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Abstract

In this paper we characterize the optimal environmental policy for a polluting

monopoly that devotes resources to abatement activities when damages are caused by a

stock pollutant. With this aim, we calculate the stagewise feedback Stackelberg equilib-

rium of a (differential) policy game where the regulator is the leader and the monopolist

the follower. Our analysis shows that the first-best policy consists of applying a Pigou-

vian tax and a subsidy on production equal to the difference between the price and the

marginal revenue. However, for a stock pollutant the Pigouvian tax is not equal to the

marginal damages but to the difference between the social and private valuation of the

pollution stock. On the other hand, if a second-best emission tax is used, the tax is

lower than the Pigouvian tax and the difference decreases with the price elasticity of

the demand. Finally, we find that taxes and standards are equivalent in a second-best

setting. In the second part of the paper, we solve a linear-quadratic differential game and

we obtain that the first-best tax increases with the pollution stock whereas the subsidy

decreases but that the tax is negative for low values of the pollution stock regardless of

the importance of the environmental damages i.e. for low values of the pollution stock

the social valuation of the stock is lower than the private valuation. Moreover, when a

second-best policy is applied the steady-state pollution stock is lower than the steady-

state pollution stock corresponding to the effi cient outcome.

Keywords: monopoly, abatement, emission tax, emission standard, stock pollutant,

differential games

JEL Classification System: H23, L12, L51, Q52, Q55
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1 Introduction

Regulation of a polluting monopoly is an interesting case of environmental regulation

since the market allocation can be ineffi cient because two market failures are operating

at the same time but in an opposite direction. On one hand, the firm has market power

that tends to reduce output. On the other hand, there is a negative externality that tends

to increase output. Obviously, there will exist a level of marginal environmental damages

for which the market allocation is effi cient. Thus, for low marginal damages the optimal

policy will consist of a subsidy and for high marginal damages it will be a tax. Moreover,

when this is the case the tax will be lower than the marginal damages. These well

known results showed by Buchanan (1969) apply when the only way to adjust emissions

is changing production. Interestingly, when the firm devotes resources to abatement

activities the first-best policy is a combination of a subsidy on production and a Pigouvian

tax on emissions equal to the marginal damages and the tax cannot be negative. However,

as was established by Barnett (1980), if a second-best emission tax is applied the tax will

be lower than marginal damages and it could be negative for low values of marginal

damages.

This analysis of the regulation of a polluting firm with market power for a flow pollu-

tant was extended by Benchekroun and Long (1998, 2002) to the case of a stock pollutant

bringing the analysis to a dynamic framework. The first paper shows that there exists a

stationary tax rule that guides polluting oligopolists to achieve the effi cient production

path. The optimal tax depends on the current pollution stock, and it may be negative

when the pollution stock is low and there are just a few firms in the markets. This result

is established for a model where the only way to control emissions is reducing production

as in Buchanan’s (1969) paper. In our paper, we extend their analysis of emission taxa-

tion to cover the possibility that the firm devotes resources to abatement activities as in

Barnett’s (1980) paper.

In the first part of the paper, we calculate the stagewise feedback Stackelberg equilib-

rium (SFSE) of a differential policy game between a welfare maximizing regulator and a

profit maximizing monopolist to characterize first the first-best policy. As in the static
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model it consists of applying a Pigouvian tax along with a subsidy on production that

closes the gap between the price and the marginal revenue. However, for a stock pollu-

tant we obtain that the Pigouvian tax is not equal to the marginal damages but to the

difference between the social and private valuations of the pollution stock explained by

the different effect that an increase in the stock has on the discounted present value of

net social welfare and on the discounted present value of net profits. We also confirm

Barnett’s result that if a second-best emission tax is applied, the tax is lower than the

Pigouvian tax and that the difference between these two taxes decreases with the price

elasticity of the demand. Finally, we show that an emission standard implements the

same SFSE than that supported by a tax. The two regulated market equilibria coincide

and the tax and the standard are two equivalent policy instruments.

In order to investigate the dynamics of the model, we solve in the second part of

the paper a linear-quadratic (LQ) differential game for an end-of-the-pipe abatement

technology. We obtain that the tax increases with the pollution stock whereas the subsidy

decreases. However, as in Benchekroun and Long (1998) the tax is negative for low values

of the pollution stock. The characterization of the Pigouvian tax in a dynamic framework

we have obtained in the first part of the paper allows us to explain the rationale of this

result. Something that was not in Benchekroun and Long’s (1998) paper. For low values

of the pollution stock, the private valuation of the stock is larger than the social valuation

because the firm takes into account that more production and emissions will bring higher

taxes for the rest of the game whereas the social valuation is low because for low values

of the pollution stock, damages are small. In this case, the difference between the social

and private valuation of the stock is negative and the first-best policy is a subsidy on

emissions. Something that cannot occur for a flow pollutant. This difference causes that

the level of production is bellow the effi cient level is spite of the subsidy on production

and the optimal policy is a subsidy on emissions instead of a tax tat indirectly operates

as subsidy on production. Notice that this result does not depend on the importance of

marginal damages. Even if the marginal damages curve is very steep, the optimal tax

is negative for low values of the pollution stock. The same occurs for the second-best

emission tax with the difference that the term of the tax that corrects the market power
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of the firm is also negative strengthening the negative effect of the private valuation

on the tax. In this framework, it is very interesting to know that a standard could

implement the same equilibrium because applying a standard the regulator could avoid

an environmental policy that recommends a subsidy on emissions. A policy that could

be diffi cult to implement because of the political protest of the environmentalist groups.

Finally, we ends the paper evaluating the effects of the second-best environmental

policy. The main result is that the steady-state pollution stock for the effi cient (first-

best) solution is larger then the steady-state pollution stock the second-best solution and

consequently steady-state emissions are also larger. This result is explained because if

a subsidy on production is not applied, the firm will produce less. An incentive that

is not compensated by the second-best tax resulting finally in less production and less

emissions. In fact, we find that if damages are not very low the optimal strategy for

emissions for the second-best solution is below the optimal strategy for emissions for the

effi cient outcome, i.e. for any level of pollution, emissions are larger when the first-best

policy is used. Moreover, we find that the optimal temporal path of the pollution stock

for the effi cient solution is above the optimal temporal path for the second-best solution

except when the initial pollution stock is very large. If this is the case, the pollution

stock when a second-best policy is used can be initially larger than the pollution stock

when the first-best policy applies although finally this relationship will invert.

1.1 Literature Review

The literature addressing the regulation of firms with market power in the context of

stock dynamics includes Bergstrom et al. (1981), Karp and Livernois (1992) and Karp

(1992) for the case of a non-renewable resource and Xepapadeas (1992), Kort (1996),

Benchekroun and Long (1998, 2002), Stimming (1999) Feenstra et al. (2001) and Yanese

(2009) for the case of polluting firms. Bergstrom et al. (1981) show that there exists

a continuum of tax schemes that induce the monopolist to exploit effi ciently a non-

renewable resource. However, these tax schemes are not subgame perfect. Karp and

Livernois (1992) design a subgame perfect tax scheme that is effi ciently inducing and is
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unique and Karp (1992) extends this result to the case of a common property oligopoly.

The rest of paper addressing the case of polluting firms, except Benchekroun and Long

(1998, 2002) and Yanase (2009), assume that damages are caused by a flow pollutant

and focus on the investment in abatement technology. The environmental policy is ex-

ogenously determined and the research assesses the effects of a stricter environmental

policy and the comparison of taxes vs emission standards. However, in Yanese (2009),

as in Benchekroun and Long (1998, 2002), the environmental policy is endogenously de-

termined. The author examines a non-cooperative (differential) policy game between

national governments in a model of international pollution control of a stock pollutant

in which duopolists compete myopically in quantities in a third country with product

differentiation, and expense resources in abatement activities. The comparison of the

Markov perfect Nash equilibrium of the game for different policy instruments establishes

that an emission tax produces more pollution and lower welfare than those generated by

a standard. However, our policy game, although for a different setting, does not give the

same prediction, the tax is equivalent to the standard.

More recently, Wirl (2014) has investigated a differential policy game between a

monopoly that provides a clean technology for a polluting competitive industry and

a regulator that uses an emission tax or standard to control a flow pollutant.1 Thus,

when the regulator uses a tax, the monopoly is forced to provide the clean technology

at a price equal to the emission tax. For this model, the Markov perfect Nash equilibria

(MPNE) when the regulator applies a tax and when it uses a standard are compared.

This comparison shows that for a MPNE the effi cient solution cannot be implemented

using only one instrument but that the tax and the standard are equivalent as it occurs

in our model.2 However, our model is different in several aspects. Mainly, Wirl focuses

on a flow pollutant whereas we consider a stock pollutant. Moreover, we assume that

1Golombek et al.(2010) consider that the supply of abatement equipment services are monopolistic

competitive. They show in a two-period model that the first-best outcome can be reached through a

technology subsidy and carbon taxes.
2In contrast with our model, in Wirl’s (2014) policy game the tax does not depend on the invest-

ment and vice versa and consequently the stagewise feedback Stackelberg equilibrium coincides with the

Markov perfect Nash equilibrium.
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the polluting industry is a monopoly that can devote resources directly to abatement

activities. Thus, to best our knowledge, our paper derives for the first time the optimal

environmental policy for a polluting monopoly with a stock pollutant and abatement

costs.

