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Abstract

In this paper we analyze several classes of functions proposed in the
literature to simultaneously generalize weighted means and OWA opera-
tors: WOWA operators, HWA operators and OWAWA operators. Since,
in some cases, the results provided by these operators may be questionable,
we introduce functions that also generalize both operators and characterize
those satisfying a condition imposed to maintain the relationship among
the weights.

1. INTRODUCTION

Weighted means and ordered weighted averaging (OWA) operators1 are well-
known functions widely used in the aggregation processes. Although both are de-
fined through a weighting vector, their behavior is quite different: The weighted
means allow to weight each information source in relation to their reliability
while OWA operators allow to weight the values according to their ordering.

The need to combine both functions has been reported by several authors
(see, among others, Torra2 and Torra and Narukawa3). For this reason, several
classes of functions have appeared in the literature with the intent of simulta-
neously generalizing weighted means and OWA operators: the weighted OWA
(WOWA) operator2, the hybrid weighted averaging (HWA) operator4 and the
ordered weighted averaging-weighted average (OWAWA) operator5;6. It is im-
portant to note that, in addition to the previous functions, there are others
that have been used to combine both approaches (see, for instance, Yager7 and
Engemann et al.8).

The aim of this paper is to analyze WOWA operators, HWA operators and
OWAWA operators. Moreover, since in some cases the behavior and the results
provided by these operators may be questionable, we propose to use functions
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that maintain the relationship between two initial weights of a weighting vector
when the respective components of the other weighting vector are equal. In
this way, we obtain a class of functions that have been previously introduced by
Engemann et al.8 in a framework of decision making under risk and uncertainty.

The paper is organized as follows. In Section 2 we recall basic properties of
functions and the definitions of weighted means, OWA operators and quantifiers.
Section 3 is devoted to the analysis of the functions proposed in the literature
to simultaneously generalize weighted means and OWA operators: WOWA op-
erators, HWA operators and OWAWA operators. In Section 4 we propose a
condition to maintain the relationship among the weights and characterize and
analyze the functions that satisfy this condition. The paper concludes in Sec-
tion 5.

2. PRELIMINARIES

Throughout the paper we will use the following notation: N = {1, . . . , n}; #A
will denote the cardinal of the set A; vectors will be denoted in bold; η will
denote the vector (1/n, . . . , 1/n); x ≥ y will mean xi ≥ yi for all i ∈ {1, . . . , n};
given σ a permutation of {1, . . . , n}, xσ will denote the vector (xσ(1), . . . , xσ(n)).

In the following definition we present some well-known properties usually
demanded to the functions used in the aggregation processes.

Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if for all x ∈ Rn and for all permutation σ of N the
following holds:

F (xσ) = F (x).

2. F is monotonic if for all x,y ∈ Rn the following holds:

x ≥ y ⇒ F (x) ≥ F (y).

3. F is idempotent if for all x ∈ R the following holds:

F (x, . . . , x) = x.

4. F is compensative (also called internal) if for all x ∈ Rn the following
holds:

min(x) ≤ F (x) ≤ max(x).

5. F is homogeneous of degree 1 if for all x ∈ Rn and for all λ > 0 the
following holds:

F (λx) = λF (x).

Next we recall the definition of weighted means and OWA operators. It is
worth noting that these functions are defined by means of vectors with non-
negative components whose sum is 1.
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Definition 2. A vector µ ∈ Rn is a weighting vector if µ ∈ [0, 1]n and
n∑
i=1

µi =

1.

Definition 3. Let p be a weighting vector. The weighted mean associated with
p is the function Fp : Rn −→ R given by

Fp(x1, . . . , xn) =
n∑
i=1

pixi.

Weighted means are monotonic, idempotent, compensative and homogeneous
of degree 1 functions.

Yager1 introduced OWA operators as a tool for aggregation procedures in
multicriteria decision making. An OWA operator is similar to a weighted mean,
but with the values of the variables previously ordered in a decreasing way. Thus,
contrary to the weighted means, the weights are not associated with concrete
variables. Consequently, OWA operators satisfy symmetry. Moreover, OWA
operators also exhibit some other interesting properties such as monotonicity,
idempotence, compensativeness and homogeneity of degree 1.

