g . = ESCUELA DE INGENIERIAS
Universidad deValladolid INDUSTRIALES

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingenieria Electrénica Industrial y Automatica

El controlador KUKA youBot

Autor:
Justo Lobato, Alberto

Responsable de Intercambio en la UVa

Herraez Sanchez, Marta

Universidad de destino

Vilnius Gediminas Technical University

Valladolid, Junio 2019.

E----------IIII 111 1 1 11T I RN EENENNINNINNSSEE.

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO

TITULO: The KUKA youBot controller

ALUMNO: Alberto Justo Lobato

FECHA: 05/06/2019

CENTRO: Electronics Faculty. Vilnius Gediminas Technical University
TUTOR: Dainius Udris

Cinco palabras claves que describen el TFG:

Robética, Morfologia, PCB, ROS, Octave

Abstract en espanol (maximo 150 palabras):

En nuestros dias, muchas placas base y PCBs presentan fallos debido al fin de su vida Util o a
errores en el proceso de produccion. En muchos de estos casos, su clasificacion se realiza
mediante operaciones manuales, llevando a los empleados a una posible exposicion frente a
elementos toxicos. Debido a este motivo, en este proyecto se propone detectar dichos fallos con
el procesamiento de imagenes tomadas por una camara Siemens MV440 mediante el programa
GNU Octave, asi como la clasificacion de las mismas gracias a la programacion de un robot-
brazo KUKA youBot dentro del entorno Linux conocido Robot Operating System o ROS. Previa a
la programacion de dicho robot, se simulara su comportamiento dentro del programa Gazebo.

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

FACULTY OF ELECTRONICS
DEPARTMENT OF ELECTRICAL ENGINEERING

Alberto Justo Lobato

THE KUKA YOUBOT CONTROLLER
KUKA YOUBOT ROBOTO VALDIKLIS

Bachelor Thesis

Automation study programme, State Code 612H62002
Automatic Control of Technologies specialization

Electrical Engineering Study Area

Vilnius, 2019

[ESK-17-5.1EN] 3

E----------IIII 111 1 1 11T I RN EENENNINNINNSSEE.

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY
FACULTY OF ELECTRONICS

DEPARTMENT OF ELECTRICAL ENGINEERING

CONFIRMS

Head of Dep ent
Se M

(signature)

Assoc. Prof. Dr. S. Tolvaisiené

G g 4 019

Alberto Justo Lobato

THE KUKA YOUBOT CONTROLLER
KUKA YOUBOT ROBOTO VALDIKLIS

Bachelor Thesis

Automation study programme, State Code 612H62002
Automatic Control of Technologies specialization

Electrical Engineering Study Area

w4
Supervisor Assoc. Prof. Dr. Dainius Udris 4/4/14'7 20(9 -5 -0
4

(scientific title and degree, name, surname) (signature) (date)

Vilnius, 2019

E----------IIII 111 1 1 11T I R HENENENNINININNNSEE.

Alberto Justo

The KUKA youBot controller. Bachelor Thesis for degree. Vilnius Gediminas Technical
University. Vilnius, 2019.

Abstract:

Nowadays, many mother boards and PCBs have errors due to their life cycle end or mistakes in
production process. In most of these cases, their classification is done manually, meaning an
exposition to toxic elements for the employees. Thus, in this project we propose a solution based on
computer vision and robotics. On one hand, error detection is made with a Siemens MV440 camera
and images taken by it are processed on Octave. On the other hand, PCB classification is done by
robot KUKA youBot, which is programmed on Linux supported software Robot Operating System
or ROS. Previously, we simulate our robot workspace on Gazebo program.

Key words:

ROS, Octave, PCB, image processing, error detection.

INDEX OF CONTENTS

1. INTRODUCTION 9
1.1. Motivation of the Project..........cccevviiiiieii i 10
1.2, MAIN QOAIS ... 10

2. ANALYTICAL PART 12
2.1. ROS: architecture and CharaCteristiCsccvvuererriereenieresie e see s 12

2.1 1. AICRITECIUIE ..o e 12
2.1.1.1. FilesyStem IEVEL.ocoiiiiiiiieseeeee e 12
2.1.1.2. Computation graph levelcccooveviiiiiei e, 13
2.1.2. First steps 0N ROSooiiiiiiieieie e 15
2.1.2.1. Creating a NeW WOIKSPACE..........ccevveririieiierie e 15
2.2, KUKA YOUBOL.ovvuiveriereeneeesiesiessssisseessessssssessess s sssnsnssensesssesssaes 16
2.2.1. Overview of KINemMatiC StrUCLUIE..........cccvvveiierieienie e 16
2.2.1.1. How to move KUKA youBot arm to its home position 16
2.2.2. Robot Kinematics theoryc.ccoveviiieiie i, 18
2.2.3. Denavit-Hartenberg parameters...........ccooveveeeieneneneneseseseeeees 19
2.2.4. INVErse KINEMALICSccccveieiiiiie e 21
2.2.5. Technical SPeCITICAtIONS.cceiiiiiiiieieee e 25
2.2.6. CONNECLIONS ...ttt 26
P T O 1101 - LTSRS TURRRPRURRS 26
2.4. Computer VISION 0N OCLAVE.........eiieiiieierierie st 29

2.4.1. Programming on Octave. Artificial vision most used commands ... 29

2.4.2. Computer vision techniques for error detection in PCBs 32

2.4.3. PCBs. Production and USE €ITOFS.cccuuuerierierienieniesiesieseseeennens 36

3. DESIGN PART 38
3.1. Real workspace: settings and preparation.ccccceevvevieereesieesiieesee e 38
3.1.1. Camera CONNECHIONS.civeireieseeieeeesieeste e sree e enee e e see e sreenneens 38

3.1.2. Platform instalation for camera...........cccccoecvrienienenie i 40

3.2. RODOt SIMUIALION. ... e 42
3.2.1. Forward and inverse kinematics equations obtained on Robotics

B 1010 |00 ST SS 42

3

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

3.2.2. Inverse Kinematics programming for KUKA youBot..................... 45

3.2.3. Robot programming 0N CH........ooiiiiiiiiieieieee e 46

3.2.4. Simulation 0N Gazeho.........cccooviiiiiiiii e 58

3.3. Computer ViSION Programiming.c.ccoeoereremeeeereenreseesressesiesseseseeeenes 61
3.3.1. License Automation Manager from Siemens.ccccccevvevereenenn, 61

3.3.2. Image acquistion mode for Siemens MV440 camera. 63

3.3.3. PCBs error detection programming.cccceceeeereeriesvesieeseeseennenns 64

3.3.4. Communication between camera and ROSccccoovvniiieienn, 72

4. RESULTS AND CONCLUSIONS 76
4.1. Computer ViSION Part reSUILScccooiiiiiiiiiiieeee e 76
4.2. KUKA youBoOt part reSUILS..........c.covveieiiiiieie e 80
4.3. FINAl CONCIUSIONS......cviiiiieiieiiieiieie st 82
5. ACKNOWLEDGEMENTS 83
6. REFERENCES 84
7. ANNEXES 86
7.1. ROS CH+ CODE ...ttt 86
7.2. OCTAVE COMPUTER VISION CODEcccooiiiiiiiiienceneese e 99
7.3. MATLAB FORWARD AND INVERSE KINEMATICS CODE........... 106

8. APPENDIXES 111
8.1. KUKA YOUBOT ARM SPECIFICATIONS.......cccoieeeiieeceee e 111
8.2. MAXON JOINT MOTORScocitiiieiiisieiee e 115
8.3. SIEMENS MV440 CAMERA SPECIFICATIONS ... 116

INDEX OF ILUSTRATIONS

Figure 1. Scheme of final theSiSccooiiiiiiiie s 11
Figure 2. Filesystem level folders[2].......cccoveiiiieiieiecc e 13
Figure 3. Computation graph level elements[2] ... 14
Figure 4. Communication between NOAES[3]........ccvvereiieiieiieieieere e 14
Figure 5. Creating a new workspace 0n ROS...........cooiiiiiiniiereeeeeee s 15
Figure 6. Packages included in created wWorkspace[3].........cccvevvvrvereereiiieineie e 16
Figure 7. KUKA YOUBOLocoiiiiiiiie et 16
Figure 8. Robot's arm movement to its home position[6]ccccevveveiievieie e 17
Figure 9. KUKA youBOt hOme POSITION.cciiiiiiiiiiieec s 18
Figure 10. Kinematics model for a 2 DOF robot[8]cccccveveiieiieiieiieceec e 18
Figure 11. D-H link twist and 1ength[8]cccooiiiiiiiiie e 20
Figure 12. Example of D-H parameters obtaining[8]..........ccccecvviveiieieiiie i 20
Figure 13. Example of inverse KinematiCS[18]........ccccovrimriniiinirieieeee e 21
Figure 14. Inverse kinematics of 2R arm[18].........ccccceviiieiiiieiiece e 22
Figure 15. How to calculate g1 and g2 for 2R arm[18].........ccccoviiriiiniiiiiiiencneeie 22
Figure 16. KUKA youBot model for obtaining inverse kinematics[20]cccceeuu... 23
Figure 17. KUKA youBot manipulator scheme in XYZ axes[20]........cccccererervrrrnne. 24
Figure 18. JOINtS MOLOrS[8.2]......ccieiiieii ettt 25
Figure 19. Robot’s angles and height[8.1] ..o 25
Figure 20. KUKA YOUBOL CONNECLIONScc.ecviiiiiiiieiecic st cie ettt sre e 26
Figure 21. Siemens MV440 CAMETa[4].....ccorireririnieieiesiese e 27
Figure 22. MVV440 camera connections and components[4]........cccccvevevveviveieiieeseennens 28
Figure 23. MATLAB supported VISION CAMEIESccereruerrerieniiriiseeeeeenie e 29
Figure 24. Robot’s arm image with ImMShow[9] ..., 31
Figure 25. PCB image With ImShowW[9].........ccooiiiiiiie e 31
Figure 26. PCB image converted to greyscale with rgb2gray[9]cccoovveviiiiieiinn, 31
Figure 27. Graphical example of dilation matrixX[11]........cccocririiiiiniininiinenesesesee 33
Figure 28. Erosion graphical example[10]cccooiiiiiiiiieiicce e 33
Figure 29. Erosion practical example, before and after. [10]ccccoovviiiiiienciiine, 33
Figure 30. Example of filtering[L10]........cooviiieiiiiie e 35
Figure 31. Example of template matchingl10]ccccoeiieiiiiccc e 36

5

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

Figure 32. PCB ML/XEROX model used for detection...........cccccevveveiieiienesiieseenns 36
Figure 33. Bad PCB ML/XEROX MOGEl.......c.ccouiiiiiiiiiiiee e 37
Figure 34. Connection between Siemens camera and PC[4]ccccovvevviieviveiciiieceennens 38
Figure 35. Camera connections t0 VOItage[3.1.1].....cccooeieiiniiininieeecee e 39
Figure 36. 24 VV DC power SUPPIY[3.1.1] .coveiiiieieeiece e 39
Figure 37. Holes dimensions for screwing camera to platform[8.3]cccccevvrvninne. 40
Figure 38. Template and camera screwed to platform[3.1.2].......cccccevvvieiiiiieciiecienne 41
Figure 39. Workspace with robot and camera installed [3.1.2]........cccooeieiiiiniinnnnne. 41
Figure 40. Test 1 for KUKA youB0ot 0N MATLAB.........ccoeiveeceeceee e 42
Figure 41. Test 2 for KUKA youBot 0N MATLABoooiiiieceeee e 43
Figure 42. Test 3 for KUKA youB0ot 0N MATLAB.........cooveiieeceeceee e 43
Figure 43. Instructions for using KUKA youBot with keyboard [3]cccccoovenirininne. 46
Figure 44. Reference system for KUKA youBot programming [5]ccccovevviiieieennne 47
Figure 45. KUKA youBot 0n Gazeho[3.2.4]ccooiiiiiieieiene s 58
Figure 46. Measurement 0f PCBS[3.2.4]coi i 59
Figure 47. Workspace constructed in Gazebo[3.2.4]ccooceeiiiiiiiniieec e 59
Figure 48. PC and camera IP connection[3.3.1]ccceeveiieiiiieieeie e 61
Figure 49. Opening web browser in PRONETA for user interface[3.3.1]c.ccccevvenee. 62
Figure 50. Code reading configuration on web browser[3.3.1]......cccccccvvveviveveiiieinennns 62
Figure 51. SIMATIC MV440 HR user program[3.3.2]cccceveririnienieiene e 63
Figure 52. PCB with white background for detection[3.3.3]cccccoveviiieiiiiiiieceee 64
Figure 53. Original and filtered image[3.3.3.1]......cooiiiiiiieeee e 65
Figure 54. Standard image for comparing elements in mymorphology function[3.3.2] 67
Figure 55. Testing image in mymorphology function[3.3.2]cccccooviiiiniicnciiie 68
Figure 56. Both images transformed and compared in same plot for mymorphology

TUNCEION[3.3.2] .ot 68
Figure 57. Result obtained after applying mymorphology function[3.3.2] 69
Figure 58. Template selected in standard image[3.3.3.3]....ccccoiririniniiiee e 71
Figure 59. Plotting elements in common between two images with template

MALCNING[3.3.3.3] . ettt 72
Figure 60. Rosoct commands[3.3.4]......ccouiiiieiiiiiie e 73
Figure 61. Contour image with filtering function[4.1]cccooviiiiiiiiee e 76
Figure 62. Standard image number 2 for mymorphology function[4.1]c..cccoceve.n. 77
Figure 63. Testing image number 2 for mymorphology function[4.1]cccccevvrnenne. 77
Figure 64. Images after applying dilation[4.1]cccccoeeiieiiiiicc e 78
Figure 65. Mymorphology function applied to second couple of images. [4.1] 78

Figure 66. Jig for second standard image in matching function[4.1]c..ccccecvvvveieennne 79

Figure 67. Template matching applied on second testing image[4.1]........ccccocevvrvrinnne. 79
Figure 68. Robot's movement from home poSIitioncccccveeeiieieiic i 80
Figure 69. KUKA youBot trying to reach PCBcccciiiiiiiiiiiiieee e 81

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

INDEX OF TABLES

Table 1. D-H symbolic parameters for KUKA yOUBOL...........ccccooviiiiiiiiiicncce 21
Table 2. Electronical and reading SpecCifications...........cccovvvieviiie e 27
Table 3. Test values for MATLAB Robotics Toolbox on KUKA youBot 42
Table 4. D-H parameters for KUKA youBot obtained with MATLAB Robotics Toolbox

.. 44
Table 5. Values for Qi angles of KUKA YOUBOLcccocevieiiiiccec e 44

INDEX OF EQUATIONS

Equation 1. Denavit-Hartenberg parameters MatriX..........cccocvevvevieeieeriesieeseeseseeseenens 20
Equation 2. Inverse kinematics for KUKA youBot orientationccccceevencneninnne. 23
Equation 3. QL angleooiiieecece e 24
EqQuation 4. Q3 aNQIec..oiiiiiiee s 24
Equation 5. Q2 @NGIEc..oouieieiee e e 24
EQUAtion 6. Q4 aNQIe ..o s 24
Equation 7. Example of dilation Matrixcccooveiiiiiiicie e 32
Equation 8. Correlation COBTFICIENTccoiiiiiiiicee s 35

1. INTRODUCTION

E-waste material problem: the end of life cycle of our electronics devices [1]

Nowadays, there are millions of mobile phones, tablets, PCs and other types of
electronic components across the globe. When their life span is over, they are sent to
developing or third world countries, like China or Taiwan, implying a big environmental
impact on most of their cities, which have been transformed into landfills. On account of
bad working conditions, their population have a lot of health issues like respiratory

distress, leading into many cancer cases.

Due to this situation, it is necessary to apply automated solutions for managing e-waste
material and making a correct classification of it, not only in the end of electronic devices
service life, but in production process too. This leads to a good social and economic global
effect. On one hand, companies can make more money because their products, like PCBs
for example, are better monitored (without ignoring their planned obsolescence politics)
with these systems. On the other hand, health and labor problems in the countries

mentioned before can be avoided, improving living standard of their habitants.

What is ROS?

ROS letters correspond to “Robotic Operation System”. Basically, it is an open
source system that is taking robotics world by storm. It allows to program every robot
available in the market, due to be a system support by Linux, concretely Ubuntu, opening
the possibility of reusing code for robotics and development. Mainly it is based on C++
or Python code.

It is composed by processes, also known as nodes, which can be designed individually
and assembled at runtime, because of ROS’s middleware. How nodes are communicated,
with messages or services, will be explained in the following section. These processes are
also bundled into packages, making easier the communications between different ROS
codes. Furthermore, ROS has a lot of toolboxes to help its users in any application they

want to make.

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

What is digital image processing?

Image processing or computer vision is a technique of patron recognition in
different areas of our world. From license plate recognition to fire detection, it is a helpful
tool for taking and analyzing images with the purpose of being processed by a machine.

