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Abstract

Alist A = {\1, A2, ..., Ay} of complex numbers is said to be realiz-
able if it is the spectrum of an entrywise nonnegative matrix. The list
A is said to be universally realizable (UR) if it is the spectrum of a
nonnegative matrix for each possible Jordan canonical form allowed by
A. Tt is well known that an n X n nonnegative matrix A is co-spectral
to a nonnegative matrix B with constant row sums. In this paper, we
extend the co-spectrality between A and B to a similarity between A
and B, when the Perron eigenvalue is simple. We also show that if
e>0and A = {1, a,..., Ay} iISUR, then {\; +¢€,Aa,..., A\, } is also
UR. We give counter-examples for the cases: A = {A1,Ao,..., \n}
is UR implies {\ + €, s — €, A3,..., \n} is UR, and Ay, Ag are UR
implies A; U Ag is UR.
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1 Introduction

Let M,, denote the set of n x n real matrices and M}, the set of k x [ real
matrices. Let A € M,, and let

J(A) = S7TTAS = diag (Jo, (M), Jny(N2)s - -y Jn (A1)

be the Jordan canonical form of A (hereafter JCF of A), where the n; x n;
submatrices

A1
an(>\7«) = )\Z y U= 17 7k7
1
Ai
are called the Jordan blocks of J(A). The elementary divisors of A are the
characteristic polynomials of J,,(\;), i = 1,..., k. The nonnegative inverse

elementary divisors problem (hereafter NIEDP) is the problem of determining
necessary and sufficient conditions for the existence of an n xn entrywise non-
negative matrix with prescribed elementary divisors [3}, 5, 10, 11, 13} 14}, 15,
16]. If there exists a nonnegative matrix with spectrum A = {1, Ao, ..., A\, }
for each possible Jordan canonical form allowed by A, we say that A is uni-
versally realizable (UR). If A is the spectrum of a nonnegative diagonalizable
matrix, then A is said to be diagonalizably realizable (DR).

The NIEDP is closely related to the nonnegative inverse eigenvalue prob-
lem (hereafter NIEP), which is the problem of characterizing all possible
spectra of entrywise nonnegative matrices. If there is a nonnegative matrix
A with spectrum A = {Ay, \y,..., A\, }, we say that A is realizable and that
A is a realizing matriz. Both problems, the NIEDP and the NIEP, remain
unsolved. A complete solution for the NIEP is known only for n < 4.

Throughout this paper, the first written element of a list A = { A1, Ao, ..., An},
i.e. A1, is the Perron eigenvalue of A, \; = max{|\;|, \; € A}. If A is the
spectrum of a nonnegative matrix A, we write p(A) = A\ for the spectral
radius of A.

In this paper, we ask whether certain properties of the NIEP, such as the
three rules that characterize the C-realizability of lists (see [2]), extend or
not to the NIEDP. In particular, we ask:

DIFA={A, Ao, ..., A\ iISUR,is {A1+€, Aa, ..., A\ } also UR for any € > 07
2) If A ={A;, Ao, ..., A iSUR and Ay is real, is {\ + €, Ao — €, A3, ..., A\ }



also UR for any e > 07
3) If the lists A; and Ay are UR, is A; U Ay also UR?

In [4], Cronin and Laffey examine the subtle difference between the sym-
metric nonnegative inverse eigenvalue problem (SNIEP), in which the realiz-
ing matrix is required to be symmetric, and the real diagonalizable nonneg-
ative inverse eigenvalue problem (DRNIEP), in which the realizing matrix
is diagonalizable. The authors in [4] give examples of lists of real numbers,
which can be the spectrum of a nonnegative matrix, but not the spectrum
of a diagonalizable nonnegative matrix.

The set of all n x n real matrices with constant row sums equal to o € R
will be denoted by CS,. It is clear that e = [1,1,...,1]T is an eigenvector
of any matrix A € C'S,, corresponding to the eigenvalue . Denote by ey
the vector with 1 in the k" position and zeros elsewhere. The importance
of matrices with constant row sums is due to the well known fact that an
n X n nonnegative matrix A with spectrum A = {A\;, Ag,..., A}, A1 being
the Perron eigenvalue, is co-spectral to a nonnegative matrix B € CS,, [7,[6].
In this paper, we extend the co-spectrality between A and B to similarity
between A and B, when ) is simple, and therefore J(A) = J(B). In what
follows, we use the following notations and results: we write A > 0 if A is
a nonnegative matrix, and A > 0 if A is a positive matrix, that is, if all its
entries are positive. We shall use the same notation for vectors.

