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Abstract. The nonnegative inverse eigenvalue problem (NIEP) asks which
lists of n complex numbers (counting multiplicity) occur as the eigen-
values of some n-by-n entry-wise nonnegative matrix. The NIEP has a
long history and is a known hard (perhaps the hardest in matrix analy-
sis?) and sought after problem. Thus, there are many subproblems and
relevant results in a variety of directions. We survey most work on the
problem and its several variants, with an emphasis on recent results, and
include 130 references. The survey is divided into: a) the single eigen-
value problems; b) necessary conditions; c) low dimensional results; d)
sufficient conditions; e) appending 0’s to achieve realizability; f) the
graph NIEP’s; g) Perron similarities; and h) the relevance of Jordan
structure.
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1. Introduction
The Nonnegative Inverse Eigenvalue Problem (NIEP) asks which collections
of n complex numbers (counting multiplicities) occur as the eigenvalues of an
n-by-n matrix, all of whose entries are nonnegative real numbers. This is a
long standing problem that is very difficult and, perhaps, the most prominent
problem in matrix analysis. Unlike many other inverse eigenvalue problems,
tools are limited, and seemingly small results are very welcome. Nonetheless,
the problem is very attractive and has been attacked by many excellent re-
searchers (see references). There have been prior surveys of work on the NIEP
([129, 93, 4, 28, 7, 21, 118]), but none recently. With a great deal of important
recent activity, a new survey, emphasizing this activity, will be welcome to
anyone considering inquiry in this area. Our intent here is to be broad and
informal.
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Another intriguing aspect of the NIEP is how many avenues can be
taken to gain insight into it. Thought about it spawns endless challenging
and worthy specific questions. An example is how many interesting variations
there are. The real NIEP (R-NIEP) restricts the question to real spectra,
and the symmetric NIEP (S-NIEP) further restricts to real spectra that are
realizable by symmetric nonnegative matrices. It is known [49] that the row
stochastic NIEP (restriction to nonnegative matrices with row sums 1) is
equivalent to the general NIEP, but the doubly stochastic NIEP (DS-NIEP),
restriction to matrices with both row and column sums 1, is properly more
restrictive, but no less difficult. Of course, there are variations on the DS-
NIEP, as well: the real DS-NIEP and the symmetric DS-NIEP. The Jordan
NIEP (J-NIEP) asks about possible Jordan canonical forms, when there are
repeated eigenvalues, and the diagonalizable NIEP (D-NIEP) is the special
case in which the realizing matrix is diagonalizable. Finally, there are graph
NIEP’s when we consider only nonnegative matrices with a given (directed
or undirected) graph G (G-NIEP), or only matrices subordinate to same
0-pattern. Further particularizations may also be imagined, but these are
the primary ones, so far. We should also mention that the NIEP and each
variation also has a trace 0 version. This considers only spectra, the sum of
whose elements is 0, or, equivalently, nonnegative matrices, each of whose
diagonal entries is 0. In some cases, this is sufficiently restrictive, so as to
make the problem easier.

We denote by NIEPn the set of all spectra enjoyed by some n-by-n
nonnegative matrix. Such a spectrum is called realizable and a nonnegative
matrix with the spectrum is called a realization or realizing matrix. The
notation and terminology are similar for NIEP variants. A solution to the
NIEP (or variants), for a particular n, is an "explicit" description of NIEPn,
viewed as a subset of vectors in ICn. NIEPn is a closed set that is connected,
and even star-shaped from the origin (or from the all 1’s vector e). The set
is also semi-algebraic, but is not generally convex. If Λ = {λ1, . . . , λn} is a
proposed spectrum, we denote by Tr(Λ) the sum of its components, counting
multiplies. Other power sums sk(Λ) =

∑n
i=1 λ

k
i , called k-th moments, are

also important, and we usually reserve λ1 as the spectral radius of Λ.

The Perron-Frobenius theory of nonnegative matrices (e.g. [44]) pro-
vides several simple, but important, necessary conditions for the NIEP (and
variations). These basic necessary conditions are presented in Section 3, fol-
lowed by several more subtle necessary conditions. The “JLL” conditions are
now essential to work on the problem.

The NIEP has a long history since its proposal by Kolmogorov [63], and
there are many substantial results. We begin at the natural starting point of
the single eigenvalue problem (Section 2) for both the row stochastic NIEP
and the DS-NIEP: which individual complex numbers occur in the spectra of
row stochastic and of doubly stochastic matrices. The former is solved, but
there have been important advances in the description of the solution and in
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realizations. The latter is unsolved, beyond n = 4, though there have been
important recent developments.

Section 4 summarizes low-dimensional complete results for certain NIEP
variants. General sufficient conditions for the realizability of spectra are given
in section 5. It has long been known that n-fold spectra that meet simple nec-
essary conditions, but are not realizable, may be made realizable by append-
ing of 0 eigenvalues. Information about this phenomenon is given in section 6.
We turn to what is known about the graph-NIEP’s in section 7. The new idea
of Perron similarities - studying the diagonalizable NIEP’s via the diagonal-
izing similarities - is discussed in section 8, and the role of Jordan structure
in the NIEP and R-NIEP in section 9.