One simple way to understand this concept is to base on our own senses. Artificial vision
tries to imitate our comprehension about the world around us but replacing our eyes for a
machine. This is accomplished thanks to image breakdown into small fragments (pixels)
and a later studio.

1.1. Motivation of the project

Due to the need of applying an automated system that allows e-waste material
identification and classification, a prototype is being proposed, formed by a KUKA
youBot, which takes care of grabbing electronics components to classify and take them
to one place or other, depending on their conditions, and a camera that will take photos
previously of these ones. KUKA youBot is going to be programmed on ROS, stablishing
communication with Octave at the same time, which is going to be our programming

language for artificial vision part.

This project provides a solution for electronics components inspection problem, as well
as improving product quality, but avoiding accidents and exposures of dangerous agents

too.

1.2. Main goals

First, our webcam will take a photo of the electronic component at hand. Octave
will process the image thanks to different computer vision algorithms, concluding if this
component is acceptable or not. In short, it will be a homographic transformation, which

consists in overlaying two different images of the same element, one good and another

10

bad, in order to subtract one from the other and seeing the differences between them. This

is explained deeply in the section relative to computer vision.

Next step will be communicating Octave with ROS, exchanging information between

them. It is necessary to exchange one variable that expresses if our element is right or not.

Finally, KUKA youBot is programmed in ROS (robot workspace, home position and
speed must be defined previously), which will grip our component and take it to one place
or other, depending on its condition.

A scheme of how we are going to manage this project can be seen in Figure 1.

STABLISHING KINEMATICS ROBOT GRABBING PCBS AND

MODEL ON MATLAB ROBOTICS
TOOLBOX

PCBs IMAGE ACQUISITION

FROM SIEMENS CAMERA

IMAGE PROCESSING O]\
OCTAVE. DETECTION OF
ERRORS

MOVING THEM TO DIFFERENT
PLACES.

ROBOT PROGRAMMING AND
SIMULATION ON GAZEBO

COMMUNICATION BETWEEN
ROS AND OCTAVE

Figure 1. Scheme of final thesis

11

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

2. ANALYTICAL PART

2.1. ROS: architecture and characteristics

2.1.1. Architecture

ROS structure can be divided in three levels of knowledge: filesystem level,
computation graph level and community level. We will make a previous introduction of

each one of them, to make a deeper analysis afterwards. [2]

Filesystem level. This level contains all ROS resources that we can find on disk. Without
them, it would not be able to work. It contains packages, metapackages, package
manifests, repositories, message types and service types. All these concepts are going to
be defined later. Filesystem level’s main aim is to group the building process of a project

and keep flexibility on each of its parts.

Computation graph level. It is the network of ROS processes that are connected all
together. This includes a lot of concepts that we should know before starting to program
in ROS: nodes, master, parameter server, messages and topics. On this level, any element

can interact with other elements, see information sent between them and exchange data.

Community level. It is the level in charge of enable different communities in order to
transmit information and software. We are not going to focused on this level because it is

more oriented to sharing code to the cloud.

2.1.1.1. Filesystem level.

The same way as an operating system like Windows or Linux, ROS programs are
formed by folders, which define their functions. We can see this in the Figure 2 attached.

12

Filesystem Level

Metapackages

l:qaa%lﬁfaegs% |Messages | | Services | | Code | [Others |

Figure 2. Filesystem level folders[2]

- Packages. They are minimum structures necessaries for ROS to work properly
and can contain configuration files, nodes, etc.

- Metapackages. A group of packages received the name of metapackage. An
example of metapackage could be the navigation stack.

- Package manifests. They are like packages, but with their extension in XML.
Package manifests mainly give information to users about packages, licenses,
compilation files, and so on.

- Message types. It is the kind of information standardized about communication
between processes.

- Service types. They give information about processes structure in ROS.

2.1.1.2. Computation graph level

This level is used by ROS to set up systems, handle all the processes and stablish
communication with more than one computer only. Now we are going to introduce some
concepts that are very useful to understand what computation graph level is about, as

shown in Figure 3.

13

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

‘ Nodes l ‘ Master l Paramsatar
Server

Computation
Graph Level

v

Messages

Services I Bags |

Figure 3. Computation graph level elements[2]

- Nodes. They are processes which are communicated to each other. ROS normally
uses a combination of nodes in order to manage different functions.

- Master. It is the server responsible of the communication between nodes,
messages, topics, etc. Regardless of the number of nodes we have, without the
master they would be useless because we couldn’t send information from one to
another. All computers with ROS installed must have a master. Normally we
launch ROS master with roscore and roslaunch.

- Parameter server. As its name shows, parameter server provides configuration
of nodes parameters.

- Messages. They are the way of communication between nodes. In ROS, we can
develop our own message types, sending different data to other nodes, such as
float, double, integer, etc.

- Topics. A standardized way to say that a node is sending information is that it is
publishing a topic. Topics are routes used by ROS network to give a name to each
message.

- Services. In order to get a response from a node, topics are not the answer.
Because of this, we need to stablish communication previously with services, so
every node that has a service can exchange information with the rest, as shown in
Figure 3. This is done thanks to request-reply communication, due to distributed

systems like ROS do not use client-server or other many-to-many politics.

Service invocation

Publication Topic | Subscription

Figure 4. Communication between nodes[3]

14

- Bags. They are used to save data from nodes, such as sensor data, camera data,

and so on, to develop new algorithms and programs with it.

2.1.2. First steps on ROS

2.1.2.1. Creating a new workspace

Before starting to work with nodes and packages, a new workspace must be
created to have all the information necessary, such as make files or build files. For this
reason, we need to execute the following commands on a Linux terminal, attached in

Figure 5.

robotas@Youbot:~3% cd beginner_tutorials

robotas@Youbot :~/beginner_tutorials$ cd

(arg: 555) source /fopt/ros/"C

(arg: 5) source /fopt/ros/"C

robotas@Youbot:~$ source /opt/ros/%YOUR_ROS_DISTRO%/setup.bash

bash: /opt/ros/%YOUR_ROS_DISTRO%/setup.bash: No such file or directory
robotas@Youbot:~$ source /opt/ros/beginner_tutorials/setup.bash

bash: /opt/ros/beginner_tutorials/setup.bash: No such file or directory
robotas@Youbot:~$ cd beginner_tutorials

robotas@Youbot :~/beginner_tutorials$ ls

(MakeLists.txt alberto_pkg include package.xml src

robotas@Youbot :~/beginner_tutorials$ mkdir build

robotas@Youbot :~/beginner_tutorials$ cd build

robotas@Youbot :~/beginner_tutorials/build$ cmake ..

-- The C compiler identification is GNU 6.3.0

-- The XX compiler identification is GNU 6.3.0

-- Check for working C compiler: fusr/bin/cc

-- Check for working C compiler: fusr/binfcc -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Detecting C compile features

-- Detecting C compile features - done

-- Check for working CXX compiler: /fusr/bin/c++

-- Check for working CXX compiler: fusr/bin/c++ -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Using CATKIN_DEVEL_PREFIX: /home/robotas/beginner_tutorials/build/devel
-- Using CMAKE_PREFIX_PATH: /opt/ros/meledic

-- This workspace overlays: /opt/ros/meledic

-- Found PythonInterp: /usr/bin/python2 (found suitable version "2.7.13", minimum required is "2")
-- Using PYTHON_EXECUTABLE: /usr/bin/python2

-- Using Debian Python package layout

-- Using empy: /usr/bin/empy

-- Using CATKIN_ENABLE_TESTING: ON

-- Call enable_testing()

Figure 5. Creating a new workspace on ROS

Once we have created our workspace, all the packages included in it (and the ones that

we are going to include next too) can be seen with the command Is, as shown in Figure 6.

[3]

15

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

r nuhot:-ﬂ:egmner_tutorwlsihutld:ﬁ Ls
CATKIN IGNORE C(MakeCache.txt CMakeFiles catkin catkin generated devel atest test results

Figure 6. Packages included in created workspace[3]

2.2. KUKA youBot

This robot has been made with the purpose of scientific research and training on an
open source platform. In our case, this robot only has an arm with five degrees of freedom
as further illustrated in Figure 7, but it normally includes an omnidirectional base.

Anyway, we don’t need this one for the application explained.

Figure 7. KUKA youBot

We decide to choose this robot for our project because of its small size and flexibility.
For grabbing mother bases, it can grip them without making too many movements, in
contrast to other types of robots that we can find in the industry. This implies a lot of
advantages, but mainly one: our workspace doesn’t need to be big to let the robot do its

job, as larger ones do.

2.2.1.Overview of kinematic structure

2.2.1.1. How to move KUKA youBot arm to its home position

16

It is crucial to consider that our robot’s joints are based on relative coordinates.
This means that they have encoders whose position depends on a reference one, so there
are not absolute joint angles. The reference position that we mentioned before is also
called home position or rest position, which is a starting point to make different actions
with the robot. The process of going to this position must be slow and smooth, so we will

not break any of robot’s joints. [5]

Moreover, a critical factor is knowing that every time robot’s movement starts, it must
depart from a rest position in order to keep everyone’s safety and robot’s too. For this
motive, we must program our robot to move to home position at the start and at the end
of the process. With the purpose of bringing the arm to its rest position, it is necessary to
follow these instructions as shown in Figure 8. [6]

- o
& &
& &

Figure 8. Robot's arm movement to its home position[6]

In a nutshell, this process consists in moving all robot’s joints to its mechanical stops.
Now we can obtain its Denavit-Hartenberg parameters, but previously an explanation of
it is necessary. Following the instructions mentioned before, our robot must be in rest

position like it is shown in Figure 9 attached.

17

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

il R | g i
Figure 9. KUKA youBot home position

2.2.2. Robot kinematics theory

Before introducing D-H parameters and calculating them, there must be an

introduction of some robotics and mechanics concepts. [8]

Robot kinematics. It is the study of robot’s movement compared to a reference system,
including an analytical description of it as a time function and a relation between robot’s
end location and joints values. We can see an example of this explanation in Figure 10,
which is a direct kinematic model of 2 D.O.F (Degrees Of Freedom) plane robot. Our

joints coordinates are ql and q2, while (x, y) are robot’s end position grid reference.

(x¥)

x = 1, cosq, + 1,cos(q, +¢,)

v = I,seng, +1,sen(q, +q,)

Figure 10. Kinematics model for a 2 DOF robot[8]

18

Direct kinematics problem. Its aim is to get robot’s end position and orientation with
regard to a baseline coordinates system. Previously, we have to know joints angles and

geometrical parameters of robot’s elements.

Differential model. It is a mathematical model, based on Jacobian matrix which

associates joints movement speed with robot end’s ones.

To make things easier, we are going to use Denavit-Hartenberg model to calculate
kinematics model of KUKA youBot.

Inverse kinematics problem. In this case, the issue is the opposite compared to the direct
kinematics one. Here, we know the end positions, but our main goal is getting arm

positions and angles in order to reach it.

2.2.3. Denavit-Hartenberg parameters

J. Denavit and R.S. Hartenberg proposed, back in 1955, a matrix model that gives
a reference system in a systematic way, relative to each tier named i from a joint, so

robot’s kinematic model can be obtained of it.

According to this representation, choosing a reference system for each tier, we can obtain
the next one following 4 basic transformations that only depend on tier’s geometrics

characteristics. [8] These transformations are based on rotations and translations:

¢ Rotation around zj.; axis an angle 0;.
e Translation through z; axis a distance di.
e Translation through x; axis a distance ai.

e Rotation around X; axis an angle o;.

Finally, we will obtain a matrix like the attached one in Equation 1. Also, an example of

how to calculate D-H parameters is shown in Figure 12.

Note: Ca; and Sa; mean cos (a;) and sin («;), respectively.

19

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

co. -CaS6, SaS6, aC6
S0, CaCl -SaCO aS6,
0 Se, Ca, d,
0 0 0 1

=14, = Rotz(6,) T(0,0,d;) T(a;,0,0) Rotx(a;) =

Equation 1. Denavit-Hartenberg parameters matrix

Furthermore, we can see how to obtain twists and lengths in Figure 11, continuing with
D-H model.

Zi—1

@8
link twist link length

Figure 11. D-H link twist and length[8]

Because this process is really annoying to do, as it requires 16 steps according to D-H
model to obtain its parameters for our robot, we are going to use Robotics Toolbox on
MATLAB for it.

Figure 12. Example of D-H parameters obtaining[8]

20

In KUKA youBot case (5 DOF), D-H symbolic parameters are included in following

Table 1. These parameters were explained at the beginning of this section [2.2.3]

Table 1. D-H symbolic parameters for KUKA youBot

These parameters will be used in next sections also for obtaining inverse kinematics in

our project. [3.2.1]

2.2.4.Inverse kinematics

In most of cases, we know the position which we want our robot to go, but it is necessary
to get their joints positions and angles for it. [18] Due to this, inverse kinematics concept

is introduced, as shown in Figure 13.

Figure 13. Example of inverse kinematics[18]

21

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

Basically, inverse kinematics aim is obtaining joint coordinates values for our robot, in
order to its TCP or Tool Center Point gets a specific position and orientation. Moreover,
this solution is not systematic, so it means there is not only a unique one, depending on

robot’s configuration.

We can distinguish between two methods to solve this problem: geometric and
homogenic transformation matrix (like the one we saw in Equation 1). One example of
calculating inverse kinematics for a 2 DOH robot is attached in Figure 14. Furthermore,

it can be seen in that there are two possible options for it.

by geometric inspection
G=a-p

2 solutions
(one for each value of s,) 9= Al L e L

note: difference of ATAN2 needs
to be re-expressed in (-n ,]!

{91,923 upjerr {9192} vown/riGHT

g," e g,"” have same absolute
value, but opposite signs

Figure 14. Inverse kinematics of 2R arm[18]

As shown in Figure 15, we know position of arm’s end, called P, and with trigonometrical

relations we can obtain angles gl and g2 to reach that specific position.

P direct kinematics
| -
Ay _. P=he+lc,
I, - py=lis +hsp,

L'J
data q,, q, unknowns

Px X

“squaring and summing” the direct kinematics equations
pl+p?-(12+ 1) =21 (¢ ¢ +5,5) =21, 1,6,

and from this

¢ = (p2+p2-12- L)/ 2L, s,=+/1-¢2, q,=ATAN2{s, c,}

must be in [-1,1] (else, point p 2 solutions
is outside the robot workspace!)

Figure 15. How to calculate g1 and g2 for 2R arm[18]

22

From KUKA youBot perspective, it is a big problem, where we will reduce robot inverse
orientation kinematics problem from 5 D.O.F arm to 3, as shown in Figure 16 . Moreover,

it is notable to explain each equation to understand this better in a mathematical way.

Figure 16. KUKA youBot model for obtaining inverse kinematics[20]

If we have a given point, in this case called o, and also a R matrix, we can get point oc,

as Equation 2 shows, where R is rotation matrix of the robot.

xc 0 ox — (L5 + L6)r13
zc 1 oz — (L5 + L6)r33

Equation 2. Inverse kinematics for KUKA youBot orientation

In terms of orientation, this problem is solved, but we also need to know its position. That
IS our next step to achieve. To facilitate equations comprehension for the reader, Figure
17 is attached. Moreover, it should be kept in mind that all these parameters have a range

of values (minimum and maximum) which can be seen in Figure 19, provided by the

manufacturer.

23

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

Figure 17. KUKA youBot manipulator scheme in XYZ axes[20]

Thanks to its projection to (xo,yo0) , gl angle can be obtained as we can see in Equation
3.

_1 (Ve
1= 1 ()
ql = tan oy

Equation 3. Q1 angle

In order to obtain g2 and g3 angles, we will apply some trigonometric rules like cosine
one for triangles, concluding with their expressions shown in Equation 4 and Equation 5,
which will be computed on MATLAB, as we will see in next sections. [3.2.1]

V1 — 4R?
2R

q3 = tan™?! <-I_-

Equation 4. Q3 angle

Jx2+y2—11 L4sin(q3)
2 =tan |+ < —tan™? ()
== tan <— Ze — L2) 4 \L3 '+ Lacos(q3)

Equation 5. Q2 angle

q4 = —q2—q3+m/2

Equation 6. Q4 angle

24

2.2.5. Technical specifications

For this part, we are going to start with robot’s joints first. They are formed by a
total of five brushless flat motors EC45 and EC32 models, like the ones we can see in

Figure 18, plus gearheads and encoders too.

maxon EC 32 flat maxon EC 45 flat

Figure 18. Joints motors[8.2]

Both motors, despite not having big dimensions (only 32 mm diameter), can provide 15-

50 W of power.

About robot’s arm dimensions, it is approx. 66 cm long, with a two-finger gripper at the
end of the arm, being able to grab objects of 500 g max. We can see this with more detail

in Figure 19.

youBot Arm Dimensions

655 mm
608 mm

550 mm
518 mm

AS5: +1-167,5°
A4: +1-102,5° —{—

A3: +146°/-150° =

A2: +00°/-65° —t% 147 mm

72 mm
A1: +/-169°
0 mm

437 mm

302 mm

= = A e 1
Joint Angles / Height (]

Figure 19. Robot’s angles and height[8.1]

25

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

2.2.6.Connections

For connecting 1/0 devices, KUKA youBot has USB (keyword and mouse) and
VGA (PC monitor) ports, so the rest of connections, like HDMI or DVI, require
appropriate adapters, as can be seen in Figure 20. Joint’s motors can be controlled thanks
to EtherCAT and Ethernet. Moreover, it has a ON/OFF port obviously to provide power

to robot.

