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Abstract. In this paper we analyze the behavior of WOWA operators,
a class of functions that simultaneously generalize weighted means and
OWA operators. Moreover, we introduce functions that also generalize
both operators and characterize those satisfying a condition imposed to
maintain the relationship among the weights.
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1 Introduction

Weighted means and ordered weighted averaging (OWA) operators (Yager [8])
are aggregation functions widely used in the literature. Weighted means allow
to weight each information source in relation to their reliability while OWA
operators allow to weight the values according to their ordering. The need to
combine both functions has been reported by several authors (see, among others,
Torra [4] and Torra and Narukawa [6]). In [4], Torra introduces the weighted
OWA (WOWA) operator, a new aggregation function that allows to combine
both weights.

The aim of this paper is to analyze the behavior of WOWA operators. More-
over, since, in some cases, the results provided by these operators may be ques-
tionable, we propose to use functions that maintain the relationship among the
weights of a weighting vector when the non-zero components of the other weight-
ing vector are equal. In this way, we obtain a class of functions that have been
previously introduced by Engemann et al. [1] in a different framework.

The paper is organized as follows. In Section 2 we introduce weighted means,
OWA operators and WOWA operators. Section 3 shows some questionable be-
haviors of WOWA operators. In Section 4 we propose a condition to maintain
the relationship among the weights and characterize the functions that satisfy
this condition. The paper concludes in Section 5.

2 Preliminaries

Throughout the paper we will use the following notation: vectors will be denoted
in bold; η will denote the vector (1/n, . . . , 1/n); x ≥ y will mean xi ≥ yi for all
i ∈ {1, . . . , n}; given σ a permutation of {1, . . . , n}, xσ will denote the vector
(xσ(1), . . . , xσ(n)).
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In the following definition we present some well-known properties usually
demanded to the functions used in the aggregation processes.

Definition 1. Let F : Rn −→ R be a function.

1. F is symmetric if F (xσ) = F (x) for all x ∈ Rn and for all permutation σ
of {1, . . . , n}.

2. F is monotonic if F (x) ≥ F (y) for all x,y ∈ Rn such that x ≥ y.
3. F is idempotent if F (x, . . . , x) = x for all x ∈ R.
4. F is compensative if min(x) ≤ F (x) ≤ max(x) for all x ∈ Rn.
5. F is homogeneous of degree 1 if F (λx) = λF (x) for all x ∈ Rn and for all

λ > 0.

2.1 Weighted means and OWA operators

Weighted means and OWA operators are defined by vectors with non-negative
components whose sum is 1.

Definition 2. A vector µ ∈Rn is a weighting vector if µ ∈ [0, 1]n and
n∑

i=1

µi = 1.

Definition 3. Let p be a weighting vector. The weighted mean associated with
p is the function Fp : Rn −→ R given by

Fp(x1, . . . , xn) =
n∑

i=1

pixi.

The weighted means are monotonic, idempotent, compensative and homoge-
neous of degree 1 functions.

In [8], Yager introduced OWA operators as a tool for aggregation procedures
in multicriteria decision making.

Definition 4. Let w be a weighting vector. The OWA operator associated with
w is the function Fw : Rn −→ R given by

Fw(x1, . . . , xn) =
n∑

i=1

wixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n).

OWA operators are symmetric, monotonic, idempotent, compensative and
homogeneous of degree 1 functions.

One of the most important issues in the theory of OWA operators is the
determination of associated weights (see, for instance, Xu [7] and Fullér [2]). In
[9], Yager relates the OWA operators weights to quantifiers.

Definition 5. A quantifier is a non-decreasing function Q : [0, 1] −→ [0, 1] that
satisfies Q(0) = 0 and Q(1) = 1.
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Given a quantifier Q, the OWA operator weights can be obtained from the
expression wi = Q (i/n) − Q ((i− 1)/n) , i = 1, . . . , n, (Yager [9]). From this
relation follows:

Q

(
i

n

)
=

i∑
j=1

wj , i = 1, . . . , n;

i.e., the same weighting vector can be obtained through any quantifier interpo-

lating the points
(

i/n,
i∑

j=1

wj

)
, i = 1, . . . , n.

2.2 WOWA operators

WOWA operators were introduced by Torra [4] in order to consider situations
where both the importance of information sources and the importance of values
had to be taken into account.

Definition 6. Let p and w be two weighting vectors. The WOWA operator
associated with p and w is the function Ww

p : Rn −→ R given by

Ww
p (x1, . . . , xn) =

n∑
i=1

µixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n) and the
weight µi is defined as

µi = f

 i∑
j=1

pσ(j)

− f

i−1∑
j=1

pσ(j)

 ,

where f is a non-decreasing function that interpolates the points
(

i/n,
i∑

j=1

wj

)
together with the point (0, 0). Moreover, f is the identity when the points can be
interpolated in this way.

Any quantifier generating the weighting vector w satisfies the required prop-
erties of the function f in the previous definition (under the assumption that
the quantifier is the identity when w = η). For this reason, it is possible to
give an alternative definition of WOWA operators using quantifiers (Torra and
Godo [5]).