Definition 4. Let w be a weighting vector. The OWA operator associated with
w is the function Fw : Rn −→ R given by

Fw(x1, . . . , xn) =
n∑
i=1

wixσ(i),

where σ is a permutation of N such that xσ(1) ≥ · · · ≥ xσ(n).

One of the most important issues in the theory of OWA operators is the
determination of associated weights9;10. OWA operators weights were related to
quantifiers by Yager11.

Definition 5. A function Q : [0, 1] −→ [0, 1] is a quantifier if it satisfies the
following properties:

1. Q(0) = 0.

2. Q(1) = 1.

3. x > y ⇒ Q(x) ≥ Q(y); i.e., it is a non-decreasing function.

Given a quantifier Q, the OWA operator weights can be obtained from the
following expression11:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n.

From this relation follows:

Q

(
i

n

)
=

i∑
j=1

wj, i = 1, . . . , n;

i.e., the same weighting vector can be obtained through any quantifier interpo-

lating the points

(
i/n,

i∑
j=1

wj

)
, i = 1, . . . , n.
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3. Analysis of some generalizations of weighted

means and OWA operators

In this section we recall the definitions of some classes of functions proposed
in the literature to simultaneously generalize weighted means and OWA opera-
tors: WOWA operators, HWA operators and OWAWA operators. Moreover, we
illustrate with examples some questionable behaviors of these operators.

3.1. WOWA operators

WOWA operators2 were introduced by Torra in order to consider situations
where both the importance of information sources and the importance of values
had to be taken into account.

Definition 6. Let p and w be two weighting vectors. The WOWA operator
associated with p and w is the function Ww

p : Rn −→ R given by

Ww
p (x1, . . . , xn) =

n∑
i=1

µixσ(i),

where σ is a permutation of N such that xσ(1) ≥ · · · ≥ xσ(n) and the weight µi is
defined as

µi = f

(
i∑

j=1

pσ(j)

)
− f

(
i−1∑
j=1

pσ(j)

)
,

where f is a non-decreasing function that interpolates the points

(
i/n,

i∑
j=1

wj

)
together with the point (0, 0). Moreover, f is the identity when the points can be
interpolated in this way.

Different interpolation functions provide different results12. On the other
hand, it is worth noting that any quantifier generating the weighting vector w
satisfies the required properties of f given in the previous definition (under the
assumption that the quantifier is the identity when w = η). For this reason, it is
possible to give an alternative definition of WOWA operators using quantifiers13.

Definition 7. Let p be a weighting vector and let Q be a quantifier. The WOWA
operator associated with p and Q is the function WQ

p : Rn −→ R given by

WQ
p (x1, . . . , xn) =

n∑
i=1

µixσ(i),

where σ is a permutation of N such that xσ(1) ≥ · · · ≥ xσ(n) and the weight µi is
defined as

µi = Q

(
i∑

j=1

pσ(j)

)
−Q

(
i−1∑
j=1

pσ(j)

)
.
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WOWA operators satisfy W η
p = Fp and Ww

η = Fw. Moreover, they are
monotonic, idempotent, compensative and homogeneous of degree 1 functions2.

Although WOWA operators fulfills many interesting properties, they do not
always provide the expected result as we show in the following example.

Example 1. Suppose we have four sensors to measure a certain physical property.
The sensors are of different quality and precision, so they are weighted according
to the weighting vector p = (0.5, 0.2, 0.2, 0.1). Moreover, to prevent a faulty
sensor alter the measurement, we take the weighting vector w = (0, 0.5, 0.5, 0);
thus, the maximum and minimum values are not considered.

Given w = (0, 0.5, 0.5, 0), we have to choose a quantifier interpolating the
points (0, 0), (0.25, 0), (0.5, 0.5), (0.75, 1) and (1, 1). We consider the quantifier
given by

Q(x) =


0 if x ≤ 0.25,

2x− 0.5 if 0.25 < x < 0.75,

1 if x ≥ 0.75,

which is depicted in Figure 1.

0.25 0.5 0.75 1

0.5

1
Q(x)

Figure 1: Quantifier associated to the weighting vector w = (0, 0.5, 0.5, 0).