Figure 20. KUKA youBot connections

2.3. Camera

We must keep in mind that KUKA youBot already has a camera, specifically a
Bumblebee Stereo Camera, but its accuracy and range are not very suitable for our
application. [4] On account of this, thanks to VGTU’s Mechatronics and Robotics
department, we acquired a Siemens Simatic Vision Camera, in detail a MV440 model,
which is designed for industrial recognition and assessment of multiple pixels. A picture

of this camera can be seen in Figure 21.

26

Figure 21. Siemens MV440 camera[4]

A little review of its most important technical specifications is shown in Table 2.
We can see there that, in terms of image recognition, our camera is really fast, capable of
watching objects with a speed of 10 m/s. It is a great advantage compared to KUKA’s
camera because we can detect mother bases in a shorter period of time and, from an

industry perspective, this implies a faster production process.

Electronical and reading specifications:

24 CCD IP 67 10 4 150

Table 2. Electronical and reading specifications

Furthermore, camera’s reader has a resolution of 1024 x 768 pixels, really good for
making quality photos with high definition. This is crucial for our application because a
high resolution is necessary for detecting mistakes in mother bases, such as components
not well welded and so on. An image of our camera with all its connections and
components is attached in Figure 22.

27

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

ASM female connector

‘Combined cable socket for the power
supply, /O connectors and RS-232
Housing SIMATIC MV440

Internal lamp

LED display for operating mode
Protective lens cover @ 65

Nameplate
Ethemnet socket (PoE)

@0 ©0

@
@
€]
®

Figure 22. MV440 camera connections and components[4]

In respect of connection ports, our camera works with Ethernet and obviously its power
supply port. The Ethernet one is used to control our camera with a PC, so it must require
a network connection via TCP/IP. Combined cable socket (number 6 in Figure 11) is used

for power supplying, I/O connectors and RS-232 interface.

28

2.4. Computer vision on Octave

Instead of using MATLAB, we are going to develop the part relative to computer
vision with Octave, which functions and programming are really similar to MATLAB,
but it is an open source IDE, which means that nodes communications between it and
ROS will not be a problem in terms of permissions, keys, etc. Octave is a MATLAB
compatible software, so every program made in MATLAB can be compiled in Octave
and vice versa. Moreover, thanks to its working on Linux softwares, Octave can take any
kind of camera for image acquisition, not like MATLAB which only accepts a specific

amount of them, as shown in Figure 23.

Manufacturer-Specific Support

Image Acquisition Toolbox supports the following manufacturers through manufacturer-specific support:

+ Kinect for Windows Sensor

+ Point Grey

+ Hamamatsu

+ QImaging

+ Matrox Frame Grabbers

+ National Instruments Frame Grabbers
« Teledyne DALSA Sapera

» Teledyne DALSAIFC

Imaging Standards Support

Image Acquisition Toolbox supports the following imaging industry standards:

+ GigE Vision

+ GenlCam GenTL

+ DCAM Compatible FireWire (IIDC 1394)
+ 08 Generic Video Interface

- Video Capture Device Support from Image Acquisition Toolbox

Figure 23. MATLAB supported vision cameras

2.4.1.Programming on Octave. Artificial vision most used
commands[11]

We are going to use mainly a combination of these basic commands on Octave, but
they are the same as MATLAB:
29

E----------II ERERITIT 1T I I 1T 1T I R B EEEENENENNNN NN
e Imshow. It shows an input image.
e Imread. It loads an image from disc on a | matrix, accepting multiple formats as
Jpg, .tif, .omp, etc)
e Imwrite. It saves an | image on disc with a specific format.
e Imhist. It calculates an histogram from a | image and it saves it on a variable.
e Imtool. Tool for image processing that allows to zoom, measure, visualize and

manipulate histograms, contrast ajust and shining.

We can see some examples of code and image processing, made on MATLAB, which

work on Octave perfectly. Images attached in Figure 24, Figure 25 and Figure 26.

%%

%Shows an image through screen
I=imread('brazo_robot.jpg");
figure

imshow(l)

%%

whos

%%

figure
J=imread('Herolmage_PCB.jpg");
imshow(J)

whos

figure

W=rgb2gray(J); % convert image into greys with rgh2gray

imshow(W)

30

. Figure 1 - = X
Archivo Editar Ayuda

© z+ z- & Insertartexto [y Ejes Malla Autoescalado

Figure 24. Robot’s arm image with Imshow[9]

 Figure2 - u] X
Archivo Editar Ayuda

@ z+ z- ¢ Insertartexto [y Ejes Mala Autoescalado

L1120 122.04)

Figure 25. PCB image with Imshow[9]

4 Figure 3 — o D
Archivo Editar Ayuda

@ z+ z- ¢ Insertartexto L[y Ejes Mala Autoescalado

dl
Figure 26. PCB image converted to greyscale with rgh2gray[9]

31

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

2.4.2. Computer vision techniques for error detection in PCBs
[11]

In order to detect components not well welded, corrosion or other type of errors in
mother bases, we have to introduce a definition, called morphology, which is going to be

applied on Octave.

Morphology is a matematical concept, introduced by G. Matheron and J. Serra at Mines
School of Paris in the 1960s, which is applied for changing and understanding objects
structure that appear in images. An important concept in morphology is the structuring
element, which is the responsible of defining form and extension of morphological
operation. This means that we can apply morphology on a specific zone of our picture

without changing the rest, thanks to structuring element.

First of all, we consider that readers have a previous knowledge of Set Theory and its
operations such as union, intersection, complement, and so on. For our project, we are

going to use two main morphological operations: dilation and erosion.

e Dilation. This operation is similar to the XOR logical port, where we have an
image A and structuring element B, as it is shown in attached example in Equation
7.

0,00 (0,1) (0,2)
AXORB ={(1,0) (1,1) (12)
2,00 (21 (22)

Equation 7. Example of dilation matrix

Result of dilation is an image which is a set of all vectors possibles of adding pairs
elements of both A and B. A graphical example of this can be seen in Figure 27.

32

U

0
@fH:

01 2 3 4 5 0 1 2 3 465 01 2 3 465
o 1]
1 1
2 2
U, u U, u
4 4
5 5
0 1 2 3 4 5 01 2 3 4 5 01 2 3 465 01 2 3 4 5

0
1
2
U U,
a
5

Figure 27. Graphical example of dilation matrix[11]

M e woN SO

0 1 2 3 45

1"
L N

Erosion. This operation implies a decrease of active pixels number compared to
our original image. Its main application is to eliminate details of small size on a
binary image. We can see a graphical example of erosion in Figure 28 and also a
practice of it in Figure 29, in order to count the number of screws in attached

image.

012345 012 3 4 5 012 3 45 01 2 3 45

o B oW o=
L N]

A B Ao At

Figure 28. Erosion graphical example[10]

Figure 29. Erosion practical example, before and after. [10]

33

E---------IIIIIIIIII [11T 1 I I I I HHENENNNNNNEEE
As we have seen in last picture, erosion is a very useful tool to count pieces or
distinguish different elements of them, with a view to apply other morpholical

operations so we could know their area, labelling, etc.

Main commands on Octave are the following: [11]

- Ses=strel("disk”, R). Structuring element with size disk of radium R.

- Se=strel("line”, long, grad). Lineal structuring element with height long, grad
specifies angle in grades on counterclockwise.

- Se=strel("square”, w). Square structuring element of w pixels.

- D=imdilate(BW, se). Picture dilation with structuring element se.

- E=imerode(BW, se). Picture erosion with structuring element se.

- C=imclose(BW,se). Morphological closing of BW image with element se.

- O=imopen(BW, se). Morphological opening of BW image with element se.

- Z=imsubtract(X, Y). Subtraction of images X and Y.

Previous to apply morphological operations, we must filter our images to eliminate pixels
that can ruin fails detection process. Filtering aim is to modifie images in order to make
them more proper for later transformations. One thing that should be considered is that
filtering can eliminate desired characteristics of our image, so it needs to be applied

carefully.

Depending on which mathematical expression has been used, we can distinguish between
lineal and non-lineal filters. From lineal filters perspective, there are two main types:
average filter and gauss filter. From no lineal filters view, most important one is median

strainer.

In our project we are going to focused on lineal ones, mainly on gauss filter, because they
have better applications for filtering out pixels that are less important in our image. Gauss
filter is based on mathematical bell of the same name, which downgrades less image at

issue than average filter, keeping details and outlines.

An example of filtering is shown in Figure 30, which corresponds to a photo of a one-
euro coin. Here first image has noise (specifically a salt and pepper one) and second one

is after applying median strainer.

34

Figure 30. Example of filtering[10]

Moreover, our last computer vision method that will be applied is template matching,
which is based on statistical concept of correlation coefficient. Level of association
between two variables (in our case it will be pictures) is defined as correlation coefficient,
whose ranges change between -1 and 1. This means that if two variables have a correlation
of 1, they are identical. Mathematical formula is attached in Equation 8 . However, we

are not going to get into this concept deeply, but in image processing one instead.

_ E[(X - ux)(y - Uy)]
Pxy = 00y

Equation 8. Correlation coefficient[9]

In terms of computer vision, correlation will be translated to matrix correlation, simply
searching for elements in common between images. Each pixel of search image with
coordinates (xs, ys) has intensity matrix Is(xs, ys) and another one in the jig with
coordinates (xt, yt) has intensity matrix It(xt ,yt). Therefore, absolute difference in the

pixel intensities is defined as the following: Diff(xs, ys, xt, yt) = | Is(xs, ys) — It(xt, yt) |.

35

E----------II ERERITIT 1T I I 1T 1T I R B EEEENENENNNN NN
Lowest differential provides an estimate for best position of template within main picture,

being shown in Figure 31, where elements that match are marked by an asterisk.

Figure 31. Example of template matching[10]

2.4.3. PCBs. Production and use errors.

During production process and also when PCBs end their life cycle, there are some
different types of errors that can produce their bad working, such as corrosion,
components not well welded or broken, etc. Identification of these errors is purely visual
and done manually by workers, but in some occasions, they are difficult to see for human

eye.

In our case, we are going to use PCBs from printing toners, with a standard one, as it is
shown in Figure 32, being compared with others that have broken pads or other types of

errors.

& .*_r..-!!.‘“\

Figure 32. PCB ML/XEROX model used for detection

36

Thanks to these reference images, we are going to compare them easily, due to the fact
that there are big differences between well working PCBs and underwhelming ones, as

we can see in the following picture, Figure 33.

Figure 33. Bad PCB ML/XEROX model

On this image it is quite obvious that there is too much welding in pads and also some

components such as capacitors are missing.

To sum up, we are going to do a recognition that can be seen by workers, but in an
automated way, as it implies better production process as well as more safety for

employees due to exposition of noxious fumes.

37

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

3. DESIGN PART

In this section we are going to expose and defend all settings and programming for
our project. For this reason, design part is split in 3 parts, relatives to real workspace,

robot programming and image processing.

3.1. Real workspace: settings and preparation.

3.1.1. Camera connections.

Because of Siemens MV440 camera does not work on Linux, due to it only has
license on Windows, we have to use another computer besides of the one we use for robot
programming.

In terms of camera connection to PC, it will be similar as the following in Figure 34, but
there is not automation system needed for our project, so we are going to connect ASM

cable directly to power supply.

PC/programming device with
user interface

Ethernet cable

ASM 456 Automation system

supply voltage

ASM cable PROFIBUS DP

Figure 34. Connection between Siemens camera and PC[4]

38

For connecting camera to voltage, we needed to shell part of power supply cable given
by manufacturer, attached in first picture of Figure 36, where red wire is connected to
plus pin and blue one to minus. In order to connect these cables to power supply, we use

a hitch as shown in second image of Figure 35.

Figure 35. Camera connections to voltage[3.1.1]

Our power supply provides 24 V DC, enough to make camera work, as we can see in
Figure 36, where yellow cable corresponds to plus and blue one to minus, which are

connected with camera wires as we saw in previous paragraph.

Figure 36. 24 \VV DC power supply[3.1.1]

39

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

3.1.2. Platform instalation for camera.

It is neccesary to install a platform, as camera doesn‘t disturb robot‘s movement and
provides good quality photos for computer vision. Furthermore, camera has different
holes in its back part and a template where we can screw it to a proper area, shown in

Figure 37.

30 | 11,25

331

e o

37,6

Figure 37. Holes dimensions for screwing camera to platform[8.3]

Included in camera‘s box, there is a template which we connect to the platform and the
camera to it as well. Our camera needs to be in a vertical position in order to take photos
of PCBs properly. When we are trying to detect errors in this kind of devices, it is better
to do it in this position, as programming will be easier for distinguishing PCBs
components of other elements appearing in pictures. Consequently, we screwed the

template to the platform as shown in Figure 38.

40

Figure 38. Template and camera screwed to platform[3.1.2]

As a result, our robot and camera workspace remain as we can see in Figure 39, where

they don’t bother each other’s working.

Figure 39. Workspace with robot and camera installed [3.1.2]

41

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

3.2. Robot simulation.

3.2.1. Forward and inverse kinematics equations obtained on

Robotics Toolbox.

To prove our code developped on MATLABJ7.3] and obtain trustworthy values for
forward and inverse kinematics equations of KUKA youBot, we are going to test it as

shown in Table 3, where we put different values for the angles with the purpose of getting

point position. Both Q4 and Q5 angles are introduced by user, regardless of values for the
rest. [20]

Table 3. Test values for MATLAB Robotics Toolbox on KUKA youBot

Once we apply our algorithm on MATLAB Robotics Toolbox, we can conclude that using
this test values and also D-H parameters for KUKA youBot, it works perfectly, as we can
see on Figure 40, Figure 41 and Figure 42. In these pictures, we tested our model and

obtained D-H parameters for KUKA youBot.

0.4

02

0.6]

0.2 .

06 4

D.04€0
-D.0000
0.6550

0 Ol'l
[] em]

4
3 XYZ_tool
2

YouBot Manipulator Arm

Figure 40. Test 1 for KUKA youBot on MATLAB

42

0.6 =0, 0000
-0.3070
4
: 0.3020
0.2 4
~N 0
02 -
04 -
08
05 T et
T = 05
0 R
~ s 0
05 T~ s
Y X

Figure 41. Test 2 for KUKA youBot on MATLAB

08 . -0.2440 £244)

04 -0.0000 21751

' 0.3650 0,300

02 T od

N O

02 YouBot Manipulator Arm
04

06

0.5 : gt
o, e 05

Figure 42. Test 3 for KUKA youBot on MATLAB

As a conclusion, we obtained these values as a prove that our theorical model, which will
be applied on our C++ code, is accurate. [3.2.3] Moreover, this code will follow the
equations shown in previous sections. [2.2.4] For the inverse kinematics part, we obtain
the values of Q angles thanks to the code attached in [2] and [3].

43

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

Therefore, D-H parameters for the KUKA youBot are shown in Table 4, where L1, L2,
L3, L4, L5 and L6 are known values from our robot specifications[Figure 19] and qi

angles are obtained on inverse kinematics code.

Table 4. D-H parameters for KUKA youBot obtained with MATLAB Robotics Toolbox

Finally, these angles values can be seen in the following Table 5, which will be applied

in our C++ code afterwards.

-1,9526

-2,0192

1,73184

3,14

Table 5. Values for Qi angles of KUKA youBot

44

3.2.2. Inverse Kinematics programming for KUKA youBot.

First of all, KUKA youBot model needs to be initialized. Then, we implement our
model with youbot_driver package, downloaded from GitHub webpage. After that, we
need to test robot’s movement, as its gripper can be calibrated in order to take our PCBs
in a proper way. This is done thanks to hello_world_demo program, included in the
package mentioned before, where the robot starts to move and its gripper as well, stopping
In its rest position. In terms of our program, we are going to modify this one and some
inverse kinematics code that we can find on the Internet, as well as adding our

communication with computer vision part. [17]

Next, we need to program inverse kinematics of our robot, so we will know each notable
angle and position for our joints. Then, with the results obtained by computer vision part,
we should configure robot movement to reach the positions we wanted in first touch.

For the inverse kinematics part, we programmed it on C++, where now we are going to
explain each part of the code and what it does in next sections. Furthermore, it is
remarkable that relevant positions were taken empirically, configuring our KUKA
youBot with PC keyboard, following the instructions given inside its user manual, as it

can be seen in Figure 35. This code is included in [2]. ROS C++ code, part keyboard.cpp.