2. The Single Eigenvalue Problems
In [63], Kolmogorov posed the problem, denoted by SISEP (Stochastic Inverse
Single Eigenvalue Problem), of characterizing the subset of the complex plane,
denoted by Θn, consisting of the individual eigenvalues of all n-by-n stochas-
tic matrices.

It can easily be verified that for each n ≥ 2, the region Θn is closed,
inscribed in the unit-disc, star-convex (with star-centers at zero and one), and
symmetric with respect to the real-axis. Furthermore, it is clear that Θn ⊆
Θn+1, ∀n ∈ IN. In view of these properties, each region Θn is determined by
its boundary, which consists of so-called extremal numbers, i.e., ∂Θn = {λ ∈
Θn : αλ 6∈ Θn,∀α > 1}.

In pursuit of characterizing Θn, Dmitriev and Dynkin [25] (and inde-
pendently Karpelevich [58]) showed that if λ = a + bi ∈ Θn and b 6= 0,
then

a+ |b| tan
(π
n

)
≤ 1.

LetA be a nonnegative matrix of order n with spectral radius ρ and associated
directed graph G. Let m be the length of the longest simple circuit of G.
Kellogg and Stephens [60, Theorem 1] showed that if m = 2, all eigenvalues
of A are real. If 2 < m ≤ n, and if λ = a+ bi is an eigenvalue of A, then

a+ |b| tan
( π
m

)
≤ ρ.

For further results on this topic, see [51].
Karpelevich [58, Theorem B], expanding on the work of Dmitriev and

Dynkin in [26], resolved SISEP by showing that the boundary of Θn consists
of curvilinear arcs (called K-arcs), whose points satisfy a polynomial equation
that is determined by the endpoints of the arc (which are consecutive roots
of unity). The statement of this theorem is unwieldy, but Ito [47, Theorem
2] provides a useful simplification of the result.

Noticeably absent in the Karpelevich Theorem (and other works) are
realizing-matrices (i.e., a matrix whose spectrum contains a given eigen-
value) for points on the K-arcs. Dmitriev and Dynkin [26, Basic Theorem]
give a schematic description of such matrices for points on the boundary of
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Θn\Θn−1 and Swift [129, §2.2.2] provides such matrices for 3 ≤ n ≤ 5. Re-
cently, Johnson and Paparella [56] provide, for every n and for each K-arc,
a single parametric stochastic matrix that realizes the entire K-arc as the
parameter runs from 0 to 1.

For n ∈ IN, denote by Πn the convex-hull of the nth roots-of-unity, i.e.,

Πn =

{
n−1∑
k=0

αk exp (2πik/n) ∈ IC : αk ≥ 0,

n−1∑
k=0

αk = 1

}
.

Denote by Ωn the subset of the complex-plane containing all single eigenval-
ues of all n-by-n doubly stochastic matrices. Perfect and Mirsky [103] con-
jectured that Ωn =

⋃n
k=1 Πk and proved their conjecture when 1 ≤ n ≤ 3.

Levick et al. [76] proved the Perfect-Mirsky conjecture when n = 4 but a
counterexample when n = 5 was given by Mashreghi and Rivard [88]. Re-
cently, Levick et al. conjectured that Ωn = Θn−1 ∪ Πn ([76, Conjecture 1]),
but there is computational evidence that suggests that the n = 5 case is
either a rare exception, or the only exception, to Perfect-Mirsky.

3. Necessary Conditions for the NIEP’s

For a proposed spectrum Λ = {λ1, λ2, . . . , λn}, repeats allowed, to be (NIEP-
)realizable, a number of necessary conditions are known. The most basic of
these follow from the fact that a nonnegative matrix has real entries and
nonnegative trace, and from the Perron-Frobenius theory of nonnegative ma-
trices. (We assume the reader is familiar with the Perron-Frobenius theory,
which is recounted, for example in [44].) For simplicity, we label these ac-
cording to simple titles. Since a nonnegative matrix is real, it must have the
eigenvalues of a real matrix, i.e. the characteristic polynomial must have real
coefficients, or, as a list

(Reality) Λ̄ = Λ.

Since the trace of a matrix is the sum of the eigenvalues and the trace of a
nonnegative matrix is nonnegative, we also have

(Trace) Tr Λ =
n∑
i=1

λi ≥ 0.

Of course, it follows that if Λ is realizable and Tr (Λ) = 0, then all diagonal
entries of any realizing matrix must be 0. Higher power sums are also nonneg-
ative as they are traces of positive integral powers of nonnegative matrices:

(k-th moment) sk(Λ) = λk1 + · · ·+ λkn ≥ 0, k ≥ 1.

According to the Perron-Frobenius theory, the spectral radius of a non-
negative matrix must, itself, be an eigenvalue, so among the eigenvalues Λ
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must be a nonnegative one, at least as big in absolute value as any others.
Without loss of generality, this one may be taken to be λ1. So, we have

(Perron) λ1 ≥ |λi|, i = 2, . . . , n,

and if any of the other eigenvalues are the same as λ1, any realizing matrix
must be reducible. Moreover, if all the inequalities are strict, any irreducible
realizing matrix must be primitive.

The above conditions are necessary for all the NIEP’s, but there are
some necessary conditions for particular NIEP’s.

