

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Electrónica Industrial y Automática

El controlador KUKA youBot

Autor:

Justo Lobato, Alberto

Valladolid, Junio 2019.

 Responsable de Intercambio en la UVa

Herráez Sánchez, Marta

Universidad de destino

Vilnius Gediminas Technical University

2

e

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO

TÍTULO: The KUKA youBot controller

ALUMNO: Alberto Justo Lobato

FECHA: 05/06/2019

CENTRO: Electronics Faculty. Vilnius Gediminas Technical University

TUTOR: Dainius Udris

Cinco palabras claves que describen el TFG:

Robótica, Morfología, PCB, ROS, Octave

Abstract en español (máximo 150 palabras):

En nuestros días, muchas placas base y PCBs presentan fallos debido al fin de su vida útil o a

errores en el proceso de producción. En muchos de estos casos, su clasificación se realiza

mediante operaciones manuales, llevando a los empleados a una posible exposición frente a

elementos tóxicos. Debido a este motivo, en este proyecto se propone detectar dichos fallos con

el procesamiento de imágenes tomadas por una cámara Siemens MV440 mediante el programa

GNU Octave, así como la clasificación de las mismas gracias a la programación de un robot-

brazo KUKA youBot dentro del entorno Linux conocido Robot Operating System o ROS. Previa a

la programación de dicho robot, se simulará su comportamiento dentro del programa Gazebo.

[ESK-17-5.1EN] 3

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

FACULTY OF ELECTRONICS

DEPARTMENT OF ELECTRICAL ENGINEERING

Alberto Justo Lobato

THE KUKA YOUBOT CONTROLLER

KUKA YOUBOT ROBOTO VALDIKLIS

Bachelor Thesis

Automation study programme, State Code 612H62002

Automatic Control of Technologies specialization

Electrical Engineering Study Area

Vilnius, 2019

4

e

2

e

 Alberto Justo

The KUKA youBot controller. Bachelor Thesis for degree. Vilnius Gediminas Technical

University. Vilnius, 2019.

Abstract:

Nowadays, many mother boards and PCBs have errors due to their life cycle end or mistakes in

production process. In most of these cases, their classification is done manually, meaning an

exposition to toxic elements for the employees. Thus, in this project we propose a solution based on

computer vision and robotics. On one hand, error detection is made with a Siemens MV440 camera

and images taken by it are processed on Octave. On the other hand, PCB classification is done by

robot KUKA youBot, which is programmed on Linux supported software Robot Operating System

or ROS. Previously, we simulate our robot workspace on Gazebo program.

Key words:

ROS, Octave, PCB, image processing, error detection.

3

INDEX OF CONTENTS

1. INTRODUCTION 9

1.1. Motivation of the project .. 10

1.2. Main goals .. 10

2. ANALYTICAL PART 12

2.1. ROS: architecture and characteristics .. 12

2.1.1. Architecture ... 12

2.1.1.1. Filesystem level. ... 12

2.1.1.2. Computation graph level .. 13

2.1.2. First steps on ROS ... 15

2.1.2.1. Creating a new workspace.. 15

2.2. KUKA youBot.. 16

2.2.1. Overview of kinematic structure .. 16

2.2.1.1. How to move KUKA youBot arm to its home position 16

2.2.2. Robot kinematics theory .. 18

2.2.3. Denavit-Hartenberg parameters ... 19

2.2.4. Inverse kinematics ... 21

2.2.5. Technical specifications ... 25

2.2.6. Connections ... 26

2.3. Camera ... 26

2.4. Computer vision on Octave .. 29

2.4.1. Programming on Octave. Artificial vision most used commands ... 29

2.4.2. Computer vision techniques for error detection in PCBs 32

2.4.3. PCBs. Production and use errors. .. 36

3. DESIGN PART 38

3.1. Real workspace: settings and preparation. ... 38

3.1.1. Camera connections. .. 38

3.1.2. Platform instalation for camera. ... 40

3.2. Robot simulation. ... 42

3.2.1. Forward and inverse kinematics equations obtained on Robotics

Toolbox. ... 42

4

e

3.2.2. Inverse Kinematics programming for KUKA youBot. 45

3.2.3. Robot programming on C++ .. 46

3.2.4. Simulation on Gazebo. ... 58

3.3. Computer vision programming. ... 61

3.3.1. License Automation Manager from Siemens. 61

3.3.2. Image acquistion mode for Siemens MV440 camera. 63

3.3.3. PCBs error detection programming. .. 64

3.3.4. Communication between camera and ROS 72

4. RESULTS AND CONCLUSIONS 76

4.1. Computer vision part results .. 76

4.2. KUKA youBot part results ... 80

4.3. Final conclusions .. 82

5. ACKNOWLEDGEMENTS 83

6. REFERENCES 84

7. ANNEXES 86

7.1. ROS C++ CODE .. 86

7.2. OCTAVE COMPUTER VISION CODE .. 99

7.3. MATLAB FORWARD AND INVERSE KINEMATICS CODE 106

8. APPENDIXES 111

8.1. KUKA YOUBOT ARM SPECIFICATIONS .. 111

8.2. MAXON JOINT MOTORS ... 115

8.3. SIEMENS MV440 CAMERA SPECIFICATIONS 116

5

INDEX OF ILUSTRATIONS

Figure 1. Scheme of final thesis ... 11

Figure 2. Filesystem level folders[2] .. 13

Figure 3. Computation graph level elements[2] ... 14

Figure 4. Communication between nodes[3] .. 14

Figure 5. Creating a new workspace on ROS ... 15

Figure 6. Packages included in created workspace[3] .. 16

Figure 7. KUKA youBot .. 16

Figure 8. Robot's arm movement to its home position[6] .. 17

Figure 9. KUKA youBot home position ... 18

Figure 10. Kinematics model for a 2 DOF robot[8] ... 18

Figure 11. D-H link twist and length[8] ... 20

Figure 12. Example of D-H parameters obtaining[8] ... 20

Figure 13. Example of inverse kinematics[18] ... 21

Figure 14. Inverse kinematics of 2R arm[18] ... 22

Figure 15. How to calculate q1 and q2 for 2R arm[18] ... 22

Figure 16. KUKA youBot model for obtaining inverse kinematics[20] 23

Figure 17. KUKA youBot manipulator scheme in XYZ axes[20] 24

Figure 18. Joints motors[8.2] .. 25

Figure 19. Robot’s angles and height[8.1] ... 25

Figure 20. KUKA youBot connections .. 26

Figure 21. Siemens MV440 camera[4]... 27

Figure 22. MV440 camera connections and components[4] .. 28

Figure 23. MATLAB supported vision cameras .. 29

Figure 24. Robot’s arm image with Imshow[9] ... 31

Figure 25. PCB image with Imshow[9] .. 31

Figure 26. PCB image converted to greyscale with rgb2gray[9] 31

Figure 27. Graphical example of dilation matrix[11] ... 33

Figure 28. Erosion graphical example[10] ... 33

Figure 29. Erosion practical example, before and after. [10] ... 33

Figure 30. Example of filtering[10] .. 35

Figure 31. Example of template matching10] .. 36

6

e

Figure 32. PCB ML/XEROX model used for detection ... 36

Figure 33. Bad PCB ML/XEROX model ... 37

Figure 34. Connection between Siemens camera and PC[4] ... 38

Figure 35. Camera connections to voltage[3.1.1] ... 39

Figure 36. 24 V DC power supply[3.1.1] ... 39

Figure 37. Holes dimensions for screwing camera to platform[8.3] 40

Figure 38. Template and camera screwed to platform[3.1.2] ... 41

Figure 39. Workspace with robot and camera installed [3.1.2] 41

Figure 40. Test 1 for KUKA youBot on MATLAB ... 42

Figure 41. Test 2 for KUKA youBot on MATLAB ... 43

Figure 42. Test 3 for KUKA youBot on MATLAB ... 43

Figure 43. Instructions for using KUKA youBot with keyboard [3] 46

Figure 44. Reference system for KUKA youBot programming [5] 47

Figure 45. KUKA youBot on Gazebo[3.2.4] ... 58

Figure 46. Measurement of PCBs[3.2.4] .. 59

Figure 47. Workspace constructed in Gazebo[3.2.4] ... 59

Figure 48. PC and camera IP connection[3.3.1] ... 61

Figure 49. Opening web browser in PRONETA for user interface[3.3.1] 62

Figure 50. Code reading configuration on web browser[3.3.1]...................................... 62

Figure 51. SIMATIC MV440 HR user program[3.3.2] ... 63

Figure 52. PCB with white background for detection[3.3.3] ... 64

Figure 53. Original and filtered image[3.3.3.1] .. 65

Figure 54. Standard image for comparing elements in mymorphology function[3.3.2] 67

Figure 55. Testing image in mymorphology function[3.3.2] ... 68

Figure 56. Both images transformed and compared in same plot for mymorphology

function[3.3.2] .. 68

Figure 57. Result obtained after applying mymorphology function[3.3.2] 69

Figure 58. Template selected in standard image[3.3.3.3] ... 71

Figure 59. Plotting elements in common between two images with template

matching[3.3.3.3] .. 72

Figure 60. Rosoct commands[3.3.4] ... 73

Figure 61. Contour image with filtering function[4.1] ... 76

Figure 62. Standard image number 2 for mymorphology function[4.1] 77

Figure 63. Testing image number 2 for mymorphology function[4.1] 77

Figure 64. Images after applying dilation[4.1] ... 78

Figure 65. Mymorphology function applied to second couple of images. [4.1] 78

7

Figure 66. Jig for second standard image in matching function[4.1] 79

Figure 67. Template matching applied on second testing image[4.1] 79

Figure 68. Robot's movement from home position .. 80

Figure 69. KUKA youBot trying to reach PCB ... 81

8

e

INDEX OF TABLES

Table 1. D-H symbolic parameters for KUKA youBot .. 21

Table 2. Electronical and reading specifications .. 27

Table 3. Test values for MATLAB Robotics Toolbox on KUKA youBot 42

Table 4. D-H parameters for KUKA youBot obtained with MATLAB Robotics Toolbox

 .. 44

Table 5. Values for Qi angles of KUKA youBot ... 44

INDEX OF EQUATIONS

Equation 1. Denavit-Hartenberg parameters matrix ... 20

Equation 2. Inverse kinematics for KUKA youBot orientation 23

Equation 3. Q1 angle .. 24

Equation 4. Q3 angle .. 24

Equation 5. Q2 angle .. 24

Equation 6. Q4 angle .. 24

Equation 7. Example of dilation matrix ... 32

Equation 8. Correlation coefficient .. 35

9

1. INTRODUCTION

E-waste material problem: the end of life cycle of our electronics devices [1]

 Nowadays, there are millions of mobile phones, tablets, PCs and other types of

electronic components across the globe. When their life span is over, they are sent to

developing or third world countries, like China or Taiwan, implying a big environmental

impact on most of their cities, which have been transformed into landfills. On account of

bad working conditions, their population have a lot of health issues like respiratory

distress, leading into many cancer cases.

Due to this situation, it is necessary to apply automated solutions for managing e-waste

material and making a correct classification of it, not only in the end of electronic devices

service life, but in production process too. This leads to a good social and economic global

effect. On one hand, companies can make more money because their products, like PCBs

for example, are better monitored (without ignoring their planned obsolescence politics)

with these systems. On the other hand, health and labor problems in the countries

mentioned before can be avoided, improving living standard of their habitants.

What is ROS?

ROS letters correspond to “Robotic Operation System”. Basically, it is an open

source system that is taking robotics world by storm. It allows to program every robot

available in the market, due to be a system support by Linux, concretely Ubuntu, opening

the possibility of reusing code for robotics and development. Mainly it is based on C++

or Python code.

It is composed by processes, also known as nodes, which can be designed individually

and assembled at runtime, because of ROS’s middleware. How nodes are communicated,

with messages or services, will be explained in the following section. These processes are

also bundled into packages, making easier the communications between different ROS

codes. Furthermore, ROS has a lot of toolboxes to help its users in any application they

want to make.

10

e

What is digital image processing?

Image processing or computer vision is a technique of patron recognition in

different areas of our world. From license plate recognition to fire detection, it is a helpful

tool for taking and analyzing images with the purpose of being processed by a machine.

One simple way to understand this concept is to base on our own senses. Artificial vision

tries to imitate our comprehension about the world around us but replacing our eyes for a

machine. This is accomplished thanks to image breakdown into small fragments (pixels)

and a later studio.