45

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

8.1.4 Using the ROS wrapper for the KUKA youBot API
To start the driver you have to open a terminal window and type:
$ roslaunch youbot_codl youbot_oodl_driver.launch

Per defanlt the driver will assume a KUKA youBot base in combination with one arm. In ease only
the base or only the arm is available the wrapper will print according error messages but continue to
work with the components that are found, as long as proper configuration files are provided as deseribed
in Section 5.2.2.

In case you want to visualize the robot and its movements e.g. with the rviz tool, open another
terminal and type (see also Section 8.1.5):

$ roslaunch youbot_oodl youbot_joint_state_publisher.launch

The youbot_oodl package comes with two simple example applications. The first one is a keyboard
hased teleoperation application for the base. You can start it with

$ rosrun youbot_oodl youbot_keyboard_teleop.py

The following keys can be used to move the KUKA youBot,

u i o
j k 1
m s

where <i> means forward, <,> backward, <j> left, <1> right, <m> turn left on spot, <.> turn right on
spot, <u> move along an are to the left and <o> move along an are to the right. All other keystrokes will
stop the KUKA youBot.

NOTE: The key bindings work best with a German keyboard layout. In ecase of a different layout you
might consider to adapt the souree code.

The second sample application allows to set joint angles for an arm. It asks for values for each arm.
When all values are specified, the command will be executed. You can start the sample with:

Figure 43. Instructions for using KUKA youBot with keyboard [3]

3.2.3. Robot programming on C++

First, we should remark that for our program we are following the right hand rule,
meaning that all robot‘s movement are going to follow the reference system attached in
Figure 44, but in our case without onmidirectional base. Positive X-axis direction is
straight outward from the front of our robot. Positive Y direction is on the letf side and Z

IS positive in the upward one.

46

Wheel #1 Wheel #2

\Wheel #4

Figure 44. Reference system for KUKA youBot programming [5]

Next step remarkable that we are going to take is explaining each part of code relative to

our robot. [1]

#include "youbot/YouBotBase.hpp"
#include "youbot/YYouBotManipulator.hpp™
#include <math.h>

#include <studio.h>

#include <ImageService.h>

using namespace youbot;

int main() {

double px=0,pz=0,py=0;

double theta_base=0, theta_2=0, theta_3=0, theta_4=0;
double theta_link_1=0, theta_link_2=0;

double theta_link_1p=0, theta_link_2p=0;

/* configuration flags for different system configuration (f.e. arm without base)*/

47

E----------IIII | I D B B

bool youBotHasBase = false;

bool youBotHasArm = false;

/* define speeds */
double translational\VVelocity = 0.05; //meter_per_second

double rotationalVelocity = 0.2; //radian_per_second

[* pointers for youBot base and manipulator */
YouBotBase* myYouBotBase = 0;
YouBotManipulator* myYouBotManipulator = 0;

/* obtain response from Octave */

res=req.create_response_();

As we can see here, first variables are configured with value 0 or False in defect, except

for translational and rotational speeds. This is because of they will change during each

loop that we will apply in a relative form, so it means we are using increments, not

absolute coordinates. Also, we put some youBot base related variables due to the fact that

in all simulators available for KUKA youBot they have it included, so we will not have

problems with it. Finally, we have to receive a response from our image processing

program, so we include a data structure res for it.

try {

myYouBotBase = new YouBotBase("youbot-base”, YOUBOT_CONFIGURATIONS_DIR);

myY ouBotBase->doJointCommutation();

youBotHasBase = true;
} catch (std::exception& e) {
LOG(warning) << e.what();

youBotHasBase = false;

¥

try {

48

myYouBotManipulator = new YouBotManipulator("youbot-manipulator",
YOUBOT_CONFIGURATIONS_DIR);

myY ouBotManipulator->doJointCommutation();
myY ouBotManipulator->calibrateManipulator();
/I calibrate the reference position of the gripper

/ImyYouBotManipulator->calibrateGripper();

youBotHasArm = true;
} catch (std::exception& e) {
LOG(warning) << e.what();

youBotHasArm = false;

¥

This part is the relative of proving robot configurations such as gripper‘s or arm'‘s.

[* Variable for the base.
quantity<si::velocity> longitudinalVVelocity = 0 * meter_per_second;
quantity<si::velocity> transversalVelocity = 0 * meter_per_second,;

quantity<si::angular_velocity> angularVelocity = 0 * radian_per_second;

[* Variable for the arm. */
JointAngleSetpoint desiredJointAngle;

//GripperBarSpacingSetPoint gripperSetPoint;

Then, we define robot speeds variables, as well as joints angles.

try {
/*
* Simple sequence of commands to the youBot:

49

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

*/

[*if (youBotHasBase) {

/* move forward */

[*longitudinalVVelocity = translationalVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;
myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);
LOG(info) << "drive forward";

SLEEP_MILLISEC(2000); /*we always put a little delay between moves*/

/* move backwards */

[*longitudinalVVelocity = -translationalVVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;
myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);
LOG(info) << "drive backwards";

SLEEP_MILLISEC(2000);

/* move left */

[*longitudinalVelocity = 0 * meter_per_second,;

transversalVelocity = translationalVVelocity * meter_per_second,;

angularVelocity = 0 * radian_per_second;

myY ouBotBase->setBaseVelocity(longitudinal Velocity, transversalVelocity, angularVelocity);
LOG(info) << "drive left";

SLEEP_MILLISEC(2000);

/* move right */

[*longitudinalVVelocity = 0 * meter_per_second,;

transversalVelocity = -translationalVelocity * meter_per_second;

angularVelocity = 0 * radian_per_second;
myYouBotBase->setBaseVelocity(longitudinal Velocity, transversalVVelocity, angularVelocity);
LOG(info) << "drive right";

SLEEP_MILLISEC(2000);

50

[* stop base */

longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = 0 * meter_per_second;

angularVelocity = 0 * radian_per_second,;
myYouBotBase->setBaseVelocity(longitudinal Velocity, transversalVelocity, angularVelocity);
LOG(info) << "stop base";

3

On this part, we test our robot‘s base movement, in order to prove if all variables are
working properly on Gazebo later.[3.2.4] This means that it will be forward, backwards,
left and right with breaks of 2 seconds between them.

if (youBotHasArm) {

/* unfold arm

* position were taken empirically using keyboard and KUKA youBot
*/

desiredJointAngle.angle = 2.9624 * radian;
myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);
SLEEP_MILLISEC(1000)

desiredJointAngle.angle = 2.5988 * radian;
myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);
desiredJointAngle.angle = -2.4352 * radian;
myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
desiredJointAngle.angle = 1.7318 * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
desiredJointAngle.angle = 2.88 * radian;

myYouBotManipulator->getArmJoint(5).setData(desiredJointAngle);

51

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

[*desiredJointAngle.angle = 3.14 * radian;

myY ouBotManipulator->getArmJoint(5).setData(desiredJointAngle);
desiredJointAngle.angle = 1.9526 * radian;
myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);
desiredJointAngle.angle = -2.0192 * radian;
myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
[*desiredJointAngle.angle = 1.73184 * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
*/LOG(info) << "unfold arm™;

SLEEP_MILLISEC(4000);

On this section, the meaning of our code is the same as in previous part, but here we test
robot‘s arm, putting the desired joint angle as robot‘s home position, so it will always

start its movement from it every time we compile the code.

std::cout << M -m-mememmemeen Co-ordiantes of Point Location ------------ " <<endl;
if(res.myPCB=0){

[* co-ordinates taken empirically for end positions where we are going to put our PCB */
x_cordinate=-0.1225;

y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in bad conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;
std::cout << " X: " << x_cordinate << endl;

std::cout << " Y: " <<y cordinate << endl,

std::cout << " Z: " << z_cordinate << endl;

52

¥
if(res.myPCB=1){

x_cordinate=-0.2225;
y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in good conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;
std::cout << " X: " << x_cordinate << endl;
std::cout << ™ Y: " <<y cordinate << endl;

std::cout << ™ Z: " << z_cordinate << endl;

}

double px = x_cordinate + px_p;
double py = -y_cordinate + py_p;

double pz = z_cordinate; //0.0432;

This part explains how we manage to get Octave‘s variables from computer vision part,
as well as configuring aim points(where PCBs will be left) which were taken empirically.
[3.2.2]

i THETAS FOR ARM-LINK 1.2 3 /i

double 11 =0.302 - 0.147;

53

E----------IIIIII | I R B |

double 12 = 0.437 - 0.302;

double 13 = 0.655 - 0.437;

double Xxc = sqrt(px*px +py*py);
double zc¢ = pz;

double phi_c =0;

double d = sgrt (xc*xc + zc*zc);

std::cout << " d =" << d << std::endl;

if (d >=0.500){
double theta_link_1 = atan2(zc,Xc) ;

/lbreak;

}

else if (d == 0.508) {
double theta_link_1 = atan2(zc,Xc) ;

Ilbreak;

}

else if (d > 0.508) {
std::cout << " Co-ordinate Points are out of the work space. \n" ;
std::cout << "Enter New Co-ordinates Points. \n" ;

/lbreak;

}

else {

54

double xw = xc - 13*cos(phi_c);

double zw = zc - I13*sin(phi_c);

double alpha = atan2 (zw,xw);

double cos_beta = (I1*I1 + 12*12 -xw*xw -zw*zw)/(2*11*12);

double sin_beta = sqrt (abs(1 - (cos_beta*cos_beta)));

double theta_link 2 = 3.1416 - atan2 (sin_beta, cos_beta) ;

double cos_gama = (xw*xw + zw*zw + I11*I1 - 12*[2)/(2*I1*sqrt(xw*xw + zw*zw));

double sin_gama = sqrt (abs (1 - (cos_gama * cos_gama)));

double theta_link_1 = alpha - atan2(sin_gama, cos_gama);

double theta_link_1p = theta_link_1 + 2*atan2 (sin_gama , cos_gama);
double theta_link_2p = - theta_link_2;

double theta_2 = theta_link_1p;

double theta_3 = theta_link_2p;

double theta_4 = (theta_2 + theta_3);

std::cout << " Base Angle " << theta_base << std::endl;
std::cout << " Link-1 Angle " << theta_2 << std::endl;
std::cout << " Link-2 Angle " << theta_3 << std::endl;

std::cout << " Link-3 Angle " << theta_4 << std::endl;

Here, we put our equations solutions for inverse and forward kinematics translated to C++

code, so the robot will configure its joints to reach our desired positions.

desiredJointAngle.angle = theta_base * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

55

E----------IIIIIIIII (I T B |

//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (2.5988 - theta_2) * radian;
myY ouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

JISLEEP_MILLISEC(1000);

desiredJointAngle.angle = (-2.4352 - theta_3) * radian;
myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

JISLEEP_MILLISEC(1000);

desiredJointAngle.angle = (1.7318 + theta_4) * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

/ISLEEP_MILLISEC(1000);

/ldesiredJointAngle.angle = -3.3760 * radian;
//myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

SLEEP_MILLISEC(5000);

desiredJointAngle.angle = (1.7318-0.4 + theta_4) * radian;
myY ouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
SLEEP_MILLISEC(1000)
¥
}
}

[ldesiredJointAngle.angle = 0.0 * radian;

//myY ouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

[*I* fold arm (approx. home position) using empirically determined values for the positions */

56

desiredJointAngle.angle = 0.1 * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

desiredJointAngle.angle = 0.011 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -0.1 * radian;
myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
desiredJointAngle.angle = 0.1 * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
LOG(info) << "fold arm™;

SLEEP_MILLISEC(4000);

} catch (std::exception& e) {
std::cout << e.what() << std::endl;

std::cout << "unhandled exception" << std::endl;

¥

[* clean up all variables*/

if (myYouBotBase) {

delete myYouBotBase;
myYouBotBase = 0;

}

if (myYouBotManipulator) {
delete myYouBotManipulator;

myYouBotManipulator = 0;

¥

57

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

LOG(info) << "Done.";

return O;

}

Finally, we set all the variables to O, in order to start from the same beginning every time

we compile this code.

3.2.4. Simulation on Gazebo.

First of all, we have to consider that every package related to Gazebo(and ROS as
well) should be installed, if not, we have to reinstall them again. To run simulator, we
simply put this command on terminal rosrun gazebo ros_gazebo, opening Gazebo as

consequence. [5]

In order to add KUKA youBot to Gazebo workspace, we insert this model in the options
that simulator give us, as well as a table similar to the one who is going to be used in

reality, as it is shown in Figure 45.

Figure 45. KUKA youBot on Gazebo[3.2.4]

58

However, we need to try to make simulation model as accurate as possible in relation to
real workspace. Due to this, a camera and cube of 5 cm Gazebo objects are inserted to it,
basically to correspond in a better way to Siemens MV440 camera and PCBs. As we can
see in attached , PCBs size was measured in order to select an object as similar as possible
in Gazebo. This is shown in Figure 46.

Figure 46. Measurement of PCBs[3.2.4]

In following Figure 47, we can see that camera has no gravity because it is more
comfortable to put it this way than constructing a platform in simulation. Otherwise, if

we didn’t turn off gravity option, camera would fall down.

@@ 8|+ Z|nh|k0]

Figure 47. Workspace constructed in Gazebo[3.2.4]
59

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

Once we have our workspace built in the simulator, we have to compile our code
developed on C++ for our robot and see how it responds. Before doing this, it should be
pointed out that simulation doesn‘t correspond to reality exactly, as we saw in previous
paragraphs, where KUKA youBot model provided by Gazebo has both omnidirectional

base and arm, despite of our real robot only owns the last one.

Next step is to launch our code developed on C++ with the command roslaunch
mypackage myrobot.launch. After this, our robot starts to move in simulator workspace,
grabbing the cube and putting it in the left side of the table or in the right one, depending
on the result given by image processing part, which needs to be compiled previously.

60

3.3. Computer vision programming.

3.3.1.License Automation Manager from Siemens.

Before taking photos with Siemens camera, we need to install its licenses and
software in order to work with it properly. [4] Due to this, working with Siemens MV440
camera on Linux is not possible, so it was necessary to install every single package in a
second PC with Windows support and stablish communication between computers
afterwards. Furthermore, we have to take into account that network between these two
PCs will be via Internet and another Siemens program that we can download in every

platform, but this part will be explained in next sections. [3.3.4]

Primarly, camera has to be connected physically to the PC (this means both power supply
and Ethernet wire) before installing the software, mainly because IP camera configuration
has to be done to communicate camera and computer on PRONETA(another Siemens
software included in instalation CD), as we can see in attached Figure 48.

PROMETA SIMATIC My440 HR

R B

vgtu1085793 j, simatic mv440
'w-._

Figure 48. PC and camera IP connection[3.3.1]

After this part, license needs to be installed with License Automation Manager, keeping
in mind previously that IP address put on PRONETA must be the same for this program
as well. Next step is installing user interface on our computer, with Internet connection

needed, as we are going to use web browser, following attached Figure 49.

61

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

?-ﬁ Reset to Factory Settings

h1 Set o5 Topalogy Starting Point

Figure 49. Opening web browser in PRONETA for user interface[3.3.1]

Once we open user program, communication between our two PCs can be stablished, as
in computer which software is Linux, we can put IP address of the reader in a web browser
and work with both of them at the same time. An example of configuration on Internet

Explorer is attached in Figure 50.

2 C @ Notsecure | 192.188.100.100 v @
SIEMENS SIMATIC MV440 HR 2

Code reading systems

Device Information:

» Homepage
» Adjustment
¥ Live image

5
ion V07 00.02_06 (TG+, PG)
Release Notes

» Monitor Licanses & Copyrights

+ Browser test

1P mode: DHCP server
Padgress. 192.168.100.100

Start adfjustment with WebStart

Figure 50. Code reading configuration on web browser[3.3.1]

Next step is to adjust camera settings according to user’s will, as its calibration is needed
before saving all the pictures for image processing. Tough this part will be explained in
next section. [3.3.2]

62

3.3.2.Image acquistion mode for Siemens MV440 camera.

Before putting our pictures taken by the camera on image processing part, it is necessary
to configure our reader and trigger mode. Three types of image acquistion can be
distinguished, but we are only going to use one of them. This is going to be the triggered
mode, where camera takes photos only when we press the refresh button. Therefore, user

has to be focused on pulling the trigger every time PCBs are changed for their recognition.

Another reason to use this mode is that we can control the brightness of each picture
between each camera shot, so error detection will be easier afterwards. [4]

Finally, we can also adjust camera‘s flash in order to take better quality photos with more
or less resolution. The only part which cannot be configured in real time is image color,
as it always be binarize picture, so we need to transform it later when saving to a directory.
Before transfering pictures to Octave directory, user has to select which part of the photo
wants to be processed. An example of this proceeding is enclosed in Figure 51.