Further necessary conditions are more subtle, but many have been no-
ticed. The most ubiquitous of these was noticed independently in [49] and
in [78] and is usually referred to as the JLL conditions. They generalize the
trace condition and follow from the fact that every power of a nonnegative
matrix is nonnegative and that positive diagonal entries must contribute to
positive diagonal entries in powers (e.g. sp(Λ) > 0 implies spq(Λ) > 0 for
integers p ≥ 1 and q ≥ 1). The general (quantitative) version is

(JLL) (sk(Λ))m ≤ nm−1skm(Λ), k, m = 1, 2, . . . .

Let A be an n-by-n real matrix with spectrum Λ = {λ1, . . . , λn}. Denote
the principal submatrix of A lying in the rows and columns given by the index
set α ⊆ {1, . . . , n} by A[α]. Define the k-th elementary symmetric function

Ek(Λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik

and the k-th Newton coefficient

ck(Λ) =
Ek(Λ)(

n
k

) , k = 1, · · · , n, with c0 ≡ 1.

Since Ek(Λ) =
∑
|α|=k detA[α], as well, ck(Λ) may be viewed as the average

value of the k-by-k principal minors of A. The spectrum Λ is called Newton
if

ck(Λ)2 ≥ ck−1(Λ)ck+1(Λ), k = 1, . . . , n− 1,

and these inequalities are referred to as the Newton inequalities [43, 52].
They hold for Λ ≥ 0 [97], Λ ⊂ IR [81], and they are valid for real diagonal

matrices, diagonalizable matrices with real spectra (the ck are invariant under
similarity), and matrices with real spectra. In [43] it was proved that the
Newton inequalities also hold for M -matrices and, thus, inverse M -matrices
and it was observed that if A is a nonnegative matrix with spectral radius
ρ(A), then ρ(A)I−A is an M-matrix and, therefore, must satisfy the Newton
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inequalities. If we denote its spectrum {ρ(A)−λ1, . . . , ρ(A)−λn} by ρ(A)−Λ,
then we have new necessary conditions:

(H) ck(ρ(A)− Λ)2 ≥ ck−1(ρ(A)− Λ)ck+1(ρ(A)− Λ), k = 1, . . . , n− 1.

In [130] the authors did not focus the attention directly on the spectrum
but on the coefficients of the characteristic polynomial. Thus, the NIEP that
they consider is: given real numbers k1, k2, . . . , kn, find necessary and suffi-
cient conditions for the existence of a nonnegative matrix of order n with
characteristic polynomial xn + k1x

n−1 + k2x
n−2 + · · ·+ kn.

The coefficients of the characteristic polynomial are closely related to
the cyclic structure of the weighted digraph associated with the matrix A,
as established by the Coefficients Theorem [23, Theorem 1.3*]. The authors
[130] introduce graphic tools to study the NIEP from the characteristic poly-
nomial and use the following method: if P (x) is a realizable polynomial, in
the sense that there exists a nonnegative matrix with characteristic poly-
nomial P (x), we try to maximize each coefficient kj as a function of the
previous coefficients, preserving the realizability for a polynomial of degree
n with the same previous coefficients. Note that kj is a continuous function
(sum of determinants) of the entries of a nonnegative matrix A realizing the
polynomial P (x) and that, as the previous coefficients are bounded above,
then the entries of A involved in the expression of kj are also bounded above
(Coefficients Theorem); therefore, this maximum is attained. In this way, new
necessary conditions on the three first coefficients are obtained [130, Theorem
3]:

k1 ≤ 0;

(TAAMP) k2 ≤ n−1
2n k2

1;

k3 ≤


n−2
n

(
k1k2 + n−1

3n

((
k2

1 − 2nk2
n−1

) 3
2 − k3

1

))
if (n−1)(n−4)

2(n−2)2 k2
1 < k2,

k1k2 − (n−1)(n−3)
3(n−2)2 k3

1 if k2 ≤ (n−1)(n−4)
2(n−2)2 k2

1.

Another necessary condition in terms of the k-th moments sk = Tr (Ak),
k = 1, 2, 3, is obtained in [22, Theorem 3]:

(CL) Φ := n2s3 − 3ns1s2 + 2s3
1 + n−2√

n−1
(ns2 − s2

1)3/2 ≥ 0.

The necessary conditions previous to (JLL) are not independent. In
fact, (k-th moment) implies (Perron) [34] and also (Reality) [78]. For k = 1,
(JLL) is reduced to (s1(Λ))m ≤ nm−1sm(Λ), and so, if s1(Λ) ≥ 0, then (JLL)
implies (k-th moment).
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On the other hand, if we denote the two bounds given for the coefficient
k3 in (TAAMP) by kmax1

3 and kmax2
3 , we can use the Newton identities

sm + k1sm−1 + · · ·+ km−1s1 + kmm = 0, k,m = 1, 2, 3, (1)

to rewrite the condition (CL) in the form

Φ = 3n2(kmax1
3 − k3).

In the first case, i.e., if k2 >
(n−1)(n−4)

2(n−2)2 k2
1, we have that Φ ≥ 0 implies

kmax1
3 ≥ k3. In the contrary case, Φ = 3n2(kmax1

3 −k3) ≥ 3n2(kmax2
3 −k3) ≥ 0.

So, in any case, the condition on the coefficient k3 is stronger than the con-
dition (CL).

