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The mass spectra of gas-phase clusters in cluster beams have a rich structure where the relative heights of
the peaks compared to peaks corresponding to clusters of neighbor sizes reveal the stability of the clusters as a
function of the size IN. In an analysis of the published mass spectrum of carbon clusters cations C’]\L, with N <16
we have employed the most common descriptor of cluster stability, which is based on comparing the total energy
of the cluster of size /N with the averaged energies of clusters with sizes N+1 and N-1. Those energies have
been obtained from density functional calculations. The comparison between the stability function and the
mass spectrum leaves some experimental features unexplained; in particular, the correlation with the detailed
variation of the height of the mass peaks as a function of size N is not satisfactory. We then propose a novel
stability descriptor which improves matters substantially, in particular the correlation with the detailed variation
of the height of the mass peaks. The new stability index is based on comparing the atom-evaporation energy
of the cluster of size N with the averaged atom-evaporation energies of clusters with sizes N+1 and N-1.
The substantial improvement achieved is attributed to the fact that evaporation energies are quantities directly

connected with the processes controllig the cluster abundances in the beam.

I. INTRODUCTION

Atomic and molecular clusters, and nanoparticles have
enormous interest from both points of view of fundamental
science and applications. The properties of clusters are often
different from the properties of the macroscopic system, and
vary with cluster size!2. Changing the shape of nanoparticles
has been used as a tool to modify their optical properties, for
instance the color of the nanoparticles®. Size and shape in-
fluence the catalytic properties of clusters and nanoparticles®.
This means that by playing with their size and shape, clusters
and nanoparticles can be tailored for specific functionalities.

Different methods exist for producing clusters'. In one of
the most common methods the solid material is first vapor-
ized, and then the clusters grow by atom aggregation in a clus-
ter beam. Clusters of different sizes are formed in this way,
and the analysis of the abundance population as a function of
cluster size in the molecular beam is made by mass spectrom-
etry. The relative abundance of clusters with different sizes
gives information on the relative stability of the clusters as a
function of the cluster size N. In the mass spectrum of clusters
X, where X indicates the particular chemical element of in-
terest, each cluster of size IV yields a peak, and the height of
the peak measures the abundance of that size N in the cluster
beam. The clusters grow in the condensation chamber mainly
by aggregation of new atoms, and this part of the process nor-
mally results in a smooth distribution of cluster sizes whose
population decreases as N increases. However, the clusters
become hot as they grow due to the heat of condensation. Part
of this energy can be liberated in collisions with the atoms of
a carrier gas (Ar, for instance), but a substantial part of the
condensation energy still remains in the cluster and induces
the evaporation of one or more atoms. In this way, the size of
the cluster shrinks and this evaporative effect leads to an en-
hancement of the population of the most stable clusters at the
expense of the population of the less stable ones.

The final result is a mass spectrum which shows an inter-
esting structure, with peaks of different heights reflecting the
abundances of the clusters, related, as indicated above, to their
intrinsic stability. In particular, the cluster sizes corresponding
to the highest peaks are usually called magic numbers. The
specific values of the magic numbers differ in different classes
of clusters. For instance, in clusters of inert gases such as Ne,
Ar, Kr and Xe, the magic numbers NV = 13, 55, 147, ... re-
flect the packing of weakly interacting spherical atoms form-
ing icosahedra with an increasing number of shells®. Other
well-known example corresponds to clusters of alkaline atoms
(Na, K, Rb, Cs), in which the magic numbers N = 8, 20, 40,
58, 92, ... reveal the formation of electronic shells by the de-
localized valence electrons confined in the mean—field effec-
tive potential well of the cluster® s,

In addition to the main peaks corresponding to the magic
numbers, the mass spectra show a rich structure in between
the main peaks. Theoretical modeling and calculations have
been of great help to understand the variation of the structure
and stability of clusters as a function of size NV, and to connect
this knowledge with the detailed structure of the mass spec-
tra of the families of clusters mentioned above2 . as well as
other families. Most theoretical calculations use the density
functional formalism, because this method has the potential
to give accurate predictions for the atomic structure and the
binding energy of the clusters. However, a simple compari-
son of total binding energies, or binding energies per atom,
as a function of cluster size is not sensitive enough to reveal
accurately the relative stabilities, and more sensitive stability
descriptors have been proposed and used.

