
Choosing OWA operator weights

in the field of Social Choice

Bonifacio Llamazares ∗

Dep. de Economı́a Aplicada, PRESAD Research Group, Universidad de
Valladolid, Avda. Valle de Esgueva 6, 47011 Valladolid, Spain.

Abstract

One of the most important issues in the theory of OWA operators is the determi-
nation of associated weights. This matter is essential in order to use the best-suited
OWA operator in each aggregation process. Given that some aggregation processes
can be seen as extensions of majority rules to the field of gradual preferences, it is
possible to determine the OWA operator weights by taking into account the class of
majority rule that we want to obtain when individuals do not grade their pairwise
preferences. However, a difficulty with this approach is that the same majority rule
can be obtained through a wide variety of OWA operators. For this reason, a model
for selecting the best-suited OWA operators is proposed in this paper.

Key words: OWA operators, Aggregation operator weights, Majority rules.

1 Introduction

Ordered weighted averaging (OWA) operators were introduced by Yager [29] as
a tool for information aggregation. An OWA operator is similar to a weighted
mean, but with the values of the variables previously ordered in a decreasing
way. Thus, contrary to the weighted means, the weights are not associated with
concrete variables. Consequently, OWA operators satisfy symmetry. Moreover,
OWA operators generalize the arithmetic mean and the median, and they also
exhibit some other interesting properties such as monotonicity, idempotence,
and compensativeness (i.e., the value of an OWA operator is located between
the minimum and the maximum values of the variables). Because of these
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properties, OWA operators have been widely used in the literature (see, for
instance, Yager and Kacprzyk [36] and Calvo, Mayor and Mesiar [2]).

One of the most important issues in the field of OWA operators is the determi-
nation of the weights of the OWA operator. This matter is different from that
raised in the framework of weighted means, where the weights are associated
with concrete variables and as such they reflect the importance of experts.

In the field of OWA operators, one of the first approaches, suggested by
O’Hagan [18], lies in selecting the vector that maximizes the entropy of the
OWA weights for a given level of orness. This methodology has also been used
by Fullér and Majlender [4]. They transfer the constrained optimization prob-
lem to a polynomial equation, which is solved for determining the optimal
weighting vector. To avoid the resolution of a nonlinear optimization problem,
Yager [32] introduces a simpler procedure that tries to keep the spirit of max-
imizing the entropy for a given level of orness. Similar approaches (through
a fixed orness level) have also been proposed by Fullér and Majlender [5],
Wang and Parkan [21], Majlender [15], and Amin and Emrouznejad [1]. The
first authors suggest selecting the vector that minimizes the variance of the
weighting vector in order to obtain the minimal variability OWA weights,
while the second cited authors propose minimizing the disparities between ad-
jacent weights. This model has been extended by Amin and Emrouznejad [1]
by minimizing the maximum disparity of any pair of weights. On the other
hand, Majlender [15] determines a parametric class of OWA operators hav-
ing maximal Rényi entropy OWA weights. Other methods to determine the
OWA operators weights have been suggested by Yager [29–31,34], Filev and
Yager [3], Yager and Filev [35], Nettleton and Torra [17], Xu and Da [27],
Liu and Chen [10], Xu [25,26] and Liu [9]. A survey of the main methods for
determining OWA operator weights can be found in Xu [25].

The approach presented in this paper is different from those of the previ-
ous authors. In our case we want to determine the OWA operator weights
that allow us to extend, through the OWA operator, some classes of majority
rules obtained when individuals do not grade their preferences between two
alternatives (simple, Pareto, absolute special majorities, etc.). In the papers
referenced earlier [18,4,5,21,15,1], once the level of orness is fixed, the weights
are determined through properties that only concern them (to maximize the
entropy, to minimize the variance, etc.). Therefore, the aggregation procedure
is only taken into account when we fix the level of orness. However, in our case
we focus on the performance of the aggregation operator when individuals do
not grade their preferences between the alternatives. On the other hand, in
order to guarantee an egalitarian treatment of the alternatives, we have con-
sidered self-dual OWA operators, whose level of orness is 0.5. In this case, the
methodologies based on fixing a level of orness always have the same solution:
the arithmetic mean.
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It is important to note that self-dual OWA operators have been considered by
Xu [25] and Yager [34], among others (for the representation and construction
of self-dual aggregation operators, see Maes, Saminger and De Baets [14]).
Xu [25] introduces a procedure for obtaining OWA weights through Gaussian
distribution, while Yager [34] generalizes Xu’s idea by means of a new family
of OWA operators: centered OWA operators. In this model, the problem is
how to choose a specific OWA operator of this class and, in Xu’s method, how
to justify the choice of that weighting vector.