In [43] it was proved that (k-th moment), (JLL) and (H) are mutually
independent. In [84, Theorem 11] that (JLL) for k = 1 and m = 2, s1(Λ)2 ≤
ns2(Λ), the first (H), c1(ρ−Λ)2 ≥ c2(ρ−Λ), and (TAAMP) over the second
coefficient, k2(Λ) ≤ n−1

2n k1(Λ)2, are equivalent. But, in general, at least (JLL)
and (TAAMP) are independent of the others, and this tandem implies (k-th
moment). Some examples: the spectra {20,−18, 5

√
2±5
√

2i} and {1, 1, 1, 0, 0}
satisfy (JLL), (H) and (CL), but not (TAAMP); the spectra {2,−2,−2, 1±i}
and {3, 1, 1, 1, 1, 1,−2,−2,−2,−2} satisfy (H) and (TAAMP), but not (JLL).
That the necessary conditions (JLL), (H) and (TAAMP) are not sufficient
for the NIEP is proved by the non-realizable list {3, 3,−

√
3± i}.

Conjecture. (JLL) and (TAAMP) imply all known necessary conditions. (It
is enough to prove that (JLL) and (TAAMP) imply (H)).

In [69] a necessary condition for trace 0 and n odd was obtained, given
by

(LM) (s2(Λ))2 ≤ (n− 1)s4(Λ).

This condition has been generalized in terms of the coefficients by the
following result [130, Lemma 37]: if xn + kpx

n−p + · · · + k2px
n−2p + · · · +

kn, kp 6= 0, is the characteristic polynomial of a nonnegative matrix, then

k2p ≤
1

2

(
1− 1

bn/pc

)
k2
p. (2)

We can use the Newton identities (1) to express the inequality (2) in terms of
the k-th moments: if s1 = · · · = sp−1 = 0, we have the more general condition

s2
p ≤ p

⌊n
p

⌋
s2p, p = 1, . . . ,

n

2

that coincides with (LM) in the particular case p = 2 and n odd.
Note also that the (JLL) condition for m = 2 is s2

p ≤ ns2p, and that

p
⌊
n
p

⌋
≤ n. Then the expression (2) is a restricted refinement of the (JLL)

conditions.
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4. Low Dimensional Results
The NIEP for n ≤ 3 was solved independently by Oliveira [98, Theorem (6.2)]
and Loewy-London [78]. For the non-real case:

{λ, z, z̄} is NIEP-realizable ⇐⇒ z ∈ λΠ3 = {λz′ : z′ ∈ Π3}
Meehan [90] solved the NIEP for n = 4 in terms of the k-th moments, and
Torre-Mayo et al. [130] in terms of the coefficients of the characteristic poly-
nomial using the necessary conditions (TAAMP). For n ≥ 5 it remains un-
solved.

The R-NIEP for n ≤ 4 was solved independently by Perfect [100],
Oliveira [98, §9] and Loewy-London [78]; in these cases the necessary con-
ditions (Trace) and (Perron) are also sufficient.

Perfect [102, Theorem 4] solved the R-NIEP for n = 3 with fixed diag-
onal entries: {d1, d2, d3} is the diagonal of a 3-by-3 nonnegative matrix with
spectra {λ1, λ2, λ3}, where λ1 ≥ λ2 ≥ λ3, if and only if

0 ≤ di ≤ λ1;

3∑
i=1

di =

3∑
i=1

λi;
∑
i6=j

didj ≥
∑
i 6=j

λiλj ; max{di} ≥ λ2.

The S-NIEP and the R-NIEP are equivalent for n ≤ 4, and remain
unsolved for n ≥ 5. Fiedler [33, Theorem 4.8] solved the S-NIEP in the case
n = 3 with fixed diagonal entries: {d1, d2, d3}, with d1 ≥ d2 ≥ d3 ≥ 0, is the
diagonal of a 3-by-3 symmetric nonnegative matrix with spectra {λ1, λ2, λ3},
where λ1 ≥ λ2 ≥ λ3, if and only if {λ1, λ2, λ3} majorizes {d1, d2, d3} and
d1 ≥ λ2.

Johnson-Laffey-Loewy [50] showed that the R-NIEP and the S-NIEP are
different, and Egleston-Lenker-Narayan [28] proved that they are different for
n ≥ 5.

The S-NIEP for n = 5 has been widely studied [79, 89, 28], but not
fully resolved. It is common to study it considering the number of positive
eigenvalues. When there are 1, 4 or 5 positive eigenvalues the answer for
the S-NIEP is straightforward. Recently, Johnson-Marijuán-Pisonero [54] re-
solved all cases with 2 positive eigenvalues, and they give a method, based
upon the eigenvalue interlacing inequalities for symmetric matrices, to rule
out many unresolved spectra with 3 positive eigenvalues. In particular, this
method shows that the nonnegative realizable spectrum {6, 3, 3,−5,−5} is
not symmetrically realizable.

Also recently, Loewy-Spector [80, Theorem 4] characterize the case n =
5 in a particular case: Λ = {λ1, λ2, . . . , λ5}, where λ1 ≥ λ2 ≥ · · · ≥ λ5

and 2s1(Λ) ≥ λ1, is (S-NIEP) realizable if and only if (Perron), λ2 + λ5 ≤
Tr (Λ), λ3 ≤ Tr (Λ). This last condition is implied by the constraint 2s1(Λ) ≥
λ1.