Suppose the values obtained by the sensors are x = (10, 5, 6, 4). If σ is a
permutation ordering these values in a decrease way, then, in this case, pσ =
p = (0.5, 0.2, 0.2, 0.1). The weighting vector µ is

µ1 = Q(0.5)−Q(0) = 0.5,
µ2 = Q(0.7)−Q(0.5) = 0.4,
µ3 = Q(0.9)−Q(0.7) = 0.1,
µ4 = Q(1) −Q(0.9) = 0,

and the value returned by the WOWA operator is

Ww
p (10, 5, 6, 4) = 5 + 2.4 + 0.5 = 7.9.

However, our intention is not to consider the maximum and minimum values
and only take into account the values 5 and 6; which have been provided by
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sensors with the same weight. Therefore, it seems logical to make the average of
these values, in which case we would get 5.5 as final value.

It is worth noting that the WOWA operator returns a value greater than the
two values that we want to aggregate (5 and 6) because it weights the maximum
(10 in this case) with 0.5. This weight is assigned by the WOWA operator to the
first sensor when its value is the maximum or the minimum (regardless of the
quantifier used). In fact, this is the minimum weight that the WOWA operator
assigns to the first sensor. Therefore, the intended purpose of using the weighting
vector w (not considering the maximum and minimum values) is not reached.
Moreover, the weight assigned by the WOWA operator to the first sensor can
be up to 1; for instance, when p = (0.5, 0.25, 0.2, 0.05) and x = (9, 10, 5, 4). In
this case, only the value of the first sensor is taken into account. Note that the
WOWA operator assigns a weight of zero to the value provided by the third
sensor, x3 = 5, even if this value is associated with the weights p3 = 0.2 and
w3 = 0.5.

On the other hand, it is also important to emphasize that the weighting
vectors p and w are not treated equally by the WOWA operator. For instance,
when pσ(i) = 0, the value assigned by the WOWA operator to xσ(i) is

µi = Q

(
i∑

j=1

pσ(j)

)
−Q

(
i−1∑
j=1

pσ(j)

)
= 0.

However, as we have seen above, this does not happen when wi = 0.
In addition to the previous shortcomings, there are other interesting prop-

erties that the WOWA operator does not satisfy (we continue assuming that
p = (0.5, 0.2, 0.2, 0.1) and w = (0, 0.5, 0.5, 0)):

1. The value returned by the WOWA operator does not always lie between
the values returned by the weighted mean and the OWA operator:

Fp(10, 5, 6, 4) = 5 + 1 + 1.2 + 0.4 = 7.6,

Fw(10, 5, 6, 4) = 3 + 2.5 = 5.5,

but Ww
p (10, 5, 6, 4) = 7.9.

2. The value returned by the WOWA operator does not always coincide with
the values returned by the weighted mean and the OWA operator when
both are equal:

Fp(6.6, 3, 5, 6) = 3.3 + 0.6 + 1 + 0.6 = 5.5,

Fw(6.6, 3, 5, 6) = 3 + 2.5 = 5.5,

but Ww
p (6.6, 3, 5, 6) = 0.5 · 6.6 + 0.2 · 6 + 0.3 · 5 = 6.
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3.2. HWA operators

The second class of function that simultaneously generalize weighted means and
OWA operators were introduced by Xu and Da4.

Definition 8. Let p and w be two weighting vectors. The HWA operator asso-
ciated with p and w is the function Hw

p : Rn −→ R given by

Hw
p (x1, . . . , xn) =

n∑
i=1

wi(npσ(i)xσ(i)),

where σ is a permutation of N such that pσ(1)xσ(1) ≥ · · · ≥ pσ(n)xσ(n).

As we can see in the previous definition, the HWA operator associated with
p and w is the composition of the OWA operator associated with w, Fw, with
the function H : Rn −→ Rn defined by

H(x1, . . . , xn) = (np1x1, . . . , npnxn).

It is easy to check that Hη
p = Fp and Hw

η = Fw (see Xu and Da4). More-
over, it is also straightforward to check that HWA operators are monotonic and
homogeneous of degree 1 functions. Nevertheless, they are neither idempotent
nor compensative, as we show in the following example.

Example 2. Consider again the weighting vectors of Example 1, where p =
(0.5, 0.2, 0.2, 0.1) and w = (0, 0.5, 0.5, 0). If 10 is the value returned by all sen-
sors, then the vector of components npixi is (20, 8, 8, 4) and

Hw
p (10, 10, 10, 10) = 8 6= 10;

that is, Hw
p is not idempotent. On the other hand, if the values obtained

by the sensors are x = (10, 5, 6, 8), then the vector of components npixi is
(20, 4, 4.8, 3.2), and

Hw
p (10, 5, 6, 8) = 2.4 + 2 = 4.4 < min{10, 5, 6, 8};

i.e., Hw
p is not compensative.