Theorem 1.1 [I} (2.7) Theorem p. 141] Let A € {M = (m;;) € M,, : m;; <
0,7 # 7} be an irreducible matriz. Then each one of the following conditions
s equivalent to the statement: “A is a nonsingular M-matriz”.

i) A7t is positive.

i1) Ax > 0 and Ax # 0 for some x positive.

Theorem 1.2 [13] Letq = [q1,...,q.]" be an arbitrary n-dimensional vector
and E11 € M, with 1 in the (1,1) position and zeros elsewhere. Let A € CS),
with JCF

J(A) = STTAS = diag (Ji( A1), Jny(Na), - -+ Jn (Mk)) -

If M+ >0 a4 # N, i =2,...,n, then the matriz A + eq’ has Jordan
canonical form J(A) + (3.1, ¢)En. In particular, if Y7 ¢; = 0, then A
and A+ eq” are similar.

This paper is organized as follows: In Section 2, we extend the co-
spectrality between a nonnegative matrix A and a nonnegative matrix B
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with constant row sums to a similarity between A and B, when the Perron
eigenvalue is simple. In Section 3, we show that if a list of complex num-
bers A = {\, Ao, ..., A} iSUR, then {\; +¢€, Ao, ..., A, } is also UR for any
e > 0. We also consider the universal realizability of the Guo perturbation
{M+€ A a—€ A3,..., N\, }, and of the union of two universally realizable lists
Ay and As. In Section 4, we study the nonsymmetric realizablity of lists of
size 5 with trace zero and three negative elements.

2 Nonnegative matrices similar to nonnega-
tive matrices with constant row sums

It is well known that if A is an irreducible nonnegative matrix, then A has
a positive eigenvector associated to its Perron eigenvalue. In this section,
we extend this result to reducible matrices under certain conditions. As a
consequence, in both cases, A is similar to a nonnegative matrix B with
constant row sums when the Perron eigenvalue is simple. In this way, we
extend a result attributed to Johnson [7], about the co-spectrality between
a nonnegative matrix A and a nonnegative matrix B € CSy,.

Lemma 2.1 Let A € M,, be a nonnegative matrix of the form

4 0
=i i)

with A; € CS,,, As # 0, Ag irreducible and Ay = p(A) = p(A1) > p(Asq).
Then A has a positive eigenvector associated to \y. Moreover, there exists a
nonnegative matriz B € CS), similar to A.

Proof. Let Ay € M, and Ay € M,_;. Let x = {;j with e € M1,
y € M, _j1. Then, for

i | P R v
As Aol ly|  |Ase+ Ay| [ My’

we have Asze = (M1 — Ay)y, where \;I — A, is an irreducible nonsingular
M-matrix. Then, from Theorem [T, (A1 — A3)~! > 0. Therefore,

y = ()\1] — Ag)_l(Age) > 0, (].)
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and so x! = [eT, yT} = [x1,...,x,] is positive. Then, for D = diag (x1,...,2,),
B = D7'AD is similar to A. Since

Be = D7'ADe = \e,
then B €(CS,,. m

Remark 2.1 Note that the eigenvector x obtained in the proof of Lemma
21 is x” = [e!,yT], where e has the number of rows A; and

Y= ()\1] — Ag)_l(A3e) = [yl, ... ,yn_k]T > 0.

Let Y = diag(yy,...,Yn—k), then a matriz B € CS,, similar to A is of the
form
B Ay 0
Y_lAg Y_IAQY '

Note that in Lemma 2] it is not necessary that the spectral radius of A
be simple, as shown in matrix

A:

Y

D N
oI O

0
0
1

which has a positive eigenvector [1, 1, 2] associated to the double eigenvalue
AL = 2.