Another branch of the literature has focused on the effects of taxes and standards on

welfare for a stock pollutant under uncertainty. This issue has been addressed by Hoel

and Karp (2001, 2002), Karp and Zhang (2005, 2006) and, more recently, by Masoudi

and Zaccour (2014). In these papers, it is assumed that a competitive representative

firm takes aggregate emissions as exogenous and behave non-strategically. Since the firm

takes both the current and future policies as exogenous, it solves a sequence of static

optimization problems. Then, the regulator optimization problem becomes a stochastic

optimal control problem where the tax or the standard maximizes social welfare. As is

well know since the publication of Weitzman’s (1974) paper, the uncertainty breaks the

equivalence between the tax and the standard.

Finally, we would like to comment the papers by Saltari and Travaglini (2011) and

Karp and Zhang (2012) where both the abatement capital stock and the pollution stock

are taken into account in the analysis of the firm’s investment decisions. Saltari and

Travaglini (2011), following the approach adopted by the previous literature, assume that

the environmental policy is exogenously determined. In their model, the pollution stock

affects negatively the production function, and a single competitive firm has to decide for

a given price about the use of a polluting factor and the abatement investment taking has

given the dynamics of the pollution stock that evolves according to a geometric Brownian

motion. Karp and Zhang (2012) extend Hoel and Karp (2002) allowing the representative

firm to invest in abatement capital. They analyze a two-stage game where in the first

stage the firm selects in each period the emissions that maximize its current profits and

in the second stage the firm and the regulator play a simultaneous non-cooperative game.

In this second stage, the firm decides the level of investment and the regulator the level of

the policy instrument. They solve the game numerically using a linear-quadratic model

for an application to climate change. Both papers focus on comparing taxes vs emission

standards.
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The remainder of the paper is organized as follows. Section 2 presents the ingredients

of the differential game and the effi cient conditions. Section 3 characterizes the first-

best policy and Section 4 analyzes the second-best environmental policy using taxes and

standards. In Section 5 we calculate the first-best and second-best environmental policy

for a linear-quadratic differential game and evaluate the effects of the second-best policy.

Section 6 offers some concluding remarks and points out lines for future research.

2 The Model and the Effi cient Conditions

We consider a monopoly that faces a market demand represented by the decreasing

inverse demand function P (q(t)) where q(t) is the output at time t. The production

process generates pollution emissions, however the firm can devote resources to abatement

activities represented by w(t). In this case, both the emission and cost functions depend

on output and abatement effort. The emission function is represented by s(q(t), w(t))

with ∂s/∂q positive and ∂s/∂w negative, and the cost function by C(q(t), w(t)) with

∂C/∂q and ∂C/∂w positive. The second-order partial derivatives are assumed to be

positive or zero. The focus of the paper is on a stock pollutant that evolves according to

the following differential equation

ẋ(t) = s(t)− δx(t) = s(q(t), w(t))− δx(t), x(0) = x0 ≥ 0, (1)

where x(t) stands for the pollution stock and δ > 0 for the decay rate of pollution. The

environmental damages are given by the function D(x(t)) that is assumed strictly convex.

Thus, the policy game we analyze in this paper is a differential game between a welfare

maximizing regulator and a profit maximizing monopolist. Before analyzing it, we first

derive the first-order conditions that characterize the effi cient outcome.

The effi cient conditions are obtained from the maximization of the discounted present

value of net social welfare defined as the difference between gross consumer surplus minus

costs and environmental damages.3

3Time argument will be eliminated when no confusion arises.
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max
{q,w}

∫ ∞
0

e−rt
{∫ q

0
P (y)dy − C(q, w)−D(x)

}
dt

s.t. ẋ = s(q, w)− δx, x(0) = x0 ≥ 0,

where r is the time discount rate.

Solving by dynamic programming, the solution to this dynamic optimization problem

must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation

rW (x) = max
{q,w}

{∫ q
0
P (y)dy − C(q, w)−D(x) +W ′(x)(s(q, w)− δx)

}
,

where W (x) represents the maximum discounted present value of net social welfare for

the current value, x, of the pollution stock.

The maximization of the right-hand side of the HJB equation yields the following

first-order conditions (FOCs)

P =
∂C

∂q
−W ′(x)

∂s

∂q
, (2)

∂C

∂w
= W ′(x)

∂s

∂w
. (3)

The first FOC establishes that the price must be equal to the marginal costs that include

the marginal cost of production plus the social valuation (shadow price) of the pollution

stock. The latter is given by the reduction in the present value of the net social welfare

because of an increase in the pollution stock caused by an increase in production. Notice

that this shadow price is multiplied by the effect of an increase in production on emissions.

On the other hand, the second FOC requires that the marginal cost of abatement is

equal to the marginal benefit defined by the increase in the present value of the net social

welfare caused by a reduction in the stock because of an increase in abatement. Notice

that W ′(x), is a marginal cost when we are considering an increase in production, and it

stands for a marginal benefit when we are evaluating an increase in abatement.

To implement these conditions as a regulated market equilibrium we propose, follow-

ing Barnett (1980), a subsidy to correct the market power of the firm together a tax

on emissions to control the external diseconomy. In the next section, we calculate the

stagewise feedback Stackelberg equilibrium (SFSE) of a (differential) policy game where
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the regulator is the leader and the monopolist the follower and show that using this policy

mix the regulated market equilibrium will be effi cient.

3 The First-Best Policy

The SFSE is based on the assumption that the regulator moves first in each moment. To

find the regulator’s optimal policy, we apply backward induction, substituting the mo-

nopolist’s reaction function in the regulator’s HJB equation, and computing the optimal

strategy by maximizing the right-hand side of this equation. The resulting outcome is a

stagewise feedback Stackelberg solution, which is a Markov-perfect equilibrium. For this

kind of equilibria no commitment is required for the entire temporal horizon. For our

model, this equilibrium is time consistent in the sense defined in the seminal paper by

Kydland and Prescott (1997) and also satisfies subgame perfection.

The output and abatement selection occurs in the second stage. The monopolist

chooses its output and abatement to maximize the discounted present value of net profits

max
{q,w}

∞∫
0

e−rt {P (q)q − C(q, w)− τs(q, w) + vq} dt,

subject to differential equation (1) where τ is the emission tax and v stands for a subsidy

on production. We assume that the firm acts strategically at this stage because it is

aware that the dynamics of the stock will be taken into account by the regulator to set

up the optimal policy.

The solution to this dynamic optimization problem must satisfy the following HJB

equation

rV (x) = max
{q,w}
{P (q)q − C(q, w)− τs(q, w) + vq + V ′(x)(s(q, w)− δx)} , (4)

where V (x) stands for the maximum discounted present value of net profits for the current

value, x, of the pollution stock.

From the FOCs for the maximization of the right-hand side of the HJB equation, we

get

P ′q + P + v =
∂C

∂q
+ (τ − V ′(x))

∂s

∂q
, (5)
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∂C

∂w
= −(τ − V ′(x))

∂s

∂w
. (6)

The left-hand side of the first FOC stands for the marginal revenue plus the subsidy

and the right-hand side represents the marginal costs that include the marginal cost of

production, the tax and the private valuation (shadow price) of the pollution stock. The

latter is given by the reduction in the present value of the firm’s net profits because of

an increase in the pollution stock caused by an increase in production. Observe that

the last two terms are multiplied by the effect of an increase in production on emissions.

On the other hand, the left-hand side of the second FOC represents the marginal cost

of abatement and on the right-hand side appear the marginal benefits that includes the

marginal reduction in taxes because of the reduction in emissions caused by an increase

in abatement that is given by the tax rate, and the increase in the present value of the

firm’s profits because of the reduction in the stock caused by an increase in abatement.

Notice that V ′(x) is a marginal cost when we are considering an increase in production,

and it stands for a marginal benefit when we are evaluating an increase in abatement.

The same occurs for the tax rate. Conditions (5) and (6) implicitly define the firm’s

strategies: q(τ , v, x) and w(τ , v, x).

In the first stage, the regulator selects the emission tax rate and subsidy by unit of

output that maximize net social welfare defined as the sum of consumer surplus and

monopoly net profits plus tax revenues minus subsidies and environmental damages

max
{τ ,v}

∞∫
0

e−rt
{∫ q

0

P (y)dy − Pq(τ , v, x) + π(q(τ , v, x), w(τ , v, x), τ , v)

+τs(q(τ , v, x), w(τ , v, x))− vq(τ , v, x)−D(x)} dt,

where π stands for the firm net profits. Notice that consumer expense and firm revenue

on one hand and firm tax expense and subsidies and regulator tax revenue and subsidy

expenses on the other hand, cancel out. Therefore, this optimization problem can be

rewritten as

max
{τ ,v}

∞∫
0

e−rt

{∫ q(τ ,v,x)

0

P (y)dy − C(q(τ , v, x), w(τ , v, x))−D(x)

}
dt.
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The solution to this dynamic optimization problem must satisfy the following HJB equa-

tion

rW (x) = max
{τ ,v}

{∫ q

0

P (y)dy − C(q(τ , v, x), w(τ , v, x))−D(x)

+W ′(x)(s(q(τ , v, x), w(τ , v, x))− δx)} . (7)

From the FOCs for the maximization of the right-hand side of the HJB equation, we

get (
P − ∂C

∂q
+W ′(x)

∂s

∂q

)
∂q

∂τ
−
(
∂C

∂w
−W ′(x)

∂s

∂w

)
∂w

∂τ
= 0, (8)(

P − ∂C

∂q
+W ′(x)

∂s

∂q

)
∂q

∂v
−
(
∂C

∂w
−W ′(x)

∂s

∂w

)
∂w

∂v
= 0. (9)

Assuming that both output and abatement are affected by the tax and subsidy, it is

immediate that these conditions are satisfied if the effi cient conditions hold.4 Thus, using

the effi cient conditions along with FOCs (5) and (6) we can characterize the first-best

policy. Conditions (3) and (6) allows us to define the optimal tax

τ ∗ = −W ′(x) + V ′(x), (10)

and conditions (2) and (5) the optimal subsidy: v∗ = −P ′q,and we can conclude that

Proposition 1 The first-best policy consists of applying a Pigouvian tax equal to the

difference between the social and private valuations of the pollution stock and a subsidy

that closes the gap between the price and marginal revenue of output.