Different ways to deal with fuzzy opinions in group decision making exist in
recent literature (see, for instance, Xu [24], Yager [33], Garćıa-Lapresta [6], Liu
and Lou [11], Pasi and Yager [19], Peláez and Doña [20], and Wang and Parkan
[22,23]). The procedure developed in this paper to choose an alternative from
individual preferences is as follows: Once preferences on a pair of alternatives
have been shown by the individuals through values between 0 and 1, we obtain
the collective intensity of preference by means of an aggregation operator.
From this value and through a kind of strong α-cut, where α ∈ [1

2
, 1), we

can decide if an alternative is chosen or if both alternatives are collectively
indifferent. When individuals do not grade their preferences, that is, when
they are represented through the values 0, 1/2, and 1, the previous procedure
allows us to obtain a majority rule. Hence, once α fixed, it is possible to know
what class of majority rule is present in the aggregation process according to
the used operator.

We note that this procedure has already been used to characterize some classes
of aggregation functions that extend some well-known majority rules. Thus,
Garćıa-Lapresta and Llamazares [8] generalize two classes of majorities based
on difference of votes by using quasiarithmetic means and window OWA op-
erators as aggregation functions. Likewise, Llamazares [12] has characterized
the OWA operators that generalize simple and absolute special majorities.

In this paper we characterize the OWA operators that allow us to extend
Pareto majority. On the other hand, since we can obtain the same majority
rule by means of a wide variety of OWA operators, we propose a method to
determine the best-suited OWA operators in order to extend simple, Pareto,
and absolute special majorities.

The organization of the paper is as follows: In Section 2, we introduce basic
concepts and some known results of OWA operators. We also show the OWA
operators that generalize simple and absolute special majorities. In Section
3, we characterize the OWA operators that generalize Pareto majority. The
technical Section 4 is necessary for Section 5, where we propose a model to
obtain the best-suited OWA operators to generalize some classes of majority
rules. We present some conclusions in Section 6.
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2 Preliminaries

We consider m voters, with m ≥ 3, and two alternatives x and y. Voters
represent their preferences between x and y through variables ri. If the in-
dividuals grade their preferences, then ri ∈ [0, 1] denotes the intensity with
which voter i prefers x to y. We also suppose that 1− ri is the intensity with
which voter i prefers y to x. If the individuals do not grade their preferences,
then ri ∈ {0, 1

2
, 1} represents that voter i prefers x to y (ri = 1), prefers y to

x (ri = 0), or is indifferent between both alternatives (ri = 1
2
). The justifica-

tion of this three-valued representation can be found in Garćıa-Lapresta and
Llamazares [7].

A profile of preferences is a vector r = (r1, . . . , rm) that describes voters’
preferences between alternative x and alternative y. Obviously, 1− r = (1 −
r1, . . . , 1− rm) shows voters’ preferences between y and x. For each profile of
preferences, the collective preference will be obtained by means of an aggre-
gation function.

2.1 Aggregation functions

Definition 1 An aggregation function is a mapping F : [0, 1]m −→ [0, 1]. A
discrete aggregation function (DAF) is a mapping H : {0, 1

2
, 1}m −→ {0, 1

2
, 1}.

The interpretation of collective preference is consistent with the foregoing
interpretation for individual preferences. Thus, if F is an aggregation function,
then F (r) is the intensity with which x is collectively preferred to y. When
H is a DAF, then H(r) shows us if an alternative is collectively preferred
to the other (H(r) ∈ {0, 1}), or the alternatives are collectively indifferent
(H(r) = 1

2
).