_Enghsh v

Adjust reader
Set image

DL Instructions ~

1. Focus image
2. Set exact triggering
3. Verify read result

ROI Exposure/Focus

b Connections

Pk Programs

»Run

b Options:

P Information
P Maintain

P Stop

b Harne

@ POWER
2 ETHERNET
@ STATE/SF

4. Optimize read quality “

Recognize code type

— Image settings
Image format: ol Il

Resolution

Exposure <
| Mova the mouse aver the ROI
his i selected.
erform the action according to the appearance
ofthe cursor

me Image: Triggered v| o e, %j =

Last result:

Max. exp. time: ROI 1.Decader

Max. brightness:

I™ Exp. offset

500-400 -300 -200 -100 O

Time limit;

5]

Start processing:

Read Error(No 1D/20 code found in step 1)
Trigger delay. 50 ms

Distortion corr..

Save program >> | Note: processing is activated

Cursor: X: 77; Y: 90 | ROL: X: -88; Y: 120; W: 476; H: 304

Figure 51. SIMATIC MV440 HR user program[3.3.2]

63

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

3.3.3. PCBs error detection programming.

In this section we are going to explain each part of code belonging to functions
used for error detection programming, adding representative pictures of it as well.
However, first it is needed to point out that every photo of PCBs has a white background.
This is due to restriction between elements and background is easier when the last one is
white in terms of binarizing, filtering, and so on, but the main reason is that pixels after
our transformation can only be black or white, so it makes detection more user-friendly,
as Figure 52 shows. [11] Also, we should consider illumination, which takes an important
part on this section, as if there is too much light or too little, it can end up in recognition

mistakes.

Figure 52. PCB with white background for detection[3.3.3]

3.3.3.1. Filtering function

The main purpose of this function is to filter one of our images taken by camera to
eliminate possible noises from them. Before binarizing the image to apply gauss filters,
it is necessary to check if it is in color frame range or black and white one. Thus, this
process can be applied in an optimum way without mistakes.

%0btain image edge from subtract of two gauss filters

if ndims (I) =

3 %Checking if image is in black and white or not
disp('Image in color')

I=rgb2gray(I);

64

end

After that, we build a zeros matrix where we will add our image transformed. Two
matrixes of filtering are built for being applied to the original picture, considering both
axes X and Y.

[rows,columns]=size (Iqg);

Ig=double (Ig); %passing to double format
I contour=zeros (rows,columns) ;

Sx=[-1 0 1;-2 0 2;-1 0 11,

Sy=[-1 -2 -1;0 0 0; 1 2 11;

Then, our image is retouched with imfilter and the matrixes created previously. Next step
is transforming this matrix from mathematics view to gray scale with mat2gray, to plot

our images with and without filtering finally. [9]

Ix=imfilter (Ig, Sx);

Iy=imfilter (Ig,Sy);

I contour=abs (Ix)+abs(Ily);
S=mat2gray (I _contour);

figure

imshow (I), title('original image')
figure

imshow (S), title('contour image with mat2gray')

contour image with mat2gray

original image

Figure 53. Original and filtered image[3.3.3.1]

65

lgl-llllllllIlIlIl- E EEEEERRIIIT I | IT'T 1T I RN EEEENENNNINNNSSESS

As we can see in Figure 53, the contour of image obtained with mat2gray command can
be distinguished from the background, just as we wanted at the beginning. Both pads and
elements included in the PCB taken as an example are seen without any problem, so it is
a good signal for later treatments.

3.3.3.2. Morphology

This function is the responsible of detecting different elements of pictures taken
by Siemens camera, with the purpose of concluding if PCBs are in a good condition or

not.

function [T]=mymorphology(I,A)

if(islogical (1))

disp('Image is already binarized, so it will not be modified')
T=I;

return

end

repeat=1;

while (repeat==1)

umbral=graythresh (I);

BW=im2bw (I, umbral) ;

BW2=im2bw (A, umbral) ;

BW2inv=~BW2;

BWinv=~BW;

radium=input ('Introduce radium of structuring element between 1-5: ')
ee=strel ('disk',radium) ;

% We apply dilation for splitting elements and detecting them
B=imerode (BWinv,ee) ;

B2=imerode (BW2inv, ee) ;

66

L=~B;
L2=~B2;

Subsequently, it is needed to make a loop where users can apply a dilation according to
their taste, as if we select the same structuring element in order to do it in an automated
way, it can result in a mistake due to camera’s illumination between shot and shot. We

apply dilation to both images in order to delete elements that are not of our interest.

figure

imshow (I),title('original image');

figure

imshow (A) ,title('testing image');

figure

subplot(1,4,1),imshow (BWinv), title('binarized original image')
subplot(1,4,2),imshow (L), title('original image with dilation')
subplot (1,4,3),imshow (BW2inv), title('binarized test image')

subplot(1,4,4),imshow (L2), title('test image with dilation')

Next step is plotting all the images used and transformed by this function, as we can see
in Figure 54, Figure 55 and Figure 56.

original image

Figure 54. Standard image for comparing elements in mymorphology function[3.3.2]

67

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

testing image

o U5
FEds Hidiclill

Figure 55. Testing image in mymorphology function[3.3.2]

binarized original image original image with dilation binarized test image

: RS
o T

k| e A0

.
ML
e

ST SN
e

test image with dilation

Figure 56. Both images transformed and compared in same plot for mymorphology function[3.3.2]

% We see split objects after transformations

cc=bwconncomp (B) ; % creating two data structures for knowing n°

elements
a=cc.NumObjects
ccs=bwconncomp (B2) ;

as=cc.NumObjects

if (a~=as)

68

disp ('Number of elements are really different. Second image has
mistakes');

myPCB=0; %% we create a variable called myPCB which value is 0
when it has mistakes and 1 when it is in good conditions

else

disp ('Number of elements are similar in both images. So testing
image is correct');

myPCB=1; %% this variable will be shared with ROS

end
fprintf('\n Is obtained result the one you wanted?');
fprintf ('\n tl. Yes(press 0)");
fprintf ('"\n t2. No(press 1)');
fprintf ('\n");

repeat=input (' '); %$Asking user about results

end

»» I=imread|('imagS.ipg');

»>>» h=imread|('imagé.ipg');

>> myhomography (I,R)

Introduce radium of structuring element between 1-5: 2

radium =

2

54

as =
54
Humber of elements are similar in koth images. So testing image is correct
Is obtained result the one you wanted?
tl. Yes(press 0)

t2. NHo(press 1)
0

Figure 57. Result obtained after applying mymorphology function[3.3.2]

Thanks to command bwconncomp, we create a data structure with the purpose of knowing

number of elements in each PCB and compare them to each other. If the number of

69

laIIIIIIIIIIIIIIII- EEEEEER BRI I I | 11T 1T I R I I EEENENENNNNNEEER
elements in both images are the same, it means that second picture, the one relative to
PCB to test, can be considered of good quality. In this example, both pictures taken are
from similar PCBs which are in same condition, so our program concludes that there are
no mistakes. Finally, we asked users if they are satisfied with the result, as shown in

Figure 57.

3.3.3.3. Matching

This function is going to be used for detecting elements in a graphical way, so users can
see the differences and similarities marked on each image. First of all, as always, it is

needed to test if pictures are in gray scale or color.

function matching (I,A)

if ndims (I) == 3

disp('Image in color')
N=rgb2gray(I);
L=rgb2gray (A);

else

disp('Image in B&W')
N=1I;

L=A;

end

Next step is to select a part of our standard image for comparing it with the second one.
It is done thanks to imcrop command, where user can select a specific part of a picture

and take it as a jig. An example of this function usage is shown in Figure 58. [9]

jig=imcrop (N);%select jig

70

Figure 58. Template selected in standard image[3.3.3.3]

[x,yl=size(jig);

C=normxcorr2 (jig,L);

B=C>0.9; %0Only select points that have correlation bigger than 0.9
cc=bwconncomp (B) ;

s=regionprops (cc, 'Centroid');

num_el=length(s) %number of elements in common

figure

imshow (N) ;

figure

imshow (L) ;

Once we selected our jig, we use normxcorr2 command in order to search for correlation
between our jig and testing image.[11] In the next line, it is specified that this correlation
coefficient between images has to be 0.9 or bigger, meaning that we are only going to
select parts that are really similar between each other. Furthermore, a data structure is
created to know the number of elements and also to search for their centroids. Finally,
thanks to a for loop, we are going to plot red asterisks in all elements that fulfill task
mentioned before.

hold on

for k=1: num el

plot ((s (k) .Centroid(1l))-(x)/2, (s(k).Centroid(2))-(y)/2,"'*r"); S%draw
asterisks in elements in common between images

71

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

end
hold off

end

2/ EORAM

Figure 59. Plotting elements in common between two images with template matching[3.3.3.3]

In a nutshell, template matching is a useful tool to detect elements in common between
images. However, it is really inconsistent as we can see in Figure 59, due to some asterisks
plotted have no relation with our standard image. This is because template matching is
really sensitive to illumination changing and any minimum variation in testing photo can

end up in detection mistakes.

3.3.4. Communication between camera and ROS

In previous part, pictures were processed on Octave in the second PC, where we
were taking images from the camera. However, we need to stablish communication
between our pictures sent to the PC working on ROS and this system. In order to
accomplish that, we are going to use the command rosoct, which allows to share
information with the entire ROS network. Furthermore, it involves a lot of commands
which can be related to our C++ program for KUKA youBot. Some examples of that are

attached in Figure 60.

72

rosoct(cmd) - initizlizes the run-time, must be called before anything else. Possible commands are:
- shutdown - disconnect from the ROS network and terminate

clear - clear all resources and topics advertised
nohook - launch rosoct without registering a hook to automatically call resoct_worker
rosect_X - public API calls that wrap the low-level calls and make using Octave simpler

success = rosoct_advertise(servname,fimsg,queuesize)

« success = rosoct_advertise_service(servname,@msg,@callback)

[sessionid, response] = rosoct_create_session(sessionname,request)
e success = rosoct_publish(topicname, message)

« response = rosoct_service_call(servicename, reguest)

response = rosoct_session_call(sessionid, servicename, req)

success = rosoct_subscribe(topicname,@msg,@callback, queuesize)

rosect_X_ - low-level API calls. Some funclions are wrapped directly by the public API so are now specified here

paramvalue = rosoct_get_param(paramname)

« topics = rosoct_get_topics(type) - type can e one of 'advertised' or 'published

success = rosoct_msg_unsubscribe(topicname)
« rosoct_set_param{paramname,paramvalue)

« success = rosoct_terminate_session(sessionid)

success = rosoct_unadvertise(topicname)

success = rosoct_unadvertise_service(servicename)

success = rosoct_wait_for_service(servicename)

numprocessed = rosoct_worker() - worker function that handles all the pending service requests and message
callbacks

Figure 60. Rosoct commands[3.3.4]

One of the best things that Octave provides us on ROS is that is not mandatory to rewrite
its code in C++ or Python. In our case, for communicating our image processing functions
with ROS and images saved in ROS directory, we are going to use ImagelmageService,

which is a service that takes an Image message and gives another one.

rosoct add msgs (‘image msgs’);

Q

% rosoct add srvs(‘myimages’) %add the package where ImagelImageService

resides

sus=rosoct advertise service (‘mymorhpology’, @ImageImageService, @mymorp

hology)

After that, we need to rewrite our computer vision functions, just as the following:

[

function res=matching (reql,reqg2) % res means response, as reql and reqg?2

mean request for images

res=req.create response ();

73

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

if ndims(reql) == 3
disp('Image in color')
N=rgb2gray (reql) ;

L=rgb2gray (req2) ;

else

disp('Image in B&W')

N=reql;

L=req2;

end

jig=imcrop (N) ; $select jig

[x,yl=size(jig);

C=normxcorr2(jig,L);

B=C>0.9; %0Only select points that have correlation bigger than 0.9
cc=bwconncomp (B) ;

s=regionprops (cc, 'Centroid');

num_el=length(s) %number of elements in common

figure

imshow (N) ;

figure

res.data=imshow (L); %data that it is going to be shared with ROS
hold on

for k=1: num el

plot ((s (k) .Centroid(1l))-(x)/2, (s (k) .Centroid(2))-(y)/2,"'*r"); Sdraw

asterisks in elements in common between images
end
hold off

end

Finally, we also added an error message in each function for the request of images, just

in case ROS is not responding. [16]

74

if (strcmp(req.str,’dofail’)) $failure condition
reg= [];

else
res.str= [req.str ' a’'l];

end

75

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

4. RESULTS AND CONCLUSIONS

4.1. Computer vision part results

Filtering function

As it concerns to filtering function, we can conclude that it works in a proper way,
as we can see in Figure 61, and other examples that will be introduced in project
presentation afterwards. In all images introduced to this function, their contour can be
distinguished without any problem, as well as their elements such as capacitors, resistors,

microprocessors and so on.

To sum up, filtering function is a good way for detecting contour of each element from
our PCBs in the first view, so it can help users to see if they already have errors before

applying other methods.

contour image with mat2gray

Figure 61. Contour image with filtering function[4.1]

76

Mymorphology function

As a result of the mymorphology function, it is possible to detect mistakes and elements
missing in testing images, as shown in following pictures. We can value at a glance that
testing image, corresponding to Figure 62, has too much welding and also some pads and
elements are missing, so this mistakes recognition is going to be easy to make in terms of

programming.

original image

Figure 62. Standard image number 2 for mymorphology function[4.1]

testing image

Figure 63. Testing image number 2 for mymorphology function[4.1]

77

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

binarized original image original image with dilation binarized test image test image with dilation

Figure 64. Images after applying dilation[4.1]

In above Figure 64, it can be seen that after binarizing and applying dilation to both
images, the difference between each image is remarkable, as later we can check in
commands line that number of elements are different, so our function takes the conclusion

that second image is not right. This is shown in Figure 65.

>> myhomography (5,0)
Introduce radium of structuring element between 1-5: 1

radium =

Humber of elements are really different. Second image has mistakes

Is oktained result the one you wanted?
tl. ¥Yes(press 0)
t2. No(press 1)

Figure 65. Mymorphology function applied to second couple of images. [4.1]

In short, this function is the most useful one for our project, as it always detects mistakes
in testing PCBs with accuracy. Also, it is the responsible of sending to ROS if our testing
PCB is okay or not, so the robot will put it in one side or other, depending on the results

obtained.

Matching function

As for matching function, we can say, without any doubt, that is the least helpful of all,

as it is very inconsistent depending on photos ilumination, ending up in detection

78

mistakes. Here we have an example of average recognition of elements in Figure 66 and

Figure 67.

RS
i
G
§O)
JO)
X

Figure 66. Jig for second standard image in matching function[4.1]

Figure 67. Template matching applied on second testing image[4.1]

79

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

4.2. KUKA youBot part results

Our first part for robot results is its D-H parameters, as well as kinematic equations

obtained by our code on MATLAB and C++ mentioned in previous sections. [3.2.2]

After that, we can see that the robot is starting to move properly, trying to reach PCB

position which is shown in Figure 68, but unable to grab it, as we can see in Figure 69 .

Figure 68. Robot's movement from home position

One of the most probable reasons why I didn‘t work was due to Gazebo simulator doesn‘t
have accurate torques for each arm‘s joint of KUKA youBot, so it is working on it, but
not in the real workspace. Another one can be that, because of this robot normally has its
base included, we should add an offset that is not existent in our working model, so it
could reach its main goal. Finally, the most probable one is that an universal gripper

should be included to grip small objects like the ones we are using in this project.

80

Figure 69. KUKA youBot trying to reach PCB

81

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

4.3. Final conclusions

From computer vision standpoint, we can say that most of our functions are working
properly. However, they can be improved as a first approach, mainly for making them in
a more automated way. On the other hand, Octave is a good tool for image processing,
but is is quite slow, as it doesn’t work in real time(same for MATLAB) like other IDEs
do, such as Python+OpenCV. So a second approach could be programming all this part
in this software instead of Octave. In terms of our camera, the Siemens MV440 one, my
opinion is that we could use a normal camera instead of this one. Basically, this is due to

the difference is not that notable and licenses problems for working on Linux too.

From robotics forward and inverse kinematics perspective, we can conclude that
MATLAB provides a really good toolbox for programming and testing our equations,
taking different values and parameters as a result. Thanks to it, we can program our code

on C++ for our robot later, following these equations and parameters obtained on it.

From robotics programming point of view, our KUKA youBot works perfectly in
simulator environment. Nevertheless, when we try to apply our code in real robot, it
doesn’t move as we want in first touch, mainly because it is not able to grip the PCBs
correctly. The conclusion obtained from this issue, due to differences between real robot
and simulator one(it has base with wheels, real one does not) and also because of accuracy
problems with the gripper, is that an universal gridder is needed to catch every type of
object, including small ones like PCBs, and that a new model of KUKA youBot arm
should me added on Gazebo in order to fix the offset between these two configurations.
Overall, I think this robot may be more useful in terms of working with it on a Windows
developed system, like LabView Robotics or something similar. Despite of being a robot
that can be programmed on a Linux environment, where all the licenses are free, it implies
a lot of problems, especially on calibration and drivers installation, compared to other
robots like ABB where you can use their own simulator (Robot Studio) and they are all

configured from scratch.