Observe that in a dynamic context, the Pigouvian tax is not equal to the marginal

environmental damages but to the difference between the social and private shadow price

that environmental damages cause. Moreover, we can highlight that each instrument

corrects one distortion. On one hand, the tax adjusts the output and abatement to

correct the external diseconomy caused by the firm’s emissions. On the other hand, the

subsidy corrects the market power of the firm doing that the marginal revenue be equal to

the price. Finally, we would like to point out that although for the subsidy is not explicitly

4Notice that the only requirement we impose on the strategies is that their partial derivatives do not

be all zero.
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recognized the dependence with respect to the pollution stock this is the case because

we are using dynamic programming to solve the optimization problem. This means that

we derive two policy rules that depends on the pollution stock. The properties of these

policy rules will depend critically on the properties of the value functions as we show in

Section 5 for a linear-quadratic differential game.

4 The Second-Best Environmental Policy

A subsidy on production is a policy instrument an environmental regulator could not

apply because it could be not recognized as an environmental policy instrument, in other

words, for political or institutional constraints, the environmental regulator could be

restricted to select policy instruments in a menu that does not include subsidies on

production. For this reason, we find interesting to investigate which would be the optimal

environmental policy in a second-best setting. In this paper, we will focus on two classical

environmental policy instruments: a tax on emissions and an emission standard. We will

begin studying the case of an emission tax.5

4.1 The Second-Best Emission Tax

The study of this case follows the steps of the analysis developed in the previous section

omitting the possibility the regulator applies a subsidy on output. Thus, the subsidy

must be cancelled in the FOC (5) yielding

P ′q + P =
∂C

∂q
+ (τ − V ′(x))

∂s

∂q
. (11)

However, there are no changes in the FOC (6). On the other hand, the dependence of

production and abatement with respect to the subsidy must be eliminated from the HJB

equation (7) and then the two FOCs that characterize the maximization of the right-hand

side of the regulator HJB equation reduces to one, the condition (8).

5In a companion paper, Martín-Herrán and Rubio (2016), we analyze the time consistency of the

second-best emission tax.
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Doing again the expressions between parenthesis in the condition (8) equal to zero

the effi cient conditions are obtained. However, these conditions are incompatible with

conditions (6) and (11) that characterize the maximization of the discounted present

value of net profits by the firm and the SFSE is ineffi cient. The problem is that it is

necessary to correct two conditions to induce the firm to act effi ciently but the regulator

is using only one policy instrument. The tax can be defined to yield that the condition

(6) be equal to the effi cient condition (3) but then the condition (11) does not give the

effi cient condition (5). As expected, a second-best emission tax does not implement the

effi cient outcome and has a cost in welfare terms.

Conditions (11) and (6) can be rewritten as

P − ∂C

∂q
= (τ − V ′(x))

∂s

∂q
− P ′q,

and
∂C

∂w
= −(τ − V ′(x))

∂s

∂w
.

Eliminating P − ∂C/∂q and ∂C/∂w in (8) using these expressions yields(
−P ′q + (τ − V ′(x) +W ′(x))

∂s

∂q

)
∂q

∂τ
+ (τ − V ′(x) +W ′(x))

∂s

∂w

∂w

∂τ
= 0, (12)

and taking common factor gives

τ sb =
− P
|η|

∂q
∂τ

∂s
∂q

∂q
∂τ

+ ∂s
∂w

∂w
∂τ

− (W ′(x)− V ′(x)), (13)

where η is the price elasticity of demand and the superscript sb stands for the second-

best tax. Expression (13) is the dynamic version of the condition that characterizes

the second-best emission tax derived by Barnett (1980) for a flow pollutant. When the

firm has not market power, the price elasticity is infinite (13) gives the Pigouvian tax.

However, for a monopoly the absolute value of the elasticity is positive and consequently

the first term on the right-hand side of (13) is negative provided that ∂q/∂τ is negative

and ∂w/∂τ is positive and then we can conclude that6

6Although these are the expected signs for these partial derivatives, they depend on the sign of cross

effects (cross second-order partial derivatives) of the cost and emission functions.
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Proposition 2 The second-best emission tax is lower than the difference between the

social and the private valuations of the pollution stock whenever the tax reduces the gross

and net emissions.

Moreover, expressions (12) and (13) allow us to interpret condition (8). Notice

that according to (13), τ sb − V ′(x) + W ′(x) must be negative. Then, if the tax has a

negative impact on emissions and production, the first term in brackets in (12) must be

positive and consequently the first term between parenthesis in (8) must be positive and

the second term negative. Thus, the optimal tax balances the reduction in consumer

surplus net of the social shadow price of the pollution stock caused by the decrease in

output induced by the increase in the tax rate with the increase in welfare caused by the

augmentation in abatement provoked by the increase in the tax rate. This increase in

welfare is explained by the fact that at the equilibrium the marginal cost of abatement is

lower that the social shadow price of the pollution stock that represents the increase in

the discounted present value of welfare because of a decrease in the stock. Thus, when

the abatement increases the reduction in the social shadow price of the pollution stock

more than compensated the augmentation in abatement costs.

4.2 The Emission Standard

The study of the emission standard is interesting not only because is the classical example

of an environmental policy based on the regulation of quantities instead of regulating

prices represented by the emission tax but also because we cannot discard the possibility

that the tax operates as a subsidy. Notice that the first term on the right-hand side

of (13) is negative and this could yield a negative tax, i.e. a subsidy on emissions. In

the next section, we find that this is the case, for low values of the pollution stock we

obtain that both the first-best and second-best emission tax are negative. In this case,

it would be interesting to know what is achieved if the regulator applies a standard to

avoid applying a subsidy on emissions, a policy that could be diffi cult to justify as an

environmental policy.

Next, we solve a stagewise feedback Stackelberg equilibrium where in the first stage
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the regulator chooses the standard and in the second stage the monopolist selects the

abatement that given the standard determines production.

As the profits do not depend on the stock and the dynamics is driven by the standard,

the monopolist maximizes (instantaneous) profits in each moment. Moreover, given the

dependence of emissions on production and abatement, we can define implicitly the pro-

duction as a function of the standard, s̄, and abatement. Thus, the profits function can

be written as follows

π = P (q(s̄, w)) q(s̄, w)− C(q(s̄, w), w). (14)

The FOC yields (
P ′q + P − ∂C

∂q

)
∂q

∂w
=
∂C

∂w
. (15)

This condition establishes that the marginal cost of investment must be balanced with

the marginal benefits represented by the left-hand side of the condition. When abatement

increases for a given standard, production must be adjusted to satisfy the standard what

increases profits by the difference between the marginal revenue and the marginal cost of

production.7

Condition (15) implicitly defines a function of abatement with respect to the standard,

w(s̄), that does not depend of the pollution stock so that production can be also written

as a function of the standard: q(s̄, w(s̄)).

In the first stage, the regulator maximizes the discounted present value of net social

welfare with respect to the standard

max
{́s̄}

∫ ∞
0

e−rt
{∫ q(s̄)

0
P (y)dy − C(q(s̄), w(s̄))−D(x)

}
dt

s.t. ẋ = s̄− δx, x(0) = x0 ≥ 0.

The solution to this dynamic optimization problem must satisfy the following HJB

equation

rW (x) = max
{s̄}

{∫ q(s̄)
0

P (y)dy − C(q(s̄), w(s̄))−D(x) +W ′(x)(s̄− δx)
}
.

7Notice that ∂q/∂w = −∂s/∂w/∂s∂q > 0. Thus an increase in abatement for a given standard gives

an increase in output.
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In this case, the maximization of the right-hand side of the HJB equation gives the

following FOC (
P − ∂C

∂q

)
∂q

∂s̄
− ∂C

∂w

∂w

∂s̄
= −W ′. (16)

Assuming that an increase in the standard reduces the abatement, the left-hand side

represents the marginal benefits of the standard that has two components.8 The first one

stands for the increase in benefits because of the increase in output when the standard

augments whereas the second component stands for the reduction in abatement costs.9

On the other hand, the social shadow price of the pollution stock gives the marginal cost

of increasing the standard.

Next, we show that this equilibrium coincides with the SFSE when the regulator uses

a tax. First, it can be shown that conditions (6) and (11) that characterize the SFSE

when a tax is used summarize in condition (15). From condition (6) we obtain

τ − V ′ = −
∂C
∂w
∂s
∂w

,

that by substitution in (11) gives

P ′q + P =
∂C

∂q
−

∂C
∂w
∂s
∂w

∂s

∂q
,

where according to footnote 9

−
∂s
∂q

∂s
∂w

=
1
∂q
∂w

.

Then, the condition can be written as follows(
P ′q + P − ∂C

∂q

)
∂q

∂w
=
∂C

∂w
,

that is condition (15).