Next we present some well-known properties of aggregation functions: Sym-
metry, monotonicity, strict monotonicity, and self-duality. Symmetry means
that collective intensity of preference depends on only the set of individual
intensities of preference, but not on which individuals have these preferences.
Monotonicity means that collective intensity of preference does not decrease
if no individual intensity decreases. Strict monotonicity means that collec-
tive intensity of preference increases if some individual intensity increases.
Finally, self-duality means that if everyone reverses their preferences between
x and y, then the collective preference is also reversed. Given r, s ∈ [0, 1]m

and σ a permutation on {1, . . . ,m}, we will use the following notation: rσ =
(rσ(1), . . . , rσ(m)); 1 = (1, . . . , 1); r ≥ s will denote ri ≥ si for all i ∈ {1, . . . ,m};
and r > s will mean r ≥ s and r 6= s.
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Definition 2 Let F be an aggregation function.

(1) F is symmetric if for all profile r ∈ [0, 1]m and for all permutation σ of
{1, . . . ,m} the following holds

F (rσ) = F (r).

(2) F is monotonic if for all pair of profiles r, s ∈ [0, 1]m the following holds

r ≥ s ⇒ F (r) ≥ F (s).

(3) F is strictly monotonic if for all pair of profiles r, s ∈ [0, 1]m the following
holds

r > s ⇒ F (r) > F (s).

(4) F is self-dual if for all profile r ∈ [0, 1]m the following holds

F (1− r) = 1− F (r).

All the previous properties, except strict monotonicity, are also valid for DAFs.
Next we show some consequences of the previous properties. The cardinal of
a set will be denoted by #.

Remark 3 If H is a symmetric DAF, then H(r) depends on only the number
of 1, 1

2
, and 0. Given a profile r, if we consider:

m1 = #{i | ri = 1}, m2 = #{i | ri = 1
2
}, m3 = #{i | ri = 0},

then m1 + m2 + m3 = m.

Definition 4 Let H be a symmetric DAF and

M = {(m1, m2, m3) ∈ {0, . . . ,m}3 | m1 + m2 + m3 = m}.

We say that H is represented by h : M−→ {0, 1
2
, 1}, defined by

h(m1, m2, m3) = H(1, (m1). . . , 1 , 1
2
, (m2). . . , 1

2
, 0, (m3). . . , 0).

Definition 5 The binary relation � on M is defined by

(m1, m2, m3) � (n1, n2, n3) ⇔


m1 ≥ n1

and

m1 + m2 ≥ n1 + n2.
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We note that � is a partial order on M (reflexive, antisymmetric, and tran-
sitive binary relation).

Remark 6 If H is a symmetric DAF represented by h, then it is monotonic
if and only if h(m1, m2, m3) ≥ h(n1, n2, n3) for all (m1, m2, m3), (n1, n2, n3) ∈
M such that (m1, m2, m3) � (n1, n2, n3).

Remark 7 If H is a symmetric DAF represented by h, then it is self-dual if
and only if h(m3, m2, m1) = 1− h(m1, m2, m3) for all (m1, m2, m3) ∈ M. In
this case, H is characterized by the set h−1({1}), since

h−1({0}) = {(m1, m2, m3) ∈M | h(m3, m2, m1) = 1},

h−1({1
2
}) =M\ (h−1({1}) ∪ h−1({0})).

When a DAF is self-dual, both alternatives have an egalitarian treatment.
Therefore, if the DAF is also symmetric and the number of voters who prefer
x to y coincides with the number of voters who prefer y to x, then x and y
are collectively indifferent.

Remark 8 If H is a symmetric and self-dual DAF represented by h, then
h(m1, m2, m3) = 1

2
for all (m1, m2, m3) ∈M such that m1 = m3.

By Remark 7, it is possible to define a symmetric and self-dual DAF H by
means of the elements (m1, m2, m3) ∈ M where the mapping that represents
H takes the value 1. Based on this, we now show some DAFs widely used in
real decisions.

Definition 9

(1) The simple majority, HS, is the symmetric and self-dual DAF defined by

h(m1, m2, m3) = 1 ⇔ m1 > m3.

(2) The absolute majority, HA, is the symmetric and self-dual DAF defined
by

h(m1, m2, m3) = 1 ⇔ m1 >
m

2
.

(3) The Pareto majority, HP , is the symmetric and self-dual DAF defined by

h(m1, m2, m3) = 1 ⇔ m1 > 0 and m3 = 0.