1.1. Motivation of the project

Due to the need of applying an automated system that allows e-waste material

identification and classification, a prototype is being proposed, formed by a KUKA

youBot, which takes care of grabbing electronics components to classify and take them

to one place or other, depending on their conditions, and a camera that will take photos

previously of these ones. KUKA youBot is going to be programmed on ROS, stablishing

communication with Octave at the same time, which is going to be our programming

language for artificial vision part.

This project provides a solution for electronics components inspection problem, as well

as improving product quality, but avoiding accidents and exposures of dangerous agents

too.

1.2. Main goals

First, our webcam will take a photo of the electronic component at hand. Octave

will process the image thanks to different computer vision algorithms, concluding if this

component is acceptable or not. In short, it will be a homographic transformation, which

consists in overlaying two different images of the same element, one good and another

11

bad, in order to subtract one from the other and seeing the differences between them. This

is explained deeply in the section relative to computer vision.

Next step will be communicating Octave with ROS, exchanging information between

them. It is necessary to exchange one variable that expresses if our element is right or not.

Finally, KUKA youBot is programmed in ROS (robot workspace, home position and

speed must be defined previously), which will grip our component and take it to one place

or other, depending on its condition.

A scheme of how we are going to manage this project can be seen in Figure 1.

Figure 1. Scheme of final thesis

IMAGE PROCESSING ON

OCTAVE. DETECTION OF

ERRORS

COMMUNICATION BETWEEN

ROS AND OCTAVE

STABLISHING KINEMATICS

MODEL ON MATLAB ROBOTICS

TOOLBOX

PCBs IMAGE ACQUISITION

FROM SIEMENS CAMERA

ROBOT PROGRAMMING AND

SIMULATION ON GAZEBO

ROBOT GRABBING PCBS AND

MOVING THEM TO DIFFERENT

PLACES.

12

e

2. ANALYTICAL PART

2.1. ROS: architecture and characteristics

2.1.1. Architecture

ROS structure can be divided in three levels of knowledge: filesystem level,

computation graph level and community level. We will make a previous introduction of

each one of them, to make a deeper analysis afterwards. [2]

Filesystem level. This level contains all ROS resources that we can find on disk. Without

them, it would not be able to work. It contains packages, metapackages, package

manifests, repositories, message types and service types. All these concepts are going to

be defined later. Filesystem level’s main aim is to group the building process of a project

and keep flexibility on each of its parts.

Computation graph level. It is the network of ROS processes that are connected all

together. This includes a lot of concepts that we should know before starting to program

in ROS: nodes, master, parameter server, messages and topics. On this level, any element

can interact with other elements, see information sent between them and exchange data.

Community level. It is the level in charge of enable different communities in order to

transmit information and software. We are not going to focused on this level because it is

more oriented to sharing code to the cloud.

2.1.1.1. Filesystem level.

The same way as an operating system like Windows or Linux, ROS programs are

formed by folders, which define their functions. We can see this in the Figure 2 attached.

13

Figure 2. Filesystem level folders[2]

- Packages. They are minimum structures necessaries for ROS to work properly

and can contain configuration files, nodes, etc.

- Metapackages. A group of packages received the name of metapackage. An

example of metapackage could be the navigation stack.

- Package manifests. They are like packages, but with their extension in XML.

Package manifests mainly give information to users about packages, licenses,

compilation files, and so on.

- Message types. It is the kind of information standardized about communication

between processes.

- Service types. They give information about processes structure in ROS.

2.1.1.2. Computation graph level

This level is used by ROS to set up systems, handle all the processes and stablish

communication with more than one computer only. Now we are going to introduce some

concepts that are very useful to understand what computation graph level is about, as

shown in Figure 3.

14

e

Figure 3. Computation graph level elements[2]

- Nodes. They are processes which are communicated to each other. ROS normally

uses a combination of nodes in order to manage different functions.

- Master. It is the server responsible of the communication between nodes,

messages, topics, etc. Regardless of the number of nodes we have, without the

master they would be useless because we couldn’t send information from one to

another. All computers with ROS installed must have a master. Normally we

launch ROS master with roscore and roslaunch.

- Parameter server. As its name shows, parameter server provides configuration

of nodes parameters.

- Messages. They are the way of communication between nodes. In ROS, we can

develop our own message types, sending different data to other nodes, such as

float, double, integer, etc.

- Topics. A standardized way to say that a node is sending information is that it is

publishing a topic. Topics are routes used by ROS network to give a name to each

message.

- Services. In order to get a response from a node, topics are not the answer.

Because of this, we need to stablish communication previously with services, so

every node that has a service can exchange information with the rest, as shown in

Figure 3. This is done thanks to request-reply communication, due to distributed

systems like ROS do not use client-server or other many-to-many politics.

Figure 4. Communication between nodes[3]

15

- Bags. They are used to save data from nodes, such as sensor data, camera data,

and so on, to develop new algorithms and programs with it.

2.1.2. First steps on ROS

2.1.2.1. Creating a new workspace

Before starting to work with nodes and packages, a new workspace must be

created to have all the information necessary, such as make files or build files. For this

reason, we need to execute the following commands on a Linux terminal, attached in

Figure 5.

Figure 5. Creating a new workspace on ROS

Once we have created our workspace, all the packages included in it (and the ones that

we are going to include next too) can be seen with the command ls, as shown in Figure 6.

[3]

16

e

Figure 6. Packages included in created workspace[3]

2.2. KUKA youBot

This robot has been made with the purpose of scientific research and training on an

open source platform. In our case, this robot only has an arm with five degrees of freedom

as further illustrated in Figure 7, but it normally includes an omnidirectional base.

Anyway, we don’t need this one for the application explained.

Figure 7. KUKA youBot

We decide to choose this robot for our project because of its small size and flexibility.

For grabbing mother bases, it can grip them without making too many movements, in

contrast to other types of robots that we can find in the industry. This implies a lot of

advantages, but mainly one: our workspace doesn’t need to be big to let the robot do its

job, as larger ones do.

2.2.1. Overview of kinematic structure

2.2.1.1. How to move KUKA youBot arm to its home position

17

It is crucial to consider that our robot’s joints are based on relative coordinates.

This means that they have encoders whose position depends on a reference one, so there

are not absolute joint angles. The reference position that we mentioned before is also

called home position or rest position, which is a starting point to make different actions

with the robot. The process of going to this position must be slow and smooth, so we will

not break any of robot’s joints. [5]

Moreover, a critical factor is knowing that every time robot’s movement starts, it must

depart from a rest position in order to keep everyone’s safety and robot’s too. For this

motive, we must program our robot to move to home position at the start and at the end

of the process. With the purpose of bringing the arm to its rest position, it is necessary to

follow these instructions as shown in Figure 8. [6]

Figure 8. Robot's arm movement to its home position[6]

In a nutshell, this process consists in moving all robot’s joints to its mechanical stops.

Now we can obtain its Denavit-Hartenberg parameters, but previously an explanation of

it is necessary. Following the instructions mentioned before, our robot must be in rest

position like it is shown in Figure 9 attached.

18

e

Figure 9. KUKA youBot home position

2.2.2. Robot kinematics theory

Before introducing D-H parameters and calculating them, there must be an

introduction of some robotics and mechanics concepts. [8]

Robot kinematics. It is the study of robot’s movement compared to a reference system,

including an analytical description of it as a time function and a relation between robot’s

end location and joints values. We can see an example of this explanation in Figure 10,

which is a direct kinematic model of 2 D.O.F (Degrees Of Freedom) plane robot. Our

joints coordinates are q1 and q2, while (x, y) are robot’s end position grid reference.

Figure 10. Kinematics model for a 2 DOF robot[8]

19

Direct kinematics problem. Its aim is to get robot’s end position and orientation with

regard to a baseline coordinates system. Previously, we have to know joints angles and

geometrical parameters of robot’s elements.

Differential model. It is a mathematical model, based on Jacobian matrix which

associates joints movement speed with robot end’s ones.

To make things easier, we are going to use Denavit-Hartenberg model to calculate

kinematics model of KUKA youBot.

Inverse kinematics problem. In this case, the issue is the opposite compared to the direct

kinematics one. Here, we know the end positions, but our main goal is getting arm

positions and angles in order to reach it.

2.2.3. Denavit-Hartenberg parameters

J. Denavit and R.S. Hartenberg proposed, back in 1955, a matrix model that gives

a reference system in a systematic way, relative to each tier named i from a joint, so

robot’s kinematic model can be obtained of it.

According to this representation, choosing a reference system for each tier, we can obtain

the next one following 4 basic transformations that only depend on tier’s geometrics

characteristics. [8] These transformations are based on rotations and translations:

• Rotation around zi-1 axis an angle θi.

• Translation through zi axis a distance di.

• Translation through xi axis a distance ai.

• Rotation around xi axis an angle αi.

Finally, we will obtain a matrix like the attached one in Equation 1. Also, an example of

how to calculate D-H parameters is shown in Figure 12.

Note: 𝐶𝛼𝑖 and 𝑆𝛼𝑖 mean cos (𝛼𝑖) and sin (𝛼𝑖), respectively.

20

e

𝐴𝑖
𝑖−1 = 𝑅𝑜𝑡𝑧(𝜃𝑖) 𝑇(0,0, 𝑑𝑖) 𝑇(𝑎𝑖, 0,0) 𝑅𝑜𝑡𝑥(𝛼𝑖) =

Equation 1. Denavit-Hartenberg parameters matrix

Furthermore, we can see how to obtain twists and lengths in Figure 11, continuing with

D-H model.

Figure 11. D-H link twist and length[8]

Because this process is really annoying to do , as it requires 16 steps according to D-H

model to obtain its parameters for our robot, we are going to use Robotics Toolbox on

MATLAB for it.

Figure 12. Example of D-H parameters obtaining[8]

21

In KUKA youBot case (5 DOF), D-H symbolic parameters are included in following

Table 1. These parameters were explained at the beginning of this section [2.2.3]

Link αi ai di qi

1 α1 a1 d1 q1

2 α2 a2 d2 q2

3 α3 a3 d3 q3

4 α4 a4 d4 q4

5 α5 a5 d5 q5

Table 1. D-H symbolic parameters for KUKA youBot

These parameters will be used in next sections also for obtaining inverse kinematics in

our project. [3.2.1]

2.2.4. Inverse kinematics

In most of cases, we know the position which we want our robot to go, but it is necessary

to get their joints positions and angles for it. [18] Due to this, inverse kinematics concept

is introduced, as shown in Figure 13.

Figure 13. Example of inverse kinematics[18]

22

e

Basically, inverse kinematics aim is obtaining joint coordinates values for our robot, in

order to its TCP or Tool Center Point gets a specific position and orientation. Moreover,

this solution is not systematic, so it means there is not only a unique one, depending on

robot’s configuration.

We can distinguish between two methods to solve this problem: geometric and

homogenic transformation matrix (like the one we saw in Equation 1). One example of

calculating inverse kinematics for a 2 DOH robot is attached in Figure 14. Furthermore,

it can be seen in that there are two possible options for it.

Figure 14. Inverse kinematics of 2R arm[18]

As shown in Figure 15, we know position of arm’s end, called P, and with trigonometrical

relations we can obtain angles q1 and q2 to reach that specific position.

Figure 15. How to calculate q1 and q2 for 2R arm[18]

23

From KUKA youBot perspective, it is a big problem, where we will reduce robot inverse

orientation kinematics problem from 5 D.O.F arm to 3, as shown in Figure 16 . Moreover,

it is notable to explain each equation to understand this better in a mathematical way.

Figure 16. KUKA youBot model for obtaining inverse kinematics[20]

If we have a given point, in this case called o, and also a R matrix, we can get point oc,

as Equation 2 shows, where R is rotation matrix of the robot.

𝑜𝑐
0 = [

𝑥𝑐
𝑦𝑐
𝑧𝑐

] = 𝑜 − (𝐿5 + 𝐿6)𝑅 [
0
0
1

] = [

𝑜𝑥 − (𝐿5 + 𝐿6)𝑟13
𝑜𝑦 − (𝐿5 + 𝐿6)𝑟23

𝑜𝑧 − (𝐿5 + 𝐿6)𝑟33

]

Equation 2. Inverse kinematics for KUKA youBot orientation

In terms of orientation, this problem is solved, but we also need to know its position. That

is our next step to achieve. To facilitate equations comprehension for the reader, Figure

17 is attached. Moreover, it should be kept in mind that all these parameters have a range

of values (minimum and maximum) which can be seen in Figure 19, provided by the

manufacturer.

24

e

Figure 17. KUKA youBot manipulator scheme in XYZ axes[20]

Thanks to its projection to (xo,yo) , q1 angle can be obtained as we can see in Equation

3.