3.3. OWAWA operators

Given that each value xσ(i) is associated with two weights, pσ(i) and wi, we can
consider a convex combination of these weights for obtaining a weight for xσ(i).
This is the proposal made by Merigó5;6.

Definition 9. Let p and w be two weighting vectors. The OWAWA operator
associated with p and w is the function Owp : Rn −→ R given by

Owp (x1, . . . , xn) =
n∑
i=1

υixσ(i),

7



where σ is a permutation of N such that xσ(1) ≥ · · · ≥ xσ(n) and the weight υi is
defined as

υi = αpσ(i) + (1− α)wi,

with α ∈ [0, 1].

Given that the OWAWA operator Owp can be written as a convex combination
of Fp and Fw,

Owp (x1, . . . , xn) = αFp(x1, . . . , xn) + (1− α)Fw(x1, . . . , xn),

it is straightforward to check that Owp is monotonic, idempotent, compensative
and homogeneous of degree 1. Moreover, the value returned by the OWAWA
operator lies between the values returned by the weighted mean and the OWA
operator, and coincides with them when both are equal.

However, it is not possible to find a fixed value of α for which Oηp = Fp and
Owη = Fw; that is, OWAWA operators do not generalize weighted means and
OWA operators in this sense. Nevertheless, the previous property seems quite
natural: if all the weights of a weighting vector are equal, then this weighting
vector could be considered as a neutral vector in the aggregation process and
only the other weighting vector should be taken into account.

In the following example we illustrate the behavior of OWAWA operators.

Example 3. Consider again the situation of Example 1, where w = (0, 0.5, 0.5, 0),
and suppose now we want to give the same importance to both weighting vectors
p and w. So, we take α = 0.5. Moreover, assume that the four sensors are equal;
that is, p = η = (0.25, 0.25, 0.25, 0.25). Let’s suppose that the first sensor is
broken and that the values obtained by the sensors are x = (10, 2, 2, 2). Then,

Owη (10, 2, 2, 2) = 0.5Fη(10, 2, 2, 2) + 0.5Fw(10, 2, 2, 2) = 2 + 1 = 3,

which is different from Fw(10, 2, 2, 2) = 2.

4. Choosing functions to maintain the

relationship among the weights

As we have seen in the previous section, OWAWA operators do not generalize
weighted means and OWA operators in the sense that we want, while HWA
operators are neither idempotent nor compensative. For their part, WOWA
operators have good properties but they do not always return the expected value.
Consider again Example 1, where p = (0.5, 0.2, 0.2, 0.1) and w = (0, 0.5, 0.5, 0),
and take x = (10, 5, 4, 6). Given that w = (0, 0.5, 0.5, 0), we do not want to
consider the maximum and minimum values and aggregate the remaining ones, in
this case the values 5 and 6. Since these values are given by sensors with weights
0.2 and 0.1, respectively, one possibility is to weight these values by means of
the weighting vector (2/3, 1/3); in this way, we maintain the relationship among
the initial weights.
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According to the above remark, we look for a function Fwp : Rn −→ R given
by

Fwp (x1, . . . , xn) =
n∑
i=1

ρixσ(i),

where σ is a permutation of N such that xσ(1) ≥ · · · ≥ xσ(n) and ρ is a weighting
vector. Since each value xσ(i) is associated with the weights pσ(i) and wi, we can
consider a function f : [0, 1]2 −→ [0, 1] that aggregates both weights, f(wi, pσ(i)).
From these values, we can obtain a weighting vector by defining ρi as

ρi =
f(wi, pσ(i))
n∑
j=1

f(wj, pσ(j))

.

Returning to the example above, if we want to maintain the relationship
among the initial weights, the function f has to satisfy the condition

f(0.5, 0.2) = 2f(0.5, 0.1).

In the general case, it is necessary that f satisfies the following condition:

f(tx, y) = f(x, ty) = tf(x, y),

for all x, y ∈ [0, 1] and t ∈ [0,∞) with tx, ty ∈ [0, 1]1. In the next proposition we
characterize the functions that satisfy this condition.