Moreover, it is easy to show using the emission function that the strategies obtained in

the first stage to calculate the optimal tax are equivalent to the strategies used to calculate

the optimal standard resulting in two dynamic optimization problems that yield the same

8Notice that ∂q/∂s̄ = 1/∂s∂q > 0. Thus an increase in the standard for a given level of abatement

results in an increase in output.
9Although we expect that an increase in the standard reduces the abatement, it must be pointed out

that this will depend on the sign of the emission function cross effects.
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production, abatement and emissions for the same levels of pollution stocks. From (6)

and (11), we can write the production and abatement as functions of τ − V ′ : q(τ − V ′)

and w(τ − V ′) so that by substitution in the emission functions we obtain the following

expression

s = s(q(τ − V ′), w(τ − V ′)) = s(τ − V ′),

that can be used to write τ − V ′ as a function of emissions: τ − V ′ = g(s). Then, by

substitution we obtain

q(τ − V ′) = q(g(s)) = q(s),

w(τ − V ′) = w(g(s)) = w(s),

where q(s) and w(s) are used to calculate the optimal standard and q(τ−V ′) and w(τ−V ′)

to calculate the optimal tax.

Thus, we can conclude that

Proposition 3 The tax and the standard are two equivalent policy instruments in the

sense that they yield the same outcomes for the policy game, i.e. the same production,

abatement, emissions, net social welfare and gross profits.

This is an interesting result for two reasons. The first reason is that the coincidence

between the two equilibria occurs even when the rationality behind the behavior of the

firm is different. When the regulator uses an emission tax, we face a differential game

where the firm maximizes the discounted present value of net profits, i.e. the firm takes

into account how its decisions today can influence its decisions tomorrow taking the

dynamics of the pollution stock as a constraint in its optimization problem. However,

when the regulator applies a standard the firm acts myopically. However, the outcome

is the same in both cases. The regulator taking into account the reaction function w(s̄)

defined by the FOC (15) or taking into account the strategies q(τ , x) and w(τ , x) defined

by the FOCs (6) and (11) implements the same regulated market equilibrium in terms of

production, abatement, emissions, net social welfare and gross profits. The second reason

is that given this coincidence, the regulator can replicate the same outcome obtained using
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a tax applying a standard avoiding the concerns the tax can originate because it implies a

subsidy on emissions for low values of the pollution stock. The alternative of postponing

the environmental regulation until the level of the pollution stock is large enough to

justify a tax is clearly dominated in terms of welfare by the use of a standard that can be

implemented for any level of the pollution stock. Notice that the market is ineffi cient for

any level of the pollution stock hence postponing the regulation of the market will lead

to a lower discounted present value of net social welfare.

In the next section we solve a linear quadratic (LQ) (differential) policy game for

illustrating these results and evaluate the effects of a second-best environmental policy.

5 The LQ Policy Game

The LQ differential game we analyze in this section is an extension of the LQ differential

game studied by Benchekroun and Long (1998) to include abatement activities. It consid-

ers a monopolist that faces a linear (inverse) demand function given by P (t) = a− q(t),

where P (t) is the price and q(t) is the output at time t. The production process gener-

ates pollution emissions. After an appropriate choice of measurement units we can say

that each unit of output generates one unit of pollution. The emissions can be reduced

without declining output if the monopoly employs an abatement technology. The abate-

ment technology is assumed to be the end-of-the-pipe type.10 For this type of abatement

technology the emission function is s(q(t), w(t)) = q(t)− w(t) where w(t) stands for the

emission reduction achieved operating the abatement technology. On the other hand, we

assume an additive and separable cost function C(q(t), w(t)) = cq(t) + γw(t)2/2. The

abatement technology has decreasing returns to scale, with the parameter γ measuring

the extent of such decreasing returns, and the production technology presents constant

returns to scale, with the parameter c standing for the marginal cost of production. In

10This assumption has been extensively used in the literature among others by Petrakis and Xepa-

padeas (2003), Poyago-Theotoky and Teerasuwannajak (2002) in a static context. In a dynamic context

has been used for instance by Yanese (2009).
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this case, the stock of pollution follows the dynamic equation

ẋ(t) = s(q(t), w(t))− δx(t) = q(t)− w(t)− δx(t), x(0) = x0 ≥ 0. (17)

The disutility from environmental deterioration is given by the damage functionD(x(t)) =

dx(t)2/2, d > 0.

Next, characterize the first-best policy calculating the SFSE of a differential game

between the regulator and the monopolist when the regulator uses an emission tax and

a subsidy on output.

5.1 The First-Best Policy

For this LQ policy game, the FOCs (5) and (6) define the dependence of production and

abatement with respect to the tax and subsidy

q(τ , v, x) =
1

2
(a+ v − c− (τ − V ′(x))) , (18)

w(τ , v, x) =
1

γ
(τ − V ′(x)). (19)

Therefore, ∂q/∂τ = −1/2, ∂w/∂τ = 1/γ, ∂q/∂v = 1/2 and ∂w/∂v = 0. For a given

level of the pollution stock, the tax reduces output but increases abatement whereas the

subsidy has a positive effect on production but not effect on abatement. Nevertheless,

Prop. 1 holds and the optimal tax and subsidy are given by

τ ∗(x) = −W ′(x) + V ′(x), (20)

v∗(x) = a− c+W ′(x). (21)

Next, substituting τ ∗−V ′ in (18) and (19) and v∗ in (18), we obtain the optimal strategies

for production and abatement

q∗(x) = a− c+W ′(x), (22)

w∗(x) = −1

γ
W ′(x). (23)

Then, emissions can be obtained as the difference between production (gross emissions)

and abatement

s∗(x) = q∗(x)− w∗(x) = a− c+
γ + 1

γ
W ′(x). (24)
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Now, substituting production and abatement by the effi cient strategies (22) and (23) in

the regulator’s HJB equation

rW (x) = aq − 1

2
q2 − cq − γ

2
w − d

2
x2 +W ′(x)(q − w − δx) (25)

the following nonlinear differential equation is obtained

rW (x) =
1

2
(a− c)2 + (a− c)W ′(x) +

γ + 1

2γ
W ′(x)2 − d

2
x2 − δxW ′(x). (26)

In order to find the solution for this equation, we guess a quadratic representation for

the value function W :

W ∗(x) =
A∗r
2
x2 +B∗rx+ C∗r ,

which implies that dW ∗(x)/dx = A∗rx + B∗r and where A
∗
r, B

∗
r and C

∗
r are unknowns to

be determined.

The substitution of W ∗(x) and dW ∗(x)/dx into (26) gives a system of Riccati equa-

tions that must be satisfied for every x. Selecting the stable solution of this system, we

obtain the following values for the coeffi cients of the regulator’s value function

A∗r =
γ(r + 2δ)− (γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

2(γ + 1)
< 0, (27)

B∗r =
(a− c)γA∗r

γ(r + δ)− (γ + 1)A∗r
< 0, (28)

that allow us to calculate the optimal strategies for production, abatement and emissions

q∗(x) =
(a− c)(γ(r + δ)− A∗r)
γ(r + δ)− (γ + 1)A∗r

+ A∗rx, (29)

w∗(x) =
(a− c)A∗r

(γ + 1)A∗r − γ(r + δ)
− A∗r

γ
x, (30)

s∗(x) =
γ(a− c)(r + δ)

γ(r + δ)− (γ + 1)A∗r
+
γ + 1

γ
A∗rx. (31)

Using the optimal strategy for emissions and the differential equation (17), and taking

into account the first Riccati equation for A∗r, we obtain the steady-state pollution stock

x∗SS =
(a− c)γ(r + δ)

(γ + 1)d+ γδ(r + δ)
. (32)

This expression defines a negative relationship between the steady-state pollution stock

and d, the slope of the marginal damages function. Thus, we find that the larger the

marginal damages the lower the accumulation of emissions at the steady state.
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According to the optimal strategies, production and emissions decrease with the pollu-

tion stock whereas abatement is increasing. Thus, there will exist a level for the pollution

stock for which emissions are zero. To calculate this value we use the equation s∗(x) = 0

that yields11

x∗s =
(a− c)γ(r + δ)

(γ + 1)(δA∗r + d)
> 0. (33)

The difference of this value with the steady-state pollution stock is

x∗SS − x∗s =
(a− c)γ(r + δ)((γ + 1)δA∗r − γδ(r + δ))

((γ + 1)d+ γδ(r + δ))(γ + 1)(δA∗r + d)
< 0,

since δA∗r + d is positive. Then, we can conclude that

Proposition 4 The optimal strategies of the effi cient solution satisfy the nonnegativity

constraint in the interval [0, x∗s] that includes the steady-state pollution stock. In this

interval, production and emissions decrease and abatement increases with the pollution

stock.

Finally, we characterize the dynamics of the pollution stock. Substituting emissions

given by (31) in the dynamics of the pollution stock defined by (17), we obtain the

following differential equation for the pollution stock

ẋ =
(a− c)γ(r + δ)

γ(r + δ)− (γ + 1)A∗r
+

(
γ + 1

γ
A∗r − δ

)
x,

whose solution is

x∗(t) = (x0 − x∗SS)eα
∗t + x∗SS, with α

∗ =
γ + 1

γ
A∗r − δ < 0, (34)

for x0 in the interval [0, x∗s]. Then, the dynamics of the model can be summarized as

follows

Remark 1 If x0 is lower than x∗SS, abatement increases asymptotically to its steady-state

value whereas production and emissions decrease. However, if x0 is larger than x∗SS, the

dynamics is the contrary and abatement decreases asymptotically to its steady-state value

whereas production and emissions increase.