𝑞1 = 𝑡𝑎𝑛−1 (
𝑦𝑐

𝑥𝑐
)

Equation 3. Q1 angle

In order to obtain q2 and q3 angles, we will apply some trigonometric rules like cosine

one for triangles, concluding with their expressions shown in Equation 4 and Equation 5,

which will be computed on MATLAB, as we will see in next sections. [3.2.1]

𝑞3 = 𝑡𝑎𝑛−1 (±
√1 − 4𝑅2

2𝑅
)

Equation 4. Q3 angle

𝑞2 = 𝑡𝑎𝑛−1 (±
√𝑥𝑐

2 + 𝑦𝑐
2 − 𝐿1

𝑧𝑐 − 𝐿2
) − 𝑡𝑎𝑛−1 (

𝐿4sin (𝑞3)

𝐿3 + 𝐿4cos (𝑞3)
)

Equation 5. Q2 angle

𝑞4 = −𝑞2 − 𝑞3 + 𝜋/2

Equation 6. Q4 angle

25

2.2.5. Technical specifications

For this part, we are going to start with robot’s joints first. They are formed by a

total of five brushless flat motors EC45 and EC32 models, like the ones we can see in

Figure 18, plus gearheads and encoders too.

Figure 18. Joints motors[8.2]

Both motors, despite not having big dimensions (only 32 mm diameter), can provide 15-

50 W of power.

About robot’s arm dimensions, it is approx. 66 cm long, with a two-finger gripper at the

end of the arm, being able to grab objects of 500 g max. We can see this with more detail

in Figure 19.

Figure 19. Robot’s angles and height[8.1]

26

e

2.2.6. Connections

For connecting I/O devices, KUKA youBot has USB (keyword and mouse) and

VGA (PC monitor) ports, so the rest of connections, like HDMI or DVI, require

appropriate adapters, as can be seen in Figure 20. Joint’s motors can be controlled thanks

to EtherCAT and Ethernet. Moreover, it has a ON/OFF port obviously to provide power

to robot.

Figure 20. KUKA youBot connections

2.3. Camera

We must keep in mind that KUKA youBot already has a camera, specifically a

Bumblebee Stereo Camera, but its accuracy and range are not very suitable for our

application. [4] On account of this, thanks to VGTU’s Mechatronics and Robotics

department, we acquired a Siemens Simatic Vision Camera, in detail a MV440 model,

which is designed for industrial recognition and assessment of multiple pixels. A picture

of this camera can be seen in Figure 21.

27

Figure 21. Siemens MV440 camera[4]

A little review of its most important technical specifications is shown in Table 2.

We can see there that, in terms of image recognition, our camera is really fast, capable of

watching objects with a speed of 10 m/s. It is a great advantage compared to KUKA’s

camera because we can detect mother bases in a shorter period of time and, from an

industry perspective, this implies a faster production process.

Electronical and reading specifications:

Power
supply

(V)

Image
acquisition

Degree of
protection

Object
speed

(m/s)

Number
of I/O

Codes read
per image
acquisition

24 CCD IP 67 10 4 150

Table 2. Electronical and reading specifications

Furthermore, camera’s reader has a resolution of 1024 x 768 pixels, really good for

making quality photos with high definition. This is crucial for our application because a

high resolution is necessary for detecting mistakes in mother bases, such as components

not well welded and so on. An image of our camera with all its connections and

components is attached in Figure 22.

28

e

Figure 22. MV440 camera connections and components[4]

In respect of connection ports, our camera works with Ethernet and obviously its power

supply port. The Ethernet one is used to control our camera with a PC, so it must require

a network connection via TCP/IP. Combined cable socket (number 6 in Figure 11) is used

for power supplying, I/O connectors and RS-232 interface.

29

2.4. Computer vision on Octave

 Instead of using MATLAB, we are going to develop the part relative to computer

vision with Octave, which functions and programming are really similar to MATLAB,

but it is an open source IDE, which means that nodes communications between it and

ROS will not be a problem in terms of permissions, keys, etc. Octave is a MATLAB

compatible software, so every program made in MATLAB can be compiled in Octave

and vice versa. Moreover, thanks to its working on Linux softwares, Octave can take any

kind of camera for image acquisition, not like MATLAB which only accepts a specific

amount of them, as shown in Figure 23.

Figure 23. MATLAB supported vision cameras

2.4.1. Programming on Octave. Artificial vision most used

commands[11]

 We are going to use mainly a combination of these basic commands on Octave, but

they are the same as MATLAB:

30

e

• Imshow. It shows an input image.

• Imread. It loads an image from disc on a I matrix, accepting multiple formats as

.jpg, .tif, .bmp, etc)

• Imwrite. It saves an I image on disc with a specific format.

• Imhist. It calculates an histogram from a I image and it saves it on a variable.

• Imtool. Tool for image processing that allows to zoom, measure, visualize and

manipulate histograms, contrast ajust and shining.

We can see some examples of code and image processing, made on MATLAB, which

work on Octave perfectly. Images attached in Figure 24, Figure 25 and Figure 26.

%%

%Shows an image through screen

I=imread('brazo_robot.jpg');

figure

imshow(I)

%%

whos

%%

figure

J=imread('HeroImage_PCB.jpg');

imshow(J)

whos

figure

W=rgb2gray(J); % convert image into greys with rgb2gray

imshow(W)

31

Figure 24. Robot’s arm image with Imshow[9]

Figure 25. PCB image with Imshow[9]

Figure 26. PCB image converted to greyscale with rgb2gray[9]

32

e

2.4.2. Computer vision techniques for error detection in PCBs

[11]

 In order to detect components not well welded, corrosion or other type of errors in

mother bases, we have to introduce a definition, called morphology, which is going to be

applied on Octave.

Morphology is a matematical concept, introduced by G. Matheron and J. Serra at Mines

School of Paris in the 1960s, which is applied for changing and understanding objects

structure that appear in images. An important concept in morphology is the structuring

element, which is the responsible of defining form and extension of morphological

operation. This means that we can apply morphology on a specific zone of our picture

without changing the rest, thanks to structuring element.

First of all, we consider that readers have a previous knowledge of Set Theory and its

operations such as union, intersection, complement, and so on. For our project, we are

going to use two main morphological operations: dilation and erosion.

• Dilation. This operation is similar to the XOR logical port, where we have an

image A and structuring element B, as it is shown in attached example in Equation

7.

𝐴 𝑋𝑂𝑅 𝐵 = {

(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)
(2,0) (2,1) (2,2)

}

Equation 7. Example of dilation matrix

Result of dilation is an image which is a set of all vectors possibles of adding pairs

elements of both A and B. A graphical example of this can be seen in Figure 27.

33

Figure 27. Graphical example of dilation matrix[11]

• Erosion. This operation implies a decrease of active pixels number compared to

our original image. Its main application is to eliminate details of small size on a

binary image. We can see a graphical example of erosion in Figure 28 and also a

practice of it in Figure 29, in order to count the number of screws in attached

image.

Figure 28. Erosion graphical example[10]

Figure 29. Erosion practical example, before and after. [10]

34

e

As we have seen in last picture, erosion is a very useful tool to count pieces or

distinguish different elements of them, with a view to apply other morpholical

operations so we could know their area, labelling, etc.

Main commands on Octave are the following: [11]

- Se=strel(´disk´, R). Structuring element with size disk of radium R.

- Se=strel(´line´, long, grad). Lineal structuring element with height long, grad

specifies angle in grades on counterclockwise.

- Se=strel(´square´, w). Square structuring element of w pixels.

- D=imdilate(BW, se). Picture dilation with structuring element se.

- E=imerode(BW, se). Picture erosion with structuring element se.

- C=imclose(BW,se). Morphological closing of BW image with element se.

- O=imopen(BW, se). Morphological opening of BW image with element se.

- Z=imsubtract(X, Y). Subtraction of images X and Y.

Previous to apply morphological operations, we must filter our images to eliminate pixels

that can ruin fails detection process. Filtering aim is to modifie images in order to make

them more proper for later transformations. One thing that should be considered is that

filtering can eliminate desired characteristics of our image, so it needs to be applied

carefully.

Depending on which mathematical expression has been used, we can distinguish between

lineal and non-lineal filters. From lineal filters perspective, there are two main types:

average filter and gauss filter. From no lineal filters view, most important one is median

strainer.

In our project we are going to focused on lineal ones, mainly on gauss filter, because they

have better applications for filtering out pixels that are less important in our image. Gauss

filter is based on mathematical bell of the same name, which downgrades less image at

issue than average filter, keeping details and outlines.

An example of filtering is shown in Figure 30, which corresponds to a photo of a one-

euro coin. Here first image has noise (specifically a salt and pepper one) and second one

is after applying median strainer.

35

Figure 30. Example of filtering[10]

Moreover, our last computer vision method that will be applied is template matching,

which is based on statistical concept of correlation coefficient. Level of association

between two variables (in our case it will be pictures) is defined as correlation coefficient,

whose ranges change between -1 and 1. This means that if two variables have a correlation

of 1, they are identical. Mathematical formula is attached in Equation 8 . However, we

are not going to get into this concept deeply, but in image processing one instead.

𝑝𝑥,𝑦 =
𝐸[(𝑋 − µ𝑥)(𝑌 − µ𝑦)]

𝜎𝑥𝜎𝑦

Equation 8. Correlation coefficient[9]

In terms of computer vision, correlation will be translated to matrix correlation, simply

searching for elements in common between images. Each pixel of search image with

coordinates (xs, ys) has intensity matrix Is(xs, ys) and another one in the jig with

coordinates (xt, yt) has intensity matrix It(xt ,yt). Therefore, absolute difference in the

pixel intensities is defined as the following: Diff(xs, ys, xt, yt) = | Is(xs, ys) – It(xt, yt) |.

36

e

Lowest differential provides an estimate for best position of template within main picture,

being shown in Figure 31, where elements that match are marked by an asterisk.

Figure 31. Example of template matching[10]

2.4.3. PCBs. Production and use errors.

 During production process and also when PCBs end their life cycle, there are some

different types of errors that can produce their bad working, such as corrosion,

components not well welded or broken, etc. Identification of these errors is purely visual

and done manually by workers, but in some occasions, they are difficult to see for human

eye.

In our case, we are going to use PCBs from printing toners, with a standard one, as it is

shown in Figure 32, being compared with others that have broken pads or other types of

errors.

Figure 32. PCB ML/XEROX model used for detection

37

Thanks to these reference images, we are going to compare them easily, due to the fact

that there are big differences between well working PCBs and underwhelming ones, as

we can see in the following picture, Figure 33.

Figure 33. Bad PCB ML/XEROX model

On this image it is quite obvious that there is too much welding in pads and also some

components such as capacitors are missing.

To sum up, we are going to do a recognition that can be seen by workers, but in an

automated way, as it implies better production process as well as more safety for

employees due to exposition of noxious fumes.

38

e

3. DESIGN PART

 In this section we are going to expose and defend all settings and programming for

our project. For this reason, design part is split in 3 parts, relatives to real workspace,

robot programming and image processing.

3.1. Real workspace: settings and preparation.

3.1.1. Camera connections.

 Because of Siemens MV440 camera does not work on Linux, due to it only has

license on Windows, we have to use another computer besides of the one we use for robot

programming.

In terms of camera connection to PC, it will be similar as the following in Figure 34, but

there is not automation system needed for our project, so we are going to connect ASM

cable directly to power supply.

Figure 34. Connection between Siemens camera and PC[4]

39

For connecting camera to voltage, we needed to shell part of power supply cable given

by manufacturer, attached in first picture of Figure 36, where red wire is connected to

plus pin and blue one to minus. In order to connect these cables to power supply, we use

a hitch as shown in second image of Figure 35.

Figure 35. Camera connections to voltage[3.1.1]

Our power supply provides 24 V DC, enough to make camera work, as we can see in

Figure 36, where yellow cable corresponds to plus and blue one to minus, which are

connected with camera wires as we saw in previous paragraph.

Figure 36. 24 V DC power supply[3.1.1]

40

e

3.1.2. Platform instalation for camera.

 It is neccesary to install a platform, as camera doesn‘t disturb robot‘s movement and

provides good quality photos for computer vision. Furthermore, camera has different

holes in its back part and a template where we can screw it to a proper area, shown in

Figure 37.