The trace 0 NIEP has also been extensively studied. Reams [107] solved
the case n = 4: {λ1, λ2, λ3, λ4} is trace 0 (NIEP)-realizable if and only if
s1 = 0, s2, s3 ≥ 0 and s2

2 ≤ 4s4. The case n = 5 was first studied by Reams
[107] and he gave a sufficient condition. The case n = 5 was finally solved
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by Laffey-Meehan [70]: {λ1, . . . , λ5} is trace 0 (NIEP)-realizable if and only
if s1 = 0, s2, s3 ≥ 0, s2

2 ≤ 4s4 and 12s5 + 5s3

√
4s4 − s2

2 ≥ 5s2s3.
Torre-Mayo et al. [130] generalize these solutions in terms of the coeffi-

cients of the characteristic polynomial: the polynomial xn + kpx
n−p + · · · +

kn−1x+ kn, with 2 ≤ p ≤ n ≤ 2p+ 1, is (NIEP)-realizable if and only if

kp, . . . , k2p−1 ≤ 0; k2p ≤
k2p
4 ; k2p+1 ≤

 kpkp+1 if k2p ≤ 0,

kp+1

(
kp
2 −

√
k2p
4 − k2p

)
if k2p > 0.

Spector [127] characterized trace 0 S-NIEP realizability for n = 5 by
the conditions λ2 + λ5 ≤ 0 and s3 ≥ 0.

5. Sufficient Conditions

The first known sufficient condition for the NIEP, that in fact is for the R-
NIEP, was announced by Sulěımanova [128] in 1949 and proved by Perfect
[101] in 1953:

Λ = {λ1, . . . , λn} real, λ1 ≥ |λ| for λ ∈ Λ

and λ1 +
∑
λi<0 λi ≥ 0

}
=⇒ Λ is realizable.

Several other proofs have been given, e.g. [99]. There are several sufficient
conditions for the R-NIEP that are checkable in a straightforward way, that
is, one only needs to check a few algebraic inequalities, perhaps after ordering
the spectrum. The authors of them are: Ciarlet in 1968 [20], Kellogg in 1971
[59], Salzmann in 1972 [112] and Fiedler in 1974 [33]. Borobia in 1995 [6]
extended Kellogg’s condition by grouping negative eigenvalues.

Other sufficient conditions for the R-NIEP involve partitions of the spec-
tra considered, such as an immediate piece-wise extension of the Sulěımanova
condition. We will name this condition Sulěımanova-Perfect [128, 101]:

Λ = {λ1, λ11, . . . , λ1t1 , . . . , λr, λr1, . . . , λrtr} real,
λ1 ≥ |λ| for λ ∈ Λ

and λj +
∑

λji<0

λji ≥ 0 for j = 1, . . . , r

 =⇒ Λ is realizable.

Other sufficient conditions of this type are more elaborate and we will name
them by their authors: Perfect 1 in 1953 [101], Soto 2 in 2003 [115] or its
extension Soto p in 2013 [119].

Some of the sufficient conditions besides partitions involve the knowl-
edge of the diagonal entries of a realization of part of the spectrum. The first
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condition of this type is due to Perfect in 1955 [102]:

Λ = {λ1, . . . , λr} ∪ {λ11, . . . , λ1t1} ∪ · · · ∪ {λr1, . . . , λrtr}
{λ1, . . . , λr} the spectrum of a nonnegative

matrix with diagonal d1, . . . , dr,

λji ≤ 0 for j = 1, . . . , r and i = 1, . . . , tj ,

λ1 ≥ |λ| for λ ∈ Λ ,
∑
λ∈Λ

λ ≥ 0 ,

and dj +
∑

1≤i≤tj
λji ≥ 0 , j = 1, . . . , r


⇒ Λ is realizable.

When λj ≥ 0, for j = 1, . . . , r, we call this condition Perfect 2+ (see [86]).
There are two equivalent conditions that extend this condition: Soto-Rojo in
2006 [122] and Soto-Rojo-Manzaneda in 2011 [123].

Other well-known sufficient conditions manipulate certain spectra to
get a new realizable spectrum: Guo in 1997 [40, Theorems 2.1 and 3.1] or
C-realizability [11] that we name the game condition [85].

In order to construct a map of sufficient conditions for the R-NIEP,
Marijuán-Pisonero-Soto compared these conditions and established inclusion
relations or independence relations between them, [86, 85]:

CSu

Sa
F

SP P1

K

B

Sp

P2+
SRM ≡ SR [6] Borobia = B

[20] Ciarlet = C
[33] Fiedler = F
[59] Kellogg = K
[101] Perfect 1 = P1
[102] Perfect 2+ = P2+

[112] Salzmann = Sa
[119] Soto p = Sp
[122] Soto-Rojo = SR
[123] Soto-Rojo-Manzaneda = SRM
[128] Sulěımanova = Su
[101] Sulěımanova-Perfect = SP

B Sp Sp+1

Sotos
game
P2+

?←→

[6] Borobia = B
[102] Perfect 2+ = P2+

[119] Soto p = Sp
[119] Soto p + 1 = Sp+1

[119] Sotos =
⋃
p≥2

Soto p

The first known sufficient condition for the S-NIEP is due to Perfect-
Mirsky in 1965 [103] for doubly stochastic matrices, and Fiedler in 1974
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[33] gave the first one for symmetric nonnegative matrices. Several sufficient
conditions which were first obtained for the R-NIEP have later been shown
to be valid also for the S-NIEP as well. Fiedler [33], Radwan [106] and Soto
[117] showed, respectively, that Kellogg [59], Borobia [6] and Soto 2 [115] are
also symmetric sufficient conditions.