11As s(x) is a decreasing linear function whose intersection point with the vertical axis is positive, the

intersection point with the horizontal axis must be positive which implies that δA∗r + d is positive.
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Once, we have the solution for the regulator’s value function, we can calculate the

optimal subsidy using the expression (21).12 However, for calculating the optimal tax we

need to solve the monopolist’s HJB equation. With this aim, we substitute the tax and

the subsidy given by (20) and (21), and abatement and production defined by (22) and

(23) in the monopolist’s HJB equation

rV (x) = (a− q)q − cq − γ

2
w2 − τ(q − w) + vq + V ′(x)(q − w − δx),

and we obtain the following differential equation

rV (x) = (a− c+W ′(x))2 +
1

2γ
W ′(x)2 − δxV ′(x). (35)

In order to solve this equation, we also guess a quadratic representation

V ∗(x) =
A∗m
2
x2 +B∗mx+ C∗m,

that yields dV ∗(x)/dx = A∗mx+B∗m. The substitution of V
∗(x) and dV ∗(x)/dx along with

dW ∗(x)/dx into (35) gives a system of Riccati equations whose solution is

A∗m =
2γ + 1

γ(r + 2δ)
(A∗r)

2 > 0, (36)

B∗m =
(a− c)γ((r + 2γ(r + δ))A∗r − d)

(γ + 1)(r + δ)(γ(r + δ)− (γ + 1)A∗r)
< 0, (37)

where A∗r < 0 is given by (27). Then, eliminating V ′(x) and W ′(x) in (20) using the

coeffi cients of the value functions, the optimal tax is obtained.13

Proposition 5 The optimal policy is given by the following rule

τ ∗(x) =
(a− c)(γ(r + δ)A∗r − (A∗r)

2)

(r + δ)(γ(r + δ)− (γ + 1)A∗r)
+
d+ (A∗r)

2

r + 2δ
x, (38)

where A∗r < 0 is given by (27). τ ∗ increases with the pollution stock but is negative for

x = 0, i.e. the optimal policy consists of setting up a subsidy for low values of the pollution

stock.
12The subsidy coincides in our model with the production quantity because the slope of the demand

function is −1. This establishes that the subsidy decreases with the pollution stock.
13Notice that the monopolist’s value function has a minimum for a positive value of the pollution

stock. It is easy to verify that this minimum is larger than x∗s ensuring that dV
∗(x)/dx is negative in

the interval [0, x∗s].
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This result states that even when a subsidy on production is used to correct the market

failure caused by the market power of the firm, the Pigouvian tax in this dynamic setting

could be negative resulting in a subsidy on emissions for low values of the pollution stock.

In fact, we cannot discard the possibility that a subsidy on emissions applies at the steady

state. Basically, the sign of the environmental policy at the steady state will depend on

the importance of the marginal damages, in particular, on the value of parameter d. The

negative sign of the optimal policy also says us that the difference between the social and

private valuations of the pollution stocks is not necessary positive for all values of the

pollution stock. The previous proposition establishes that for low values of the pollution

stock, its private shadow price is larger than its social shadow price, in other words, the

firm’s valuation is larger than the regulator’s valuation. This divergence between both

valuations comes mainly from the fact that when the pollution stock is low, the term

that reflects the environmental damages in the regulator’s HJB equation is low even if

parameter d is large. The consequence is that regardless of the value of this parameter

the social shadow price of the stock is below the private shadow price for low values of the

pollution stock. An interesting result that clarifies that fact that the private valuation

not necessarily is below the social valuation for all values of the pollution stock.

5.2 The Second-Best Emission Tax

When the regulator can only use a tax to control emissions the expressions (18) and

(19) define the dependence of the production and abatement with respect to tax just

cancelling v in (18).

q(τ , v, x) =
1

2
(a− c− (τ − V ′(x))) , (39)

w(τ , v, x) =
1

γ
(τ − V ′(x)). (40)

Again, ∂q/∂τ = −1/2 and ∂w/∂τ = 1/γ, and consequently Prop. 2 holds, i.e.

the second-best emission tax with commitment is lower than the difference between the

social and the private valuations of the pollution stock. Taking into account these partial
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derivatives, condition (8) along with (39) and (40) define the optimal tax14

τ sb(x) = V ′(x)− γ(a− c) + 2(γ + 2)W ′(x)

γ + 4
. (41)

Next, substituting τ−V ′ in (39) and (40) the optimal strategies for output and abatement

read

qsb(x) =
γ + 2

γ + 4
(a− c+W ′(x)), (42)

wsb(x) = −γ(a− c) + 2(γ + 2)W ′(x)

γ(γ + 4)
. (43)

Notice that as both output and abatement depend on τ−V ′, finally the optimal strategies

of these two control variables are independent of the first derivative of the monopolist’s

value function. The emissions can be obtained as the difference between output (gross

emissions) and abatement

ssb(x) = q(x)− w(x) =
γ(γ + 3)(a− c) + (γ + 2)2W ′(x)

γ(γ + 4)
. (44)

Now, substituting the optimal strategies (42) and (43) in the regulator’s HJB equation

(25), the following nonlinear differential equation is obtained

rW (x) =
γ + 3

2(γ + 4)
(a−c)2+

γ + 3

γ + 4
(a−c)W ′(x)+

(γ + 2)2

2γ(γ + 4)
W ′(x)2− d

2
x2−δxW ′(x). (45)

In order to solve this equation, we guess a quadratic representation for the value

function W :

W sb(x) =
Asbr
2
x2 +Bsb

r x+ Csb
r , (46)

which implies that dW sb(x)/dx = Asbr x + Bsb
r and where Asbr , B

sb
r and Csb

r are unknowns

to be determined.

The substitution ofW sb(x) and dW sb(x)/dx into (45) yields a system of Riccati equa-

tions that must hold for every x. Choosing the stable solution of this system, we derive

the following values for the coeffi cients of the regulator’s value function

Asbr =
γ(γ + 4)(r + 2δ)− (γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5

2(γ + 2)2
< 0, (47)

Bsb
r =

(a− c)γ(γ + 3)Asbr
γ(γ + 4)(r + δ)− (γ + 2)2Asbr

< 0, (48)

14Where the superscript sb stands for the second-best emission tax.
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that using (42), (43) and (44) allows us to calculate the optimal strategies for production,

abatement and emissions

qsb(x) =
(a− c)(γ + 2)(Asbr − γ(r + δ))

(γ + 2)2Asbr − γ(γ + 4)(r + δ)
+

(γ + 2)Asbr
γ + 4

x, (49)

wsb(x) =
(a− c)(γ(r + δ) + (γ + 2)Asbr )

(γ + 2)2Asbr − γ(γ + 4)(r + δ)
− 2(γ + 2)Asbr

γ(γ + 4)
x, (50)

ssb(x) =
(a− c)γ(γ + 3)(r + δ)

γ(γ + 4)(r + δ)− (γ + 2)2Asbr
+

(γ + 2)2Asbr
γ(γ + 4)

x, (51)

Next, we calculate the steady-state pollution stock substituting emissions in the dif-

ferential equation (17) by (51), taking into account the first Riccati equation for Asbr .

xsbSS =
(a− c)γ(γ + 3)(r + δ)

(γ + 2)2d+ γδ(γ + 4)(r + δ)
. (52)

As in the previous subsection, this expression clearly establishes an inverse relationship

between the pollution stock at the steady state and d, the slope of the marginal damages

curve.

According to the optimal strategies, production and emissions decrease with the pol-

lution stock whereas abatement is increasing. Thus, there is a level for the pollution stock

for which emissions are zero. We calculate this value doing ssb(x) = 0. The solution to

this equation is

xsbs =
γ(a− c)(γ + 3)(r + δ)

(γ + 2)2(δAsbr + d)
> 0. (53)

The difference of this value with the steady-state pollution stock is

xsbSS − xsbs =
(a− c)γ(γ + 3)(r + δ)((γ + 2)2δAsbr − γ(γ + 4)(r + δ)δ)

((γ + 2)2d+ γ(γ + 4)(r + δ)δ)(γ + 2)2(δAsbr + d)
< 0,

since δAsbr is positive. Moreover, it is easy to show substituting Asbr in the expression

γ(r+ δ) + (γ + 2)Asbr of the optimal strategy (50) that w
sb(0) is positive provided that d

is larger than the critical value

dw =
γ(r + δ)((r + δ)(γ + 2) + (γ + 4)(r + 2δ))

(γ + 4)(γ + 2)
. (54)

Then, we can conclude that
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Proposition 6 If d is larger than dw, the optimal strategies of the second-best solution

satisfy the nonnegativity constraint in the interval [0, xsbs ] that includes the steady-state

pollution stock. In this interval, production and emissions decrease and abatement in-

creases with the pollution stock.

Next, we characterize the dynamics of the pollution stock. Substituting emissions

defined by (51) in the dynamics of the pollution stock given by (17), we get the following

differential equation

ẋ =
(a− c)γ(γ + 3)(r + δ)

γ(γ + 4)(r + δ)− (γ + 2)2Asbr
+

(
(γ + 2)2

γ(γ + 4)
Asbr − δ

)
x,

whose solution is

xsb(t) = (x0 − xsbSS)eα
sbt + xsbSS, with α

sb =
(γ + 2)2

γ(γ + 4)
Asbr − δ < 0, (55)

for x0 in the interval [0, xsbs ]. Then, the dynamics of the model coincides with that sum-

marized in Remark 1 for the effi cient solution.