Now, suppose that A is a block diagonal matrix. Then, for this case, we
have the following result:

Lemma 2.2 Let A € M, be a nonnegative matriz of the form

4 0
=[v i)

with A1 € CSy,, As irreducible and \y = p(A) = p(A1) > p(As). Then A

A 0O ,
As AJ , with As # 0. Moreover,

there exists a nonnegative matriz B € CSy, similar to A.

s similar to a monnegative matrix A =



Proof. Let A; € M} and Ay € M,,_;.. We suppose, without loss of generality,
that Ay € CS,4,). Define the nonsingular matrix

| Ik 0 . 1 Iy O
S_[—Z In—k:|’ with S _[Z In—k:|’

where Z = ez’ € M, _;, with z being an eigenvector of A7 associated to
A1. Then

ﬁ:S‘lAS:l A O}.

ZJA — A2 Ay

We show that A3 = ZA; — A5 Z is a nonzero nonnegative matrix. The entry
in position (7, j) of the matrix Aj is,

el (ZA, — AyZ)e; = z" colj(Ay) — zjrow,(Az)e
k
=D gz — zp(Ay),
i=1

forallr=1,...,n—k, j=1,..., k. Therefore, ZA; — A>Z has all its rows
equal, which can be expressed as

(A7 = p(A2) 1)z (2)
Since AT — p(Ay) I}, and AT have the same eigenvectors, then from (2))

(AT = p(Ax) )z = ATz — p(Ar)a
=Mz — p(As)z
= (M = p(42))z = 0.

Therefore A3 = ZA; — A3 Z is a nonzero nonnegative matrix. Since A and A
are similar with A3 nonzero nonnegative, then from Lemma 2.1] there exists
a nonnegative matrix B € CS,, similar to A. =

Remark 2.2 Note that the matriz As in the proof of Lemmal2.2 is
Ag = ezTA1 — AgeZT, (3)

with z being an eigenvector of AT associated to \y. Then, from Lemma 2],
A has a positive eigenvector x = (el yT| associated to i, where

y = (M1 — Ay)"HAse) = [y1, ..., Y|, with Az as in (3).



Let Y = diag{y, ..., Yn_r}, then a matriz B € CSy, similar to A is of the
form
B_ Ay 0
Y1A; YIAY |

Next we prove the main result in this section. This result extends the
co-spectrality between a nonnegative matrix A and a nonnegative matrix
B € CS,,, to a similarity between A and B.

Theorem 2.1 Let A € M,, be a nonnegative matriz with \y = p(A) simple.
Then there ezists a nonnegative matric B € CS), similar to A.
Proof. If A isirreducible, then A has a positive eigenvector x = [z, ..., xn]T
associated to A\;. Let D = diag (zy,...,,). Then B = D7'AD € CS,, is
nonnegative and similar to A.

If A is reducible, then A is permutationally similar to

AL -
Ay Ay
A=Ay - App—1 Ak
o - 0 0 A1kt
L 0 o 0 0 T 0 Ak-i—r,k-i—r-

k+r
with blocks A;; irreducible of order n;, or zero of size 1 x 1, such that Y n; =
i=1
n, and [Ail A - ~Ai7i_1} nonzero, ¢ = 2, ..., k. We may assume, without
loss of generality, that A; is an eigenvalue of A;; € CSy,, and A;; € CS,a,,),
1=2,3,....,k+r.
From Lemma 2] the submatrix

. AH 0
A= [Azl A22] ’

in the left upper corner of ,ZL is similar to a nonnegative matrix By € CSy,,
with B, = Dl_lAlDl.



We define 131 = [Dl } . Then
[n—(nl—l—ng)
"B, -
* A33
51_112{51 = * s * Akk
0 -+ 0 0 Argrps
L o - 0 0 T 0 Ak-i—r,k-i—r_

Again, from Lemma 2.1], the left upper corner submatrix of 151_ 1;{151,
By 0
A2 o |i * A33:| ’
is similar to a nonnegative matrix By € CS),, with By = Dy 'A3D,. Then

we define 52 = Dy } and we obtain

]n—(n1+n2+n3)

"B, -
* A44
52_151_125152 = * * Akk
0 0 0 Aptip+
L o - 0 0 e 0 Ak-i—r,k—i—r_

Proceeding in a similar way, after k — 1 steps, we obtain

Bi1
- Ay,
1 =17 ~ +1,k+1
Dk—l'”Dl ADl"'Dk—1: . ,
Ak—i—r,k—i—r

which is a block diagonal matrix, with By_; € CS,,. Now, from Lemma [2.2]

the submatrix
B
g P ]
k4+1,k+1



is similar to a nonnegative matrix B, € CS,,, B, = Dy~ 'S, "1 Al Sy Dy, where

S , with z, being an eigenvector of B}, associated
—€Z; Ik+1,k+1
to )\1.
We define Dy = {Sk Dy } . Then,
I”—(n1+"'+”k+1)
B,
~ Ak+2p+2