Figure 37. Holes dimensions for screwing camera to platform[8.3]

Included in camera‘s box, there is a template which we connect to the platform and the

camera to it as well. Our camera needs to be in a vertical position in order to take photos

of PCBs properly. When we are trying to detect errors in this kind of devices, it is better

to do it in this position, as programming will be easier for distinguishing PCBs

components of other elements appearing in pictures. Consequently, we screwed the

template to the platform as shown in Figure 38.

41

Figure 38. Template and camera screwed to platform[3.1.2]

As a result, our robot and camera workspace remain as we can see in Figure 39, where

they don’t bother each other’s working.

Figure 39. Workspace with robot and camera installed [3.1.2]

42

e

3.2. Robot simulation.

3.2.1. Forward and inverse kinematics equations obtained on

Robotics Toolbox.

To prove our code developped on MATLAB[7.3] and obtain trustworthy values for

forward and inverse kinematics equations of KUKA youBot, we are going to test it as

shown in Table 3, where we put different values for the angles with the purpose of getting

point position. Both Q4 and Q5 angles are introduced by user, regardless of values for the

rest. [20]

Test Q1 Q2 Q3 Q4 Q5

1 0 0 0 0 0

2 π/2 0 -π/2 0 0

3 0 -π/2 0 π/2 0

Table 3. Test values for MATLAB Robotics Toolbox on KUKA youBot

Once we apply our algorithm on MATLAB Robotics Toolbox, we can conclude that using

this test values and also D-H parameters for KUKA youBot, it works perfectly, as we can

see on Figure 40, Figure 41 and Figure 42. In these pictures, we tested our model and

obtained D-H parameters for KUKA youBot.

Figure 40. Test 1 for KUKA youBot on MATLAB

43

Figure 41. Test 2 for KUKA youBot on MATLAB

Figure 42. Test 3 for KUKA youBot on MATLAB

As a conclusion, we obtained these values as a prove that our theorical model, which will

be applied on our C++ code, is accurate. [3.2.3] Moreover, this code will follow the

equations shown in previous sections. [2.2.4] For the inverse kinematics part, we obtain

the values of Q angles thanks to the code attached in [2] and [3].

44

e

Therefore, D-H parameters for the KUKA youBot are shown in Table 4, where L1, L2,

L3, L4, L5 and L6 are known values from our robot specifications[Figure 19] and qi

angles are obtained on inverse kinematics code.

Link αi ai di qi

1 -π/2 L1 L2 q1

2 0 L3 0 q2

3 0 L4 0 q3

4 π/2 0 0 q4

5 0 0 L5+L6 q5

Table 4. D-H parameters for KUKA youBot obtained with MATLAB Robotics Toolbox

Finally, these angles values can be seen in the following Table 5, which will be applied

in our C++ code afterwards.

LINK qi

1 0

2 -1,9526

3 -2,0192

4 1,73184

5 3,14

Table 5. Values for Qi angles of KUKA youBot

45

3.2.2. Inverse Kinematics programming for KUKA youBot.

 First of all, KUKA youBot model needs to be initialized. Then, we implement our

model with youbot_driver package, downloaded from GitHub webpage. After that, we

need to test robot’s movement, as its gripper can be calibrated in order to take our PCBs

in a proper way. This is done thanks to hello_world_demo program, included in the

package mentioned before, where the robot starts to move and its gripper as well, stopping

in its rest position. In terms of our program, we are going to modify this one and some

inverse kinematics code that we can find on the Internet, as well as adding our

communication with computer vision part. [17]

Next, we need to program inverse kinematics of our robot, so we will know each notable

angle and position for our joints. Then, with the results obtained by computer vision part,

we should configure robot movement to reach the positions we wanted in first touch.

For the inverse kinematics part, we programmed it on C++, where now we are going to

explain each part of the code and what it does in next sections. Furthermore, it is

remarkable that relevant positions were taken empirically, configuring our KUKA

youBot with PC keyboard, following the instructions given inside its user manual, as it

can be seen in Figure 35. This code is included in [2]. ROS C++ code, part keyboard.cpp.

46

e

Figure 43. Instructions for using KUKA youBot with keyboard [3]

3.2.3. Robot programming on C++

First, we should remark that for our program we are following the right hand rule,

meaning that all robot‘s movement are going to follow the reference system attached in

Figure 44, but in our case without onmidirectional base. Positive X-axis direction is

straight outward from the front of our robot. Positive Y direction is on the letf side and Z

is positive in the upward one.

47

Figure 44. Reference system for KUKA youBot programming [5]

Next step remarkable that we are going to take is explaining each part of code relative to

our robot. [1]

#include "youbot/YouBotBase.hpp"

#include "youbot/YouBotManipulator.hpp"

#include <math.h>

#include <studio.h>

#include <ImageService.h>

using namespace youbot;

int main() {

double px=0,pz=0,py=0;

double theta_base=0, theta_2=0, theta_3=0, theta_4=0;

double theta_link_1=0 , theta_link_2=0;

double theta_link_1p=0, theta_link_2p=0;

/* configuration flags for different system configuration (f.e. arm without base)*/

48

e
bool youBotHasBase = false;

bool youBotHasArm = false;

/* define speeds */

double translationalVelocity = 0.05; //meter_per_second

double rotationalVelocity = 0.2; //radian_per_second

/* pointers for youBot base and manipulator */

YouBotBase* myYouBotBase = 0;

YouBotManipulator* myYouBotManipulator = 0;

 /* obtain response from Octave */

 res=req.create_response_();

As we can see here, first variables are configured with value 0 or False in defect, except

for translational and rotational speeds. This is because of they will change during each

loop that we will apply in a relative form, so it means we are using increments, not

absolute coordinates. Also, we put some youBot base related variables due to the fact that

in all simulators available for KUKA youBot they have it included, so we will not have

problems with it. Finally, we have to receive a response from our image processing

program, so we include a data structure res for it.

try {

myYouBotBase = new YouBotBase("youbot-base", YOUBOT_CONFIGURATIONS_DIR);

myYouBotBase->doJointCommutation();

youBotHasBase = true;

} catch (std::exception& e) {

LOG(warning) << e.what();

youBotHasBase = false;

}

try {

49

myYouBotManipulator = new YouBotManipulator("youbot-manipulator",

YOUBOT_CONFIGURATIONS_DIR);

myYouBotManipulator->doJointCommutation();

myYouBotManipulator->calibrateManipulator();

// calibrate the reference position of the gripper

//myYouBotManipulator->calibrateGripper();

youBotHasArm = true;

} catch (std::exception& e) {

LOG(warning) << e.what();

youBotHasArm = false;

}

This part is the relative of proving robot configurations such as gripper‘s or arm‘s.

/* Variable for the base.

quantity<si::velocity> longitudinalVelocity = 0 * meter_per_second;

quantity<si::velocity> transversalVelocity = 0 * meter_per_second;

quantity<si::angular_velocity> angularVelocity = 0 * radian_per_second;

/* Variable for the arm. */

JointAngleSetpoint desiredJointAngle;

//GripperBarSpacingSetPoint gripperSetPoint;

Then, we define robot speeds variables, as well as joints angles.

try {

/*

 * Simple sequence of commands to the youBot:

50

e
 */

/*if (youBotHasBase) {

/* move forward */

/*longitudinalVelocity = translationalVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive forward";

SLEEP_MILLISEC(2000); /*we always put a little delay between moves*/

/* move backwards */

/*longitudinalVelocity = -translationalVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive backwards";

SLEEP_MILLISEC(2000);

/* move left */

/*longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = translationalVelocity * meter_per_second;

angularVelocity = 0 * radian_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive left";

SLEEP_MILLISEC(2000);

/* move right */

/*longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = -translationalVelocity * meter_per_second;

angularVelocity = 0 * radian_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive right";

SLEEP_MILLISEC(2000);

51

/* stop base */

longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = 0 * meter_per_second;

angularVelocity = 0 * radian_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "stop base";

} */

On this part, we test our robot‘s base movement, in order to prove if all variables are

working properly on Gazebo later.[3.2.4] This means that it will be forward, backwards,

left and right with breaks of 2 seconds between them.

if (youBotHasArm) {

/* unfold arm

 * position were taken empirically using keyboard and KUKA youBot

 */

desiredJointAngle.angle = 2.9624 * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

SLEEP_MILLISEC(1000)

desiredJointAngle.angle = 2.5988 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -2.4352 * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

desiredJointAngle.angle = 1.7318 * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

desiredJointAngle.angle = 2.88 * radian;

myYouBotManipulator->getArmJoint(5).setData(desiredJointAngle);

52

e

/*desiredJointAngle.angle = 3.14 * radian;

myYouBotManipulator->getArmJoint(5).setData(desiredJointAngle);

desiredJointAngle.angle = 1.9526 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -2.0192 * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

/*desiredJointAngle.angle = 1.73184 * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

*/LOG(info) << "unfold arm";

SLEEP_MILLISEC(4000);

On this section, the meaning of our code is the same as in previous part, but here we test

robot‘s arm, putting the desired joint angle as robot‘s home position, so it will always

start its movement from it every time we compile the code.

std::cout << " -------------- Co-ordiantes of Point Location ------------ : " << endl;

if(res.myPCB=0){

/* co-ordinates taken empirically for end positions where we are going to put our PCB */

x_cordinate=-0.1225;

y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in bad conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;

 std::cout << " X: " << x_cordinate << endl;

std::cout << " Y: " << y_cordinate << endl;

std::cout << " Z: " << z_cordinate << endl;

53

}

if(res.myPCB=1){

x_cordinate=-0.2225;

y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in good conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;

 std::cout << " X: " << x_cordinate << endl;

std::cout << " Y: " << y_cordinate << endl;

std::cout << " Z: " << z_cordinate << endl;

}

double px = x_cordinate + px_p;

double py = -y_cordinate + py_p;

double pz = z_cordinate; //0.0432;

This part explains how we manage to get Octave‘s variables from computer vision part,

as well as configuring aim points(where PCBs will be left) which were taken empirically.

[3.2.2]

////////////////// THETAS FOR ARM-LINK 1 2 3 ///////////

double l1 = 0.302 - 0.147;

54

e
double l2 = 0.437 - 0.302;

double l3 = 0.655 - 0.437;

double xc = sqrt(px*px +py*py);

double zc = pz;

double phi_c = 0;

double d = sqrt (xc*xc + zc*zc);

std::cout << " d = " << d << std::endl;

if (d >= 0.500){

 double theta_link_1 = atan2(zc,xc) ;

//break;

}

else if (d == 0.508) {

 double theta_link_1 = atan2(zc,xc) ;

//break;

}

else if (d > 0.508) {

 std::cout << " Co-ordinate Points are out of the work space. \n" ;

 std::cout << "Enter New Co-ordinates Points. \n" ;

//break;

}

else {

55

double xw = xc - l3*cos(phi_c);

double zw = zc - l3*sin(phi_c);

double alpha = atan2 (zw,xw);

double cos_beta = (l1*l1 + l2*l2 -xw*xw -zw*zw)/(2*l1*l2);

double sin_beta = sqrt (abs(1 - (cos_beta*cos_beta)));

double theta_link_2 = 3.1416 - atan2 (sin_beta , cos_beta) ;

double cos_gama = (xw*xw + zw*zw + l1*l1 - l2*l2)/(2*l1*sqrt(xw*xw + zw*zw));

double sin_gama = sqrt (abs (1 - (cos_gama * cos_gama)));

double theta_link_1 = alpha - atan2(sin_gama, cos_gama);

double theta_link_1p = theta_link_1 + 2*atan2 (sin_gama , cos_gama);

double theta_link_2p = - theta_link_2;

double theta_2 = theta_link_1p;

double theta_3 = theta_link_2p;

double theta_4 = (theta_2 + theta_3);

std::cout << " Base Angle " << theta_base << std::endl;

std::cout << " Link-1 Angle " << theta_2 << std::endl;

std::cout << " Link-2 Angle " << theta_3 << std::endl;

std::cout << " Link-3 Angle " << theta_4 << std::endl;

Here, we put our equations solutions for inverse and forward kinematics translated to C++

code, so the robot will configure its joints to reach our desired positions.

desiredJointAngle.angle = theta_base * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

56

e
//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (2.5988 - theta_2) * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (-2.4352 - theta_3) * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (1.7318 + theta_4) * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

//desiredJointAngle.angle = -3.3760 * radian;

//myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

SLEEP_MILLISEC(5000);

desiredJointAngle.angle = (1.7318-0.4 + theta_4) * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

SLEEP_MILLISEC(1000)

}

 }

 }

//desiredJointAngle.angle = 0.0 * radian;

//myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

/*/* fold arm (approx. home position) using empirically determined values for the positions */

57

desiredJointAngle.angle = 0.1 * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

desiredJointAngle.angle = 0.011 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -0.1 * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

desiredJointAngle.angle = 0.1 * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

LOG(info) << "fold arm";

SLEEP_MILLISEC(4000);

}

} catch (std::exception& e) {

std::cout << e.what() << std::endl;

std::cout << "unhandled exception" << std::endl;

}

/* clean up all variables*/

if (myYouBotBase) {

delete myYouBotBase;

myYouBotBase = 0;

}

if (myYouBotManipulator) {

delete myYouBotManipulator;

myYouBotManipulator = 0;

}

58

e

LOG(info) << "Done.";

return 0;

}

Finally, we set all the variables to 0, in order to start from the same beginning every time

we compile this code.