The features of the model allow to calculate the optimal strategies for production,

abatement and net emissions without solving the monopolist’s HJB equation. However,

the next step, the calculation of the regulator optimal policy, cannot be given without

solving this equation. With this aim, we substitute the tax given by (41), the output

defined by (42) and the abatement specified by (43) in the monopolist’s HJB equation

rV (x) = (a− q)q − cq − γ

2
w2 − τ(q − w) + V ′(x)(q − w − δx),

obtaining the following differential equation

rV (x) =
2γ2 + 9γ + 8

2(γ + 4)2
(a− c)2 +

2 (γ + 3) (γ + 2)

(γ + 4)2
(a− c)W ′(x)

+
(γ + 2)3

γ(γ + 4)2
W ′(x)2 − V ′(x)δx. (56)

In order to solve this equation, we also guess a quadratic representation

V sb(x) =
Asbm
2
x2 +Bsb

mx+ Csb
m , (57)
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that yields dV sb(x)/dx = Asb2 x + Bsb
2 . The substitution of V

sb(x) and dV sb(x)/dx along

with dW sb(x)/dx into (56) yields a system of Riccati equations whose solution is

Asbm =
2(γ + 2)3

γ(r + 2δ)(γ + 4)2
(Asbr )2 > 0, (58)

Bsb
m =

2(a− c)γ (γ + 3) (γ + 2)Asbr
(γ + 4)(γ(γ + 4)(r + δ)− (γ + 2)2Asbr )

< 0, (59)

where Asbr < 0 is given by (47). Then eliminating V ′(x) and W ′(x) in (41) using the

coeffi cients of the value functions, the optimal policy is obtained.15

Proposition 7 The optimal policy is given by the following rule

τ sb(x) = −γ(a− c)
γ + 4

+
2(γ + 2)d

(r + 2δ)(γ + 4)
x. (60)

τ sb increases with the pollution stock but the optimal policy consists of setting up a subsidy

for low values of the pollution stock.

We observe that as occurs with the first-best policy, the tax becomes a subsidy for

low values of the pollution stock. According to (13), in a second-best setting the negative

sign could appears even when the social shadow price of the pollution stock is larger than

the private shadow price because the tax has an additional negative term since in this

setting we have only one instrument to address two market distortions.

5.3 The Emission Standard

As explained in Subsection 4.2, a standard could be applied to avoid an environmental

policy that recommends a subsidy on emissions above all if the standard can implement

the same outcome getting the same level of net social welfare. Following the procedure

presented in Subsection 4.2 first we write the output as a function of the standard and

abatement: q = s̄ + w, where s̄ represents the standard selected by the regulator. Then

by substitution in the profit function we obtain the following expression

π = (a− (s̄+ w))(s̄+ w)− c(s̄+ w)− γ

2
w2.

15As occurred in the previous subsection the monopolist’s value function has a minimum for a positive

value of the pollution stock. It is easy to check that this minimum is larger than xsbs ensuring that

dV sb/dx is negative in the interval [0, xsbs ].
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The FOC for the maximization of profits is

a− 2(s̄+ w) = c+ γw, (61)

that requires that the marginal revenue must be equal to marginal cost of production

plus the marginal cost of abatement. This FOC defines the reaction function of the firm

w(s̄) =
a− c− 2s̄

γ + 2
,
dw

ds̄
= − 2

γ + 2
< 0. (62)

that establishes that abatement is a strategic substitute of the standard. Using this

reaction function we can obtain by substitution the reaction function for production

q(s̄) = s̄+ w(s̄) =
a− c+ γs̄

γ + 2
,
dq

ds̄
=

γ

γ + 2
> 0. (63)

that defines production as a strategic complement of the standard.

Given the firm’s reaction functions for production and abatement, the regulator selects

the standard that maximizes the discounted present value of the net social welfare.

The HJB equation for this optimization problem is

rW (x) = max
{s̄}

{
aq(s̄)− 1

2
q(s̄)2 − cq(s̄)− γ

2
w(s̄)2 − d

2
x2 +W ′(x)(s̄− δx)

}
, (64)

and the FOC can be written as follows

(a− q(s̄)− c)dq
ds̄
− γw(s̄)

dw

ds̄
= −W ′(x), (65)

that has the same interpretation than the FOC (16). Notice that as abatement is a

strategic substitute of the standard, an increase in the standard will reduce the abatement

costs. Finally, substituting q(s̄), dq/ds̄, w(s̄) and dw/ds̄ in (65) we obtain that the

optimal strategy for the standard is equal to the optimal strategy for emissions (44) and

that the substitution of this strategy in (62) and (63) yields the optimal strategies for

production and abatement (42) and (43). Then, as the HJB equation is the same for both

policy instruments, we would obtain the same optimal strategies than those derived when

the regulator applies a tax on emissions.
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5.4 The Effects of the Second-Best Environmental Policy

Next, we investigate the effects that the constraint on the menu of policy instruments has

on the main variables of the model. Notice that the effects will be the same regardless

a tax or a standard is applied. We begin the analysis calculating the difference between

the steady-state values of the pollution stock. The result is

x∗SS − xsbSS =
(a− c)γ(r + δ)(d+ γδ(r + δ))

((γ + 1)d+ γδ(r + δ))((γ + 2)2d+ γδ(γ + 4)(r + δ))
> 0, (66)

that allows us to conclude that

Proposition 8 The steady-state pollution stock for the effi cient solution is larger than the

steady-state pollution stock for the second-best solution, i.e. x∗SS > xsbSS and consequently

the steady-state emissions are also larger.

The intuition behind this result is as follows. The elimination of the subsidy on

production will lead to the firm to produce less. An incentive that is not compensated

by the tax resulting finally in less production (gross emissions) and less emissions what

explains a lower accumulation of emissions when a second-best policy is used. Moreover,

the elimination of the subsidy reduces net social welfare. To give support to this intuition

we compare the optimal strategies for production (29) and (49). The following proposition

summarizes the result of this comparison.

Proposition 9 The intersection point and the absolute value of the slope for the produc-

tion optimal strategy of the effi cient solution are larger than those corresponding to the

second-best solution. However, the pollution stock for which production is zero is lower.

Proof. See Appendix.

However, the optimal strategy for production when a second-best policy is used by

the regulator is not completely below the optimal strategy corresponding to the effi cient

solution so that emissions could be larger for the second-best solution for large enough

values of the pollution stock. Nevertheless, it must be taken into account that as abate-

ment is increasing, emissions will be zero for a pollution stock lower that the pollution
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stock for which production is zero. In other words, it is possible that for the interval of

pollution stock values for which emissions are positive, gross emissions for the second-best

solution be lower than gross effi cient emissions. To verify this relationship holds, next we

compare the optimal strategies for emissions.

The comparison gives the following result

Proposition 10 The intersection point and the absolute value of the slope for the emis-

sion optimal strategy of the effi cient solution are large than those corresponding to the

second-best solution. Moreover, the pollution stock for which emissions are zero is also

larger provided that damages are not very low.

Proof. See Appendix.16

I FIGURE 1

Fig. 1 shows the relationship between the optimal strategies for emissions and the

steady-state values of the pollution stock and emissions. The figure confirms that, re-

gardless of the changes in the abatement optimal strategy, the final effect of the changes

in the production optimal strategy leads to less emissions for any pollution stock in the

interval [0, xsbs ]. This gives support to the idea that the cancellation of the subsidy on

production is not compensated by the changes in the optimal strategy of the tax, and

the firm reduces production and gross emissions resulting in a reduction of emissions that

leads to a lower steady-state pollution stock for the second-best solution.

We end this subsection comparing the dynamics of the pollution stock. Using (34)

and (55), the comparison yields the following results

Proposition 11 If x0 is lower or equal to xeSS, the optimal temporal path of the pollution

stock for the effi cient solution is above the optimal temporal path for the second-best

solution. However, if x0 is larger than xeSS, the pollution stock for the second-best solution

16We would like to point out that the condition that appears in the proposition is a suffi cient condition

so that the pollution stock for which emissions are zero for the effi cient solution could be larger for any

level of environmental damages.
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could be initially larger than the pollution stock for the effi cient solution although finally

this relationship will reverse.

Proof. See Appendix.

In the Appendix, we present a condition the initial pollution stock must satisfied to

conclude that the pollution stock for the second-best solution is initially larger than the

pollution stock for the effi cient solution but we do not have to expect that this relationship

occurs except for high initial levels of the pollution stock. Obviously, if the firm starts to

operate on a pristine (nonpolluted) environment and the regulation is applied from the

beginning of the productivity activities, we should expect a level of the pollution stock

below the effi cient level when a second-best environmental policy is applied for the entire

temporal horizon. Even if the regulation is not applied from the moment the firm starts

to operate, we should expect a lower pollution stock if a second-best environmental policy

is applied provided that the initial stock is below its steady-state value.

6 Conclusions

In this paper we have characterized the optimal environmental policy for a polluting

monopoly that devotes resources to abatement activities so that emissions can be reduced

without affecting necessarily production. As we focus on the case of a stock pollutant

we have used a differential game between a welfare maximizing regulator and a profit

maximizing monopolist and to characterize the optimal policy we have calculated the

stagewise feedback Stackelberg equilibrium (SFSE) of the game. Our analysis shows that

the first-best policy consists of applying a Pigouvian tax on emissions and a subsidy on

production equal to the difference between the price and the marginal revenue. However,

we find that the Pigouvian tax is not equal to the marginal environmental damages but

to the difference between the social and private valuation of the pollution stock. On the

other hand, if a second-best emission tax is used to control emissions, the tax is lower

than the Pigouvian tax and the difference between these two taxes decreases with the

price elasticity of the demand. Finally, we find that taxes and standards are equivalent

in a second-best setting, both implement the same SFSE.
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In the second part of the paper, we solve a linear-quadratic differential game for

an end-of-pipe abatement technology. When a first-best policy is applied, we find that

the tax increases with the pollution stock whereas the subsidy decreases but that the

tax is negative for low values of the pollution stock regardless of the importance of

the environmental damages. Something that cannot occur for a flow pollutant. The

explanation of this result is given by the fact that the private valuation of the pollution

stock is larger than the social valuation resulting in a subsidy instead of a tax. The private

valuation is larger than the social valuation because the firm knows that more production

and emissions will yield larger taxes for the rest of the game whereas for low values of the

pollution stock marginal damages are low and an increase in the pollution stock will not

have a big effect on social welfare. This divergence generates that production is below the

effi cient level despite the subsidy on production and that the optimal policy is a subsidy

on emissions instead of a tax. The same occurs when a second-best tax is used. Notice

that in this case, the negative effect of the private valuation is reinforced but the negative

term in the tax that corrects the market power of the firm. Both the first-best policy

and a second-best tax could face diffi culties to be applied because of political constraints

given that they are recommending that emissions should be subsidized and in the case of

the first-best policy that also production should be subsidized. In a second-best setting,

this diffi culty could be overcome applying a standard that yields the same outcome than

that obtained applying a tax. Finally, we find that the steady-state pollution stock when

a first-best policy is applied is larger than the steady-state pollution for the second-best

solution. This difference in the accumulated emissions is drove by the fact that the

subsidy on production is not applied when a second-best policy is being used what leads

to the firm to produce and emit more. Our result clearly establishes that this effect is

not compensated by the tax and the result is a lower steady-state pollution stock when

a second-best policy is applied. Moreover, we find that if the initial pollution stock is

not very large the optimal temporal path of the pollution stock for the first-best policy

is above the optimal temporal path for a second-best policy.