82

5. ACKNOWLEDGEMENTS

From my point of view, working on this project was a great experience, which has
developed my knowledges in robotics and programming. | have learnt how ROS works
and how to use different libraries already developed for creating my own algorithm.
Furthermore, | have learned a new toolbox on MATLAB, such as the robotics one, as

well as improving my computer vision programming on this IDE.

This thesis cannot be achieved without my teacher’s help, Prof. Dr. Dainius Udris, who
gave me the opportunity to work with him and all his advices and recommendations.

I would like to thank VGTU in general and its Department of Mechatronics and Robotics
and head of the department Professor Vytautas Bucinskas personally for providing the

equipment and support.

Also, thanks to ESN VGTU, from top to bottom, which has made me have a really good
concept of Lithuania overall, way better than it would be without it. Special mention to
my mentor, Zivilé Latakaité, who has helped me on adapting to Vilnius and making me
feel like home, as well as organizing a lot of events with more Erasmus people, making
our friendships even stronger. Now she is not a mentor anymore, but a friend instead. It

has been a bless meeting her and all my new friends here in Lithuania.
Finally, thanks to my parents, for giving me all their confidence and support from Spain.

Regardless of all the kilometers that separate us, they have always been there when |

needed them the most, both in good and bad moments.

83

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

6. REFERENCES

1. Short circuit: The lifecycle of our electronic gadgets and the True
Cost to Earth. Author: Philippe Sibaud. Retrieved 2013, from
http://therightsofnature.org/short-circuit-report-the-true-cost-of-our-
electronic-gadgets/

2. ROS Programming: Building Powerful Robots: Design, build and
simulate complex robots. Authors: Anil Mahtani, Luis Sanchez,
Enrique Fernandez, Aaron Martinez, Lentin Joseph. Retrieved 2018,
from www.PacktPub.com

3. A Systematic Approach to Learning Robot Programming with ROS.
Author: Wyatt S. Newman. Retrieved 2018, from
http://www.taylorandfrancis.com.

4. SIMATIC Ident for MV420/MV440 Code Reader Systems. Operating
systems. Retrieved 2012.

5. KUKA youBot User Manual. Retrieved 2012, from KUKA.com.

6. Anovel kinematics for a 5 DOF manipulator based on KUKA youBot.
Authors: Allan D. Zhang, Xiao Xiao, Yangmin Li. Retrieved 2015,
from https://www.researchgate.net/publication/300416616.

7. Robotics toolbox for Matlab. Author: Peter Corke. Retrieved 2015,
from https://petercorke.com/wordpress/toolboxes/robotics-toolbox.

8. Parametros Denavit-Hartenberg. Cinematica Directa de un Robot
Manipulador. Authors: Alberto Herreros, Juan Carlos Fraile
Marinero. Retrieved 2017.

9. Digital Image Processing in Matlab. Authors: Rafael C. Gonzalez,
Richard E. Woods, Steve L. Eddins. Retrieved 2011.

10. Image Processing in Octave. Author: John W. Eaton. Retrieved
2018, from https://octave.org/doc/v4.4.0/index.html#Top.

11.Vision Artificial Industrial. Procesamiento de imagenes para
inspeccion automatica y robotica. Authors: Eusebio de la Fuente
Lopez, Felix Miguel Trespaderne, from Valladolid University.
Retrieved 2012,

12. Simulacion, control cinemético y dindmico de robots comerciales
usando la herramienta de MATLAB, Robotics Toolbox. Author:
Miguel Angel Mato San José. Retrieved 2014 from Valladolid
University.

13. Research of robot trajectory control by optical method. Author:
Alejandro Perez San Martin. Retrieved 2017 from

84

http://www.packtpub.com/
https://www.researchgate.net/publication/300416616

https://upcommons.upc.edu/bitstream/handle/2117/114061/Alejandr
0_Perez_Sanmartin.pdf?sequence=1&isAllowed=y.

14. ROS youBot Inverse Kinematics, from
https://github.com/arifanjum/ROS-Y ouBot-Inverse-Kinematics.
15. ROS tutorials, from

http://wiki.ros.org/ROS/Tutorials#Beginner_Level

16. ROS and Octave tutorial, from http://wiki.ros.org/rosoct

17. ROS-Youbot-Inverse-Kinematics, from
https://github.com/arifanjum/ROS-Y ouBot-Inverse-Kinematics

18. Inverse Kinematics theory, University of Rome, from
http://www.diag.uniromal.it/~deluca/robl_en/10_InverseKinematic
s.pdf

19. KUKA youBot motor joints, from
https://www.maxonmotor.com/medias/sys_master/root/8815566520
350/2014-10-story-enUS-kuka-research-robot.pdf?attachment=true

20. Derivation of Kinematic Equations for KUKA youBot and
implementation on Simulink, : From
https://www.academia.edu/23871359/Derivation_of Kinematic_Eq
uations_for_the KUKA youBot _and_implementation_of those in_
Simulink

85

https://upcommons.upc.edu/bitstream/handle/2117/114061/Alejandro_Perez_Sanmartin.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/114061/Alejandro_Perez_Sanmartin.pdf?sequence=1&isAllowed=y
https://github.com/arifanjum/ROS-YouBot-Inverse-Kinematics
http://wiki.ros.org/ROS/Tutorials#Beginner_Level
http://wiki.ros.org/rosoct
https://github.com/arifanjum/ROS-YouBot-Inverse-Kinematics
http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf
http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf
https://www.maxonmotor.com/medias/sys_master/root/8815566520350/2014-10-story-enUS-kuka-research-robot.pdf?attachment=true
https://www.maxonmotor.com/medias/sys_master/root/8815566520350/2014-10-story-enUS-kuka-research-robot.pdf?attachment=true
https://www.academia.edu/23871359/Derivation_of_Kinematic_Equations_for_the_KUKA_youBot_and_implementation_of_those_in_Simulink
https://www.academia.edu/23871359/Derivation_of_Kinematic_Equations_for_the_KUKA_youBot_and_implementation_of_those_in_Simulink
https://www.academia.edu/23871359/Derivation_of_Kinematic_Equations_for_the_KUKA_youBot_and_implementation_of_those_in_Simulink

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

7. ANNEXES

7.1. ROS C++ CODE

1. Main.cpp
[aieisiiisiaisiaiaiaisiiaiaiaisiiaiaiaisiiaiaiaiaie aisisiiisiaisiaiiaiadsiaiaiaiaisiiaiaiaiaiale]
[aieisiiisiaisiiaiaiaisiiaiaiaisiiaiaiaisisiaiaiaiaie aisiiiaisiaisiaiiaidsiiaiaiaisiiaiaiaiaiale]
I* myrobot program */
I* */
/* Author: Alberto Justo Lobato */
I* */
/* Bachelor's Graduation Thesis: E-waste material classifier with */
/* KUKA youBot and computer vision */
I* */
/* Vilnius Gediminas Technical University, Lithuania */
I* */
[* Explanation: This code includes all the parts necessary for */
/* moving our robot after image processing. We are using inverse */
[* kinematics, as end positions are known and our goal is to */
/* move our robot to them and find angles and joints positions and */
[* speeds. In terms of compiling, we will launch this program */
[* on Gazebo first and then on the real robot, using the following */
/* command roslaunch myrobot myrobot.launch */
I* */

/***/

/***/

#include "youbot/YouBotBase.hpp"
#include "youbot/YYouBotManipulator.hpp™
#include <math.h>

#include <studio.h>

#include <ImageService.h>

using namespace youbot;

int main() {

86

double px=0,pz=0,py=0;

double theta_base=0, theta_2=0, theta_3=0, theta_4=0;
double theta_link_1=0, theta_link_2=0;

double theta_link_1p=0, theta_link_2p=0;

[* configuration flags for different system configuration (f.e. arm without base)*/
bool youBotHasBase = false;

bool youBotHasArm = false;

/* define speeds */
double translationalVelocity = 0.05; //meter_per_second

double rotationalVelocity = 0.2; //radian_per_second

[* pointers for youBot base and manipulator */
YouBotBase* myYouBotBase = 0;
YouBotManipulator* myYouBotManipulator = 0;

/* obtain response from Octave */

res=req.create_response_();

try {
myYouBotBase = new YouBotBase("youbot-base”, YOUBOT_CONFIGURATIONS_DIR);

myYouBotBase->doJointCommutation();

youBotHasBase = true;
} catch (std::exception& e) {
LOG(warning) << e.what();

youBotHasBase = false;

}

try {

myYouBotManipulator = new YouBotManipulator("youbot-manipulator”,
YOUBOT_CONFIGURATIONS_DIR);

myY ouBotManipulator->doJointCommutation();
myY ouBotManipulator->calibrateManipulator();
// calibrate the reference position of the gripper

//myYouBotManipulator->calibrateGripper();

87

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

youBotHasArm = true;
} catch (std::exception& e) {
LOG(warning) << e.what();

youBotHasArm = false;

}

[*
* Variable for the base.

* Users have to put a value and a unit.

*/

guantity<si::velocity> longitudinalVVelocity = 0 * meter_per_second;
quantity<si::velocity> transversalVelocity = 0 * meter_per_second,;

quantity<si::angular_velocity> angularVelocity = 0 * radian_per_second;

[* Variable for the arm. */
JointAngleSetpoint desiredJointAngle;
/IGripperBarSpacingSetPoint gripperSetPoint;

try {

/-k

* Simple sequence of commands to the youBot:
*/

[*if (youBotHasBase) {

/* move forward */

[*longitudinalVelocity = translationalVelocity * meter_per_second,;

transversalVelocity = 0 * meter_per_second,;
myYouBotBase->setBaseVelocity(longitudinalVVelocity, transversalVVelocity, angularVelocity);
LOG(info) << "drive forward";

SLEEP_MILLISEC(2000); /*we always put a little delay between moves*/

/* move backwards */

[*longitudinalVVelocity = -translational\VVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;
myYouBotBase->setBaseVelocity(longitudinalVVelocity, transversalVVelocity, angularVelocity);
LOG(info) << "drive backwards";

SLEEP_MILLISEC(2000);

I* move left */

[*longitudinalVelocity = 0 * meter_per_second,;

transversalVelocity = translationalVelocity * meter_per_second,;

88

angularVelocity = 0 * radian_per_second,;

myY ouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);
LOG(info) << "drive left";

SLEEP_MILLISEC(2000);

/* move right */

[*longitudinalVVelocity = 0 * meter_per_second,;

transversalVelocity = -translationalVelocity * meter_per_second;

angularVelocity = 0 * radian_per_second;
myYouBotBase->setBaseVelocity(longitudinal Velocity, transversalVelocity, angularVelocity);
LOG(info) << "drive right";

SLEEP_MILLISEC(2000);

[* stop base */

longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = 0 * meter_per_second,;

angularVelocity = 0 * radian_per_second,;
myYouBotBase->setBaseVelocity(longitudinal VVelocity, transversalVelocity, angularVelocity);
LOG(info) << "stop base™;

3

if (youBotHasArm) {

/* unfold arm

* position were taken empirically using keyboard and KUKA youBot
*/

desiredJointAngle.angle = 2.9624 * radian;
myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

SLEEP_MILLISEC(1000)

desiredJointAngle.angle = 2.5988 * radian;
myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -2.4352 * radian;
myY ouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

desiredJointAngle.angle = 1.7318 * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

89

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

desiredJointAngle.angle = 2.88 * radian;
myY ouBotManipulator->getArmJoint(5).setData(desiredJointAngle);

/*desiredJointAngle.angle = 3.14 * radian;

myY ouBotManipulator->getArmJoint(5).setData(desiredJointAngle);
desiredJointAngle.angle = 1.9526 * radian;
myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);
desiredJointAngle.angle = -2.0192 * radian;
myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
[*desiredJointAngle.angle = 1.73184 * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
*/LOG(info) << "unfold arm";

SLEEP_MILLISEC(4000);

int n =0, m=0;

double grid_spacing_n =0, grid_spacing_m =0, x_cordinate=0,y_cordinate=0,z_cordinate =0;

std::cout << " -m-momommomo- Co-ordiantes of Point Location ------------ " <<endl;
if(res.myPCB=0){

I* co-ordinates taken empirically for end positions where we are going to put our PCB */
x_cordinate=-0.1225;

y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in bad conditions! " << endl;
std::cout << "Co-ordinates of end position are : " << endl;
std::cout << " X: " << x_cordinate << endl;

std::cout << " Y: " <<y cordinate << endl;

std::cout << " Z: " << z_cordinate << endl;

90

if(res.myPCB=1){

x_cordinate=-0.2225;
y_cordinate=0.1124;
z_cordinate=0.0239;

std::cout << "PCB in good conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;
std::cout << " X: " << x_cordinate << endl;
std::cout << "Y: " <<y cordinate << endl,

std::cout << " Z: " << z_cordinate << endl;

I

std::cout << "' --m-mmommooo- GRID GENERATON ------------ " <<endl;

std::cout << "Enter the Number of points in X-Direction :

cin>>n;

std::cout << endl;

std::cout << "Enter the Number of points in Y -Direction :

cin>>m;

std::cout << endl;

std::cout << "Enter the Grid Spacing in X-Direction : ";
cin>> grid_spacing_n;

std::cout << endl;
std::cout << "Enter the Grid Spacing in Y-Direction : ";

cin>> grid_spacing_m;

std::cout << endl;

91

E----------IIII | I D B B

I

for (double x =0; x< n; x++){
for (double y =0; y<m; y++){
double px_p = grid_spacing_n*x;

double py_p = grid_spacing_m*y;

double px = x_cordinate + px_p;
double py = -y_cordinate + py_p;
double pz = z_cordinate; //0.0432;

Mt THETAS FOR ARM-LINK 1.2 3 /i

double |11 = 0.302 - 0.147,
double 12 = 0.437 - 0.302;
double 13 = 0.655 - 0.437,;

double xc = sqrt(px*px +py*py);
double zc = pz;

double phi_c =0;

double d = sqrt (xc*xc + zc*zc);

std::cout << " d =" << d << std::endl;

if (d >= 0.500){

double theta_link_1 = atan2(zc,xc) ;
/lbreak;

}

else if (d == 0.508) {
double theta_link 1 = atan2(zc,xc) ;
/lbreak;

92

else if (d > 0.508) {
std::cout << " Co-ordinate Points are out of the work space. \n" ;
std::cout << "Enter New Co-ordinates Points. \n" ;

Ilbreak;

¥

else {

double xw = xc - 13*cos(phi_c);

double zw = zc - I13*sin(phi_c);

double alpha = atan2 (zw,xw);

double cos_beta = (I11*I1 + 12*12 -xw*xw -zw*zw)/(2*11*12);
double sin_beta = sgrt (abs(1 - (cos_beta*cos_beta)));
double theta_link_2 = 3.1416 - atan2 (sin_beta , cos_beta) ;

double cos_gama = (Xw*xw + zw*zw + I1*11 - [2*[2)/(2*11*sqrt(Xw*xXw + zw*zw));

double sin_gama = sqrt (abs (1 - (cos_gama * cos_gama)));

double theta_link_1 = alpha - atan2(sin_gama, cos_gama);

double theta_link_1p = theta_link_1 + 2*atan2 (sin_gama , cos_gama);
double theta_link_2p = - theta_link_2;

double theta_2 = theta_link_1p;
double theta_3 = theta_link_2p;
double theta_4 = (theta_2 + theta_3);

93

E----------IIIIIIIII (I T B |

std::cout << " Base Angle " << theta_base << std::endl;
std::cout << " Link-1 Angle " << theta_2 << std::endl;
std::cout << " Link-2 Angle " << theta_3 << std::endl;
std::cout << " Link-3 Angle " << theta_4 << std::endl;

desiredJointAngle.angle = theta_base * radian;
myY ouBotManipulator->getArmJoint(1).setData(desiredJointAngle);
//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (2.5988 - theta_2) * radian;
myY ouBotManipulator->getArmJoint(2).setData(desiredJointAngle);
//ISLEEP_MILLISEC(1000);

desiredJointAngle.angle = (-2.4352 - theta_3) * radian;
myY ouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (1.7318 + theta_4) * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
/ISLEEP_MILLISEC(1000);

/ldesiredJointAngle.angle = -3.3760 * radian;
/ImyYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
SLEEP_MILLISEC(5000);

desiredJointAngle.angle = (1.7318-0.4 + theta_4) * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
SLEEP_MILLISEC(1000)

}

94

/ldesiredJointAngle.angle = 0.0 * radian;
//myY ouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

[*I* fold arm (approx. home position) using empirically determined values for the positions */
desiredJointAngle.angle = 0.1 * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

desiredJointAngle.angle = 0.011 * radian;
myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -0.1 * radian;
myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);
desiredJointAngle.angle = 0.1 * radian;
myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);
LOG(info) << "fold arm";

SLEEP_MILLISEC(4000);

} catch (std::exception& €) {
std::cout << e.what() << std::endl;

std::cout << "unhandled exception" << std::endl;

¥

/* clean up all variables*/

if (myYouBotBase) {

delete myYouBotBase;
myYouBotBase = 0;