Definition 7. Let p be a weighting vector and let Q be a quantifier. The WOWA
operator associated with p and Q is the function WQ

p : Rn −→ R given by

WQ
p (x1, . . . , xn) =

n∑
i=1

µixσ(i),
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where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n) and the
weight µi is defined as

µi = Q

 i∑
j=1

pσ(j)

−Q

i−1∑
j=1

pσ(j)

 .

WOWA operators are monotonic, idempotent, compensative and homoge-
neous of degree 1 functions. Moreover, Wη

p = Fp and Ww
η = Fw (Torra [4]).

3 Analysis of WOWA operators

In this section we show with examples some questionable behaviors of WOWA
operators.

Example 1. Suppose we have five sensors to measure a certain physical prop-
erty. The sensors are of different quality and precision, so they are weighted
according to the weighting vector p = (0.3, 0.2, 0.2, 0.2, 0.1). Moreover, to pre-
vent a faulty sensor alter the measurement, we take the weighting vector w =
(0, 1/3, 1/3, 1/3, 0); thus, the maximum and minimum values are not considered.

Given w = (0, 1/3, 1/3, 1/3, 0), we have to choose a quantifier interpolating
the points (0, 0), (0.2, 0), (0.4, 1/3), (0.6, 2/3), (0.8, 1) and (1, 1). We consider
the quantifier depicted in Figure 1, which is given by

Q(x) =


0 if x ≤ 0.2,
5
3x− 1

3 if 0.2 < x < 0.8,

1 if x ≥ 0.8.

0.2 0.4 0.6 0.8 1

1
3

2
3

1
Q(x)

Fig. 1. Quantifier associated to the weighting vector w = (0, 1/3, 1/3, 1/3, 0).
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Suppose the values obtained by the sensors are x = (10, 4, 5, 6, 3). If σ is a
permutation ordering these values in a decrease way, then, in this case, pσ =
p = (0.3, 0.2, 0.2, 0.2, 0.1). The weighting vector µ is

µ1 = Q(0.3)−Q(0) = 1/6, µ2 = Q(0.5)−Q(0.3) = 1/3,
µ3 = Q(0.7)−Q(0.5) = 1/3, µ4 = Q(0.9)−Q(0.7) = 1/6,
µ5 = Q(1) −Q(0.8) = 0,

and Ww
p (10, 4, 5, 6, 3) = 10/6 + 2 + 5/3 + 4/6 = 6.

However, our intention is not to consider the maximum and minimum values
and only take into account the values 4, 5 and 6; which have been provided by
sensors with the same weight. Therefore, it seems logical to make the average of
these values, in which case we would get 5 as final value.

Example 2. Consider again the situation of the previous example and suppose
now that p = (0.4, 0.2, 0.2, 0.1, 0.1) and x = (10, 3, 5, 6, 7). If σ is a permu-
tation ordering these values from the largest to the smallest element, then
pσ = (0.4, 0.1, 0.1, 0.2, 0.2). The weighting vector µ is

µ1 = Q(0.4)−Q(0) = 1/3, µ2 = Q(0.5)−Q(0.4) = 1/6,
µ3 = Q(0.6)−Q(0.5) = 1/6, µ4 = Q(0.8)−Q(0.6) = 1/3,
µ5 = Q(1) −Q(0.8) = 0,

and Ww
p (10, 3, 5, 6, 7) = 10/3 + 7/6 + 1 + 5/3 = 43/6.

As in the previous example, we do not want to consider the maximum and
minimum values and to aggregate the remaining ones, in this case the values 5,
6, and 7. However, the WOWA operator returns a value greater than the three
aggregate values because it weights the maximum (10 in this case) with 1/3. On
the other hand, there are other interesting properties that the WOWA operator
does not satisfy:

1. The value returned by the WOWA operator does not always lie between the
values returned by the weighted mean and the OWA operator:

Fw(10, 3, 5, 6, 7) = 7/3 + 2 + 5/3 = 6,
Fp(10, 3, 5, 6, 7) = 4 + 0.6 + 1 + 0.6 + 0.7 = 6.9,

but Ww
p (10, 3, 5, 6, 7) = 43/6.

2. The value returned by the WOWA operator does not always coincide with
the values of the weighted mean and the OWA operator when both are equal:

Fw(8, 2.5, 5, 6, 7) = 7/3 + 2 + 5/3 = 6,
Fp(8, 2.5, 5, 6, 7) = 3.2 + 0.5 + 1 + 0.6 + 0.7 = 6,

but Ww
p (8, 2.5, 5, 6, 7) = 8/3 + 7/6 + 1 + 5/3 = 6.5.
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4 Choosing functions to maintain the relationship among
the weights

As we have seen in the previous section, the results provided by WOWA opera-
tors may be questionable. If we consider again Example 2, we want to aggregate
the values 5, 6, and 7, which are the values given by the sensors with weights
0.2, 0.1, and 0.1, respectively. One possibility is to weight these values by means
of the weighting vector (0.5, 0.25, 0.25). In this way, it is possible to maintain the
relationship among the initial weights. The returned value in this case is 23/4.