Among these, the most popular one is the stability function
A5 (N), which measures the total energy of a cluster of size
N with respect to the average of the total energies of clusters
with sizes N — 1 and N + 1. In a plot of Ay (V) as a funtion
of N, specially stable clusters are characterized by positive
values of Ay(N), whilst less stable clusters are characterized



by near-zero or negative values of Ay(N). The higher the
value of Ay(N), the more stable is the cluster of size N with
respect to adjacent clusters with sizes NV + 1 and N — 1.

Nonetheless, some classes of clusters are more complex
than inert gas clusters or clusters of simple metals, and
As(N), although useful, does not explain the full richness
of the experimental mass spectra. In addition, the mass spec-
trum may depend on whether the clusters are born neutral or
charged "2!13 We propose herein an improved stability index.
Since the process of evaporation cooling is important in build-
ing the abundance distribution of clusters in the cluster beam,
the new stability index A4 (N) is derived from the evaporation
energies. Specifically, AY(N) is constructed in a way similar
to Ao (IV), but with evaporation energies instead of total clus-
ter energies. We apply this new stability index to understand
the experimental abundance of carbon clusters with sizes up
to N = 16 measured by mass spectrometry',

The evolution of the geometrical structure of small carbon
clusters is complex>"! and an accurate description of the
structures is required to calculate evaporation energies. In
section 2 we briefly present the computational methodology,
and give a description of the geometrical, energetic and elec-
tronic properties of the different Cy and Oy (N <16) gas-
phase clusters obtained within our theoretical framework as
compared with the broad available experimental and theoret-
ical literature in this field. In Section 3 we apply the most
common and extensively used stability descriptors, such as
the evaporation energy and the stability function, in order to
compare this theoretical analysis with the experimental mass-
spectrometric information on cluster abundances. As a step
forward beyond the standard stability descriptors, in Section 4
we propose a new descriptor of the relative stability of clusters
that we test by comparing with the time-of-flight mass spec-
trum of carbon cluster cations C]T, with N <16. The values
of the new stability descriptor as a function of cluster size N
provide an accurate correlation with the cluster abundances,
reproducing all the details found in the mass spectrum and
providing a substantial improvement over the performance of
previous descriptors. Finally, we conclude in Section 5 sum-
marizing the conclusions extracted from this study.

II. COMPUTATIONAL APPROACH AND ATOMIC
STRUCTURE OF Cy AND C (N <16)

The structure of neutral C'y and cationic CX, carbon clus-
ters with NV <16, and the corresponding electronic structures
have been optimized by using the GAUSSIAN(O9 atomistic
simulation package?!. The density functional level employed
was the hybrid B3LYP method?#2 with cc-PVQZ basis**. As
the starting geometries used as input for the structural op-
timization we have considered, for each cluster-size, differ-
ent isomers reported in the literature lying within a total en-
ergy window of 0.5 eV. Those isomers had been obtained by
accurate molecular orbital calculations (CCSD(T)/cc-pVQZ,
CCSD(T)/PVTZ, CCSD(T)/275¢GTOs, among others'”). Be-
sides, for all the isomers studied we have analyzed the two
lowest-lying electronic spin states. Performing a detailed dis-
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FIG. 1. Calculated evaporation energies E, (IN), ineV, of: (a) neutral
Cn clusters (red dots: experimental values for C2—C'7 extracted from
Ref2); and (b) positively charged C7; clusters.
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FIG. 2. Computed stability function Ay(N), in eV, of: (a) neutral
C\ clusters; and (b) positively charged C%; clusters.

cussion of the geometric and electronic structure of these clus-
ters is not our intention here, given the extensive work already
reported in the literature. Our goal herein just consists in car-
rying out an analysis of the ground-state structures of the C'y
and CJJ(, (N <16) clusters within the mentioned B3LYP for-
malism, in order to obtain their global energetic map within



an accurate and unified computational framework allowing us
to test the new stability descriptor.

Extensive information exists on small neutral and cationic
carbon clusters obtained from accurate spectroscopic inves-
tigations, astronomical observations and theoretical calcula-
tions (see, for instance, the excellent review by Van Orden
and coworkers!® and the refereces therein). The ground state
and low lying structures that we have obtained for C'x; and CIT[
(N <16) clusters with the B3LYP method and cc-PVQZ basis
are in excellent agreement with the stablished structures. Our
calculations predict that the lowest energy structures of Cs,
CI, Cs, C;, Ca, C’;r, Cy and C;, besides the obvious Cy
and Cf, are cumulenic linear structures with nearly equiva-
lent bond lengths (contrary to acetylenic bonding exhibiting
alternating bond lenghts). In agreement with other works
the electronic ground states are of type 'S} (*%;) for the
odd(even)-numbered neutral chains, and 235 (*X;) for the
odd(even)-numbered cation chains®*Z. Also in agreement
with the reported literature!>3340 ', — 14 and Cf'l — Ci%
clusters exhibit monocyclic-ring structures with ' A, and 2A”
electronic ground-states, respectively. This behavior of clus-
ters larger than Cjo forming monocyclic rings is due to the
reduction in angular strain as the radius of the ring increases
and to the added stability arising from an additional C—C bond
compared to the chaing®8:3236,