Dgl---f?flﬁf)l---f)k:
Ak—i—r,k—i—r

Proceeding in a similar way, after r — 1 steps, we obtain a nonnegative matrix
B € (S, similar to A. =

Remark 2.3 Note that the condition of simple Perron eigenvalue cannot be
deleted from Theorem 2.1, as shown in matriz

i

Observe also that this means that it is not always possible to work with ma-
trices with constant row sums in the NIEDP, this fact does not apply to the
NIEP.

3 Perturbation of universally realizable lists

Guo in 1997 [6] proved that increasing the Perron eigenvalue of a realizable
list preserves the realizability. We extend this result to UR lists.

Theorem 3.1 Let A = {1, Aa, ..., A\, } be a list of complex numbers with A\
simple. If N isUR, then Ae = {\1 + €, Xa,..., \p} is also UR for any e > 0.

Proof. Let € > 0 and



be a JCF allowed by A.. The matrix

k
J = Ji(M) @D T (V)

1=2

is an allowed JCF by A. Because A is UR, there exists a nonnegative matrix
A with spectrum A and Jordan canonical form J. Besides, from Theorem
2.1 there exists a nonnegative matrix B € CS,, with J(B) = J. Then,
from Theorem [, for B and q7 = [£,..., 5], we have that the matrix

A. = B+ eq” is nonnegative with spectrum A, and JCF

k
J(Ae) = J(B) + €Ey = J + eEy = Ji(M + ) @ o, (M)

@
1=2

Thus, AcisUR. m

Guo in 1997 [6] also proved that increasing by e a Perron eigenvalue
and decreasing by e another real eigenvalue of a realizable list preserves the
realizability. Soto and Ccapa in 2008 [13] proved that a list of real numbers of
Suleimanova type, that is, a list {\1, Ao, ..., A, } with \; <0 fori=2,...,n,
and Y Ay > 0, is UR. As a consequence, the perturbed list {A; + €, Ay —
€,A3,..., A, } with € > 0 is UR for nonnegative lists {A1, Ao, ..., A} and
also for Suleimanova type lists {A1, Ao,..., A\n}. As we show below, this is
not true for general lists {1, Aa,..., \,}. The construction of a counter-
example is based on the study of UR lists of size 5 with trace zero and three
negative elements. This construction has been motivated by the work of
Cronin and Laffey [4]. They show that a realizable list is not necessarily
diagonalizably realizable. In particular, they observe that the lists {3+1¢,3 —
t,—2 +€,—2,—2 — €} are realizable for small positive values of € and values
of t close to 0.44, but they are symmetrically realizable only for t > 1 — ¢
[17, Theorem 3]. Note that these lists are diagonalizably realizable, since the
eigenvalues are distinct. However, this is not a continuous property in € as
Cronin and Laffey show via the following result.

Proposition 3.2 [4] Suppose {3 +1t,3 —t, —2,—2, -2} is diagonalizably re-
alizable, then t > 1.

Note that the list {3 + ¢,3 — ¢, —2, —2, —2} represents any list of size 5
with trace zero, simple Perron eigenvalue and three negative elements all
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equal, i.e., lists of the form {A;, Ao, A3, A3, A3} with Ay > Ay > 0 > A3 and
A1+ Ay + 33 = 0. This list can be scaled by —2/)\3 to

=2\ —2X
—2,-2,-2
{ >\3 Y )\3 Y Y Y }

i;‘1—3:3+%Wehauve

and taking ¢ = =

Ay ={3+¢3—-1t-2,-2,-2}, 0<t<3.
Analogously:

o The list A® = {3+t 19,3 —t,—2+ty,—2,—2}, with 0 < t5 <
min{1+¢, 2t} < 2and 0 <t < 3, represents the lists {1, A2, A3, \g, Ay}
with Ay > Ay > 0 > A3 > Ay and Ay + Ay + A3 + 2A4, = 0 (scaling by

—2/A4 and taking typ = 2 — % and t = _fjl —3+ty=3+ %)

o Thelist A" = {3+t+1tg,3—t, —2, —2, —2—to}, with ¢, > max{0, —2¢}
and —1 < t < 3, represents the lists {1, A2, A3, A3, Ay} with Ay > Ay >
0> A3 > A > =\ and A\; + Ag + 2X\3 + Ay = 0 (scaling by —2/)3 and
takingt0:—2+% andt:%—S—toz?mL%).