}

if (myYouBotManipulator) {
delete myYouBotManipulator;
myYouBotManipulator = 0;

¥

LOG(info) << "Done.";

95

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

return O;

2. keyboard.cpp

1 #include <iostream>

2 #include <vector>

3 #include <signal.h>

4 #include <ncurses.h>

5

6 #include "youbot/YouBotBase.hpp"

7

8 using namespace std;

9 using namespace youbot;

10

11 bool running = true;

12

13 void sigintHandler(int signal) {

14 running = false;

15 printf("End\n\r");

16 }

17

18 int main() {

19

20 signal(SIGINT, sigintHandler);

21

22try {

23

24 rude::Config configfile;

25

26 if (!configfile.load("../config/applications.cfg™))
27 throw ExceptionOODL("../config/applications.cfg file no found");
28

29intch=0;

30 double linearVel = 0.05; //meter_per_second
31 double angularVel = 0.2; //radian_per_second
32 configfile.setSection(*"'KeyboardRemoteContol");
33 linearVel = configfile.getDoubleValue("TanslationalVelocity [meter_per_second]™);

34 angularVel = configfile.getDoubleValue("RotationalVelocity [radian_per_second]");

96

35

36 YouBotBase myYouBotBase("youbot-base");

37

38 JointVelocitySetpoint setVel;

39 quantity<si::velocity> longitudinalVVelocity = 0 * meter_per_second,;
40 quantity<si::velocity> transversalVVelocity = 0 * meter_per_second,;
41 quantity<si::angular_velocity> angularVelocity = 0 * radian_per_second;
(void) initscr(); /* initialize the curses library */

44 keypad(stdscr, TRUE); /* enable keyboard mapping */

45 (void) nonl(); /* tell curses not to do NL->CR/NL on output */
46 (void) cbreak(); /* take input chars one at a time, no wait for \n */
47 /I (void) echo(); /* echo input - in color */

48

49 def_prog_mode();

50

51 refresh();

52 printf("up = drive forward\n\r"

53 "down = drive backward\n\r"

54 "left = drive left\n\r"

55 "right = drive right\n\r"

56 "y = turn right\n\r"

57 "x = turn left\n\r"

58 "any other key = stop\n\r\n");

59 refresh();

60

61 while (running) {

62

63 ch = getch();

64

65 switch (ch) {

66 case KEY_DOWN:

67 longitudinalVVelocity = -linearVel * meter_per_second;

68 transversalVelocity = 0 * meter_per_second;

69 angularVelocity = 0 * radian_per_second;

70 LOG(info) << "drive backward";

71 printf("\r");

72 break;

73 case KEY_UP:

97

E----------IIII | I D B B

74 longitudinalVelocity = linearVel * meter_per_second;
75 transversalVelocity = 0 * meter_per_second;

76 angularVelocity = 0 * radian_per_second;

77 LOG(info) << "drive forward";

78 printf("\r");

79 break;

80 case KEY_LEFT:

81 transversalVelocity = linearVel * meter_per_second;
82 longitudinalVelocity = 0 * meter_per_second;

83 angularVelocity = 0 * radian_per_second;

84 LOG(info) << "drive left";

85 printf("\r");

86 break;

87 case KEY_RIGHT:

88 transversalVelocity = -linearVVel * meter_per_second,;
89 longitudinalVelocity = 0 * meter_per_second;

90 angularVelocity = 0 * radian_per_second;

91 LOG(info) << "drive right™;

92 printf("\r');

93 break;

94 case 'y"

95 angularVelocity = angularVel * radian_per_second;
96 transversalVelocity = 0 * meter_per_second;

97 longitudinalVelocity = 0 * meter_per_second;

98 LOG(info) << "turn right";

99 printf("\r");

100 break;

101 case ‘X"

102 angularVelocity = -angularVel * radian_per_second;
103 transversalVelocity = 0 * meter_per_second;

104 longitudinalVVelocity = 0 * meter_per_second;

105 LOG(info) << "turn left";

106 printf("\r);

107 break;

108

109 default:

110 longitudinalVelocity = 0 * meter_per_second;

111 transversalVelocity = 0 * meter_per_second;

112 angularVelocity = 0 * radian_per_second;

113 LOG(info) << "stop";

98

114 printf("\r);

115 break;

116 }

117

118 myYouBotBase.setBaseVelocity(longitudinal Velocity, transversalVelocity, angularVelocity);
119

120 refresh();

121 SLEEP_MILLISEC(100);

122}

123

124 setVel.angularVelocity = 0 * radian_per_second;
125 myYouBotBase.getBaseJoint(1).setData(setVel);
126 myYouBotBase.getBaseJoint(2).setData(setVel);
127 myYouBotBase.getBaseJoint(3).setData(setVel);
128 myYouBotBase.getBaseJoint(4).setData(setVel);
129

130 endwin();

131 SLEEP_MILLISEC(500);

132

133 } catch (std::exception& e) {

134 std::cout << e.what() << std::endl;

135} catch (...) {

136 std::cout << "unhandled exception" << std::endl;
137}

138

139 return 0;

140}

7.2. OCTAVE COMPUTER VISION CODE

Morphology function

%% Morphology function 5%
$% Author: Alberto Justo Lobato %%

99

‘EI-IIIIIIIIIIIIII- E EEEEERRIIIT I | IT'T 1T I RN EEEENENNNINNNSSESS

%% Bachelor's Graduation Thesis: %%
%% E-waste material classifier with KUKA youBot and %%
%% computer vision 5%
%% %%
%% Vilnius Gediminas Technical University , Lithuania %%
%% %%
%% Explanation: function responsible of applying 5%
%% morphological operations, in this case dilation, on 5%
%% two images to obtain differences between each other. %%
%% Moreover, we asked users previously for structuring %%
%% element size and also number of times to repeat %%
%% binarization until they are satisfied with results. %%
%% Finally, we get number of elements of image obtained %%
%% from this transformation. %%
%% %%
%% MATLAB/OCTAVE functions used: %%
%% —-rgb2gray %%
%% —graythresh %%
%% —imbinarize %%
%% —-imfilter %%
%% —bwconncomp %%
%% —imerode %%

function [T]=myhomography(I,A)

if(islogical (1))

disp('Image is already binarized, so it will not be modified')
T=I;

return

end

repeat=1;

100

while (repeat==1)

umbral=graythresh (I);

BW=im2bw (I, umbral) ;

BW2=im2bw (A, umbral) ;

BW2inv=~BW2;

BWinv=~BW;

radium=input ('Introduce radium of structuring element between 1-5: ')
ee=strel ('disk',radium);

Q

% We apply dilation for spliting elements and detecting them

B=imerode (BWinv, ee) ;

B2=imerode (BW2inv, ee) ;

L=~B;

L2=~B2;

figure

imshow (I),title('original image');

figure

imshow (A) ,title('testing image');

figure

subplot(1,4,1),imshow (BWinv), title('binarized original image')
subplot(1,4,2),imshow (L), title('original image with dilation')
subplot (1,4,3),imshow (BW2inv), title('binarized test image')
subplot(1,4,4),imshow (L2), title('test image with dilation')

o

3 We see split objects after transformations

Q

cc=bwconncomp (B) ; % creating two data structures for knowing n°
elements

a=cc.NumObjects
ccs=bwconncomp (B2) ;

as=cc.NumObjects

if (a~=as)

disp ('Number of elements are really different. Second image has
mistakes');

myPCB=0; %% we create a variable called myPCB which value is 0
when it has mistakes and 1 when it is in good conditions

101

‘EI-IIIIIIIIIIIIII- EEEEREER BRI I

else

testing

So,

disp ('Number of elements are similar in both images.

image is correct');

this variable will be shared with ROS

[T}
)

myPCB

end

fprintf('\n Is obtained result the one you wanted?');

Yes (press 0)');

fprintf ('"\n tl.

fprintf('\n t2. No(press 1)'");

fprintf ('\n');

%$Asking user about results

=input (' ");

repeat

end

Filtering function

o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\

o\
o\
o\

oo
oo

Filtering function

oo
e

oo
e

Alberto Justo Lobato

Author:

%

e

o
o

o
oe

o
oe

Bachelor's Graduation Thesis

o9
)

o
o

%% E-waste material classifier with KUKA youBot and

o\
o

computer vision

o\

oo
oo

o\
o°

o
o

Lithuania

% Vilnius Gediminas Technical University,

o

o
o

o
o

o\

we apply two gauss filters at the same

%% Explanation

oo
oo

just

%% time to one image to obtain its contour,

o\
o°

%% detecting both filtered pictures

oe
e

oe
e

oe
o

%% MATLAB/OCTAVE functions used

oe
oe

%% —rgb2gray

o\°
o\

%% -mat2gray

o\°
o\

-imfilter

oe

oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
e

oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
e

102

function filtering(I)
%0Obtain image edge from subtract of two gauss filters
if ndims (I)==3
Ig=rgb2gray(I);
end
[rows,columns]=size (Ig);
Ig=double (Ig); %passing to double format
I contour=zeros (rows,columns) ;
Sx=[-1 0 1;-2 0 2;-1 0 171,
Sy=[-1 -2 -1;0 0 0; 1 2 17;

Ix=imfilter (Ig, Sx);

Iy=imfilter (Ig,Sy);

I contour=abs (Ix)+abs(Iy);
S=mat2gray (I _contour);

figure

imshow (I), title('original image')
figure

imshow (S), title('contour image with mat2gray')

Matching function

%% Matching function %%
%% Author: Alberto Justo Lobato %%
% %
%% Bachelor's Graduation Thesis: %
%% E-waste material classifier with KUKA youBot and %%
%% computer vision 5%

103

‘EI-IIIIIIIIIIIIII- E EEEEERRIIIT I | IT'T 1T I RN EEEENENNNINNNSSESS

oe
oe
oe
oe

o
o°

%% Vilnius Gediminas Technical University, Lithuania

o\
o°
o\
o°

o\
o\

%% Explanation: function responsible of searching for

o
oe

%% similar elements on an image, based on correlation

oe
o°

%% finding their centroid.

o\
o°

%% After this search, it plots an asterisk in each

o\
o°

%% element that matches.

o\
o\

%% To sum up, 1t is a good way for searching elements in

oe
oe

%% common between images, but it is quite inconsistent,

oe
oe

%% as this means we should use other methods previously.

o°
o°
o°
o°

%% MATLAB/OCTAVE functions used:

o\
o

o\
o\

%% —rgb2gray

o\
o\

%% —-imcrop

o\
o\

$% —-normxcorr2

function matching (I,A)

if ndims (I) == 3
disp('Image in color')

N=rgb2gray (I)

~e

L=rgb2gray (A7)

~e

else

disp('Image in B&W'")

N=I;

L=A;

end

jig=imcrop (N) ; $select jig

[x,y]=size (jiqg);

C=normxcorr2 (jig,L);

B=C>0.9; %0Only select points that have correlation bigger than 0.9
cc=bwconncomp (B) ;
s=regionprops (cc, 'Centroid');

num el=length(s) S%number of elements in common

figure

104

draw

°

[o)

’

plot ((s(k).Centroid(1l))-(x)/2, (s(k).Centroid(2))-(y)/2,"'*r")

asterisks in elements in common between images

num el

1

imshow (N) ;
figure
imshow (L) ;
hold on
for k=

end

hold off
end

Main script

oo o o o\ o\ o\ o\ o o o o\ o\ o\ o o
oo o o° o\ o\ o o o° o o o o o o o

oo oo o o
oo oo o o
oo oo o o
oo oo o o
e oe @®© o o°
oo oo - o o
oo oo o] o o o
o° o° c @® c oo oo
o° o° (o] 3 - o0 oo
o° o° K oo oo
e oo 2 e o] oo oo
S-S @] - [0} oo oo
oo oo m — a o oo
oe oe 3 O oo o°
o° oe O ~ - o o°
S-S > B} oo oo
o° o° > c oo oo
o0 oe < i Q o o°
oo oo e - IS oo oo
oo oo =) n oo oo
o° o° e “ 9] o o
o° o° 0] c oo oo
o° o° < > O o o
o o S - - o o
S-S - [+ o o°
oo oo o = D @] o oo
S-S O 0n c oo oo
oo o° o is] -~ o — 3 o oo
o0 oo -H ® 0 0] @® H o° oo
oo oo © Q 0] -~ @] o oo
o° o° = O e 4y - — o o
S-S — EH oA o — o0 oo
o° o° 0n K o] o0 oo
o° o° O a 0n O o0 oo
S-S e O @ 0] 0] o0 oo
o° oe 9] - — =} — o o°
o° o° 3) O - o0 oo
oo oo [} © 1] [o o oo
oe oe 3 — © e o° o°
o° o° (0] o] @ [o O « 0o oo
o° o° S @ A O -— O 0 o0 oe
o o “ o “ -~ =] i) o o
o° o°) @) 0] 0 - .. S o0 oe
oo oo Q i) -~ o] a © o oo
oo oo — (9] © > O (@] O, o° oo
o° o° < - =] @] - o o
o° oe “ “ S 0 oo o°
oe oe .. O [0) [0) ()] © 3 o° o°
S-S ~ — N jn] [« O o0 oe
oe oe O [0) 0 3 - © - o° o°
oe oe e < [} [o a — > o° oo
oo o° is] O = & — 0, 0] o oo
o° o° jn] 48] | O - X S o0 oe
oo oo <G m [Ea] @] > [O, o° oo
oo oo o o
o o o o\ o\ o o o o o o\ o\ o\ o o
o° o° o° o\ o\ o o o° o o o o o o o

105

’
’
’
’
’

imread ('imagl.jpg")
imread('imag2.jpg"')
imread('imag3.jpg’')
imread('imag4.jpg')
imread('imag6.jpg');
imread ('imag7.7pg")

I
J
S
Wi
R=imread('imag5.3pg') ;
T
U

E----------IIIII 1 1 1 | 1 1 1 I R B HEHEHENNNBNHN-NNEEN
% filtering all images introduced

filtering(I);

filtering(J);

filtering(S);

filtering (W) ;

filtering (R);

filtering(T);

filtering (U);

% comparing elements between standard and taken image of each PCB
mymorphology (I,J);

mymorphology (S, W) ;

mymorphology (R, T) ;

mymorphology (T, U) ;

o

% applying template matching

matching (I,J);
matching (S, W) ;
matching (R, T) ;

matching (T, U) ;

7.3. MATLAB FORWARD AND INVERSE KINEMATICS CODE

1. Forward.m

%% Forward kinematics function %%
%% Author: Alberto Justo Lobato %%
o9 o 9o
[Ele) [SIe)
%% Bachelor's Graduation Thesis: %%
%% E-waste material classifier with KUKA youBot and %%
%% computer vision %%
oo oo
[Ele) [Sle)
%% Vilnius Gediminas Technical University, Lithuania %%
oo oo
[Cle] [Cle)
%% Explanation: function responsible of applying the %%

106

%% generic forward equations of KUKA youBot and then %%

%% obtaining its parameters, which will be used for 5%
%% inverse kinematics problem afterwards %%
%% MATLAB/Robotics Toolbox functions used: %%
%% -—eye %%
%% —subs %%
%% —-simplify %%

clear all; close all;
syms x y z alpha beta gl g2 g3 g4 gb
syms 11 12 13 14 15 16 PM

I=[11 12 13 14 15 16]; %%Matrix relative to each arm length

TOO=eye (4,4); %%Build a matrix 4x4

$Now we need to find homogeneous transformation of KUKA youBot

TO1=TOO*ScrewZ (gl,L(2)) *ScrewX (-PM,L(1l)); %each generic equation for
point O

TO2=TOl1*ScrewZ (g2, 0) *ScrewX (0,L(3));
TO3=TO2*ScrewZ (g3, 0) *ScrewX (0,L (4));
TO4=TO3*ScrewZ (g4, 0) *ScrewX (PM, 0) ;
TO5=TO4*ScrewZ (g5,L(5)+L (6)) *ScrewX (0,0) ;

%$PM now has the value of PI/2

TOl=subs (TO1,PM,pi/2);
TO2=subs (T02,PM,pi/2) ;
TO3=subs (TO3,PM, pi/2) ;
TO4=subs (TO4,PM,pi/2);
TO5=subs (TO5,PM, pi/2) ;

107

E----------IIII | I D B B

$Next step is simplifying all equations

simplify (TO1) ;

TOl=

simplify (TO2) ;

TO2=

simplify (TO3);

TO3=

simplify (TO4) ;

TO4=

simplify (TO5) ;

TO5=

Obtaining components of our main point

o
°

’

r13=T05 (1, 3)

’

r23=T05 (2, 3)

TO5(3,3);

r33=

Inverseorientation.m

2.