3.2.4. Simulation on Gazebo.

 First of all, we have to consider that every package related to Gazebo(and ROS as

well) should be installed, if not, we have to reinstall them again. To run simulator, we

simply put this command on terminal rosrun gazebo ros_gazebo, opening Gazebo as

consequence. [5]

In order to add KUKA youBot to Gazebo workspace, we insert this model in the options

that simulator give us, as well as a table similar to the one who is going to be used in

reality, as it is shown in Figure 45.

Figure 45. KUKA youBot on Gazebo[3.2.4]

59

However, we need to try to make simulation model as accurate as possible in relation to

real workspace. Due to this, a camera and cube of 5 cm Gazebo objects are inserted to it,

basically to correspond in a better way to Siemens MV440 camera and PCBs. As we can

see in attached , PCBs size was measured in order to select an object as similar as possible

in Gazebo. This is shown in Figure 46.

Figure 46. Measurement of PCBs[3.2.4]

In following Figure 47, we can see that camera has no gravity because it is more

comfortable to put it this way than constructing a platform in simulation. Otherwise, if

we didn’t turn off gravity option, camera would fall down.

Figure 47. Workspace constructed in Gazebo[3.2.4]

60

e

Once we have our workspace built in the simulator, we have to compile our code

developed on C++ for our robot and see how it responds. Before doing this, it should be

pointed out that simulation doesn‘t correspond to reality exactly, as we saw in previous

paragraphs, where KUKA youBot model provided by Gazebo has both omnidirectional

base and arm, despite of our real robot only owns the last one.

Next step is to launch our code developed on C++ with the command roslaunch

mypackage myrobot.launch. After this, our robot starts to move in simulator workspace,

grabbing the cube and putting it in the left side of the table or in the right one, depending

on the result given by image processing part, which needs to be compiled previously.

61

3.3. Computer vision programming.

3.3.1. License Automation Manager from Siemens.

 Before taking photos with Siemens camera, we need to install its licenses and

software in order to work with it properly. [4] Due to this, working with Siemens MV440

camera on Linux is not possible, so it was necessary to install every single package in a

second PC with Windows support and stablish communication between computers

afterwards. Furthermore, we have to take into account that network between these two

PCs will be via Internet and another Siemens program that we can download in every

platform, but this part will be explained in next sections. [3.3.4]

Primarly, camera has to be connected physically to the PC (this means both power supply

and Ethernet wire) before installing the software, mainly because IP camera configuration

has to be done to communicate camera and computer on PRONETA(another Siemens

software included in instalation CD), as we can see in attached Figure 48.

Figure 48. PC and camera IP connection[3.3.1]

After this part, license needs to be installed with License Automation Manager, keeping

in mind previously that IP address put on PRONETA must be the same for this program

as well. Next step is installing user interface on our computer, with Internet connection

needed, as we are going to use web browser, following attached Figure 49.

62

e

Figure 49. Opening web browser in PRONETA for user interface[3.3.1]

Once we open user program, communication between our two PCs can be stablished, as

in computer which software is Linux, we can put IP address of the reader in a web browser

and work with both of them at the same time. An example of configuration on Internet

Explorer is attached in Figure 50.

Figure 50. Code reading configuration on web browser[3.3.1]

Next step is to adjust camera settings according to user’s will, as its calibration is needed

before saving all the pictures for image processing. Tough this part will be explained in

next section. [3.3.2]

63

3.3.2. Image acquistion mode for Siemens MV440 camera.

Before putting our pictures taken by the camera on image processing part, it is necessary

to configure our reader and trigger mode. Three types of image acquistion can be

distinguished, but we are only going to use one of them. This is going to be the triggered

mode, where camera takes photos only when we press the refresh button. Therefore, user

has to be focused on pulling the trigger every time PCBs are changed for their recognition.

Another reason to use this mode is that we can control the brightness of each picture

between each camera shot, so error detection will be easier afterwards. [4]

Finally, we can also adjust camera‘s flash in order to take better quality photos with more

or less resolution. The only part which cannot be configured in real time is image color,

as it always be binarize picture, so we need to transform it later when saving to a directory.

Before transfering pictures to Octave directory, user has to select which part of the photo

wants to be processed. An example of this proceeding is enclosed in Figure 51.

Figure 51. SIMATIC MV440 HR user program[3.3.2]

64

e

3.3.3. PCBs error detection programming.

 In this section we are going to explain each part of code belonging to functions

used for error detection programming, adding representative pictures of it as well.

However, first it is needed to point out that every photo of PCBs has a white background.

This is due to restriction between elements and background is easier when the last one is

white in terms of binarizing, filtering, and so on, but the main reason is that pixels after

our transformation can only be black or white, so it makes detection more user-friendly,

as Figure 52 shows. [11] Also, we should consider illumination, which takes an important

part on this section, as if there is too much light or too little, it can end up in recognition

mistakes.

Figure 52. PCB with white background for detection[3.3.3]

3.3.3.1. Filtering function

The main purpose of this function is to filter one of our images taken by camera to

eliminate possible noises from them. Before binarizing the image to apply gauss filters,

it is necessary to check if it is in color frame range or black and white one. Thus, this

process can be applied in an optimum way without mistakes.

%Obtain image edge from subtract of two gauss filters

if ndims(I) == 3 %Checking if image is in black and white or not

disp('Image in color')

I=rgb2gray(I);

65

end

After that, we build a zeros matrix where we will add our image transformed. Two

matrixes of filtering are built for being applied to the original picture, considering both

axes X and Y.

[rows,columns]=size(Ig);

Ig=double(Ig); %passing to double format

I_contour=zeros(rows,columns);

Sx=[-1 0 1;-2 0 2;-1 0 1];

Sy=[-1 -2 -1;0 0 0; 1 2 1];

Then, our image is retouched with imfilter and the matrixes created previously. Next step

is transforming this matrix from mathematics view to gray scale with mat2gray, to plot

our images with and without filtering finally. [9]

Ix=imfilter(Ig,Sx);

Iy=imfilter(Ig,Sy);

I_contour=abs(Ix)+abs(Iy);

S=mat2gray(I_contour);

figure

imshow(I), title('original image')

figure

imshow(S), title('contour image with mat2gray')

Figure 53. Original and filtered image[3.3.3.1]

66

e

As we can see in Figure 53, the contour of image obtained with mat2gray command can

be distinguished from the background, just as we wanted at the beginning. Both pads and

elements included in the PCB taken as an example are seen without any problem, so it is

a good signal for later treatments.

3.3.3.2. Morphology

 This function is the responsible of detecting different elements of pictures taken

by Siemens camera, with the purpose of concluding if PCBs are in a good condition or

not.

function [T]=mymorphology(I,A)

if(islogical(I))

disp('Image is already binarized, so it will not be modified')

T=I;

return

end

repeat=1;

while(repeat==1)

umbral=graythresh(I);

BW=im2bw(I,umbral);

BW2=im2bw(A,umbral);

BW2inv=~BW2;

BWinv=~BW;

radium=input('Introduce radium of structuring element between 1-5: ')

ee=strel('disk',radium);

% We apply dilation for splitting elements and detecting them

 B=imerode(BWinv,ee);

B2=imerode(BW2inv,ee);

67

L=~B;

L2=~B2;

Subsequently, it is needed to make a loop where users can apply a dilation according to

their taste, as if we select the same structuring element in order to do it in an automated

way, it can result in a mistake due to camera’s illumination between shot and shot. We

apply dilation to both images in order to delete elements that are not of our interest.

figure

imshow(I),title('original image');

figure

imshow(A),title('testing image');

figure

subplot(1,4,1),imshow(BWinv), title('binarized original image')

subplot(1,4,2),imshow(L), title('original image with dilation')

subplot(1,4,3),imshow(BW2inv), title('binarized test image')

subplot(1,4,4),imshow(L2), title('test image with dilation')

Next step is plotting all the images used and transformed by this function, as we can see

in Figure 54, Figure 55 and Figure 56.

Figure 54. Standard image for comparing elements in mymorphology function[3.3.2]

68

e

Figure 55. Testing image in mymorphology function[3.3.2]

Figure 56. Both images transformed and compared in same plot for mymorphology function[3.3.2]

% We see split objects after transformations

cc=bwconncomp(B); % creating two data structures for knowing nº

elements

a=cc.NumObjects

ccs=bwconncomp(B2);

as=cc.NumObjects

if (a~=as)

69

 disp('Number of elements are really different. Second image has

mistakes');

 myPCB=0; %% we create a variable called myPCB which value is 0

when it has mistakes and 1 when it is in good conditions

else

 disp('Number of elements are similar in both images. So testing

image is correct');

 myPCB=1; %% this variable will be shared with ROS

end

 fprintf('\n Is obtained result the one you wanted?');

 fprintf('\n t1. Yes(press 0)');

 fprintf('\n t2. No(press 1)');

 fprintf('\n');

 repeat=input(' '); %Asking user about results

end

Figure 57. Result obtained after applying mymorphology function[3.3.2]

Thanks to command bwconncomp, we create a data structure with the purpose of knowing

number of elements in each PCB and compare them to each other. If the number of

70

e

elements in both images are the same, it means that second picture, the one relative to

PCB to test, can be considered of good quality. In this example, both pictures taken are

from similar PCBs which are in same condition, so our program concludes that there are

no mistakes. Finally, we asked users if they are satisfied with the result, as shown in

Figure 57.

3.3.3.3. Matching

This function is going to be used for detecting elements in a graphical way, so users can

see the differences and similarities marked on each image. First of all, as always, it is

needed to test if pictures are in gray scale or color.

function matching (I,A)

if ndims(I) == 3

disp('Image in color')

N=rgb2gray(I);

L=rgb2gray(A);

else

disp('Image in B&W')

N=I;

L=A;

end

Next step is to select a part of our standard image for comparing it with the second one.

It is done thanks to imcrop command, where user can select a specific part of a picture

and take it as a jig. An example of this function usage is shown in Figure 58. [9]

jig=imcrop(N);%select jig

71

Figure 58. Template selected in standard image[3.3.3.3]

[x,y]=size(jig);

C=normxcorr2(jig,L);

B=C>0.9; %Only select points that have correlation bigger than 0.9

cc=bwconncomp(B);

s=regionprops(cc,'Centroid');

num_el=length(s) %number of elements in common

figure

imshow(N);

figure

imshow(L);

Once we selected our jig, we use normxcorr2 command in order to search for correlation

between our jig and testing image.[11] In the next line, it is specified that this correlation

coefficient between images has to be 0.9 or bigger, meaning that we are only going to

select parts that are really similar between each other. Furthermore, a data structure is

created to know the number of elements and also to search for their centroids. Finally,

thanks to a for loop, we are going to plot red asterisks in all elements that fulfill task

mentioned before.

hold on

for k=1: num_el

plot((s(k).Centroid(1))-(x)/2,(s(k).Centroid(2))-(y)/2,'*r'); %draw

asterisks in elements in common between images

72

e
end

hold off

end

Figure 59. Plotting elements in common between two images with template matching[3.3.3.3]

In a nutshell, template matching is a useful tool to detect elements in common between

images. However, it is really inconsistent as we can see in Figure 59, due to some asterisks

plotted have no relation with our standard image. This is because template matching is

really sensitive to illumination changing and any minimum variation in testing photo can

end up in detection mistakes.

3.3.4. Communication between camera and ROS

 In previous part, pictures were processed on Octave in the second PC, where we

were taking images from the camera. However, we need to stablish communication

between our pictures sent to the PC working on ROS and this system. In order to

accomplish that, we are going to use the command rosoct, which allows to share

information with the entire ROS network. Furthermore, it involves a lot of commands

which can be related to our C++ program for KUKA youBot. Some examples of that are

attached in Figure 60.