A limitation of our analysis is that we have assumed the simplest form of the emis-

sion function, i.e. one that is additively separable in production (gross emissions) and
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abatement. To address this limitation, an interesting extension would be to consider that

abatement expenditures can reduce the emissions-to-output ratio. Moreover, we could

also consider that the abatement capital can be adjusted through investment. This sec-

ond approach would allow to study the dynamic interaction between the accumulation

of emissions and the accumulation of abatement capital. A further step in this line of

research would be to analyze the environmental policy when the abatement technology

is subject to stochastic innovation. Finally, it would be also interesting to know how the

environmental policy would change if the market structure is an oligopoly.

Appendix

Proof of Proposition 9

Let’s suppose that qsb(0) ≥ q∗(0). Then according to (29) and (49) we have that

(γ + 2)(γ(r + δ)− Asbr )

γ(γ + 4)(r + δ)− (γ + 2)2Asbr
≥ γ(r + δ)− A∗r
γ(r + δ)− (γ + 1)A∗r

.

Cross multiplying and adding terms we obtain the following inequality

−2γ2(r + δ)2 − γ(r + δ)(γ2 + 2γ − 2)A∗r + (γ + 1)γ(r + δ)(γ + 2)Asbr

−(γ + 2)A∗rA
sb
r ≥ 0, (67)

where γ2 + 2γ − 2 is zero for γ = 0.732. Thus, if γ ≤ 0.732 we have a contradiction

because all terms in (67) are negative. Suppose now that γ > 0.732 and that

−γ(r + δ)(γ2 + 2γ − 2)A∗r + (γ + 1)γ(r + δ)(γ + 2)Asbr ≥ 0 (68)

in (67). Then, substituting A∗r and A
sb
r by (27) and (47) respectively the previous in-

equality yields

(γ + 1)
γ(γ + 4)(r + 2δ)− (γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5

γ + 2

≥ (γ2 + 2γ − 2))
γ(r + 2δ)− (γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

γ + 1
,

that can be rewritten as follows

γ(γ3 + 5γ2 + 7γ + 6)(r + 2δ) + (γ2 + 2γ − 2)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5
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≥ (γ + 1)2(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5,

that squaring and simplifying terms gives

(γ3 + 5γ2 + 7γ + 6)(r + 2δ)(γ2 + 2γ − 2)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

≥ γ(γ2 + 2γ − 2)(γ3 + 5γ2 + 7γ + 6)(r + 2δ)2

+2d(γ + 1)(γ6 + 11γ5 + 46γ4 + 97γ3 + 116γ2 + 76γ + 12).

Squaring again and ordering terms, we get the following contradiction

−4γ(γ3 + 5γ2 + 7γ + 6)(γ2 + 2γ − 2)(γ + 1)3(γ4 + 8γ3 + 22γ2 + 30γ + 24)(r + 2δ)2d

−4d2(γ + 1)2(γ6 + 11γ5 + 46γ4 + 97γ3 + 116γ2 + 76γ + 12)2 ≥ 0.

Thus, we have to conclude that (68) is negative and then (67) yields another contradiction

and we can conclude that qsb(0) < q∗(0).

Next, we compare the slope of the strategies. Suppose that

(γ + 2)Asbr
γ + 4

≤ A∗r,

that substituting the A coeffi cients implies

γ(γ + 4)(r + 2δ)− (γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5

γ + 2

≤ (γ + 4)
γ(r + 2δ)− (γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

γ + 1
,

that reordering terms yields

(γ + 2)(γ + 4)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

≤ γ(γ + 4)(r + 2δ) + (γ + 1)(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5,

squaring to eliminate the quadratic root on the left-hand side of the inequality and

simplifying term we obtain

2γ(γ2 + 5γ + 4)(r2γ2 + 4r2γ + 4rγ2δ + 16rγδ + 4γ2δ2 + 6dγ2 + 16γδ2 + 24dγ + 24d)

≤ 2γ(γ + 4)(r + 2δ)(γ + 1)(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5,
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squaring again a contradiction is obtained

16dγ2(γ3 + 7γ2 + 14γ + 8)2

(2r2γ2 + 8r2γ + 8rγ2δ + 32rγδ + 8γ2δ2 + 9dγ2 + 32γδ2 + 36dγ + 36d) ≤ 0,

and we can conclude that

0 >
(γ + 2)Asbr
γ + 4

> A∗r.

Finally, we compare the values of the pollution stock for which production is zero.

These values are

x∗q =
(a− c)(γ(r + δ)− A∗r)

γ(d+ δA∗r)
, xsbq =

(a− c)(γ(r + δ)− Asbr )

γ(d+ δAsbr )
,

and the difference is given by the following expression

xsbq − x∗q =
a− c
γ

(γ(r + δ)δ + d)(A∗r − Asbr )

(d+ δAsbr )γ(d+ δA∗r)
. (69)

As the denominator is positive, the sign of the difference depends on the relationship

between A coeffi cients. Using (27) and (47), the difference between the A coeffi cients can

be written as follows

A∗r − Asbr =
1

2

(
(γ + 1)(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5

(γ + 1)(γ + 2)2

−(γ + 2)2(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5 + γ2(r + 2δ)

(γ + 1)(γ + 2)2

)
. (70)

As the denominator is positive, we focus on the sign of the numerator investigating

the dependence of this sign with respect to parameter d. It is easy to check that for

d = 0, A∗r = Asbr . Next, we calculate the first derivative of the numerator with respect to

d.

2(γ + 1)(γ + 2)2

(
γ0.5(γ + 4)0.5

(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5
− γ

(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

)
.

This derivative is zero for d = 0. Calculating the second derivative we can find out whether

this extreme is a maximum or a minimum. The second derivative of the numerator with

respect to d is

− 4(γ + 1)γ0.5(γ + 4)0.5(γ + 2)4

(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)1.5
+

4(γ + 2)2(γ + 1)2γ2

(γ2(r + 2δ)2 + 4(γ + 1)γd)1.5
,
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that takes the value
4(γ + 1)(γ + 2)2

(r + 2δ)3(γ + 4)
> 0

for d = 0. Thus, d = 0 is a minimum and the numerator of (70) is an increasing function

for all d > 0 which allows us to conclude that A∗r −Asbr is positive and consequently that

xsbq − x∗q > 0.

Proof of Proposition 10

Suppose that ssb(0) ≥ s∗(0). Then, according to optimal strategies (31) and (51) we

obtain the following inequality

γ + 3

γ(γ + 4)(r + δ)− (γ + 2)2Asbr
≥ 1

γ(r + δ)− (γ + 1)A∗r
.

Cross multiplying and adding term it yields

−γ(r + δ)− (γ + 3)(γ + 1)A∗r + (γ + 2)2Asbr ≥ 0.

Next, we eliminate the A coeffi cients using (27) and (47) obtaining the following expres-

sions

(γ + 3)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5 ≥ rγ + (γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5,

that squaring and simplifying terms yields the following contradiction

−γ2(2γ + 7)(r + 2δ)2 − 4γ(γ2 + 5γ + 7)d− r2γ2

≥ 2rγ(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5 > 0,

and we can conclude that ssb(0) < s∗(0).

Next, we compare the slope of the strategies. Suppose that

(γ + 2)2Asbr
γ(γ + 4)

≤ (γ + 1)A∗r
γ

,

that substituting the A coeffi cients gives

(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5 ≥ (γ + 4)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5,

squaring to cancel the quadratic root in both sides of the inequality and simplifying term

we obtain the following contradiction: γ ≤ 0 and we can conclude that

0 >
(γ + 2)2Asbr
γ(γ + 4)

>
(γ + 1)A∗r

γ
.
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Finally, we compare the values of the pollution stock for which emissions are zero.