We need the following result due to Smigoc:

Lemma 3.1 [12] Lemma 5] Suppose B is an m X m matriz with Jordan
canonical form J(B) that contains at least one 1 x 1 Jordan block corre-
sponding to the eigenvalue c:
c 0

J(B) = 0 I(B)|"
Let u and v, respectively, be left and right eigenvectors of B associated with
the 1x1 Jordan block in the above canonical form. Furthermore, we normalize
vectors u and v so that ulv = 1. Let J(A) be a Jordan canonical form for
ann xXn. ;lnatm'x

1 a

A= _bT C:| )
where Ay is an (n — 1) x (n — 1) matriz and a and b are vectors in C"~'.
Then the matriz

| A au
¢= vb" B
has Jordan canonical form

J(C) = {J((f ) [89)] .
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We consider the lists Al® = {3+t — 9,3 —t, -2+ ty, —2, —2} and A;to =
{3+t+1ty,3—1t,—2,—2,—2 —ty} that have a better behavior than AL; with
respect to the Guo result applied to UR.

Theorem 3.3 i) Let Al° = {3+t —ty,3—t, —241ty, —2, —2} with 0 < tg < 2
and ® <t <3. If Al is realizable, then it is UR.

i) Let A = {3+t 41,3 —t,—2,—2,—2 — to} with ty > max{0, —2t} and
t < 3. If A is realizable, then it is UR.

Proof. i) Observe that the list A has two possible JCF, since the only
repeated eigenvalue is —2 with double multiplicity.

Under the realizability conditions in [9, 18], the realizing matrices for lists
A have the form

01000
«x 01 00
A= = 0 1 0|,
x x x 0 1
|+ x o+ % 0|
then rank(A + 2/) = 4 and A has a JCF with a Jordan block of size two

Jo(—2).

If A° is symmetrically realizable (see Spector conditions in [I7, Theorem
3]), then Al is DR.

If A° is realizable but not symmetrically realizable, which means that
t < 1 (see next section), we show that A is DR via the Smigoc method
given in Lemma B3Il Let

Fl = {3 +1t— to, 3 — t, -2+ to, —2} and FQ = {tI‘(Fl), —2} = {2, —2}

Note that these spectra are realizable because they satisfy the Perron and
trace conditions. The matrix

o=[3 3] 3 5

realizes I'y. Let u? = [1/2,1/2] and vI = [1,1] be, respectively, left and
right normalized eigenvectors of B.

We need to find a realization of I'y with diagonal (0, 0,0, ¢ = tr(I'y) = 2)
and the only realization that we know with this diagonal is the one given in
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[16, Theorem 14] which is of the form

0 1 010
| d0o 10
A_6001

&Odg‘Q

The characteristic polynomial of A is

Pa(z) = 2% — 223 — (dy + d3)z* + (2d, — b)x +2b + d1ds — a
= (e=B+t—t))(x—B—-1)(z - (=2+1%))(z +2)
= LU4 + ]fl.ilfg + ]{?2252 + ]{7325 + ]{74

with
ko = —(t* — tot + t3 — 5tg + 11),
ks = (to —4)t* +to(4 — to)t + t2 — 5tg + 12,

Identifying coefficients we have the system:
di+d3 = —ky, 2dy —b=ks, 20+did3s—a=F (4)

which allows us to obtain realizations of I'{, in function of d;, of the form

0 1 0 0
B dy 0 1 0
Aldr) = 2d; — ks 0 0 1

—d?+ (4 — ko)dy —2ks — kg 0 —ky—d, ‘ 2
that has JCF

3+t—t, O 0 0

0 3t 0 0

J(A(dh)) = 0 0 -2+t 0
0 0 0 )