(4) The unanimous majority, HU , is the symmetric and self-dual DAF defined
by

h(m1, m2, m3) = 1 ⇔ m1 = m.
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(5) Given β ∈ [1
2
, 1), the absolute special majority Qβ is the symmetric and

self-dual DAF defined by

h(m1, m2, m3) = 1 ⇔ m1 > βm.

It should be noted that absolute and unanimous majorities are specific cases
of absolute special majorities.

Given an aggregation function, we can generate different DAFs by means
of a parameter α ∈ [1

2
, 1). The procedure employed is based on strong α-

cuts. Moreover, it is easy to check that the DAFs obtained are symmetric,
monotonic, and self-dual when the original aggregation function satisfies these
properties.

Definition 10 Let F be an aggregation function and α ∈ [1
2
, 1). Then the

α–DAF associated with F is the DAF Fα defined by

Fα(r) =



1, if F (r) > α,

1
2
, if 1− α ≤ F (r) ≤ α,

0, if F (r) < 1− α.

Remark 11 Given an aggregation function F and α ∈ [1
2
, 1), the following

statements hold:

(1) If F is symmetric, then Fα is also symmetric.
(2) If F is monotonic, then Fα is also monotonic.
(3) If F is self-dual, then Fα is also self-dual.

Similar to the case of symmetric DAFs, when F is a symmetric aggregation
function, the restriction F |{0, 1

2
,1}m can be represented by f : M −→ [0, 1],

where

f(m1, m2, m3) = F (1, (m1). . . , 1 , 1
2
, (m2). . . , 1

2
, 0, (m3). . . , 0).

Now we show the relationship between f and the family of mappings fα that
represent the α–DAFs associated with F .

Remark 12 Let F be a symmetric aggregation function and α ∈ [1
2
, 1). Then

Fα and F |{0, 1
2
,1}m can be represented by the mappings fα and f , respectively.
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The following relationship between these mappings exists:

fα(m1, m2, m3) =


1, if f(m1, m2, m3) > α,

1
2
, if 1− α ≤ f(m1, m2, m3) ≤ α,

0, if f(m1, m2, m3) < 1− α.

2.2 OWA operators

Yager [29] introduced OWA operators as a tool for aggregation procedures in
multicriteria decision making. Usually, OWA operators are defined as functions
whose domain is Rm. Since in this paper individual intensities of preference
vary between 0 and 1, we have restricted their domain to [0, 1]m.

Definition 13 Let w = (w1, . . . , wm) ∈ [0, 1]m satisfying
∑m

i=1 wi = 1. The
OWA operator associated with w is the aggregation function Fw defined by

Fw(r) =
m∑

i=1

wi rσ(i),

where σ is a permutation of {1, . . . ,m} such that rσ(1) ≥ · · · ≥ rσ(m).

OWA operators are symmetric and monotonic aggregation functions. Self-dual
OWA operators have been characterized by Marichal [16, p. 103] and Garćıa-
Lapresta and Llamazares [8], while characterizations of strictly monotonic
OWA operators can be found in Marichal [16, p. 103] and Llamazares [12].
Given a ∈ R, we denote by [a] the integer part of a, i.e., the largest integer
smaller than or equal to a.

Proposition 14 If Fw is an OWA operator, then:

(1) Fw is self-dual if and only if wm+1−i = wi for all i ∈ {1, . . . , [m
2
]}.

(2) Fw is strictly monotonic if and only if wi > 0 for all i ∈ {1, . . . ,m}.

In [29], Yager also introduced a measure to characterize the degree to which
the aggregation is like an or operation.

Definition 15 The orness measure of an OWA operator Fw is defined by

orness(w) =
1

m− 1

m∑
i=1

(m− i)wi.
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In order to guarantee an egalitarian treatment of the alternatives, we consider
self-dual OWA operators. The weights and the orness of these aggregation
operators satisfy the following relationships:

Remark 16 If Fw is a self-dual OWA operator, then:

(1) If m is odd: 2

m−1
2∑

i=1

wi + wm+1
2

= 1.

(2) If m is even: 2

m
2∑

i=1

wi = 1.

(3) orness(w) = 0.5.

We will denote by W the set of weighting vectors associated with self-dual
OWA operators, i.e.,

W =
{
w ∈ [0, 1]m |

m∑
i=1

wi = 1 and wm+1−i = wi for all i ∈ {1, . . . , [m
2
]}

}
.