Nonetheless, as in previous works we predict a few excep-
tional cases deviating from the general trend. Cj which ex-
hibits a bent configuration’’>? (Cy, symmetry) with a bond
angle of 71° (to be compared with an angle of 68° reported in
literature*”) and a 2B, electronic ground state, 0.19 eV lower
in energy that the perfect linear isomer (to be compared with
the value of 0.3 eV obtained in an accurate Configuration In-
teraction (CI) calculation3%)

For the neutral C4, Cg and Cg, some accurate molecular
orbital calculations have found cyclic isomers as low-energy
structures, isoenergetic or in some cases even lower in en-
ergy than their linear counterparts28334043 However, these
cyclic isomers have been extremely difficult to detect using
spectroscopic techniques, while their linear forms habe been
observed in most experimental studies. Within our B3LYP/cc-
PVQZ calculations we have found the linear cumulenic forms
as the most stable structures, with the cyclic isomers lying
within an energy range of 0.15 eV.

For the ground state structure of the cation Cj” we found
a slightly non planar distorted hexagon (D3,-symmetry) with
an 24" electronic ground-state, practically isoenergetic with
its linear form. This feature is reproduced by most high-
accuracy molecular orbital methodologies, and it has been
also confirmed by ion-mobility measurements*#4, The same
occurs for the C, for which we have found a cyclic ground-
state configuration and a low lying linear isomer nearly degen-
erate in energy, both with 24" electronic ground-states. The
structures are again comfirmed by experiment2,

In agreement with previous work?®, we found C1q as the
size for which the transition from linear cumulenic chains
to monocyclic rings occurs (allowing for the exceptions dis-
cussed above). Our calculation yields a Ds; monocyclic
ring as the ground-state configuration, with an ! 4, electronic
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FIG. 3. Computed stability function, A3 (), (in eV) obtained from
evaporation energies of neutral C'y clusters.

ground-state . Finally, we found a cyclic ground state config-
uration for C’fro, with a 24" electronic ground-state, again in
agreement with previous work=2,

III. STABILITY DESCRIPTORS AND CORRELATION
WITH THE MASS SPECTRUM

The evaporation energy of a carbon cluster with [NV atoms,
E,(N), is the energy required to detach an atom from the N-
atom cluster:

E,(N)=E(N -1)+E(1) - E(N), (D

where E(N) is the total energy of an N-atom cluster. Corre-
spondingly, F, (N + 1) is the energy to remove an atom from
the cluster C'y41:

E,N+1)=E(N)+E(1)-EN+1). (2

E,(N + 1) can also be viewed® as a capture energy, E.(N),
that is, the energy released when Cy captures an atom and
becomes C'ny1:

E.(N) = E,(N +1). 3)

In the case of positively charged carbon clusters C’;Q the
evaporated atom is neutral while the charge remains in the
cluster Cﬁfl. The computed evaporation energies of neutral
and charged carbon clusters are plotted in Figures la and 1b
(black dots), respectively. Differences can be observed be-
tween the two figures. The largest evaporation energies occur
at C3, C19 and Cy4 for the neutrals, and at C5, C5™ and Cf
for the cations. Additionally, for sake of comparison, Figure
la also shows (red dots) the experimental values of the evapo-
ration energies for the neutral clusters Co—C'; extracted from
Ref?). The agreement between the computed and experimen-
tal values for Cy up to N =7 is excellent.

From equations and the following relations are im-
mediately obtained:

EU(N)_EU(N+1):E’U(N)_EC(N): “4)
E(N +1) + E(N — 1) — 2E(N) = Ag(N).
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FIG. 4. Computed stability function, A3 (N), (in eV) obtained from
evaporation energies of positively charged C;{, clusters. For com-
parison, the experimental mass spectrum of carbon cluster cations
obtained at an ionization energy of 12 eV'# is shown as an inset.