Proposition 1. Let f : [0, 1]2 −→ [0, 1] be a function such that

f(tx, y) = f(x, ty) = tf(x, y)

for all x, y ∈ [0, 1] and t ∈ [0,∞) with tx, ty ∈ [0, 1]. Then f(x, y) = cxy, where
c ∈ [0, 1].

Proof. Given x, y ∈ [0, 1],

f(x, y) = f(x · 1, y · 1) = xf(1, y · 1) = xyf(1, 1).

If f(x, y) = cxy, with c ∈ [0, 1], then

ρi =
wipσ(i)
n∑
j=1

wjpσ(j)

;

that is,

Fwp (x1, . . . , xn) =

n∑
i=1

wipσ(i)xσ(i)

n∑
j=1

wjpσ(j)

.

1Note that the binary functions that satisfy f(tx, y) = f(x, ty) for all x, y ∈ [0, 1] and
t ∈ [0,∞) with tx, ty ∈ [0, 1] are called migratives 14–17.
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It is worth noting that this function has been used by Engemann et al.8 in a
framework of decision making under risk and uncertainty (in this case, p is the
vector of probabilities of the states of nature).

In order to ensure that Fwp is well defined, we need that wjpσ(j) be non-zero for
some j ∈ N . This requirement is guaranteed by any of the following conditions:

1. The number of non-zero weights in each vector p and w is greater than
n/2.

2. All the components of p are non-zero.

It is important to point out that the last condition can be assumed without
loss of generality (if any component of p is zero, this means that the weight of
this information source is null; so it is not necessary to take it into account).

In addition to this, Fwp has another problem in your definition: sometimes,
the vector pσ is not unique and Fwp may return different values according to the
vector pσ used. This fact is illustrated in the following example.

Example 4. Consider again the weighting vectors p = (0.5, 0.2, 0.2, 0.1) and w =
(0, 0.5, 0.5, 0), and let x = (6, 3, 5, 6). When x is ordered from greatest to least,
then we have the vector (6, 6, 5, 3). In this vector, the first component can be
associated to the weight p1 = 0.5 or p4 = 0.1. In the first case, the weighting
vector ρ is (0, 1/3, 2/3, 0) and

Fwp (6, 3, 5, 6) = 2 +
10

3
=

16

3
.

In the second case, the weighting vector ρ is (0, 5/7, 2/7, 0) and

Fwp (6, 3, 5, 6) =
30

7
+

10

7
=

40

7
.

This behavior is related to the following fact:

lim
x→6+

Fwp (x, 3, 5, 6) =
16

3
,

but

lim
x→6−

Fwp (x, 3, 5, 6) =
40

7
.

A similar problem arises in the IOWA operators, introduced by Yager and
Filev18. The solution proposed by these authors, applied to our framework, is
to replace the weights associated to equal values by the average of them. In the
previous example we replace the weights p1 = 0.5 and p4 = 0.1 by 0.3. In this
case, the weighting vector ρ is (0, 3/5, 2/5, 0)

Fwp (6, 3, 5, 6) =
18

5
+ 2 =

28

5
.
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It is worth noting that the behavior of this function is similar to a weighted
mean, but where the weighting vector varies depending on x2. For this reason,
Fwp is idempotent and compensative. Moreover, it is easy to check that Fwp is
homogeneous of degree 1 and that F ηp = Fp (Engemann et al.8) and Fwη = Fw.

Nevertheless, as noted by Liu21, Fwp is not monotonic. In fact, as we show in
the following example, Fwp is not monotonic although the non-zero components
of the weighting vector w are equal.

Example 5. Consider again the weighting vectors p = (0.5, 0.2, 0.2, 0.1) and w =
(0, 0.5, 0.5, 0). Then, we have:

Fwp (5.8, 5, 6, 4) =
29

7
+

10

7
=

39

7
,

Fwp (10, 5, 6, 4) = 3 + 2.5 = 5.5.

However, in some cases, the functions Fwp present a monotonic behavior; for
instance, when the coordinates of both points can be ordered in a decreasing way
with the same permutation (in order to avoid problems with their definition, we
only consider points without repeated coordinates).