Remark 17 Given an OWA operator Fw, the restriction Fw|{0, 1
2
,1}m is rep-

resented by the mapping fw defined by

fw(m1, m2, m3) =
m1∑
i=1

wi +
1

2

m2∑
i=1

wm1+i.

2.3 Previous results

Self-dual OWA operators generalizing simple and absolute special majorities
have been characterized by Llamazares [12].

Theorem 18 Let Fw be a self-dual OWA operator and α ∈ [1
2
, 1). Then the

following statements are equivalent:

(1) Fw
α = HS.

(2) Fw is strictly monotonic and α <
1

2

(
1 + min

i
wi

)
.

Theorem 19 Let Fw be a self-dual OWA operator and α ∈ [1
2
, 1). Then the

following statements are equivalent:

(1) Fw
α = HA.

(2) (a) If m is odd: wm+1
2

>
1

3
and

3− wm+1
2

4
≤ α <

1 + wm+1
2

2
.

(b) If m is even: wm
2

>
1

4
and

3

4
≤ α <

1

2
+ wm

2
.
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Theorem 20 Let Fw be a self-dual OWA operator and α, β ∈ [1
2
, 1), with

[βm] > m
2
. Then the following statements are equivalent:

(1) Fw
α = Qβ.

(2) wm−[βm] >
m−[βm]−1∑

i=1

wi and 1− 1

2

m−[βm]∑
i=1

wi ≤ α < 1−
m−[βm]−1∑

i=1

wi.

As a specific case of this result (for [βm] = m − 1), we can obtain a charac-
terization of self-dual OWA operators that generalize unanimous majority.

Corollary 21 Let Fw be a self-dual OWA operator and α ∈ [1
2
, 1). Then the

following statements are equivalent:

(1) Fw
α = HU .

(2) w1 > 0 and α ≥ 1− 1

2
w1.

3 Generalization of Pareto majority

In order to generalize Pareto majority by means of self-dual OWA operators,
we are going to characterize this majority through two elements of M. The
first one corresponds to the minimum support that alternative x needs to be
selected. The second corresponds to the maximum support that alternative x
can obtain without being selected.

Proposition 22 Let H be a symmetric, monotonic, and self-dual DAF rep-
resented by h. Then the following statements are equivalent:

(1) H = HP .
(2) h(1, m− 1, 0) = 1 and h(m− 1, 0, 1) < 1.

PROOF.
(1) ⇒ (2): Obvious.
(2) ⇒ (1): Given (m1, m2, m3) ∈M, we distinguish three cases:

(a) If m3 = 0 and m1 > 0, then (m1, m2, m3) � (1, m − 1, 0), and, by
monotonicity of H, we have h(m1, m2, m3) ≥ h(1, m− 1, 0) = 1.

(b) If m3 = m1 = 0, then by Remark 8 we have h(m1, m2, m3) = 1
2
.

(c) If m3 > 0, then (m− 1, 0, 1) � (m1, m2, m3), and, by monotonicity of H,
we have h(m1, m2, m3) ≤ h(m− 1, 0, 1) < 1.

Therefore, h(m1, m2, m3) = 1 if and only if m1 > 0 and m3 = 0. 2
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Now we are going to calculate the values that fw takes in the elements that
characterize Pareto majority.

Remark 23 Let Fw be a self-dual OWA operator and fw be the mapping that
represents Fw|{0, 1

2
,1}m. By (1) of Proposition 14 and (1) and (2) of Remark

16, in the elements (m1, m2, m3) ∈ M that characterize Pareto majority, the
mapping fw takes the following values:

(1) If m is odd:

fw(1, m− 1, 0) =
3

2
w1 +

m−1
2∑

i=2

wi +
1

2
wm+1

2
=

1

2
+

1

2
w1,

fw(m− 1, 0, 1) = w1 + 2

m−1
2∑

i=2

wi + wm+1
2

= 1− w1.

(2) If m is even:

fw(1, m− 1, 0) =
3

2
w1 +

m
2∑

i=2

wi =
1

2
+

1

2
w1,

fw(m− 1, 0, 1) = w1 + 2

m
2∑

i=2

wi = 1− w1.

Therefore, fw(1, m− 1, 0) =
1

2
(1 + w1) and fw(m− 1, 0, 1) = 1− w1.