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o°

o\
o°

Forward kinematics function

o\
o°

oo
oo

Alberto Justo Lobato

Author:

%

o°

o
o

o
o

o
o

Bachelor's Graduation Thesis

o9
3]

o\
o°

%% E-waste material classifier with KUKA youBot and

o\
o

computer vision

o\

oo
oo

o\
o°

o
o

Lithuania

% Vilnius Gediminas Technical University,

o

oe
e

oe
e

oe
o

we obtain

thanks to this function,

%% Explanation

o\

%% KUKA youBot parameters for decoupling from 5 DOF to

oe
oe

oe
oe

oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
oe
e

108

inverseorientation(x,vy,z,15,16,01,02,03,04)

’
’

’
’
’

’

[myxc,myyc,myzc]

Inverseposition.m

x-(15+16) *rl3
y=(15+16)*r23

cos (Ql) *sin (Q2+Q3+0Q4)
z—(15+16) *r33

sin (Ql) *sin (Q2+Q3+0Q4)

cos (Q2+0Q03+04)

$Applying symbolic forward equations
3.

Position of the point Oc

function

rl3
r23
r33
myxc
nyyc
myzc
end

[}

o oo oo oo o o oo oo oo oe oe o\° o\° o\° oe oe
o oo oo oo o o oo oo oo e e o\° o\° o\° oe oe

o oo oe oe
o oo oe oe
o oo oe oe
o oo oe oe
o oo oe oe
o° oe ® c o0 oo
o oo fo] - - oe oe
o° oe c o c o0 oo
o0 oo o] @® -+ 0 o0 oo
o° oe 3 o] [0} o0 oo
oo o° i) < i) @ o oo
o° oe O + Q - o° o°
o° oe m -— O 0] o° o°
oo oo 3 — in] o oo
o° oe o O [0) Q o° o°
oo o° O > ~ = O o o
o0 oo -H > o0 oo
o o° i) < + ~ 0 o° o\°
o° oe O NG -~ a a o° oe
o o° o D ()] O O o o
o o° 3 el o - - o o
o0 o0) + + o o°
o o° < > O (0] o o
o° oe c + - c 3 o0 oo
o0 oo (e} - c ja] o' o0 oo
S S e 2] Hoo a0 oo
o oe L (e} 0 o o°
o0 oo -H iB} -~ ~ — 9] o o0 oo
o0 oo 0 © (0] 0] o] - c o0 oo
o o° O Q 0] - @] < - o o
o° oe Q, O < Uy -— + + o° o°
o0 oo — Hoo-H o + o0 o°
oo oo (9] [9)] e (@] 3 o oo
oo o° O (@] a 9] @] i) [o o oo
o0 oo -H S o @) o0 oo
o0 o0 P 0 -~ EH 0 ~ o0 o°
o o° © 3 is) O LY 9] o o
o oe =] o) © 0 a 0] o o°
o° oe 0] S @® [o0 oo
o o° o O o) © a c e o o oo
o0 oo -H iB} @ -H O - + c P oo oo
o0 o0 M “~ “ A =] © “~ o o°
o° oe [} (O] 0] 0 - .. T oo o°
o° oe [0) Q s - o} o + O, o° o°
oo o° (9] — 0 © >) (@] O o oo
o0 oe “ < - IS (@) - m — o o°
o0 oo 0] o ~ + 3 T oo o°
oo oo > . O 0] 0] ()] (0] O O o o
o° oe [« “ — e e =3 [« > -+ o0 e
o° oe H O (0] 0 3 -— (o] o o° o°
oo oo < < © Q, a — < O o oo
o o° i) @] = & — [OFS 0] o oo
oo oo 3 © | O -~ X D e o oo
oo oo IS m [Ea} @] = [el i) o oo
o oo oe oe
o oo oo oo o o oo oo oo oe oe o\° o\° o\° oe oe
o oo oo oo o o oo oo oo e e o\° o\° o\° e e

109

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

function [Q2,0Q03,D2]= inverseposition (XC,YC,ZC,L1,L2,L3,L4)

D= ((XC."2+YC."2- 2*sqgrt (XC.”2+YC."2)*L1 +L1.72)+(ZC-L2)."2-13."2-
14.72)/(2*13*14) ;

D2=1-D."2;
if D2<0
03=0;
02=0;
else
Q3=atan2 (sqrt(1-D.”2),D);

Q2=atan2 ((sqrt (xc.”2+yc.”2)-L1),2Z2C-12) -
atan2 (14*sin (Q3),L3+L4*cos (Q3)));

end

end

110

8. APPENDIXES

8.1. KUKA YOUBOT ARM SPECIFICATIONS

FREELY PROGRAMMABLE

KUKA youBot

111

E----------IIIIIIIII (I T B |

e

540.5

hxis 3 (A3) +146° /- 151*° go°/s
Axis 4 (A4) +f-103* oo*ys
Axis 5 [Ag) +f- 167* 90%/s
Gripper Detachable, 2 fingers
Gripper stroka 20 mm
Gripper range 70 mm

Motors

2 indapendant stepper mators

Details provided abaust the proper bes and usability of the products ane purely for infermation purpases and
donot constitute a guarantes of these characteristics, The extent of goods delivered and services performed
iz dsteerined by the subject matter of the sperific contract. Noliabifty accmptad for erroes or omissions

youBot

Experience Manipulation

ENTER INTO THE AREA OF

ROBOT

C MANIPULATORS. With the
external, controllable 5-axis kinematics you can practically

demonstrate and analyze the basics of robotics kinematics and
dynamics. It is possible to perform basic grasping applications
and, if extended with sensors, you can realize applications with

grasp planning.

112

135 2175
§ youBot arm
*

Serial kinematics 5 axes
Height 655 mm
Work envelope 0.513m?
Weight 5.8ka

vy DR =
o Payload 0.5kg
Py o Structure Magnesium Cast
2 = Positioning bility 0.1 mm
a Communication EtherCAT: 1 ms cycle
5 Voltage connection 24VDC
b L Drive train power limitable to 0w
Axis data Range Speed
Axis 1 (A1) +/-189° 90°/s
Axis 2 (A2) +90°/- 65° 90°/s

Workspace

135_, 2175
[e L
ST NG
i
B | s
~ b o
8 o | A
ks p
= I W
I /
N\ /
33
199 265
&0 5405
‘yuluumwqulsihnn &
Ssnaid
il ¥

113

YOUBot AMm YArKapaca 100 Vien

E----------IIII | I D B B

Arm Actuator
Axis data Range Velocity

axis 1 +/- 1897 99 °/s

axic 2+ 9@°/- B5° 9@ °/=

axis 3+ 146°/ - 151° 98 °f<

axis 4 +/- 102,5° 98 °/s

axis 5 +/- 167,5° 9 °/s
Actuator Data

Actuator Data Joint 1| Joint 2| Joint 3 Joint 4 Joint 5| Wheel

Motor
Nominal Valtage (V) 24 |24 |24 |24 |24 |24
Nominal Current (A] 232 222 |23 107 Dpas |23
Nominal Torque (miNm) 827 (827 (827 (588 827
Temninal Inductance (mH) 0573 |0.573 (0573 224 773 (0573
Tominal Reslstance (0) 0978 (0.978 [0.978 448 137 |0.978
Moment of Inertia (kg'mm2) 135|135 [135 925 35 |135
Rated spoad (RPM) 5250 (5260 |5250 (2850 2800 |5260
Weight (g) w0 e |10 75 6 |10 |
s | | .
Reduction Ratio 156 [156 (100 71 71 |26
Moment of Inertia (kg’mm2) 0.409 [D.409 [0.071 0.07 0.07 |0.14
Weight (g) 224
Encoder
Counts per Revoiution 4000 4000 |4000 4000 4000 4000

Battery

Caution The battery is in general quite sensitive and should never be left connected when the youBot doesn't work because it slowly discharges. It may eventually results in battery failure

« Typa Maintenance-free lead acid

« Rechargeable Yes

» Voltage - 24 V

« Capacity 5 Ah

« Approximate Runtime of youBot - 50 min

Internal PC

« Type : MinHTX

« CPU Intel Atom D510 Dual Core 1 66 GHz

« RAM : 2 GB; SU-DOR2-667 200PIN

« Hard Drive - 32 GB SSD

« Ports : 6xUSB 2.0. 1 x VGA, 2 x LAN (1 avallable)
o DCInput - 12V

Motor controller
All used motor controller boards came from TMCM series by Trinamic

114

8.2. MAXON JOINT MOTORS

A-max 22 22 mm, Precious Metal Brushes CLL, 5 Watt

Kabet AWG 247
cable UL Style 1061

Kabel rot
cable red

WS

@221-0.13
fa
A |
1T T
Fivi
E
o[iz]
@1

@1 -305
-0.005
0.010
@
' =
maxon A-max

]
1-0.1 MZx2.9 tlet/deen
(+ Terminal) My IL=2.5 min.) 5.5 Ncm max. #[#0.2 4]
1.6 fax. Mixh & tlefsgeen
o My IL=4 min.) B.5 Kem max. i m“
6.5 -0.6 .5 mam.
M1:1
I Stock program
[Standard program

Special program (on request)

with i 10117 | 110119 | 110120 gR [iy

0125
with cables |130238]218705]235708| 202413

Motor Data

Values at nominal voltage

1 Nominal voltage v B 9 a 12 12 15 18 24 30 36 43 48
2 Mo load spead pm 9630 8970 8760 10400 9400 10300 9970 10700 10800 9800 9280 8370
3 No load cument mA 205 208 168 168 {142 131 104 881 748 506 347 203
4 Mominal speed pm 7380 7300 6100 7770 6700 7530 7220 7970 8070 7000 6420 5520
5 Nominal torque (max. continuous torque) mNm 481 622 63 624 618 &4 6.05 602 508 594 5831 540
& Nominal current (max. continuous current) A 0B84 0745 0661 0586 0523 0451 0362 0291 0.234 0475 0422 041
7 Stall torque mNm 201 228 205 243 214 2280 22 235 235 208 19 174
8 Stall current A 342 268 211 223 177 165 128 111 0894 0585 0387 032
9 Max. efficiency % 83 B4 a3 84 83 a3 83 a3 83 83 82 82
Characteristics
10 Terminal resistance 0 176 336 427 539 678 0807 14 216 335 601 124 150
11 Terminal inductance mH 0106 0.222 0.288 0.362 0445 0584 080 137 24 368 720 8405
12 Torque constant mNm/A 59 855 973 108 121 1398 171 212 262 348 488 543
13 Speed constant rpm/V 1620 1120 981 B75 790 BB 558 450 364 274 195 176
14 Speed torgue gradient rpm/mim 482 438 430 432 443 45 458 450 485 474 404 486
15 Mechanical time constant ms 205 198 197 197 {108 202 204 202 203 203 205 204
16 Rotor inertia gom® 407 432 437 436 426 427 42 42 416 400 397 401
Specifications Operating Range Comments
Thermal data n [rpm] Continuous operation
}g 1“;%: g:ﬁgg Lﬁiggﬁgﬂugii:g 523 ﬁ*& 5.0W - In observation of above listed thermal resistance
h i S (lines 17 and 18) the maximum permissible winding
1}3 1@”’3' tima constant winding 102s m temperature will be reached during continuous op-
2 mal time constant motor 313s 5 = .
21 Ambient tamperaturaG a0, +B5°C EETET O A AT
#2 Max. winding temperatura +85°C =Thermal limit.
Mechanical data (sleeve bearings) Short term operation
23 Max. speed 16000 rpm The motor may be briefly owerloaded (recurring).
2% Radic O i3 mm
adial play) -Uismm 20 40 &0 80 100 M [mbm]
26 Max. axial load (dynamic; 1N i i
27 Max. force for pll:ass fis t;laﬁch 0N 02 04 08 08 10 1a] T
28 Max. radial load, 5 mm from flange 28N
Mechanical data (ball bearings)
#3 Max. speed il l maxon Modular System Overview on page 2025
24 Axial play 0.05 - 0.15 mm
25 Radial play 0.025 mm
26 Max. axial load (dynamic) 33N ===I=
27 Max. force for prass fits (stafic) 45N

28 Max. radial load, 5 mm from flange 122N

- =
20 Number of pole pairs 1 D5-20Nm | I

Other specifications

30 Number of commutator segments g Page " —
31 Weight of motor B4g Gearhead I

CLL = Capacitor Long Life

=1

) . X I= Recommended Electronics:
Values listed in the table are nominal. ESCON362DC Page 342
Explanation of the figures on paga 9. E

i i ESCON Module 50/5
— ESCON 50/S
Option Page Notes

Ball bearings in place of sleeve bearings
Without CLL

Way 2014 edition / subject to change maxen DC moter 128

115

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

8.3. SIEMENS MV440 CAMERA SPECIFICATIONS

13.1 General technical specifications

Mechanical environmental conditions for SIMATIC MV420 and SIMATIC Mv440

Mechanical environmental conditions for operation

SIMATIC MY420 and SIMATIC MV440 are designed for fixed installation in an environment protected
from the weather and meet the conditions for use complying with DIN IEC 60721-3-3:

s Class IM3 (mechanical requirements);

+ Class 3K3 (climafic environmental conditions).

Mechanical environmental conditions, sine-shaped oscillations
Frequencyrangein Hz Test values
10=f<hd {1.075 mm amplitude

58 =f<500 1 g constant acceleration

Test for mechanical environmental condifions
Testfor [teststandard ~ Comments

Vibrations + Vibration type: Frequency cycles with a rate of change of 1
QOscillation test complying octave/minute.

;“_th ')EE 60068-2-6 - 10Hz = =58 Hz, conztant amplitude 0.075 mm

sine

- b8 Hz=1=500Hz, constant acceleration 1 g

- 10 Hz =f= 55 Hz, amplitude 1 mm (only sensor head and lighting
unif)

+ Vibration duration: 10 frequency cycles per axis in each of he 3
mutually perpendicular axes.

Testfor/feststandard ~ Comments
Shock Shock test + Type of shock: Half-sine

EQEEE?E,T;Q + Strength of the shock for the reader
- 10qpeak value
- 16 ms duration
Direction of shock: 100 shocks in each of the 3 mutually perpendicular
axes

116

Climatic environmental conditions for SIMATIC MV420 and SIMATIC MV440

Table 13- 1

Ambient climatic conditions for operation

Ambient conditions Permitted range Comments

Temperature 0. +R80°C

Temperature change Max. 10 *Cih

Relative humidity max. 95 % at +25 °C No condensation, comesponds to
relative humidity degree 2 to
IEC 61131-2.

Transportation and storage of SIMATIC MV420 and SIMATIC MV440

Transportation and storage of modules

SIMATIC MV440 exceeds the requirements of IEC 61131-2 for transportation and storage conditions.
The following information applies to modules fransported or stored in their original packaging.

The climatic conditions correspond to IEC 60721-3-3, Class JK7 for storage and IEC 60721-3-2,
Class 2K4 for transportation.

The mechanical conditions correspond to |EC 60721-3-2, Class 2M2.

Conditions Permitted range
Free fall <1m(upto10kg)
Temperature to+70°C
Atmaospheric pressure G660 ... 1080 hPa,
comesponds to a height of 0 ... 3500 m
Relative humidity (at +25 °C) 510 95%, no condensation
Sine-shaped oscillaions complying with 5-8Hz J5mm
IEC 60068-2-6 9500 Hz: 9.8 mis?
Shock complying with |IEC 60068-2-29 250 m/s*, & ms, 1000 shocks

Power supply for SIMATIC MV420 and SIMATIC MV440

Power supply

Supply voltage (UN) 24:(19.2VDC .28 8V DC, safety extra low
voltage, SELV).

Fuse Max. 4 A

Safety requirements complying with IEC 61131-2 carresponds to DIN EN 61131-2

117

E----------IIIII 1 11 | 11T I R DN EENENNNININSSE

Electromagnetic compatibility for SIMATIC MV420 and SIMATIC Mv440

Eledromagnetic compatibility
Pulse-shaped interference
Interference Test valtage Cor. to severity
Electrostatic dischamge + Air discharge: B kY 3
according to |EC 61000-4-2 + Contact discharge kY
Burst pulse (fast fransients) + 2KV (power supply cable) 3
complying with IEC 61000-4-4 o 2KV (signal ine)
Surge complying with IEC 61000-4-5
Coupling Test voltage Com. to severity
Asymmetrical 2 KV (power supply cable) direct 3
voltage with profeciive elements
Symmetrical 1 KV {power supply cable) direct 3
voltage with profective elements
Sine-shaped interference
RF interference Test values Com. to severity
(electromagnetic fields)
Conforming to IEC 81000-4-3 10VIm at B0 % amplitude 3
modulation of 1 kHz in the mnge
from &0 to 1000 MHz
Conforming to IEC 61000-4-3 10 Vim at 50% puls2 modulation a 3
500 MHz
RF interference on cablefcable Test values Com. to severity
shields
Conforming to IEC 8100048 Test voltage 10 at 80% amplitude 3
modulation of 1 kHz in the range
from 9 kHz to 80 MHz
Emission
Limit class ¢ Emitted interference of electromagnetic fields in accordance
with

EM 5501 1; Limit class A, group 1;

« Emifted intzrference via the AC input power supply in
aocordance with
EM 5501 1: Limit class A, group 1.

118

