + x0 ≡ constant

K
(q,a,b,c)
4 (x, γ) = K

(q,a,c)
2 (x) ,

lim
γ →∞

γ + σ2x0 constant

K
(q,a,b,c)
4 (x, γ) = K

(q,a,(b+1)mod 2)
1 (x) ,

provide us with the singular domain walls. Similarly, the γ → −∞ limits lead to

lim
γ → −∞
x0 constant

K
(q,a,b,c)
4 (x, γ) = K

(q,(b+1)mod 2,c)
1 (x) ,

lim
γ → −∞

γ + x0 ≡ constant

K
(q,a,b,c)
4 (x, γ) = K

(−q,a,c)
2 (x) ,

lim
γ → −∞

γ + σ2x0 constant

K
(q,a,b,c)
4 (x, γ) = K

(−q,a,b)
1 (x) .

4. Linear stability of the domain walls

In this section the linear stability of the domain walls described in the previous Section is

investigated. The singular solutions were described by using spherical coordinates. In this

context the domain wall solutions will follow the form Θ(x) = (θ(x), ϕ(x)). The study of

the behavior of small fluctuations η(x) = (η1(x), η2(x)) around these domain walls requires

the analysis of second-order differential operator [47, 48]:

∆η = −∇Θ′∇Θ′η −R(Θ′, η)Θ′ −∇η gradU , (4.1)

which has been written in terms of covariant derivatives and the curvature tensor. Specifi-

cally, in the standard basis { ∂∂θ ,
∂
∂ϕ} for the tangent space to the sphere along the domain

wall, the vector fields are written as

Θ′(x) = θ′(x)
∂

∂θ
+ ϕ′(x)

∂

∂ϕ
; η(x) = η1

∂

∂θ
+ η2

∂

∂ϕ

and ∇η gradU leads to the Hessian of the potential function. In general, the explicit form

of this operator for a given domain wall is very complex. However, the special geometry

of the singular domain wall orbits allows us to determine the complete spectrum for these

singular solutions. The results are described in the following points:

1. Equatorial domain walls. Plugging the expressions of Equatorial domain walls into

(4.1), we obtain the following small fluctuation operator:

∆Eqη =

[
−d

2η1

dx2
+
R2

2

(
1 + σ4 − 3σ̄4

2 cosh2(Rσ̄2x)
− (1− σ4) tanh(Rσ̄2x)

)
η1

]
∂

∂θ

+

[
−d

2η2

dx2
+R2σ̄4

(
1− 2

cosh2(Rσ̄2x)

)
η2

]
∂

∂ϕ
. (4.2)

The first component of (4.2)

H11 = − d2

dx2
+
R2

2

[
1 + σ4 − 3σ̄4

2 cosh2(Rσ̄2x)
− (1− σ4) tanh(Rσ̄2x)

]
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governs the behavior of the orthogonal fluctuations around the K
(q,a,b)
1 (x)-domain walls.

The spectrum of H11 consists of a continuous spectrum which is simply degenerate in the

range [σ4R2, R2] and doubly degenerate for eigenvalues in the interval (R2,∞). On the

other hand, the small longitudinal fluctuation operator

H22 = − d2

dx2
+R2σ̄4

(
1− 2

cosh2(Rσ̄2x)

)
involves the presence of a zero mode ω2

0 = 0 and a doubly degenerate continuous spectrum

emerging on the threshold value ω2 = R2σ̄4. The existence of a longitudinal zero mode is

a general rule and establishes that the domain wall center can be set at any spatial point

x0 ∈ R. The lack of negative eigenvalues implies that the K
(q,a,b)
1 (x)-domain walls are

stable.

2. Meridian domain walls. The
(
±π

2

)
-Meridian domain wall fluctuation operator is given

by the expression

∆Merη =

(
−d

2η1

dx2
+R2σ4

(
1− 2

cosh2(Rσ2x)

)
η1

)
∂

∂θ

+

(
−d

2η2

dx2
−Rσ2

(
1− tanh(Rσ2x)

) dη2

dx
+R2σ̄2

(
1− σ2 tanh(Rσ2x)

)
η2

)
∂

∂ϕ
.

The form of this operator can be simplified if a basis for the tangent space that is trans-

ported in a parallel way along the domain wall is considered [47, 48]. The parallel transport

equations along Meridian solutions for a generic vector field v(x) = v1(x) ∂∂θ + v2(x) ∂∂θ
read as dv1

dx = 0 and dv2

dx = − Rσ2v2

e2Rσ2x+1
, which leads to the solution v1(x) = 1 and

v2(x) =
√

1 + e−2Rσ2x. Therefore,{
v1 =

∂

∂θ
, v2 =

√
1 + e−2Rσ2x

∂

∂ϕ

}
is a parallel frame along

(
±π

2

)
-Meridian solutions. Writing the deformation field in this

basis: η̄ = η̄1 v1 + η̄2 v2, the Hessian operator reads:

∆Merη̄ =

[
−d

2η1

dx2
+R2σ4

(
1− 2

cosh2(Rσ2x)

)
η1

]
v1 +

+

[
−d

2η2

dx2
+
R2

2

(
σ4 − 2σ2 + 2− 3σ4

2 cosh2(Rσ2x)
− σ2(2− σ2) tanh(Rσ2x)

)
η̄2

]
v2

For these solutions the longitudinal fluctuation operator

H11 = − d2

dx2
+R2σ4

(
1− 2

cosh2(Rσ2x)

)
comprises a zero mode ω2

0 = 0 together with a doubly degenerate spectrum ω2 ∈ (R2σ4,∞).