73

Figure 60. Rosoct commands[3.3.4]

One of the best things that Octave provides us on ROS is that is not mandatory to rewrite

its code in C++ or Python. In our case, for communicating our image processing functions

with ROS and images saved in ROS directory, we are going to use ImageImageService,

which is a service that takes an Image message and gives another one.

rosoct_add_msgs(‘image_msgs’);

% rosoct_add_srvs(‘myimages’) %add the package where ImageImageService

resides

sus=rosoct_advertise_service(‘mymorhpology’,@ImageImageService,@mymorp

hology)

After that, we need to rewrite our computer vision functions, just as the following:

function res=matching (req1,req2) % res means response, as req1 and req2

mean request for images

res=req.create_response_();

74

e
if ndims(req1) == 3

disp('Image in color')

N=rgb2gray(req1);

L=rgb2gray(req2);

else

disp('Image in B&W')

N=req1;

L=req2;

end

jig=imcrop(N);%select jig

[x,y]=size(jig);

C=normxcorr2(jig,L);

B=C>0.9; %Only select points that have correlation bigger than 0.9

cc=bwconncomp(B);

s=regionprops(cc,'Centroid');

num_el=length(s) %number of elements in common

figure

imshow(N);

figure

res.data=imshow(L); %data that it is going to be shared with ROS

hold on

for k=1: num_el

plot((s(k).Centroid(1))-(x)/2,(s(k).Centroid(2))-(y)/2,'*r'); %draw

asterisks in elements in common between images

end

hold off

end

Finally, we also added an error message in each function for the request of images, just

in case ROS is not responding. [16]

75

if (strcmp(req.str,’dofail’)) %failure condition

 req= [];

else

 res.str= [req.str ‘_a’];

end

76

e

4. RESULTS AND CONCLUSIONS

4.1. Computer vision part results

Filtering function

 As it concerns to filtering function, we can conclude that it works in a proper way,

as we can see in Figure 61, and other examples that will be introduced in project

presentation afterwards. In all images introduced to this function, their contour can be

distinguished without any problem, as well as their elements such as capacitors, resistors,

microprocessors and so on.

To sum up, filtering function is a good way for detecting contour of each element from

our PCBs in the first view, so it can help users to see if they already have errors before

applying other methods.

Figure 61. Contour image with filtering function[4.1]

77

Mymorphology function

As a result of the mymorphology function, it is possible to detect mistakes and elements

missing in testing images, as shown in following pictures. We can value at a glance that

testing image, corresponding to Figure 62, has too much welding and also some pads and

elements are missing, so this mistakes recognition is going to be easy to make in terms of

programming.

Figure 62. Standard image number 2 for mymorphology function[4.1]

Figure 63. Testing image number 2 for mymorphology function[4.1]

78

e

Figure 64. Images after applying dilation[4.1]

In above Figure 64, it can be seen that after binarizing and applying dilation to both

images, the difference between each image is remarkable, as later we can check in

commands line that number of elements are different, so our function takes the conclusion

that second image is not right. This is shown in Figure 65.

Figure 65. Mymorphology function applied to second couple of images. [4.1]

In short, this function is the most useful one for our project, as it always detects mistakes

in testing PCBs with accuracy. Also, it is the responsible of sending to ROS if our testing

PCB is okay or not, so the robot will put it in one side or other, depending on the results

obtained.

Matching function

As for matching function, we can say, without any doubt, that is the least helpful of all,

as it is very inconsistent depending on photos ilumination, ending up in detection

79

mistakes. Here we have an example of average recognition of elements in Figure 66 and

Figure 67.

Figure 66. Jig for second standard image in matching function[4.1]

Figure 67. Template matching applied on second testing image[4.1]

80

e

4.2. KUKA youBot part results

Our first part for robot results is its D-H parameters, as well as kinematic equations

obtained by our code on MATLAB and C++ mentioned in previous sections. [3.2.2]

After that, we can see that the robot is starting to move properly, trying to reach PCB

position which is shown in Figure 68, but unable to grab it, as we can see in Figure 69 .

Figure 68. Robot's movement from home position

One of the most probable reasons why I didn‘t work was due to Gazebo simulator doesn‘t

have accurate torques for each arm‘s joint of KUKA youBot, so it is working on it, but

not in the real workspace. Another one can be that, because of this robot normally has its

base included, we should add an offset that is not existent in our working model, so it

could reach its main goal. Finally, the most probable one is that an universal gripper

should be included to grip small objects like the ones we are using in this project.

81

Figure 69. KUKA youBot trying to reach PCB

82

e

4.3. Final conclusions

From computer vision standpoint, we can say that most of our functions are working

properly. However, they can be improved as a first approach, mainly for making them in

a more automated way. On the other hand, Octave is a good tool for image processing,

but is is quite slow, as it doesn´t work in real time(same for MATLAB) like other IDEs

do, such as Python+OpenCV. So a second approach could be programming all this part

in this software instead of Octave. In terms of our camera, the Siemens MV440 one, my

opinion is that we could use a normal camera instead of this one. Basically, this is due to

the difference is not that notable and licenses problems for working on Linux too.

From robotics forward and inverse kinematics perspective, we can conclude that

MATLAB provides a really good toolbox for programming and testing our equations,

taking different values and parameters as a result. Thanks to it, we can program our code

on C++ for our robot later, following these equations and parameters obtained on it.

From robotics programming point of view, our KUKA youBot works perfectly in

simulator environment. Nevertheless, when we try to apply our code in real robot, it

doesn´t move as we want in first touch, mainly because it is not able to grip the PCBs

correctly. The conclusion obtained from this issue, due to differences between real robot

and simulator one(it has base with wheels, real one does not) and also because of accuracy

problems with the gripper, is that an universal gridder is needed to catch every type of

object, including small ones like PCBs, and that a new model of KUKA youBot arm

should me added on Gazebo in order to fix the offset between these two configurations.

Overall, I think this robot may be more useful in terms of working with it on a Windows

developed system, like LabView Robotics or something similar. Despite of being a robot

that can be programmed on a Linux environment, where all the licenses are free, it implies

a lot of problems, especially on calibration and drivers installation, compared to other

robots like ABB where you can use their own simulator (Robot Studio) and they are all

configured from scratch.

83

5. ACKNOWLEDGEMENTS

From my point of view, working on this project was a great experience, which has

developed my knowledges in robotics and programming. I have learnt how ROS works

and how to use different libraries already developed for creating my own algorithm.

Furthermore, I have learned a new toolbox on MATLAB, such as the robotics one, as

well as improving my computer vision programming on this IDE.

This thesis cannot be achieved without my teacher’s help, Prof. Dr. Dainius Udris, who

gave me the opportunity to work with him and all his advices and recommendations.

I would like to thank VGTU in general and its Department of Mechatronics and Robotics

and head of the department Professor Vytautas Bučinskas personally for providing the

equipment and support.

Also, thanks to ESN VGTU, from top to bottom, which has made me have a really good

concept of Lithuania overall, way better than it would be without it. Special mention to

my mentor, Živilė Latakaitė, who has helped me on adapting to Vilnius and making me

feel like home, as well as organizing a lot of events with more Erasmus people, making

our friendships even stronger. Now she is not a mentor anymore, but a friend instead. It

has been a bless meeting her and all my new friends here in Lithuania.

Finally, thanks to my parents, for giving me all their confidence and support from Spain.

Regardless of all the kilometers that separate us, they have always been there when I

needed them the most, both in good and bad moments.

84

e

6. REFERENCES

1. Short circuit: The lifecycle of our electronic gadgets and the True

Cost to Earth. Author: Philippe Sibaud. Retrieved 2013, from

http://therightsofnature.org/short-circuit-report-the-true-cost-of-our-

electronic-gadgets/

2. ROS Programming: Building Powerful Robots: Design, build and

simulate complex robots. Authors: Anil Mahtani, Luis Sanchez,

Enrique Fernandez, Aaron Martinez, Lentin Joseph. Retrieved 2018,

from www.PacktPub.com

3. A Systematic Approach to Learning Robot Programming with ROS.

Author: Wyatt S. Newman. Retrieved 2018, from

http://www.taylorandfrancis.com.

4. SIMATIC Ident for MV420/MV440 Code Reader Systems. Operating

systems. Retrieved 2012.

5. KUKA youBot User Manual. Retrieved 2012, from KUKA.com.

6. A novel kinematics for a 5 DOF manipulator based on KUKA youBot.

Authors: Allan D. Zhang, Xiao Xiao, Yangmin Li. Retrieved 2015,

from https://www.researchgate.net/publication/300416616.

7. Robotics toolbox for Matlab. Author: Peter Corke. Retrieved 2015,

from https://petercorke.com/wordpress/toolboxes/robotics-toolbox.

8. Parámetros Denavit-Hartenberg. Cinemática Directa de un Robot

Manipulador. Authors: Alberto Herreros, Juan Carlos Fraile

Marinero. Retrieved 2017.

9. Digital Image Processing in Matlab. Authors: Rafael C. González,

Richard E. Woods, Steve L. Eddins. Retrieved 2011.

10. Image Processing in Octave. Author: John W. Eaton. Retrieved

2018, from https://octave.org/doc/v4.4.0/index.html#Top.

11. Visión Artificial Industrial. Procesamiento de imágenes para

inspección automática y robotica. Authors: Eusebio de la Fuente

López, Félix Miguel Trespaderne, from Valladolid University.

Retrieved 2012.

12. Simulación, control cinemático y dinámico de robots comerciales

usando la herramienta de MATLAB, Robotics Toolbox. Author:

Miguel Ángel Mato San José. Retrieved 2014 from Valladolid

University.

13. Research of robot trajectory control by optical method. Author:

Alejandro Perez San Martín. Retrieved 2017 from

http://www.packtpub.com/
https://www.researchgate.net/publication/300416616

85

https://upcommons.upc.edu/bitstream/handle/2117/114061/Alejandr

o_Perez_Sanmartin.pdf?sequence=1&isAllowed=y.

14. ROS youBot Inverse Kinematics, from

https://github.com/arifanjum/ROS-YouBot-Inverse-Kinematics.

15. ROS tutorials, from

http://wiki.ros.org/ROS/Tutorials#Beginner_Level

16. ROS and Octave tutorial, from http://wiki.ros.org/rosoct

17. ROS-Youbot-Inverse-Kinematics, from

https://github.com/arifanjum/ROS-YouBot-Inverse-Kinematics

18. Inverse Kinematics theory, University of Rome, from

http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematic

s.pdf

19. KUKA youBot motor joints, from

https://www.maxonmotor.com/medias/sys_master/root/8815566520

350/2014-10-story-enUS-kuka-research-robot.pdf?attachment=true

20. Derivation of Kinematic Equations for KUKA youBot and

implementation on Simulink, . From

https://www.academia.edu/23871359/Derivation_of_Kinematic_Eq

uations_for_the_KUKA_youBot_and_implementation_of_those_in_

Simulink

https://upcommons.upc.edu/bitstream/handle/2117/114061/Alejandro_Perez_Sanmartin.pdf?sequence=1&isAllowed=y
https://upcommons.upc.edu/bitstream/handle/2117/114061/Alejandro_Perez_Sanmartin.pdf?sequence=1&isAllowed=y
https://github.com/arifanjum/ROS-YouBot-Inverse-Kinematics
http://wiki.ros.org/ROS/Tutorials#Beginner_Level
http://wiki.ros.org/rosoct
https://github.com/arifanjum/ROS-YouBot-Inverse-Kinematics
http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf
http://www.diag.uniroma1.it/~deluca/rob1_en/10_InverseKinematics.pdf
https://www.maxonmotor.com/medias/sys_master/root/8815566520350/2014-10-story-enUS-kuka-research-robot.pdf?attachment=true
https://www.maxonmotor.com/medias/sys_master/root/8815566520350/2014-10-story-enUS-kuka-research-robot.pdf?attachment=true
https://www.academia.edu/23871359/Derivation_of_Kinematic_Equations_for_the_KUKA_youBot_and_implementation_of_those_in_Simulink
https://www.academia.edu/23871359/Derivation_of_Kinematic_Equations_for_the_KUKA_youBot_and_implementation_of_those_in_Simulink
https://www.academia.edu/23871359/Derivation_of_Kinematic_Equations_for_the_KUKA_youBot_and_implementation_of_those_in_Simulink