From the previous results we can now characterize the self-dual OWA opera-
tors for which the α–DAFs associated are Pareto majority.

Theorem 24 Let Fw be a self-dual OWA operator and α ∈ [1
2
, 1). Then the

following statements are equivalent:

(1) Fw
α = HP .

(2) w1 >
1

3
and 1− w1 ≤ α <

1

2
(1 + w1).

PROOF. Let fw be the mapping that represents Fw|{0, 1
2
,1}m . By Proposition

22 and Remark 12 we have that condition Fw
α = HP is equivalent to fw(1, m−

1, 0) > α and fw(m− 1, 0, 1) ≤ α. By Remark 23 we have

Fw
α = HP ⇔ 1− w1 ≤ α <

1

2
(1 + w1).
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To demonstrate the thesis of the theorem it is sufficient to take into account
that

1− w1 <
1

2
(1 + w1) ⇔ w1 >

1

3
. 2

4 Sets of α values and weighting vectors

In order to obtain a DAF from OWA operators, two parameters must be taken
into account: the weighting vector and α. Now we analyze some properties of
the set containing the valid values of a parameter when we fix the other one.

As we have seen in Theorems 18, 19, 20, and 24, the valid values of α for
obtaining a specific majority rule vary between a minimum and a maximum
value when the self-dual OWA operator is fixed. This is not a coincidence,
but for each self-dual OWA operator Fw and for each symmetric, monotonic,
and self-dual DAF H, the set {α ∈ [1

2
, 1) | Fw

α = H} is an interval (it can be
empty).

Definition 25 For each self-dual OWA operator Fw, with Fw|{0, 1
2
,1}m rep-

resented by fw, and for each symmetric, monotonic, and self-dual DAF H
represented by h, we define the following values:

α(w, H) = max{fw(m1, m2, m3) | h(m1, m2, m3) < 1},
α(w, H) = min{fw(m1, m2, m3) | h(m1, m2, m3) = 1},

and we denote by I(w, H) the interval
[
α(w, H), α(w, H)

)
.

Proposition 26 Let Fw be a self-dual OWA operator and H be a symmetric,
monotonic, and self-dual DAF. Then the following statements are equivalent:

(1) Fw
α = H.

(2) α ∈ I(w, H).

PROOF. It is obvious from Remark 12 and Definition 25. 2

From characterization Theorems 18, 19, 20, and 24, the intervals of α values
for obtaining simple, absolute, Pareto, and absolute special majorities can be
straightforward determined.
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Remark 27 Let w ∈ W. Then:

(1) I(w, HS) =
[

1
2
, 1

2
(1 + mini wi)

)
, if wi > 0 for all i ∈ {1, . . . ,m}.

(2) (a) I(w, HA) =
[

1
4
(3−wm+1

2
), 1

2
(1 + wm+1

2
)
)
, if m is odd and wm+1

2
> 1

3
.

(b) I(w, HA) =
[

3
4
, 1

2
+ wm

2

)
, if m is even and wm

2
> 1

4
.

(3) I(w, Qβ) =
[
1 − 1

2
(w1 + · · · + wm−[βm]), 1 − (w1 + · · · + wm−[βm]−1)

)
, if

[βm] > m
2

and wm−[βm] > w1 + · · ·+ wm−[βm]−1.

(4) I(w, HP ) =
[
1− w1,

1
2
(1 + w1)

)
, if w1 > 1

3
.

It is worth noting that, given two self-dual OWA operators, the intervals of α
values for obtaining a symmetric, monotonic, and self-dual DAF might have
empty intersection, as we show in the following example.

Example 28 Consider m = 5 and β = 0.6. By Theorem 20, Fw
α = Qβ if

and only if w2 > w1 and 1 − 1
2
(w1 + w2) ≤ α < 1 − w1. If we consider

w = (0.2, 0.3, 0, 0.3, 0.2), then I(w, Qβ) = [0.75, 0.8). However, when we con-
sider the weighting vector w′ = (0.1, 0.2, 0.2, 0.2, 0.1), we have I(w′, Qβ) =
[0.85, 0.9).

We can obtain a similar result to that of Proposition 26 when we fix the value
of α. In this case, the set of weighting vectors associated with self-dual OWA
operators which allow us to obtain a symmetric, monotonic, and self-dual DAF
is convex.