Ay(N) is the “stability function” often used to analyze the
relative stability of clusters as a function of size, and to inter-
pret the abundance mass spectrum of clusters obtained by gas
aggregation techniques. Clusters with large values of Ag(N)
are highly stable compared with clusters of neighbor sizes,
and the experiments show that those clusters are more abun-
dant. This can be readily understood from equation (). A
large value of Ay (V) results from the combination of a large
value of F,(N) and a small value of E.(N). This means that
for that special cluster, both the tendency to grow by captur-
ing one atom and the tendency to shrink the size by evaporat-
ing one atom are feeble, so its abundance is enhanced when
hot larger clusters evaporate atoms, because that evaporation
chain practically stops at the special C'yy cluster.

The quantity given in () is the atomic parallel of the elec-
tronic hardness used in chemistry to quantify the reactivity of
a chemical species*®. A high chemical hardness is indicative
of low chemical reactivity. Here we call Ao (N) of eq. (4) the
“atomic hardness? because a high value of this quantity in-
dicates a low predisposition of the cluster to change its size.
Figures 2a and 2b show Ay (N) for Cy and C}; clusters, re-
spectively. The peaks at C3, C5, C7, C1g and C14 observed
for the neutrals indicate that these clusters are more stable than
the others. For charged clusters Ay (N) reveals that C5, Cf,
C+, Ciy, Cfy and Oy are the most stable cationic clusters.

The stability peaks of neutral or cationic clusters do not to
show a clear correlation with their corresponding ground-state
geometries, since we find a variety of conformations among
them: for instance, in the cationic clusters a bent Csy, struc-
ture for C’;’ , a distorted D3, hexagon for CF, a cumulenic
linear form for C and monocyclic rings for Cf, C7 and
Cy,. Tt is noticeable that the peak at N = 3 is not the highest

one in the plot for neutral clusters, and the height of the peak
at Cy is similar to that of C and only a bit larger than that
of C’fb. The two stability plots can be compared to the ex-
perimental abundance spectrum. Experimental mass spectra
obtained by Belau et al'* for carbon cluster cations photoion-
ized at 10 and 12 eV yield that, at both ionization energies, the
even-numbered clusters in the higher size range (IN=9-15) are
more prominent than the odd-numbered clusters. The most in-
teresting spectrum obtained by Belau and coworkers'® is the
one measured at the ionization energy of 12 eV (see inset in
Figure 4), sufficiently large to ionize C'y; clusters of all the
relevant sizes. In fact, at that ionization energy, new peaks are
detected, and C;r becomes the largest peak in the spectrum.
In the zone of small clusters, the most abundant ones are Cg“ s
C’;‘ s C’6+ and C’;‘ , that is, odd-size clusters, with the addition
of Cg . In that plot Belau et al. mark Cy , Ci, Cf, CF, Cf ,
Ch» Cf5 and C{f; as abundant clusters. In fact, the peaks at
C’Z’ , C’; , C’1+1, C’E and C’f‘5 are clearly small compared to ad-
jacent cations with V + 1 and N — 1 atoms. Although the
abundance of C is smaller than that of Cf, the cluster C
can be considered abundant, and then very stable, because it
is not flanked by more abundant neighbors on both sides. The
same applies to C7 and Cy . Some of the sizes corresponding
to abundant clusters are reproduced by the stability functions
Ay (N) of Figures 2a and 2b. However, N =6 and N = 12 are
missing in Figure 2a (Ao (NN = 12) is a negative number) and
N =5and N =9 are missing in Figure 2b. Besides the miss-
ing peaks, the trend displayed by the relative peak heights in
the experimental mass spectrum (inset of Figure 4) is not re-
produced well in Figures 2a and 2b.

IV. NEW DESCRIPTOR OF STABILITY

We have seen above that Ay (V) provides a rationalization
of a number of features seen in the experimental spectrum,
but not all features. With the aim of improving the theoret-
ical description and the prediction of all the features in the
experimental spectrum, herein we introduce a new stability
descriptor. For that purpose we write the evaporation energies
for clusters with N 4+ 1, N and NV — 1 atoms:

E,(N+1)=FE(N)+ E(1)— E(N +1), ©))
E,(N)=E(N — 1)+ E(1) — E(N), (6)

E,N-1)=EN-2)+EQ1)-E(N-1). ()
From these equations:

E,(N) — Eo(N +1) = ®)
E(N+1)+ E(N —1) — 2E(N) = Ay(N).

and

Ey(N —1) — Ey(N) = ©)
E(N)+ E(N —2) —2E(N —1) = Ay(N — 1).