Now, by Lemma[3.I] the bonding of matrices A(d;) and B leads to the matrix

0 1 0 0 0
d, 0 1 0 0
C(dy) = 2dy — ks 0 0 1/2 1/2

"B+ (A—ky)d; —2ks—ks 0 —ks—dyi| O 2
B+ (A—ky)dy —2ks—ky 0 —ks—dy| 2 0

13



which realizes diagonally the list A%,
Finally, A° is UR.
it) Analogously, under the realizability conditions in [9] 18], the realizing
matrices for lists A;" have a JOF with a Jordan block of size two Jy(—2).
If A;to is symmetrically realizable, then A;to is DR.
If A, is realizable but not symmetrically realizable (for t < 1), we apply
the Smigoc method to the spectra

T = {3+t+t0,3—t—2-2—t}and Iy = {2, -2}

and, in the same way, we obtain the following DR realization of A;fo

0 1 0 0 0
dy 0 1 0 0
C(dy) = 2y — ks 0 0 1/2 1/2

B+ (A—ky)dy —2ks—ky O —ks—dy O 2
B4 (4 —ko)dy —2ks—ky O —ko—dy 2 0

for the system (), with
ky = —(t* — tot + 13 + bt + 11),
ks = (to+ 4)t* +to(4 + to)t — 13 — 5ty — 12,
ky = 2(to+2)(t+to+3)(3—1).
Hence, A* is UR. m

Corollary 3.1 Let A = {\, Xa, ..., Ay} be a UR list with Ny real. The list
{AM+ 6 —€Xs3,..., A}, for e >0, is not necessarily UR.

Proof. Let
A=A ={3+t—ty,3—t, -2+t —2,—2}

be a UR list as in Theorem B3 with ¢t < 1 (see Lemma [£.1] for its existence).
Now, applying Wuwen perturbation with € = ¢y, we obtain the list

{(3+¢3—t-2 -2 -2}

which is not diagonalizably realizable by Proposition and therefore it is
not UR. m
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It is easy to see that if A and I' are lists of nonnegative real numbers,
then AUT is UR. Let

A:{>\1,)\2,...,)\n} and F:{,ul,ug,...,,um}

be lists of real numbers of Suleimanova type with trace zero and \; > uy,
the Perron eigenvalues of A and I respectively. Then, from [3], AUT is UR.
Now we show that this is not true for general lists.

Lemma 3.2 Let A = {1, A\, Ao, Ao} be a list of real numbers with \y > 0 >
Ao > =X and A\ + 2 s < 0. Then A has no nonnegative realization with
Jordan canonical form

A0 0 0
o oA 0 0
T=10 0 xn 1
0 0 0 X

Proof. Suppose there exists a nonnegative realization A of A with Jordan
canonical form J(A) = J. As A\ + 2)\y < 0, then A only admits reducible
realizations and must be partitioned as {A1, A2} U {A1, A2}. So we assume,
without loss of generality, that A is of the form

B 0
telep)

where B and D are irreducible matrices with spectrum {A;, A2}. Therefore,
from the minimal polynomial of B and D, we have

B2 = ()\1 -+ >\2)B — )\1)\2[ and D2 = ()\1 —+ )\Q)D — )\1)\2[.
Since the minimal polynomial of A is

2% 4 (=1 — 202)2” + (2A1 A0 + A3)T — A3,

then
A3 (= = 200) A% + (2000 + A2)A — M AT =0,
with
e | B 0] [ +X)B =M 0
~ |CB+DC D?| CB+ DC (M +A2)D — A Aod |’
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and

A A — [ (A1 + X2) B> — M\ B 0 }

(A 4+ A2)CB — MAC + DCB + D2C (A + Ag)D? — MM\ D
2 A+ A)B = (A2hg + AN 0
T (A1 + M) (CB+ DC) + DCB — 22 0C (A2 4 Mda + A)D — (A2Ag + M AT |

Therefore,
A3 — (A +2X0) A% + (20 A0 + M)A — M2 T

M A A A)B = (Mg 4+ M) 0

= (M + A)(CB + DC) + DCB — 20, 0C (A2 4+ Ahs + A2)D — (A2Ag + M)

- (A + Xa) B — Mol 0 . [B 0
(M1+24) l OB + DC (O 4+ A0)D — AT | TEMAFN) [0

— MM =0.

Now, by equalizing the block in position (2,1) to zero, we have:

(A + A2)(CB + DC) + DCB — 2X\25C — (A +2X2)(CB + DC) + (2\ Ay + A3)C

= —X(CB+ DC)+ DCB+ \;C =0.