Proposition 2. Let x,y ∈ Rn such that #{xi | i ∈ N} = #{yi | i ∈ N} = n
and let σ be a permutation of N such that xσ(1) > · · · > xσ(n) and yσ(1) > · · · >
yσ(n). If x ≥ y, then Fwp (x) ≥ Fwp (y).

Proof. Given x,y ∈ Rn such that x ≥ y and σ a permutation of N such that
xσ(1) > · · · > xσ(n) and yσ(1) > · · · > yσ(n), we have

Fwp (x1, . . . , xn) =

n∑
i=1

wipσ(i)xσ(i)

n∑
j=1

wjpσ(j)

≥

n∑
i=1

wipσ(i)yσ(i)

n∑
j=1

wjpσ(j)

= Fwp (y1, . . . , yn).

A specific case of the previous situation happens when only a information
source changes its value. For instance, suppose that (x01, . . . , x

0
i , . . . , x

0
n) are the

values provided by the information sources and σ is a permutation of N such
that x0σ(1) > · · · > x0σ(i) > · · · > x0σ(n). Given that the value x0i occupies the

σ−1(i)th position (since x0σ(σ−1(i)) = x0i ), we have

x0σ(σ−1(i)−1) > x0i > x0σ(σ−1(i)+1).

Therefore, the function of one variable Fwp (x01, . . . , x
0
i−1, x, x

0
i+1, . . . , x

0
n) is mono-

tonic when x ∈
(
x0σ(σ−1(i)+1), x

0
σ(σ−1(i)−1)

)
.

On the other hand, similar to WOWA operators, there are other interesting
properties that the function Fwp does not satisfy. If we consider the weighting
vectors p = (0.5, 0.2, 0.2, 0.1) and w = (0, 0.5, 0.5, 0), then:

2This behavior is also seen in OWA operators and mixture operators. These last functions
were introduced by Marques Pereira and Pasi19 and they are a particular case of Bajraktarević
means20.
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1. The value returned by Fwp does not always lie between the values returned
by the weighted mean and the OWA operator:

Fp(10, 3, 5, 6) = 5 + 0.6 + 1 + 0.6 = 7.2,

Fw(10, 3, 5, 6) = 3 + 2.5 = 5.5,

but Fwp (10, 3, 5, 6) = 16/3.

2. The value returned by Fwp does not always coincide with the value returned
by the weighted mean and the OWA operator when both values are the
same:

Fp(6.6, 3, 5, 6) = 3.3 + 0.6 + 1 + 0.6 = 5.5,

Fw(6.6, 3, 5, 6) = 3 + 2.5 = 5.5,

but Fwp (6.6, 3, 5, 6) = 16/3.

5. Concluding remarks

In this paper we have analyzed several functions proposed in the literature to
simultaneously generalize weighted means and OWA operators. On the one hand,
OWAWA operators do not generalize weighted means and OWA operators in the
usual sense. On the other hand, the HWA operators are neither idempotent nor
compensative while WOWA operators do not always provide the expected result.
Due to the questionable behavior of these operators, we have imposed a condition
to maintain the relationship among the weights and we have characterized the
functions that satisfy this condition. However, the obtained functions have some
problems in their definition and they are not monotonic. So, we can conclude
that none of the analyzed functions is fully convincing.

Acknowledgements

I would like to thank Humberto Bustince for helpful comments and suggestions.
This work is partially supported by the Spanish Ministry of Science and Innova-
tion (Project ECO2009-07332), and ERDF.

References

1. Yager RR. On ordered weighted averaging operators in multicriteria decision
making. IEEE Trans Syst, Man, Cybern 1988;18:183–190.

2. Torra V. The weighted OWA operator. Int J Intell Syst 1997;12:153–166.

3. Torra V, Narukawa Y. Modeling Decisions: Information Fusion and Aggre-
gation Operators. Berlin: Springer, 2007.

12



4. Xu ZS, Da QL. An overview of operators for aggregating information. Int J
Intell Syst 2003;18:953–969.
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20. Bajraktarević M. Sur une équation fonctionnelle aux valeurs moyennes. Glas-
nik Mat-Fiz Astronom Društvo Mat Fiz Hrvatske Ser II 1958;13:243–248.

21. Liu X. Preference solutions of probability decision making with RIM quan-
tifiers. Int J Intell Syst 2005;20:1253–1271.

14