Soules in 1983 [126] gave two constructive sufficient conditions for sym-
metric realization. The inequalities that appear in these conditions are ob-
tained by requiring the diagonal entries of the matrix Rdiag(λ1, . . . , λn)RT

to be nonnegative, in which R is an orthogonal matrix with a certain pattern.
For a particular R, this condition is the Perfect-Mirsky condition.

Soto-Rojo-Moro-Borobia gave in 2007 [124] a symmetric version of the
Soto-Rojo condition. Soto p [119] and Soto-Rojo-Manzaneda [123] have also
symmetric versions. Laffey-Šmigoc in 2007 [72] gave the symmetric realizabil-
ity of a spectrum by manipulating two spectra.

Again in order to construct a map of sufficient conditions for the S-NIEP,
Marijuán-Pisonero-Soto [87] compared these conditions and established in-
clusion relations or independence relations between them:

Sotos

CSu

Sa

F

SP
P1

KB
Sp

SRM ≡ SRMB

*

LS **

[6] Borobia = B
[20] Ciarlet = C
[33] Fiedler = F
[59] Kellogg = K
[72] Laffey-Šmigoc = LS
[101] Perfect 1 = P1
[103] Perfect-Mirsky = �������

[112] Salzmann = Sa
[119] Soto p = Sp
[119] Sotos =

⋃
p≥2

Soto p

[123] Soto-Rojo-Manzaneda
= SRM

[124] Soto-Rojo-Moro-Borobia
= SRMB

[126] Soules 1 = �
[126] Soules 2 = ∗∗
[126] Soules 2 corollary = ∗
[128] Sulěımanova = Su
[101] Sulěımanova-Perfect = SP

The discontinuous line for Soules 2 in the map means that we only conjecture
this position for this sufficient condition.

Recently, Ellard-Šmigoc [30] have modified the Laffey-Šmigoc condition
and the Soules 2 condition and they have proved the following equivalence:

Soules 2 modified ⇐⇒ Laffey-Šmigoc modified ⇐⇒ game ⇐⇒ Sotos.
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This implies the symmetric realizably of the game condition and resolves
the question on the RNIEP diagram about whether there exists something
between Sotos and game.

There are also some sufficient conditions for the NIEP. Guo in 1997
[40, Theorems 2.1 and 3.1] gave results about changing a realizable spectrum
to obtain a realizable spectrum. Šmigoc in 2004 [113, Theorems 10 and 14]
gave other such results. Finally, let us mention some generalizations of the
Sulěımanova condition: Laffey-Šmigoc in 2006 [71, Theorems 1 and 3] and
Borobia-Moro-Soto in 2008 [11, Theorem 3.3].

6. Embedding Spectra, by Adding 0’s, to Achieve Realizability
Consider now spectra that meet the most basic necessary conditions for
NIEP-realizability: (Perron), (Trace) and (Reality). Even when these con-
ditions are strictly met, the proposed spectrum, σ, need not be realizable
(for example {3, 3,−

√
3± i}). This raises the natural question of whether the

spectrum may be embedded in a larger one, that is realizable, by appending
some additional eigenvalues, e.g. σ ↪→ σ ∪ τ . If we are too liberal about what
eigenvalues may be appended, this question becomes trivial. For example,
realizability may always be achieved by appending a single, sufficiently large,
positive eigenvalue; the Perron and trace conditions may be arbitrarily im-
proved. Thus, some condition must be placed upon the appended eigenvalues.
A natural one is that only 0 eigenvalues may be appended; now, the Perron
and trace conditions are not enhanced - but, the dimension is increased. (In-
termediate restrictions seem not yet to have been considered.) The increase
in dimension does improve the possibility of meeting the JLL conditions.

The notion of appending 0’s to ”repair” a nonrealizable spectrum may
and has often been viewed another way: what collections of complex numbers
occur as the ”nonzero part” of the spectrum of an entry-wise nonnegative ma-
trix. It turns out that this question is quite different from and more tractable
than the classical NIEP.

The first to show that appending 0’s can help was [49], in which it was
shown that the spectrum

1,

√
3

8
i,−
√

3

8
i

is not realizable in dimension 3 (because the single eigenvalue conditions [58]
are not met, or the JLL conditions are not met), but the spectrum

1,

√
3

8
i,−
√

3

8
i, 0

is realizable in dimension 4 by the matrix
1/4 0 3/4 0
1/4 1/4 0 1/2
0 3/4 1/4 0

7/24 0 11/24 1/4

 .
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Later in [12], it was shown, remarkably, that if a spectrum (with no 0’s)
meets the basic necessary conditions strictly, then it is the nonzero part of the
spectrum of a nonnegative matrix. Sufficiently many 0’s may be appended to
achieve realizability. Of course, the number of 0’s that need be added may be
very large (not uniformly bounded in terms of n) because of JLL. Interest-
ingly, the newish method of symbolic dynamics was used in an import way,
though many easily proven matricial lemmas were needed as well. Specifically
the result is

Theorem 1. The list of nonzero complex numbers Λ = {λ1, λ2, . . . , λn} is the
nonzero spectrum of a primitive matrix if and only if
1. strict Perron condition: Λ contains a positive eigenvalue of multiplicity

one that is greater in absolute value than all other λ′is;

2. reality condition: p(t) =
n∏
i=1

(t− λi) has real coefficients;

and
3. extended trace condition:

n∑
i=1

λmki ≥ 0 for all k and
n∑
i=1

λki > 0 implies
n∑
i=1

λmki > 0 for all m.