86

e

7. ANNEXES

7.1. ROS C++ CODE

1. Main.cpp

/***/

/***/

/* myrobot program */

/* */

/* Author: Alberto Justo Lobato */

/* */

/* Bachelor's Graduation Thesis: E-waste material classifier with */

/* KUKA youBot and computer vision */

/* */

/* Vilnius Gediminas Technical University, Lithuania */

/* */

/* Explanation: This code includes all the parts necessary for */

/* moving our robot after image processing. We are using inverse */

/* kinematics, as end positions are known and our goal is to */

/* move our robot to them and find angles and joints positions and */

/* speeds. In terms of compiling, we will launch this program */

/* on Gazebo first and then on the real robot, using the following */

/* command roslaunch myrobot myrobot.launch */

/* */

/***/

/***/

#include "youbot/YouBotBase.hpp"

#include "youbot/YouBotManipulator.hpp"

#include <math.h>

#include <studio.h>

#include <ImageService.h>

using namespace youbot;

int main() {

87

double px=0,pz=0,py=0;

double theta_base=0, theta_2=0, theta_3=0, theta_4=0;

double theta_link_1=0 , theta_link_2=0;

double theta_link_1p=0, theta_link_2p=0;

/* configuration flags for different system configuration (f.e. arm without base)*/

bool youBotHasBase = false;

bool youBotHasArm = false;

/* define speeds */

double translationalVelocity = 0.05; //meter_per_second

double rotationalVelocity = 0.2; //radian_per_second

/* pointers for youBot base and manipulator */

YouBotBase* myYouBotBase = 0;

YouBotManipulator* myYouBotManipulator = 0;

 /* obtain response from Octave */

 res=req.create_response_();

try {

myYouBotBase = new YouBotBase("youbot-base", YOUBOT_CONFIGURATIONS_DIR);

myYouBotBase->doJointCommutation();

youBotHasBase = true;

} catch (std::exception& e) {

LOG(warning) << e.what();

youBotHasBase = false;

}

try {

myYouBotManipulator = new YouBotManipulator("youbot-manipulator",

YOUBOT_CONFIGURATIONS_DIR);

myYouBotManipulator->doJointCommutation();

myYouBotManipulator->calibrateManipulator();

// calibrate the reference position of the gripper

//myYouBotManipulator->calibrateGripper();

88

e
youBotHasArm = true;

} catch (std::exception& e) {

LOG(warning) << e.what();

youBotHasArm = false;

}

/*

* Variable for the base.

* Users have to put a value and a unit.

*/

quantity<si::velocity> longitudinalVelocity = 0 * meter_per_second;

quantity<si::velocity> transversalVelocity = 0 * meter_per_second;

quantity<si::angular_velocity> angularVelocity = 0 * radian_per_second;

/* Variable for the arm. */

JointAngleSetpoint desiredJointAngle;

//GripperBarSpacingSetPoint gripperSetPoint;

try {

/*

 * Simple sequence of commands to the youBot:

 */

/*if (youBotHasBase) {

/* move forward */

/*longitudinalVelocity = translationalVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive forward";

SLEEP_MILLISEC(2000); /*we always put a little delay between moves*/

/* move backwards */

/*longitudinalVelocity = -translationalVelocity * meter_per_second;

transversalVelocity = 0 * meter_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive backwards";

SLEEP_MILLISEC(2000);

/* move left */

/*longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = translationalVelocity * meter_per_second;

89

angularVelocity = 0 * radian_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive left";

SLEEP_MILLISEC(2000);

/* move right */

/*longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = -translationalVelocity * meter_per_second;

angularVelocity = 0 * radian_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "drive right";

SLEEP_MILLISEC(2000);

/* stop base */

longitudinalVelocity = 0 * meter_per_second;

transversalVelocity = 0 * meter_per_second;

angularVelocity = 0 * radian_per_second;

myYouBotBase->setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

LOG(info) << "stop base";

} */

if (youBotHasArm) {

/* unfold arm

 * position were taken empirically using keyboard and KUKA youBot

 */

desiredJointAngle.angle = 2.9624 * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

SLEEP_MILLISEC(1000)

desiredJointAngle.angle = 2.5988 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -2.4352 * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

desiredJointAngle.angle = 1.7318 * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

90

e
desiredJointAngle.angle = 2.88 * radian;

myYouBotManipulator->getArmJoint(5).setData(desiredJointAngle);

/*desiredJointAngle.angle = 3.14 * radian;

myYouBotManipulator->getArmJoint(5).setData(desiredJointAngle);

desiredJointAngle.angle = 1.9526 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -2.0192 * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

/*desiredJointAngle.angle = 1.73184 * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

*/LOG(info) << "unfold arm";

SLEEP_MILLISEC(4000);

int n =0, m=0;

double grid_spacing_n =0, grid_spacing_m =0, x_cordinate=0,y_cordinate=0,z_cordinate =0;

std::cout << " -------------- Co-ordiantes of Point Location ------------ : " << endl;

if(res.myPCB=0){

/* co-ordinates taken empirically for end positions where we are going to put our PCB */

x_cordinate=-0.1225;

y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in bad conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;

 std::cout << " X: " << x_cordinate << endl;

std::cout << " Y: " << y_cordinate << endl;

std::cout << " Z: " << z_cordinate << endl;

}

91

if(res.myPCB=1){

x_cordinate=-0.2225;

y_cordinate=0.1124;

z_cordinate=0.0239;

std::cout << "PCB in good conditions! " << endl;

std::cout << "Co-ordinates of end position are : " << endl;

 std::cout << " X: " << x_cordinate << endl;

std::cout << " Y: " << y_cordinate << endl;

std::cout << " Z: " << z_cordinate << endl;

}

// ---

std::cout << " -------------- GRID GENERATON ------------ : " << endl;

std::cout << "Enter the Number of points in X-Direction : ";

cin>> n;

std::cout << endl;

std::cout << "Enter the Number of points in Y-Direction : ";

cin>> m;

std::cout << endl;

std::cout << "Enter the Grid Spacing in X-Direction : ";

cin>> grid_spacing_n;

std::cout << endl;

std::cout << "Enter the Grid Spacing in Y-Direction : ";

cin>> grid_spacing_m;

std::cout << endl;

92

e
//---

for (double x =0; x< n; x++){

 for (double y =0; y<m; y++){

 double px_p = grid_spacing_n*x;

 double py_p = grid_spacing_m*y;

double px = x_cordinate + px_p;

double py = -y_cordinate + py_p;

double pz = z_cordinate; //0.0432;

////////////////// THETAS FOR ARM-LINK 1 2 3 ///////////

double l1 = 0.302 - 0.147;

double l2 = 0.437 - 0.302;

double l3 = 0.655 - 0.437;

double xc = sqrt(px*px +py*py);

double zc = pz;

double phi_c = 0;

double d = sqrt (xc*xc + zc*zc);

std::cout << " d = " << d << std::endl;

if (d >= 0.500){

 double theta_link_1 = atan2(zc,xc) ;

//break;

}

else if (d == 0.508) {

 double theta_link_1 = atan2(zc,xc) ;

//break;

93

}

else if (d > 0.508) {

 std::cout << " Co-ordinate Points are out of the work space. \n" ;

 std::cout << "Enter New Co-ordinates Points. \n" ;

//break;

}

else {

double xw = xc - l3*cos(phi_c);

double zw = zc - l3*sin(phi_c);

double alpha = atan2 (zw,xw);

double cos_beta = (l1*l1 + l2*l2 -xw*xw -zw*zw)/(2*l1*l2);

double sin_beta = sqrt (abs(1 - (cos_beta*cos_beta)));

double theta_link_2 = 3.1416 - atan2 (sin_beta , cos_beta) ;

double cos_gama = (xw*xw + zw*zw + l1*l1 - l2*l2)/(2*l1*sqrt(xw*xw + zw*zw));

double sin_gama = sqrt (abs (1 - (cos_gama * cos_gama)));

double theta_link_1 = alpha - atan2(sin_gama, cos_gama);

double theta_link_1p = theta_link_1 + 2*atan2 (sin_gama , cos_gama);

double theta_link_2p = - theta_link_2;

double theta_2 = theta_link_1p;

double theta_3 = theta_link_2p;

double theta_4 = (theta_2 + theta_3);

94

e

std::cout << " Base Angle " << theta_base << std::endl;

std::cout << " Link-1 Angle " << theta_2 << std::endl;

std::cout << " Link-2 Angle " << theta_3 << std::endl;

std::cout << " Link-3 Angle " << theta_4 << std::endl;

desiredJointAngle.angle = theta_base * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (2.5988 - theta_2) * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (-2.4352 - theta_3) * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

desiredJointAngle.angle = (1.7318 + theta_4) * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

//SLEEP_MILLISEC(1000);

//desiredJointAngle.angle = -3.3760 * radian;

//myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

SLEEP_MILLISEC(5000);

desiredJointAngle.angle = (1.7318-0.4 + theta_4) * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

SLEEP_MILLISEC(1000)

}

 }

95

}

//desiredJointAngle.angle = 0.0 * radian;

//myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

/*/* fold arm (approx. home position) using empirically determined values for the positions */

desiredJointAngle.angle = 0.1 * radian;

myYouBotManipulator->getArmJoint(1).setData(desiredJointAngle);

desiredJointAngle.angle = 0.011 * radian;

myYouBotManipulator->getArmJoint(2).setData(desiredJointAngle);

desiredJointAngle.angle = -0.1 * radian;

myYouBotManipulator->getArmJoint(3).setData(desiredJointAngle);

desiredJointAngle.angle = 0.1 * radian;

myYouBotManipulator->getArmJoint(4).setData(desiredJointAngle);

LOG(info) << "fold arm";

SLEEP_MILLISEC(4000);

}

} catch (std::exception& e) {

std::cout << e.what() << std::endl;

std::cout << "unhandled exception" << std::endl;

}

/* clean up all variables*/

if (myYouBotBase) {

delete myYouBotBase;

myYouBotBase = 0;

}

if (myYouBotManipulator) {

delete myYouBotManipulator;

myYouBotManipulator = 0;

}

LOG(info) << "Done.";

96

e

return 0;

2. keyboard.cpp

1 #include <iostream>

2 #include <vector>

3 #include <signal.h>

4 #include <ncurses.h>

5

6 #include "youbot/YouBotBase.hpp"

7

8 using namespace std;

9 using namespace youbot;

10

11 bool running = true;

12

13 void sigintHandler(int signal) {

14 running = false;

15 printf("End!\n\r");

16 }

17

18 int main() {

19

20 signal(SIGINT, sigintHandler);

21

22 try {

23

24 rude::Config configfile;

25

26 if (!configfile.load("../config/applications.cfg"))

27 throw ExceptionOODL("../config/applications.cfg file no found");

28

29 int ch = 0;

30 double linearVel = 0.05; //meter_per_second

31 double angularVel = 0.2; //radian_per_second

32 configfile.setSection("KeyboardRemoteContol");

33 linearVel = configfile.getDoubleValue("TanslationalVelocity_[meter_per_second]");

34 angularVel = configfile.getDoubleValue("RotationalVelocity_[radian_per_second]");

97

35

36 YouBotBase myYouBotBase("youbot-base");

37

38 JointVelocitySetpoint setVel;

39 quantity<si::velocity> longitudinalVelocity = 0 * meter_per_second;

40 quantity<si::velocity> transversalVelocity = 0 * meter_per_second;

41 quantity<si::angular_velocity> angularVelocity = 0 * radian_per_second;

(void) initscr(); /* initialize the curses library */

44 keypad(stdscr, TRUE); /* enable keyboard mapping */

45 (void) nonl(); /* tell curses not to do NL->CR/NL on output */

46 (void) cbreak(); /* take input chars one at a time, no wait for \n */

47 // (void) echo(); /* echo input - in color */

48

49 def_prog_mode();

50

51 refresh();

52 printf("up = drive forward\n\r"

53 "down = drive backward\n\r"

54 "left = drive left\n\r"

55 "right = drive right\n\r"

56 "y = turn right\n\r"

57 "x = turn left\n\r"

58 "any other key = stop\n\r\n");

59 refresh();

60

61 while (running) {

62

63 ch = getch();

64

65 switch (ch) {

66 case KEY_DOWN:

67 longitudinalVelocity = -linearVel * meter_per_second;

68 transversalVelocity = 0 * meter_per_second;

69 angularVelocity = 0 * radian_per_second;

70 LOG(info) << "drive backward";

71 printf("\r");

72 break;

73 case KEY_UP:

98

e
74 longitudinalVelocity = linearVel * meter_per_second;

75 transversalVelocity = 0 * meter_per_second;

76 angularVelocity = 0 * radian_per_second;

77 LOG(info) << "drive forward";

78 printf("\r");

79 break;

80 case KEY_LEFT:

81 transversalVelocity = linearVel * meter_per_second;