Since the matrices involved in the last equality are nonnegative and Ay < 0,
this is only possible if each addend is zero. In particular, C' = 0. Then

dim(ker(A — Ao1)) = 4 — rank(A — A1)
B — oI 0
0 D — X1
=4 — (rank(B — A\oI) 4 rank(D — A\o1))
—4—(1+1)=2

=4 — rank

However, from J(A) = J we have

A1 — A2 0 00
' B 0 AM—2X 0 0]
dim(ker(A — A\ol)) = 4 — rank 0 0 0 1l = 1,
0 0 0 0
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which contradicts the existence of a nonnegative realization A with Jordan
canonical form J. m

As an example, consider A = {1, —1}. It is clear that A is UR. How-
ever, from Lemma B2 the list AUA = {1,1,—1, —1} has no nonnegative
realization with JC'F

10 0 O
01 0 O
J= 00 -1 1
00 0 -1

Therefore, A U A is not UR.

4 Lists of size 5 with trace zero and three
negative elements

We are interested in the realizability of the lists with size 5 and trace zero
Ay ={3+1¢,3—1t, -2, -2 -2},

AP ={3+t—ty,3 —t,—2+ty, —2,—2},
Ao ={3+t+1t9,3—t —2,—2,—2—t,}

introduced in Section 3. It is well known that the list A, is realizable if and

only if t > v/16v/6 — 39 = 0.43799 - - - (see [§]), and symmetrically realizable
if and only if ¢ > 1 (see [I7]). Now, we study when the lists A;® and A, are
realizable but not symmetrically realizable. We need the following result:

Theorem 4.1 [18, Theorem 39 for n = 5 and p = 2] Let P(x) = 2° + kox® +
ksa? + ko + ks. Then the following statements are equivalent:

i) P(z) is the characteristic polynomial of a nonnegative matriz;
ii) the coefficients of P(z) satisfy:

Cl) k27 k3 S O;
2
b) ky <2;
]{72]{33 Zf k4 S 07
c) ks <
(=S -r) i R>o0



Lemma 4.1 1. Al® = {34+t — 15,3 —t,—2 +ty,—2,—2} with 0 < ty <
2t < 2 1is realizable, but not symmetrically realizable, in the region

_tot V1636 —to(4 — to) — 3t2 + 52ty — 156

t
2

()

2. AYO = {3+t+1t9,3—t,—2,—2,—2—to} with 0 < to,t < 1 and t+ty < 1
15 realizable, but not symmetrically realizable, in the region

s —tot V1646 F to(4 + to) — 3t2 — 52ty — 156 ©)
> 5 :

Proof. 1. Note that (ty,t) varies in the interior of the triangle 7" with
vertices (0,0), (0,1) and (2,1). The hypothesis ¢+ < 1 guarantees that A{° is
not symmetrically realizable (see [I7, Theorem 3]). Let us see that Al is
realizable using Theorem F.11

The characteristic polynomial ° + kyx® + ksa? + ks + ks of AL is

(2= B+t —t))(z =B -1)(z— (=2 +1t))(z +2)°

where
ko = —t% + tot — t2 + 5ty — 15
ks = —(6 — to)t? + to(6 — to)t — 13 + 5tg — 10
ks =4(t — 3)(t — to + 3)(to — 2).

Clearly ks is negative in the triangle T" because ky < tot + 5tg — 15 < —3.
The derivative of k3 with respect to t is kf = —2(6—1to)t+to(6—1¢), which is 0
in t = t(/2 and then the maximum value of k3 is k3(to/2) = (2—1t0)(t2—20)/4
which is negative for 0 < t; < 2 and so k3 is also negative in 7.

The inequality ks < 11_3 holds if and only if k2 — 4k, is nonnegative. We
have

ks —4ky = (2 —tot+4(4—10)V/6 — to+tg—13to+39) (t* —tot—4(4—1t0) /6 — to+ta—13tr+39)

where the first factor is positive and the second is nonnegative in the triangle
T if

J fot V1636 — to(4 — to) — 3t2 + 52ty — 156

t
2
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The coefficient k,4 is positive in T" because

ky > 4(th /4 — 3+ (3 —to)ta /2 +2t2 — 10ty + 15) = —t3 + 14t2 — 40ty + 48 > 0,

and ks < ks <% — 1/ %% — k:4) in 7" if the inequality () holds.