The necessity of these conditions is easily verified (the last one via JLL,
for example), and the interesting point is that necessary conditions become
sufficient when primitivity is the goal and the dimension may be arbitrarily
increased. When the Perron condition is not strict it may not be possible to
”save” a spectrum meeting obvious necessary conditions. The familiar exam-
ple 3, 3,−2,−2,−2 is not only not realizable, but is never the nonzero part
of the spectrum of a nonnegative matrix. However, both 3 + ε, 3,−2,−2,−2
and 3 + ε, 3− ε,−2,−2,−2 are both the nonzero parts of the spectra of prim-
itive matrices for arbitrarily small ε > 0 (though they are not realizable for ε
small).

More recently there have been further developments about realizability
after appending 0’s to a spectrum. In [66] there is matricial proof of key results
from [12], which is much more explicit. Though the number of 0’s needed to
make a spectrum realizable may be very large (and not easy to estimate
from [12]), estimates have recently been given under some circumstances by
bringing s2(Λ), as well as the trace, into play [71].

7. The Graph NIEP
Not surprisingly, realizable spectra that are, in some way extremal, are often
realizable by nonnegative matrices with many 0 entries, as are many non-
extremal spectra. This raises the question that, if we fix the 0-pattern of a
nonnegative matrix, how is the NIEP restricted, i.e. which realizable spectra
occur? A natural way to describe a particular 0-pattern is via a graph, which
could be directed or undirected. For a particular graph G on n vertices,
consider the set of nonnegative n-by-n matrices N(G) for which A = (aij)
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satisfies aij > 0 if and only if (i, j) is a directed edge, i 6= j, of G. (Here,
we consider an undirected edge {i, j}, if G is undirected, to consist of two
directed edges (i, j) and (j, i).) For simplicity we consider graphs without
loops, and no restriction is placed by the graph upon the diagonal entries,
other than nonnegativity. The G-NIEP then just asks which spectra occur
among matrices in N(G)? (if we wish to emphasize the dimension, which
we generally take to be implicit, we may write Nn(G).) Of course the NIEP
is just the union of the solutions to the G-NIEP’s, over all directed graphs
G. The same is true for various variations upon the NIEP. For example,
the solution to the S-NIEP is just the solution to the G-NIEP, restricted to
symmetric matrices, over all undirected graphs. Thus far, the G-NIEP has
been considered only for undirected graphs G, symmetric matrices and real
eigenvalues. This seems a fertile area for future work.

A prototype of the G-NIEP, though not presented in graph terms, ap-
peared in [35], in which tridiagonal matrices were considered. Notice that
the spectrum of a nonnegative tridiagonal matrix is not only necessarily real
but also the spectrum of a symmetric tridiagonal nonnegative matrix. Also,
tridiagonal matrices are the case in which G is a path (and an edge only
requires nonnegativity of the entry); off-diagonal 0 entries are important. We
say that a matrix A is subordinate to a graph G if G(A) has the same vertices
as G and the edges of G(A) are contained among those of G; equivalently,
for A = (aij), aij 6= 0 implies {i, j} is an edge of G. The main result of
[35] is for the path P on n vertices. Then, for λ1 ≥ λ2 ≥ · · ·λn, there is an
n-by-n nonnegative matrix AT = A subordinate to P and with eigenvalues
λ1, λ2, . . . , λn if and only if

λi + λn−i+1 ≥ 0

i = 1, 2, . . . , n. Additional conditions, when the graph is precisely P , are also
discussed, but the results are incomplete.

In [75, 49], the observation of [35] is dramatically generalized. Recall
that a path is a tree and that all trees are bipartite (but many non-trees are
bipartite as well). All bipartite graphs are considered in [75]. The main result
is that λ1 ≥ · · · ≥ λn are the eigenvalues of an n-by-n nonnegative symmetric
matrix A subordinate to a given bipartite graph G on n vertices if and only
if

λ1 + λn ≥ 0

λ2 + λn−1 ≥ 0

...

λm + λn−m+1 ≥ 0

λm+1 ≥ 0

...

λn−m ≥ 0
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in which m is the matching number of G. (Note that bn2 c is the matching
number of a path on n vertices, so that the result of [35] is a special case.)
Further observations about the S-NIEP for matrices subordinate to a given
graph G are also made.

8. Perron Similarities
If S is an invertible matrix and there is a real, diagonal, nonscalar matrix
D with SDS−1 ≥ 0, then S is called a Perron similarity. Perron similarities
were introduced by Johnson and Paparella to study the diagonalizable R-
NIEP and the S-NIEP.