Proposition 29 Let α ∈ [1
2
, 1) and H be a symmetric, monotonic, and self-

dual DAF. Then W(α, H) = {w ∈ W | Fw
α = H} is a convex set.

PROOF. Given p ∈ [0, 1] and w,w′ ∈ W(α, H), we are going to prove that
w′′ = pw+(1−p)w′ ∈ W(α, H). Obviously w′′ ∈ W . Let r ∈ {0, 1

2
, 1}m, then

Fw′′
(r) =

m∑
i=1

(pwi + (1− p)w′
i)rσ(i) = p

m∑
i=1

wirσ(i) + (1− p)
m∑

i=1

w′
irσ(i)

= pFw(r) + (1− p)Fw′
(r).

Since Fw
α (r) = Fw′

α (r) = H(r), we distinguish three cases:

(1) If H(r) = 1, then min(Fw(r), Fw′
(r)) > α. Therefore Fw′′

(r) > α, i.e.,
Fw′′

α (r) = 1.
(2) If H(r) = 1

2
, then 1− α ≤ min(Fw(r), Fw′

(r)) ≤ max(Fw(r), Fw′
(r)) ≤

α. Therefore 1− α ≤ Fw′′
(r) ≤ α, i.e., Fw′′

α (r) = 1
2
.

(3) If H(r) = 0, then max(Fw(r), Fw′
(r)) < 1−α. Therefore Fw′′

(r) < 1−α,
i.e., Fw′′

α (r) = 0.
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Therefore Fw′′
α = H and, consequently, w′′ ∈ W(α, H). 2

5 Choosing the best-suited weighting vectors

As we have showed in Theorems 18, 19, 20, 24, and Corollary 21, a lot of self-
dual OWA operators that generate the same DAF exist. However, as we will
show in the following example, not all of them are suitable for representing a
specific majority rule.

Example 30 Consider m = 3, w = (0.01, 0.98, 0.01) and α = 0.502. By
Theorem 18, Fw

α = HS. However, these weights are close to that of the vector
w′ = (0, 1, 0), and, in this case, Fw′

α = HA for all α ∈ [1
2
, 1) by Theorem 19

(in fact, with a suitable value of α, we would be able to choose the weights of w
as close as necessary to that of w′). Therefore, although Fw

α = HS, the choice
of w and α does not seem the best-suited for representing simple majority.

In order to avoid the previous situation, we propose choosing self-dual OWA
operators that maximize the measure of I(w, H), i.e., the solution of the fol-
lowing problem:

max
w∈W

α(w, H)− α(w, H). (P)

In the following theorem we show the optimal solutions for simple, absolute,
Pareto, and absolute special majorities.

Theorem 31 Let H be a symmetric, monotonic, and self-dual DAF and w∗

be a weighting vector solution of problem (P). The following statements hold:

(1) If H = HS, then Fw∗
is the arithmetic mean and I(w∗, HS) =

[
1
2
, m+1

2m

)
.

(2) If H = HA, then Fw∗
is the median. Moreover,

(a) I(w∗, HA) =
[

1
2
, 1

)
, if m is odd.

(b) I(w∗, HA) =
[

3
4
, 1

)
, if m is even.

(3) If H = Qβ, with [βm] > m
2
, then

w∗
i =


1
2
, if i = m− [βm], [βm] + 1,

0, otherwise,

and I(w∗, Qβ) =
[

3
4
, 1

)
.
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(4) If H = HP , then

w∗
i =


1
2
, if i = 1, m,

0, otherwise,

and I(w∗, HP ) =
[

1
2
, 3

4

)
.

PROOF. It is obvious from Remark 27. 2

In Example 28 we have seen that, in general, given a symmetric, monotonic,
and self-dual DAF, there is no relationship between the intervals of α values
associated with two weighting vectors. However, the weighting vector solution
of problem (P) satisfies the following property: given a weighting vector, if a
value of α is valid for obtaining a majority rule, then this value is also valid
when we consider the weighting vector solution of problem (P). Therefore, for
the previously considered majority rules, the self-dual OWA operators given
in Theorem 31 are the best-suited.

Proposition 32 Let H = HS, H = HA, H = Qβ (with [βm] > m
2
) or

H = HP . If w∗ is the weighting vector solution of problem (P), then I(w, H) ⊆
I(w∗, H) for all w ∈ W.