Therefore, by Theorem E.T], we conclude that A is realizable in the region
@.
2. Now (to,t) varies in the interior of the triangle R with vertices (0, 0), (0, 1)
and (1,0). Again, the hypothesis ¢ < 1 implies no symmetric realization of

A (see [17, Theorem 3)).
The characteristic polynomial z° + kyz* + ko + ks + kg + ks of A;to is

(=B +t+t)(r— B -1)(r+2)"(z— (-2—1))

where
ko = —(t* + tot + 13 + Htg + 15)
ks = —((to + 6)t? + to(to + 6)t + 13 + 5to + 10)
ky = —4((to + 3)t* + to(to + 3)t — 2t2 — 10ty — 15)
ks =43 —t)(t+to + 3)(to + 2).
Clearly ky and k3 are negative in the triangle R. For k4 < 11—3 we have

k3 —dky = (£ 4tot+4(4+10) V6 + to+ta+13tg+39) (£ +tot—4(4+t0) V6 + to+ta+13tg+39)

where the first factor is positive and the second is nonnegative in the triangle
R if

s Tt V1636 + to(4 + tg) — 3t2 — 52ty — 156
p— 2 .
The coefficient k, is positive in T" because

kg > —4((to+3)(1—to) +to(to+3) (1—tg) —2t2a—10tg—15) = 12(t3+4to+4) > 0,

and ks < k; (% —/E k4) in R if the inequality (B) holds.

Therefore, by Theorem E.I], we conclude that A" is realizable in the re-
gion ([@). =

Figure [Il and Figure [ show graphically the regions of realizability (the
grey regions) of A and A, respectively, described in the previous lemma.
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0 1 tO 2

Figure 1: List Al. Figure 2: List A

In the following example we give a diagonalizable nonsymmetric realiza-
tion of the lists Al® and A, for particular values of (¢, t) in the corresponding
regions.

Example 4.1 Let us consider the list \)° forty = 1. By Lemmal[].1], the list
A} ={2+41t,3—t,—1,-2,-2} is realizable for t > 3(1 + \/48V5 — 107) =
0.7877---. Let us consider t = 0.8 and realize diagonalizably the list A} g =
{2.8,2.2, —1,—2, —2}. The characteristic polynomial of the list 'y = {2.8,2.2,
—1, -2} is a* — 22° — T2a? + 22w+ 32, Following the proof of Theorem[3.3
we obtain

171 212 271 732
d3=——4d b=2d, — — = >+ —d, — —.
37 o5 T 1T T T gyt gy
The entries d3 and b are nonnegative for %6 <d < 12—751 The entry a is
nonnegative for d; € [271_5@, 2712@] = [5.10951---,5.73048 - - -]. Then
the rank of a is between 0 and its maximum value attained in dy = %, i.€.,
a € [0,0.094]. If we take dy = 5.5 we obtain the matrices
01 0 o 0 1 0 0 0
55 0 10 55 0 1 0 O
A(5.5) = . and C(5.5)=11252 0 0 05 05
252 0 0 1
0.09 0 258 2 0.09 0 258 0 2
) ’ 0.09 0 258 2 0

that realize Ty and A} 4 respectively.
Finally, we consider the list A?® = {3.5+11,3 —t,—2, -2, —2.5} that, by

Lemma[d, is realizable fort > ==V 1411\/%_731 = 0.2013---. Let us consider
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t = 0.3 and realize diagonalizably the list AP = {3.8,2.7, =2, —2, —2.5}. The
characteristic polynomial of the list T’} = {3.8,2.7,—2, —2.5} is 2* — 22% —
1399 92 4 18500+ 38 From the proof of Theorem[3.3 we obtain

1399 1367 1799 1966
d3=—-——dy, b=2dy——— = —d; dy — :
5T 100 M o0 YT T T 00N T 25
The entries d3 and b are nonnegative for % <d < %. The entry a s
nonnegative for dy € [FO50WIZL IOEIVIAL] — [7.483. .. [10.501---]. Then
the rank of a is between 0 and its maximum value attained in dy = %, i.€.,
a € [0,2.270025]. If we take dy =9 we obtain the matrices
0 1 0 0 0
0 1 0 0
9 0 1 0 9 0 1 0 0
A(9) = and C(9)=1433 0 0 05 05
433 0 0 1
997 0 4.99 2 227 0 499 0 2
' ' 227 0 499 2 0

that realize 'y and A3 respectively.
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