According to the above remarks, we look for a function Fw
p : Rn −→ R given

by

Fw
p (x1, . . . , xn) =

n∑
i=1

ρixσ(i),

where σ is a permutation of {1, . . . , n} such that xσ(1) ≥ · · · ≥ xσ(n) and the
weight ρi is defined as

ρi =
f(wi, pσ(i))

n∑
j=1

f(wj , pσ(j))

,

where f : [0, 1]2 −→ [0, 1]. In this way the weights ρi depend on the weights wi

and pσ(i).
In order to maintaining the relationship among the weights of a vector (p or

w) when the non-zero components of the other vector are equal, it is necessary
that f satisfies the following condition:

f(tx, y) = f(x, ty) = tf(x, y),

for all x, y ∈ [0, 1] and t ∈ [0,∞) such that tx, ty ∈ [0, 1]. In the next proposition
we characterize the functions that satisfy this condition.

Proposition 1. Let f : [0, 1]2 −→ [0, 1] be a function such that f(tx, y) =
f(x, ty) = tf(x, y) for all x, y ∈ [0, 1] and t ∈ [0,∞) such that tx, ty ∈ [0, 1].
Then f(x, y) = cxy, where c ∈ [0, 1].

Proof. Given x, y ∈ [0, 1], f(x, y) = f(x · 1, y · 1) = xf(1, y · 1) = xyf(1, 1). ut

If f(x, y) = cxy, with c ∈ [0, 1], then ρi =
wipσ(i)

n∑
j=1

wjpσ(j)

; that is,

Fw
p (x1, . . . , xn) =

n∑
i=1

wipσ(i)xσ(i)

n∑
j=1

wjpσ(j)

.
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It is worth noting that this function has been used by Engemann et al. [1]
in a framework of decision making under risk and uncertainty (in this case, p is
the vector of probabilities of the states of nature).

In order to ensure that Fw
p is well defined, we need that wjpσ(j) be non-zero

for some j ∈ {1, . . . , n}. This requirement is guaranteed by any of the following
conditions:

1. The number of non-zero weights in each vector p and w is greater than n/2.
2. All the components of p are non-zero.

In addition to this, Fw
p has another problem in your definition: sometimes,

the vector pσ is not unique and Fw
p may return different values according to the

vector pσ used. This fact is illustrated in the following example.

Example 3. Consider p = (0.5, 0.2, 0.3), w = (0.3, 0.4, 0.3), and x = (7, 5, 7).
When x is ordered from greatest to least, then we have the vector (7, 7, 5). In
this vector, the first component can be associated to the weight 0.5 or 0.3. In
the first case, the weighting vector ρ is (5/11, 4/11, 2/11) and

Fw
p (7, 5, 7) =

35
11

+
28
11

+
10
11

=
73
11

.

In the second case, the weighting vector ρ is (9/35, 4/7, 6/35) and

Fw
p (7, 5, 7) =

9
5

+ 4 +
6
7

=
233
35

.

A similar problem arises in the IOWA operators, introduced by Yager and
Filev [10]. The solution proposed by these authors, applied to our framework, is
to replace the weights associated to equal values by the average of them. In the
previous example we replace the weights p1 = 0.5 and p3 = 0.3 by 0.4. In this
case the weighting vector ρ is (6/17, 8/17, 3/17) and

Fw
p (7, 5, 7) =

42
17

+
56
17

+
15
17

=
113
17

.

With regard to the properties satisfied by Fw
p , it is easy to check that Fw

p is
idempotent, compensative, homogeneous of degree 1, and that satisfies Fη

p = Fp

(Engemann et al. [1]) and Fw
η = Fw.

Nevertheless, as noted by Liu [3], Fw
p is not monotonic. Moreover, similar to

WOWA operators, it does not satisfy other interesting properties as we show in
the next example.

Example 4. Consider again the weighting vectors p = (0.4, 0.2, 0.2, 0.1, 0.1) and
w = (0, 1/3, 1/3, 1/3, 0). Then, we have:

1. The value returned by Fw
p does not always lie between the values returned

by the weighted mean and the OWA operator:

Fw(10, 3, 5, 6, 7) = 6, Fp(10, 3, 5, 6, 7) = 6.9, but Fw
p (10, 3, 5, 6, 7) = 23/4.
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2. The value returned by Fw
p does not always coincide with the value returned

by the weighted mean and the OWA operator when both values are the
same:

Fw(8, 2.5, 5, 6, 7) = 6, Fp(8, 2.5, 5, 6, 7) = 6, but Fw
p (8, 2.5, 5, 6, 7) = 23/4.

5 Concluding remarks

In this paper we have analyzed WOWA operators and we have shown that, in
some applications, these operators do not always provide the expected result.
Due to the questionable behavior of these operators, we have imposed a condition
to maintain the relationship among the weights and we have characterized the
functions that satisfy this condition. However, the obtained functions are not
monotonic. So, we can conclude that none of the analyzed functions is fully
convincing.
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