PROOF. It is obvious from Remark 27 and Theorem 31. 2

The OWA operators obtained in Theorem 31 are the arithmetic mean, the
median, and the average of the j-th and the (m+1−j)-th order statistics. Since
they are the best-suited for generating some of the most important classes of
majority rules, it would be interesting to know the α–DAFs associated with
these OWA operators.

As arithmetic mean is a specific case of quasiarithmetic means, we can obtain
the α–DAFs associated with it from the result given by Garćıa-Lapresta and
Llamazares [8] for quasiarithmetic means.

Proposition 33 If Fw is the arithmetic mean and α ∈ [1
2
, 1), then Fw

α coin-
cides with the symmetric and self-dual DAF H defined by

h(m1, m2, m3) = 1 ⇔ m1 > m3 + m(2α− 1).

The resultant DAFs are based on difference of votes: an alternative wins when
the difference between the number of votes obtained by this alternative and
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that obtained by the other is greater than m(2α−1). These majority rules have
some very interesting features and they have been characterized by Llamazares
[13].

In relation to the median, by (2a) of Theorem 31, we have that Fw
α = HA

for all α ∈ [1
2
, 1) when m is odd. When m is even, the median is the average

of the m/2-th and the (m/2 + 1)-th order statistics. Therefore, the α–DAFs
associated with it can be obtained as a specific case of the result given for the
average of the j-th and the (m + 1− j)-th order statistics. For analyzing this
class of OWA operators we need to know the values taken by fw, which is the
mapping that represents Fw|{0, 1

2
,1}m .

Remark 34 Let j ∈ {1, . . . , [m
2
]} and w be the weighting vector defined by

wi =


1
2
, if i = j, m + 1− j,

0, otherwise.

Since Fw(r) = 1
2
(rσ(j) + rσ(m+1−j)), then fw(m1, m2, m3) takes the following

values:

(1) 0, if m3 ≥ m + 1− j.

(2) 1
4
, if m1 < j and j ≤ m3 < m + 1− j.

(3) 1
2
, if m1 < j and m3 < j, or m1 ≥ j and m3 ≥ j.

(4) 3
4
, if j ≤ m1 < m + 1− j and m3 < j.

(5) 1, if m1 ≥ m + 1− j

Proposition 35 Let j ∈ {1, . . . , [m
2
]} and w be the weighting vector defined

by

wi =


1
2
, if i = j, m + 1− j,

0, otherwise.

The following statements are satisfied:

(1) If 1
2
≤ α < 3

4
, then Fw

α coincides with the symmetric and self-dual DAF
H defined by

h(m1, m2, m3) = 1 ⇔ m1 ≥ j and m3 < j.

(2) If 3
4
≤ α < 1, then Fw

α = Qβ for 1− j
m
≤ β < 1− j−1

m
.
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PROOF. Let fw be the mapping that represents Fw|{0, 1
2
,1}m . Given α ∈

[1
2
, 1), we have:

(1) If 1
2
≤ α < 3

4
, then by Remark 34, fw(m1, m2, m3) > α if and only if

fw(m1, m2, m3) ∈ {3
4
, 1}; i.e., if and only if m1 ≥ j and m3 < j. By

Remark 12 we have the result.
(2) If 3

4
≤ α < 1, then the result is obvious from items (2b) and (3) of

Theorem 31. 2

For j = 1, i.e., when the OWA operator is the average of the maximum and
the minimum, it is worth noting that the α–DAFs obtained are Pareto and
unanimous majorities:

Fw
α =


HP , if 1

2
≤ α < 3

4
,

HU , if 3
4
≤ α < 1.

6 Concluding Remarks

In this paper we have proposed determining OWA operator weights regarding
the class of majority rule that we want to obtain when individuals do not
grade their preferences between the alternatives. We have also characterized
the OWA operators that generalize Pareto majority. Moreover, since the same
majority rule can be generalized through a wide variety of OWA operators,
we have suggested a procedure to determine the best-suited OWA operators
in order to extend simple, Pareto, and absolute special majorities. By means
of this procedure we obtain as a remarkable result that the best-suited OWA
operators are such well-known aggregation operators as the arithmetic mean,
the median, and the average of the j-th and the (m+1−j)-th order statistics.
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