Using (33) and (53) the difference between the pollution stock is

xsbs − x∗s =
γ(a− c)(r + δ)((γ + 3)(γ + 1)δA∗r − (γ + 2)2δAsbr − d)

(γ + 2)2(γ + 1)(δAsbr + d)(δA∗r + d)
. (71)

As the denominator is positive and the the first three factors of the numerator are also

positive, the sign of the difference depends on the sing of the fourth factor. Eliminating

the A coeffi cients we find that

(γ + 3)(γ + 1)δA∗r − (γ + 2)2δAsbr − d

=
δ

2

(
−γ(r + 2δ)− (γ + 3)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5

+(γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5
)
− d. (72)

It is easy to verify that this expression is zero for d = 0. Next, we investigate whether

there exists another positive value for d for which the difference is zero. If this is the

case, the value of d must satisfy that

−(γ + 3)(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5 + (γ(γ + 4)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2))0.5

= γ(r + 2δ) +
2

δ
d, (73)

where the right-hand side is an increasing linear function of d with a slope equal to 2/δ. To

know the behavior of the left-hand side with respect to d, we calculate its first derivative

− 2γ(γ + 1)(γ + 3)

(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5
+

2γ0.5(γ + 2)2(γ + 4)0.5

(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5

that takes a value equal to 2/(r+ 2δ) for d = 0. It is easy to check that this derivative is

also positive for d > 0. Suppose that it is negative or zero. Then it must satisfy that

2γ0.5(γ + 2)2(γ + 4)0.5

(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5
≤ 2γ(γ + 1)(γ + 3)

(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5
,

what implies that

γ0.5(γ + 2)2(γ + 4)0.5(γ2(r + 2δ)2 + 4(γ + 1)γd)0.5
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≤ γ(γ + 1)(γ + 3)(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)0.5,

that squaring and adding terms gives the following contradiction

γ2(r + 2δ)2(2γ3 + 16γ2 + 39γ + 28) + 4dγ(γ + 2)2(γ3 + 6γ2 + 12γ + 7) = 0.

Thus, we can conclude that the left-hand side is an increasing function of d with a slope

equal to 2/(r + 2δ) for d = 0. Next, we calculate the second derivative to find out the

curvature of the function. The second derivative is

4γ2(γ + 1)2(γ + 3)

(γ2(r + 2δ)2 + 4(γ + 1)γd)1.5
− 4γ0.5(γ + 2)4(γ + 4)0.5

(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)1.5
.

Let’s suppose that this derivative is positive or zero

γ2(γ + 1)2(γ + 3)

(γ2(r + 2δ)2 + 4(γ + 1)γd)1.5
≥ γ0.5(γ + 2)4(γ + 4)0.5

(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)1.5
.

Squaring, the inequality can be written as follows

γ4(γ + 1)4(γ + 3)2(4d(γ + 2)2 + γ(γ + 4)(r + 2δ)2)3

≥ γ(γ + 2)8(γ + 4)(γ2(r + 2δ)2 + 4(γ + 1)γd)3,

developing the different terms and grouping terms we obtain that the following polynomial

in d should be positive or zero

−43γ4(γ + 2)6(γ + 1)3(γ2 + 5γ + 7)d3

−48γ5(γ + 4)(γ + 2)4(γ + 1)2(2γ2 + 8γ + 7)(r + 2δ)d2

+12γ6(γ + 4)(γ + 2)2(γ + 1)(γ5 + 6γ4 − 23γ2 − 51γ − 28)(r + 2δ)4d

+γ7(γ + 4)(2γ7 + 23γ6 + 100γ5 + 191γ4 + 98γ3 − 183γ2 − 280γ − 112)(r + 2δ)4 ≥ 0,

where

γ5 + 6γ4 − 23γ2 − 51γ − 28 > 0 for γ > 2.1853,

and

2γ7 + 23γ6 + 100γ5 + 191γ4 + 98γ3 − 183γ2 − 280γ − 112 = 0 for γ > 1.115.
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Thus a contradiction is obtained for γ ≤ 1.115 and we can conclude that the left-hand

side of (73) is an increasing concave function that is below the increasing linear function

on the right-hand side for all d > 0 since the first derivative of the concave function for

d = 0, 2/(r+2δ), is lower than the first derivative of the linear function for d = 0, 2/δ. The

result is that the expression (72) will be negative and hence the difference xsbs − x∗s will

be also negative. However, the polynomial equation could have, according to Descartes’

rule of signs, a positive real root for γ > 1.115. If this is the case, the left-hand side

of (73) presents a inflexion point for the positive root and the function is first convex

to become a concave function for the values of d larger than the root. Then, there are

two possibilities. The left-hand side of (73) is still below the increasing linear function

on the right-hand side for all d > 0 or the linear function crosses the function on the

left-hand side of (73). In the first case, we have the same result than the one obtained for

γ ≤ 1.115. In the second case, the equation (73) will have two positive roots. Between

the roots the difference (72) will be positive and consequently xsbs > x∗s, but for the rest

of values of d, the difference will be negative and hence xsbs < x∗s. Thus, we can conclude

that for values of d larger than the higher positive root, xsbs < x∗s. In any case, we can

state that for large enough values of d, xsbs < x∗s.

Proof of Proposition 11

Using the temporal trajectories for the pollution stock given by (34) and (55) we

obtain the following expression

x∗(t)− xsb(t) = (x0 − x∗SS)eα
∗t − (x0 − xsbSS)eα

sbt + x∗SS − xsbSS,

where x∗SS > xsbSS and x
∗(0) = xsb(0) = x0. Thus, if there exists an intersection point

between these trajectories, it must satisfy that

x∗SS − xsbSS = (x0 − xsbSS)eα
sbt − (x0 − x∗SS)eα

∗t, (74)

where the right-hand side presents an extreme for

e(αsb−α∗)t =
(x0 − x∗SS)α∗

(x0 − xsbSS)αsb
, (75)

that yields the following value for t

t∗ =
1

αsb − α∗ ln
(x0 − x∗SS)α∗

(x0 − xsbSS)αsb
. (76)
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The extreme is positive provided that x0 < xsbSS since we have established in the proof of

Prop. 10 that
(γ + 2)2Asbr
γ(γ + 4)

>
(γ + 1)A∗r

γ

what implies that

αsb =
(γ + 2)2Asbr
γ(γ + 4)

− δ > α∗ =
(γ + 1)A∗r

γ
− δ.

Then,
(x0 − x∗SS)α∗

(x0 − xsbSS)αsb
> 1

and the logarithm and the extreme will be positive. If x0 > x∗SS, (x0 − x∗SS)α∗/(x0 −

xsbSS)αsb could be greater or lower than the unity depending on the value of the initial

stock. To analyze this dependence, we calculate the first derivative of this expression

with respect to x0

α∗αsb(x∗SS − xsbSS)

(x0 − xsbSS)2(αsb)2
> 0.

Thus, the expression is zero when x0 = x∗SS and increases with x0. The second derivative

establishes that the function is convex and the l’Hôpital rule allows us calculate the limit

when x0 tends to infinite

lim
x0→+∞

(x0 − x∗SS)α∗

(x0 − xsbSS)αsb
= lim

x0→+∞

α∗

αsb
> 1.

Then, we can conclude that there will exist a value for x0 given by the following expression

x0 =
x∗SSα

∗ − xsbSSαsb
α∗ − αsb ,

such that if

x∗SS < x0 <
x∗SSα

∗ − xsbSSαsb
α∗ − αsb ,

the extreme defined by (76) is negative and in the contrary case positive. Next, we

study whether the extreme is a maximum or a minimum. The second derivative of the

right-hand side of (74) can be written as follows

eα
∗t((x0 − xsbSS)(αsb)2e(αsb−α∗)t − (x0 − x∗SS)(α∗)2),
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that evaluated for the extreme according to (75) yields

eα
∗t((x0 − xsbSS)(αsb)2 (x0 − x∗SS)α∗

(x0 − xsbSS)αsb
− (x0 − x∗SS)(α∗)2)

= eα
∗t(x0 − x∗SS)αe(αsb − α∗),

that is positive if x0 < x∗SS and negative in the contrary case. Thus, we can conclude

that if x0 < x∗SS the extreme is a minimum and if x0 > x∗SS the extreme is a maximum.

Moreover, doing the second derivative equal to zero we find that the right-hand side of

(74) has an inflexion point for

e(αsb−α∗)t =
(x0 − x∗SS)(α∗)2

(x0 − xsbSS)(αsb)2
,

that comparing with (75) must be on the right of the extreme since α∗/αsb > 1.

Taking into account these results, if x0 < xsbSS, the right-hand side of (74) presents

a minimum for a positive value of t and consequently is increasing on the right of this

minimum. But as

lim
t→+∞

(
(x0 − xsbSS)eα

sbt − (x0 − x∗SS)eα
∗t
)

= 0,

and the function has an inflexion point for a value of t larger than the minimum we have

to conclude that for the minimum the right-hand side of (74) is negative and from this

minimum converges asymptotically to zero, taking negative values when t is larger than

the minimum. hence, we obtain that

x∗SS − xsbSS > (x0 − xsbSS)eα
sbt − (x0 − x∗SS)eα

∗t, for all t > 0,

and we can state that if x0 < xsbSS, x
∗(t) > xsb(t) for all t > 0.

If x∗SS < x0, we have two cases:

i)

x∗SS < x0 <
x∗SSα

∗ − xsbSSαsb
α∗ − αsb .

In this case, the right-hand side of (74) presents a maximum for a value of t negative and

consequently on the right of the maximum the function is decreasing and changes from

being concave to be convex to converge asymptotically to zero. Thus as the function is

decreasing for t > 0, we obtain the same result than for x0 < xsbSS.
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ii)

x∗SS <
x∗SSα

∗ − xsbSSαsb
α∗ − αsb < x0.

Now, the right-hand side of (74) presents a maximum for a value of t positive and as on

the right of the maximum the function is decreasing and changes from being concave to

be convex to converge asymptotically to zero, there will exist a value for t, t′ > t∗, for

which the two temporal gives the same value for the pollution stock. Then, for t < t′ we

have that x∗(t) < xsb(t) and for t > t′, x∗(t) > xsb(t).

Finally, if x0 ∈ (xsbSS, x
∗
SS), x∗(t) > xsb(t) for all t since x∗(t) is an increasing function

of time whereas xsb(t) is a decreasing function and x∗(0) = xsb(0) = x0.
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