The spectrum of the second component

H22 = − d2

dx2
+
R2

2

(
σ4 − 2σ2 + 2− 3σ4

2 cosh2(Rσ2x)
− σ2(2− σ2) tanh(Rσ2x)

)
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is simply degenerate in the interval ω2 ∈ [σ̄4R2, R2] and doubly degenerate in ω2 ∈ (R2,∞).

From the previous analysis, we conclude that the K
(q,b,c)
1 (x)-solutions are stable topological

domain walls.

3. Prime Meridian domain walls. This case is similar to the previous one, the K
(q,a,c)
2 (x)-

fluctuation operator extracted from (4.1) is given by:

∆PMerη =

(
−d

2η1

dx2
+R2

(
1− 2

cosh2(Rx)

)
η1

)
∂

∂θ

+

(
−d

2η2

dx2
−R (1− tanh(Rx))

dη2

dx
−R2σ̄2

(
σ2 − tanh(Rx)

)
η2

)
∂

∂ϕ

in the standard frame. Now the parallel frame is defined by the system{
v1 =

∂

∂θ
, v2 =

√
1 + e−2Rx

∂

∂ϕ

}
which is obtained by solving the parallel transport equations dv1

dx = 0 and dv2

dx = − Rv2

e2Rx+1
.

In this frame the previous operator reads

∆PMerη̄ =

[
−d

2η1

dx2
+R2

(
1− 2

cosh2(Rx)

)
η1

]
v1 +

+

[
−d

2η2

dx2
+
R2

2

(
2σ4 − 2σ2 + 1− 3

2 cosh2(Rx)
+ (1− 2σ2) tanh(Rx)

)
η̄2

]
v2

The spectrum of this operator comprises two zero modes, each of them associated with the

two different components of ∆PMer. A doubly degenerate continuous spectrum emerges at

the threshold value ω2 = R2 for the first component. For the second component a simply

and doubly degenerate spectra in the intervals [min{σ̄4R2, σ4R2},max{σ̄4R2, σ4R2}] and

(max{σ̄4R2, σ4R2},∞) arise. As a consequence the K
(q,a,c)
2 (x)-domain walls are stable

although a new neutral stability channel is open for these solutions.

Finally, Morse Theory can be applied to the domain wall orbit space to establish the

stability of the domain wall families K
(q,a,b,c)
2 (x, γ) and K

(q,a,b,c)
4 (x, γ). In the first case

the set of K
(q,a,b,c)
2 (x, γ)-orbits lacks conjugate points, which implies that these solutions

are stable. We recall that every member of this family can be interpreted as a non-linear

combination of the single wallsK
(q,a,b)
1 (x) andK

(q,b,c)
1 (x), which form a stable configuration.

On the other hand, all the K
(q,a,b,c)
4 (x, γ) orbits cross through the conjugate point Fac. This

allows us to conclude that these solutions are unstable. Recall that in the description of

this family was noted that these solutions involve the presence of a wall and its anti-wall,

which obviously is a source of unstability, confirmed in this case by the application of Morse

theory.

5. Conclusions and further comments

In this paper we have analytically calculated all the static domain wall variety which arises

in a non-linear S2-sigma model with a homogeneous quartic polynomial potential. The
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vacuum set in this model involves the existence of six maximally separated points on the

sphere. The pieces of great circles joining these points split the sphere in eight octants

and are the orbits of the so called Equatorial, (±π
2 )-Meridian and Primer Meridian domain

walls. The first two types describe two basic domain walls, whose tension density is localized

around one point. The Prime Meridian domain walls appear when a Equatorial domain

wall and a (±π
2 )-Meridian domain wall are exactly overlapped. Indeed, these solutions

are singular members of the K
(q,a,b,c)
2 (x, γ)-domain wall families. The members of these

families are characterized as a non-linear combination of the two previously mentioned

basic domain walls, which are separated by a distance parameterized by the value of γ.

The energy density of these solutions are condensed around two points. No interactions

between these walls arise when they remain still. All these solutions have been proved to

be stable domain walls. A similar equilibrium configuration is obtained when four basic

domain walls (two of each type) are alternately disposed along the space if the two walls

in the middle are exactly overlapped and equally separated of the other two. These static

solutions constitute the K
(q,a,b,c)
4 (x, γ)-domain wall families described in the paper. These

complex internal structure makes these topological defects into unstable.

As previously noted, there is no forces acting between the basic domain walls when

they are motionless. Indeed, all the members in the K
(q,a,b,c)
2 (x, γ)-families are energy

degenerate. Obviously this picture takes place at classical level. From our point of view,

it is very interesting to investigate whether this situation persists in the quantum realm.

One-loop effects in field theory can be quantified by using the Gilkey-De Witt-Avramidi

heat kernel expansion approach [67, 68, 69]. This technique must be modified when zero

mode fluctuations are involved, as in our case. This problem has been successfully tackled

in the scalar field theory [70, 71] and even in the Abelian Higgs model [72, 73]. As a

final remark we conjecture the presence of quantum-induced interactions in the moduli

space of the previous degenerate BPS domain walls in concordance with other models, see

[74, 75, 76].
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