Subtracting (9) from (8), we obtain 2E,(N) — E,(N + 1) —
E,(N — 1), which, by comparing with eq. (), is an stability
descriptor defined from the evaporation energies. That is,

AY(N) =2E,(N) — E,(N +1) — E,(N — 1) = (10)
As(N) — Ag(N — 1),

which is the difference between the “atomic hardness” of the
clusters with N and NV — 1 atoms. One may notice the change
in the relative order of the quantities pertaining to N, N +
1 and N — 1 compared to eq. (). The reason is that total
energies (V) are negative, but evaporation energies E, ()
are positive. The interpretation of eq. (I0) is that a cluster of
size N is very stable if its evaporation energy is larger than
the average of the evaporation energies of the clusters with
adjacent sizes NV + 1 and N — 1. Another way to interpret
eq. (@]) is that a cluster is very stable, and abundant, if its
atomic hardness is high and the hardness of clusters with size
N — 1 1is low. In this way, the tendencies of clusters of size
N to grow or to shrink are feeble, and at the same time the
population of clusters of size IV can easily grow in the cluster
beam when clusters of size N — 1 capture one atom. Very
stable clusters are characterized by positive values of AY(N).
Results obtained with this descriptor of cluster stability for
neutral and cationic clusters are plotted in Figures 3 and 4,
respectively. An improvement is noticed in Figure 3 compared
to the results for the standard stability index As(N). Now
the only missing feature in comparison to the experimental
spectrum is the peak at C's. However, the relative heights of
the peaks do not correlate with the heights of the peaks in
the experimental mass spectum. This suggests the need of
accounting for the charge of the cluster and Figure 4 confirms
this expectation. Ay(N') separates the cations in two groups:
Ci,CH,cf,cf,Cf, Cfy, O and Cff, have positive values
of AY(N), and Cf, CF, Cy;, C{; and C have negative
values of AY(V), indicating that the first group is formed by
the more stable (and then more abundant) cationic clusters, in
full agreement with experiment. A remarkable observation is
the correlation between the heights of the peaks in Figure 4
and the corresponding heights in the experimental spectrum.
C5 appears as the largest peak in the spectrum. Also, the
trends in the two groups (C5,Cy,C7) and (Cy ,C,,C1h.CH

are well reproduced.

To justify the clear improvement obtained by using the
new stability index AY(N) instead of Ay (V) we notice from
eq. (4) that Ay(N) is constructed from the total energies of
clusters with sizes N+1, N and N-1. On the other hand
AY(N) is constructed from evaporation energies of clusters
with sizes N+1, N and N-1. Evaporation energies are more
relevant quantities in the processes controlling the relative
cluster abundances in the beam, so it is reasonable that A4 (N)
provides a better correlation with the mass spectrum of carbon
cluster cations.

V. SUMMARY AND CONCLUSIONS

The abundance mass spectrum of gas-phase atomic clusters
measured in cluster beams has a rich structure that arises from
a complex process of growth by atom addition and evapora-
tion when the clusters become hot due to the heat of conden-
sation. The most popular stability descriptor, usually called
“stability function”, is based on comparing the total energy of
clusters of size N with the averaged total energy of clusters
with neighbor sizes N+1 and N-1. Those total energies have
to be obtained by laborious calculations of the atomic and
electronic structures of the clusters using powerful theoreti-
cal methods, usually the density functional theory. This index
explains the main features of the experimental mass spectra,
but application to carbon cluster cations C;{, (N <16) leaves
some secondary features, and in particular the detailed behav-
ior of the height of the experimental abundance peaks, unex-
plained. In this work we have introduced a novel stability de-
scriptor which is based on comparing the evaporation energy
of clusters of size N with the averaged evaporation energies of
clusters of sizes N+1 and N-1. Application to carbon cluster
cations Cﬁ (N <16) reveals a perfect correlation with the ex-
perimental mass spectrum, and in particular with the detailed
variation of the height of the abundance peaks as a function
of size N. The success is attributed to the fact that the nor-
mal stability index is constructed from total cluster energies,
while the new index is constructed from atom—evaporation en-
ergies, which are quantities more directly connected with the
processes controlling the abundances in the beam. We expect
that the new stability index will be useful in the analysis of the
mass spectra of all kinds of clusters. The index is based on the
energies involved in the processes of evaporation and capture
of atoms by the clusters forming and flying in the molecular
beam. A part of the condensation energy of the clusters is re-
moved by collisions with a cool inert carrier gas. Another part
is removed by evaporation of atoms from the hot clusters. For
the detailed variations of the abundance population with clus-
ter size to develop, abundant evaporation events are required,
and this is usually the case in cluster formation experiments
in the gas phase.
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