Perron similarities were characterized in several ways in [55] and it was
shown that C(S) := {x ∈ IRn : SDxS

−1 ≥ 0} is a polyhedral cone, i.e., a
convex cone in IRn with finitely-many extremals. This was called the (Perron)
spectracone of S, and a certain cross-section, a polytope called the (Perron)
spectratope of S, was also discussed.

These polyhedral sets were used to verify the known necessary and suf-
ficient conditions for the R-NIEP and the S-NIEP for orders up to four. For
orders 1, 2, and 4, it is shown that a finite number of Perron similarities are
required to cover the realizable region, whereas when n = 3, it is shown, via
the relative gain array (see, e.g., [45]), that an uncountable number of Perron
similarities is required to cover the realizable region.

For every n ≥ 1, the spectracone and spectratope of Hn were char-
acterized, where Hn denotes the canonical Hadamard matrix of order 2n.
More specifically, the spectracone of Hn is the conical hull of its rows and
the spectratope of Hn is the convex hull of its rows. The spectratope of a
general, normalized Hadamard matrix was used to give a constructive proof,
for Hadamard orders, of a result by Fiedler [33], that every Sulěımanova spec-
trum is the spectrum of a symmetric nonnegative matrix (in fact, this result
was strengthened to show that the constructed realizing matrix is also dou-
bly stochastic). It is still an open problem to find a constructive proof that
every Sulěımanova spectrum is SNIEP-realizable. A constructive proof of the
Boyle-Handelman theorem for Sulěımanova spectrum: augmenting any such
spectrum with zeros up to a Hadamard order yields a spectrum realizable by
a nonnegative matrix that is symmetric and doubly stochastic.

9. Jordan structure and the NIEP’s
When there are repeated eigenvalues in a proposed spectrum, a natural ques-
tion is whether Jordan structure for the repeated eigenvalues can play a role
in realizability. The J-NIEP asks which particular Jordan canonical forms
occur for n-by-n nonnegative matrices and the D-NIEP is the special case
of which spectra occur among diagonalizable n-by-n nonnegative matrices.
Of course, the D-NIEP and the NIEP are the same for spectra with distinct
eigenvalues. It is also a simple exercise that any spectrum that is D-NIEP
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realizable by a positive matrix is also J-NIEP realizable for any Jordan canon-
ical form possible for its eigenvalues. However, whether D-NIEP realizability
always implies J-NIEP realizability for any possible Jordan form is unclear.
This is so for Sulěımanova spectra [15, 121, 24].

There are spectra that are realizable (in fact, R-NIEP realizable), but
are not diagonalizably realizable. The smallest dimension in which this occurs
is 5. For n ≤ 4, any realizable spectrum with (non-real) complex eigenvalues
is diagonalizably realizable (the only difficulty could come from a multiple
Perron root and that is easily handled by a reducibility argument). For n ≤ 4,
R-NIEP and S-NIEP realizability are the same, which settles the matter.
However, for n = 5, the spectrum

3 + t, 3− t,−2,−2,−2

is realizable for t > (16
√

6)1/2 − 39 ≈ 0.437..., [70]. However, it is diagonal-
izably realizable iff t ≥ 1 (in which case it is also symmetrically realizable).
Thus, for 0.437... < t < 1, this 5-spectrum is realizable, but not diagonaliz-
able so. This suggests that this phenomenon is fairly common.
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[128] H. R. Sulěımanova, Stochastic matrices with real characteristic values, Dokl.
Akad. Nauk. S.S.S.R. 66 (1949) 343-345 (in Russian).

[129] J. Swift, The Location of Characteristic Roots of Stochastic Matrices, M.Sc.
thesis, McGill University, Montreal, 1972.

[130] J. Torre-Mayo, M. R. Abril-Raymundo, E. Alarcia-Estévez, C. Marijuán, M.
Pisonero, The nonnegative inverse eigenvalue problem from the coefficients of
the characteristic polynomial. EBL digraphs. Linear Algebra Appl., 426 (2007)
729-773.

Charles R. Johnson
Department of Mathematics
College of William and Mary
Williamsburg, VA 23187-8795
USA
e-mail: crjohn@wm.edu

Carlos Marijuán
Dpto. Matemática Aplicada
E.I. Informática
Paseo de Belén 15
47011-Valladolid
Spain
e-mail: marijuan@mat.uva.es

http://www.intechopen.com/books/linear-algebra-theorems-and-applications/nonnegative-inverse-eigenvalue-problem
http://www.intechopen.com/books/linear-algebra-theorems-and-applications/nonnegative-inverse-eigenvalue-problem


The NIEP 23

Pietro Paparella
Div. of Engineering & Mathematics
University of Washington Bothell
Bothell, WA 98011-8246
USA
e-mail: pietrop@uw.edu

Miriam Pisonero
Dpto. Matemática Aplicada
E.T.S. de Arquitectura
Avenida de Salamanca 18
47014-Valladolid
Spain
e-mail: mpisoner@maf.uva.es


	1. Introduction
	2. The Single Eigenvalue Problems
	3. Necessary Conditions for the NIEP's
	4. Low Dimensional Results
	5. Sufficient Conditions
	6. Embedding Spectra, by Adding 0's, to Achieve Realizability
	7. The Graph NIEP
	8. Perron Similarities
	9. Jordan structure and the NIEP's
	References