82 longitudinalVelocity = 0 * meter_per_second;

83 angularVelocity = 0 * radian_per_second;

84 LOG(info) << "drive left";

85 printf("\r");

86 break;

87 case KEY_RIGHT:

88 transversalVelocity = -linearVel * meter_per_second;

89 longitudinalVelocity = 0 * meter_per_second;

90 angularVelocity = 0 * radian_per_second;

91 LOG(info) << "drive right";

92 printf("\r");

93 break;

94 case 'y':

95 angularVelocity = angularVel * radian_per_second;

96 transversalVelocity = 0 * meter_per_second;

97 longitudinalVelocity = 0 * meter_per_second;

98 LOG(info) << "turn right";

99 printf("\r");

100 break;

101 case 'x':

102 angularVelocity = -angularVel * radian_per_second;

103 transversalVelocity = 0 * meter_per_second;

104 longitudinalVelocity = 0 * meter_per_second;

105 LOG(info) << "turn left";

106 printf("\r");

107 break;

108

109 default:

110 longitudinalVelocity = 0 * meter_per_second;

111 transversalVelocity = 0 * meter_per_second;

112 angularVelocity = 0 * radian_per_second;

113 LOG(info) << "stop";

99

114 printf("\r");

115 break;

116 }

117

118 myYouBotBase.setBaseVelocity(longitudinalVelocity, transversalVelocity, angularVelocity);

119

120 refresh();

121 SLEEP_MILLISEC(100);

122 }

123

124 setVel.angularVelocity = 0 * radian_per_second;

125 myYouBotBase.getBaseJoint(1).setData(setVel);

126 myYouBotBase.getBaseJoint(2).setData(setVel);

127 myYouBotBase.getBaseJoint(3).setData(setVel);

128 myYouBotBase.getBaseJoint(4).setData(setVel);

129

130 endwin();

131 SLEEP_MILLISEC(500);

132

133 } catch (std::exception& e) {

134 std::cout << e.what() << std::endl;

135 } catch (...) {

136 std::cout << "unhandled exception" << std::endl;

137 }

138

139 return 0;

140 }

7.2. OCTAVE COMPUTER VISION CODE

Morphology function

%%%

%%%

%% Morphology function %%

%% Author: Alberto Justo Lobato %%

%% %%

100

e
%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

%% %%

%% Vilnius Gediminas Technical University , Lithuania %%

%% %%

%% Explanation: function responsible of applying %%

%% morphological operations, in this case dilation, on %%

%% two images to obtain differences between each other. %%

%% Moreover, we asked users previously for structuring %%

%% element size and also number of times to repeat %%

%% binarization until they are satisfied with results. %%

%% Finally, we get number of elements of image obtained %%

%% from this transformation. %%

%% %%

%% MATLAB/OCTAVE functions used: %%

%% -rgb2gray %%

%% -graythresh %%

%% -imbinarize %%

%% -imfilter %%

%% -bwconncomp %%

%% -imerode %%

%%%

%%%

function [T]=myhomography(I,A)

if(islogical(I))

disp('Image is already binarized, so it will not be modified')

T=I;

return

end

repeat=1;

101

while(repeat==1)

umbral=graythresh(I);

BW=im2bw(I,umbral);

BW2=im2bw(A,umbral);

BW2inv=~BW2;

BWinv=~BW;

radium=input('Introduce radium of structuring element between 1-5: ')

ee=strel('disk',radium);

% We apply dilation for spliting elements and detecting them

B=imerode(BWinv,ee);

B2=imerode(BW2inv,ee);

L=~B;

L2=~B2;

figure

imshow(I),title('original image');

figure

imshow(A),title('testing image');

figure

subplot(1,4,1),imshow(BWinv), title('binarized original image')

subplot(1,4,2),imshow(L), title('original image with dilation')

subplot(1,4,3),imshow(BW2inv), title('binarized test image')

subplot(1,4,4),imshow(L2), title('test image with dilation')

% We see split objects after transformations

cc=bwconncomp(B); % creating two data structures for knowing nº

elements

a=cc.NumObjects

ccs=bwconncomp(B2);

as=cc.NumObjects

if (a~=as)

 disp('Number of elements are really different. Second image has

mistakes');

 myPCB=0; %% we create a variable called myPCB which value is 0

when it has mistakes and 1 when it is in good conditions

102

e
else

 disp('Number of elements are similar in both images. So, testing

image is correct');

 myPCB=1; %% this variable will be shared with ROS

end

 fprintf('\n Is obtained result the one you wanted?');

 fprintf('\n t1. Yes(press 0)');

 fprintf('\n t2. No(press 1)');

 fprintf('\n');

 repeat=input(' '); %Asking user about results

end

Filtering function

%%%

%%%

%% Filtering function %%

%% Author: Alberto Justo Lobato %%

%% %%

%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

%% %%

%% Vilnius Gediminas Technical University, Lithuania %%

%% %%

%% Explanation: we apply two gauss filters at the same %%

%% time to one image to obtain its contour, just %%

%% detecting both filtered pictures %%

%% %%

%% MATLAB/OCTAVE functions used: %%

%% -rgb2gray %%

%% -mat2gray %%

%% -imfilter %%

%%%

%%%

103

function filtering(I)

%Obtain image edge from subtract of two gauss filters

if ndims(I)==3

 Ig=rgb2gray(I);

end

[rows,columns]=size(Ig);

Ig=double(Ig); %passing to double format

I_contour=zeros(rows,columns);

Sx=[-1 0 1;-2 0 2;-1 0 1];

Sy=[-1 -2 -1;0 0 0; 1 2 1];

Ix=imfilter(Ig,Sx);

Iy=imfilter(Ig,Sy);

I_contour=abs(Ix)+abs(Iy);

S=mat2gray(I_contour);

figure

imshow(I), title('original image')

figure

imshow(S), title('contour image with mat2gray')

Matching function

%%%

%%%

%% Matching function %%

%% Author: Alberto Justo Lobato %%

%% %%

%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

104

e
%% %%

%% Vilnius Gediminas Technical University, Lithuania %%

%% %%

%% Explanation: function responsible of searching for %%

%% similar elements on an image, based on correlation %%

%% finding their centroid. %%

%% After this search, it plots an asterisk in each %%

%% element that matches. %%

%% To sum up, it is a good way for searching elements in %%

%% common between images, but it is quite inconsistent, %%

%% as this means we should use other methods previously. %%

%% %%

%% MATLAB/OCTAVE functions used: %%

%% -rgb2gray %%

%% -imcrop %%

%% -normxcorr2 %%

%% -bwconncomp %%

%%%

%%%

function matching (I,A)

if ndims(I) == 3

disp('Image in color')

N=rgb2gray(I);

L=rgb2gray(A);

else

disp('Image in B&W')

N=I;

L=A;

end

jig=imcrop(N);%select jig

[x,y]=size(jig);

C=normxcorr2(jig,L);

B=C>0.9; %Only select points that have correlation bigger than 0.9

cc=bwconncomp(B);

s=regionprops(cc,'Centroid');

num_el=length(s) %number of elements in common

figure

105

imshow(N);

figure

imshow(L);

hold on

for k=1: num_el

plot((s(k).Centroid(1))-(x)/2,(s(k).Centroid(2))-(y)/2,'*r'); %draw

asterisks in elements in common between images

end

hold off

end

Main script

%%%

%%%

%% Main %%

%% Author: Alberto Justo Lobato %%

%% %%

%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

%% %%

%% Vilnius Gediminas Technical University , Lithuania %%

%% %%

%% Explanation: compile all functions mentioned in %%

%% previous parts. %%

%%%

%%%

I=imread('imag1.jpg');

J=imread('imag2.jpg');

S=imread('imag3.jpg');

W=imread('imag4.jpg');

R=imread('imag5.jpg');

T=imread('imag6.jpg');

U=imread('imag7.jpg');

106

e
% filtering all images introduced

filtering(I);

filtering(J);

filtering(S);

filtering(W);

filtering(R);

filtering(T);

filtering(U);

% comparing elements between standard and taken image of each PCB

mymorphology(I,J);

mymorphology(S,W);

mymorphology(R,T);

mymorphology(T,U);

% applying template matching

matching(I,J);

matching(S,W);

matching(R,T);

matching(T,U);

7.3. MATLAB FORWARD AND INVERSE KINEMATICS CODE

1. Forward.m

%%%

%%%

%% Forward kinematics function %%

%% Author: Alberto Justo Lobato %%

%% %%

%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

%% %%

%% Vilnius Gediminas Technical University, Lithuania %%

%% %%

%% Explanation: function responsible of applying the %%

107

%% generic forward equations of KUKA youBot and then %%

%% obtaining its parameters, which will be used for %%

%% inverse kinematics problem afterwards %%

%% MATLAB/Robotics Toolbox functions used: %%

%% -eye %%

%% -subs %%

%% -simplify %%

%%%

%%%

clear all; close all;

syms x y z alpha beta q1 q2 q3 q4 q5

syms l1 l2 l3 l4 l5 l6 PM

L=[l1 l2 l3 l4 l5 l6]; %%Matrix relative to each arm length

TOO=eye(4,4); %%Build a matrix 4x4

%Now we need to find homogeneous transformation of KUKA youBot

TO1=TOO*ScrewZ(q1,L(2))*ScrewX(-PM,L(1)); %each generic equation for

point O

TO2=TO1*ScrewZ(q2,0)*ScrewX(0,L(3));

TO3=TO2*ScrewZ(q3,0)*ScrewX(0,L(4));

TO4=TO3*ScrewZ(q4,0)*ScrewX(PM,0);

TO5=TO4*ScrewZ(q5,L(5)+L(6))*ScrewX(0,0);

%PM now has the value of PI/2

TO1=subs(TO1,PM,pi/2);

TO2=subs(TO2,PM,pi/2);

TO3=subs(TO3,PM,pi/2);

TO4=subs(TO4,PM,pi/2);

TO5=subs(TO5,PM,pi/2);

108

e

%Next step is simplifying all equations

TO1=simplify(TO1);

TO2=simplify(TO2);

TO3=simplify(TO3);

TO4=simplify(TO4);

TO5=simplify(TO5);

%Obtaining components of our main point

r13=TO5(1,3);

r23=TO5(2,3);

r33=TO5(3,3);

2. Inverseorientation.m

%%%

%%%

%% Forward kinematics function %%

%% Author: Alberto Justo Lobato %%

%% %%

%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

%% %%

%% Vilnius Gediminas Technical University, Lithuania %%

%% %%

%% Explanation: thanks to this function, we obtain %%

%% KUKA youBot parameters for decoupling from 5 DOF to %%

%% 3 %%

%%%

%%%

109

function [myxc,myyc,myzc]=inverseorientation(x,y,z,l5,l6,Q1,Q2,Q3,Q4)

%Applying symbolic forward equations

r13=cos(Q1)*sin(Q2+Q3+Q4);

r23=sin(Q1)*sin(Q2+Q3+Q4);

r33=cos(Q2+Q3+Q4);

%Position of the point Oc

myxc=x-(l5+l6)*r13;

myyc=y-(l5+l6)*r23;

myzc=z-(l5+l6)*r33;

end

3. Inverseposition.m

%%%

%%%

%% Inverse kinematics position function %%

%% Author: Alberto Justo Lobato %%

%% %%

%% Bachelor's Graduation Thesis: %%

%% E-waste material classifier with KUKA youBot and %%

%% computer vision %%

%% %%

%% Vilnius Gediminas Technical University, Lithuania %%

%% %%

%% Explanation: thanks to this function, we obtain %%

%% KUKA youBot angles, putting equations obtained in %%

%% theorical part %%

%%%

%%%

110

e

function [Q2,Q3,D2]= inverseposition(XC,YC,ZC,L1,L2,L3,L4)

D=((XC.^2+YC.^2- 2*sqrt(XC.^2+YC.^2)*L1 +L1.^2)+(ZC-L2).^2-13.^2-

14.^2)/(2*13*14);

D2=1-D.^2;

 if D2<0

 Q3=0;

 Q2=0;

 else

 Q3=atan2(sqrt(1-D.^2),D);

 Q2=atan2((sqrt(xc.^2+yc.^2)-L1),ZC-12)-

atan2(14*sin(Q3),L3+L4*cos(Q3)));

 end

end

111

8. APPENDIXES

8.1. KUKA YOUBOT ARM SPECIFICATIONS

112

e

113

114

e

115

8.2. MAXON JOINT MOTORS

116

e

8.3. SIEMENS MV440 CAMERA SPECIFICATIONS

117

118

e

