Synthesis of Enantioenriched 3-Amino-3-oxindoles by Stereoselective Mannich Reaction Catalyzed by Supported Bifunctional Thioureas.

Patricia Rodríguez-Ferrer, ${ }^{a}$ Miguel Sanz-Novo, ${ }^{\text {a }}$ Alicia Maestro, ${ }^{a}$ José M. Andrés, ${ }^{a}$ * and Rafael Pedrosa ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011-Valladolid. Spain E-mail: jmandres@qo.uva.es
E-mail: pedrosa@qo.uva.es

Abstract

Enantioenriched 3-amino-3-substituted oxindoles have been obtained by addition of different nucleophiles to N -Boc ketimines derived from isatin catalyzed by chiral bifunctional supported thioureas. The Mannich reaction occurs with excellent enantioselection, but poor diastereoselection when prochiral nucleophiles were used. The supported catalyst were recovered and reused for five times without loss of activity. The mixture of diastereoisomers formed when a prochiral structure was used as nucleophile was converted into a single enantioenriched pyrazolyl derivative.

Keywords: Asymmetric catalysis, 3-Aminooxindoles, Chiral pyrazoles, Bifunctional thioureas, Mannich reaction, Supported thioureas.

Introduction

The properties of natural and synthetic 3-aminooxindoles as bioactive compounds ${ }^{[1]}$ have done these structures targets of a great synthetic interest. ${ }^{[2]}$ Specially important are oxindole derivatives with a quaternary stereocenter at C-3, and both transition-metal-mediated ${ }^{[3]}$ and organocatalytic ${ }^{[4]}$ procedures have been used to the preparation of these frameworks. The most interesting biological active derivatives are 3-amino-2-oxindoles with an additional substituent at C-3, and recent studies revealed that the bioactivity of these compounds is related with the stereochemistry of the C-3 stereogenic center. ${ }^{[5]}$ Then, the development of enantioselective methodology for these structures is highly desirable.

Three different ways have been developed for a direct access to 3 -substituted 3-amino-2-oxindoles: the addition-cyclization of 3-isothiocyanate-oxindoles to unsaturated acceptors, ${ }^{[44]}$ the electrophilic amination of oxindoles, ${ }^{[6]}$ and the nucleophilic addition to ketimines derived from isatin catalyzed by chiral phosphoric acids, ${ }^{[7]}$ the Morita-Baylis-Hillman reaction, ${ }^{[8]}$ the addition of phenols and naphthols, ${ }^{[9]}$ the asymmetric cyanation ${ }^{[10]}$ or the addition of alcohols or thiols ${ }^{[11]}$ catalyzed by different thioureas or squaramides.

A different, but very efficient, approach to these structures is the addition of a carbonnucleophile to ketimines derived from isatin (Mannich reaction). Recently, a few examples of organocatalyzed enantioselective Mannich reactions with these isatinderived ketimines have been reported. Good enantioselections were obtained by using Chiral amines, ${ }^{[12]}$ sulfonamides, ${ }^{[13]}$ and both cinchona-derived thioureas ${ }^{[14]}$ or squaramides, ${ }^{[15]}$ but only moderate enantioselectivity was observed for the Manich reaction promoted by an squaramide derived from camphor. ${ }^{[16]}$ All these reactions have been carried out under homogeneous conditions, but there are not antecedents on the use of supported organocatalysts in these kind of transformations.

Our research interest in developing easily recoverable supported bifunctional chiral thioureas ${ }^{[17]}$ and squaramides ${ }^{[18]}$ as organocatalysts led us to undertake a study on the ability of these catalysts to promote the synthesis of enantioenriched 3aminooxindoles. We report now our results on the reaction of N -tert-butoxycarbonyl ketimines derived from isatin with different nucleophiles catalyzed by monomeric and polymer-supported thioureas.
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

Results and Discussion

For comparative purposes bifunctional thioureas I and II, ${ }^{[19]}$ squaramide III, ${ }^{[20]}$ a novel thiourea IV derived from (9S)-9-deoxy-9-aminoquinine, and polystyrenesupported thioureas \mathbf{V} and $\mathbf{V I}{ }^{[19]}$ were selected as catalysts, and their activity tested in the addition of 2,4-pentanedione 2a to isatin (N-Boc) ketimine 1a as a model reaction (Table 1). The reactions were carried out by stirring at rt a mixture of 0.15 mmol of $\mathbf{1 a}$ and two fold excess of $\mathbf{2 a}$ in 0.4 mL of dichloromethane (DCM), in the presence of $5 \mathrm{~mol} \%$ of the corresponding catalyst.

Table 1. Evaluation of the catalysts

Entry	Catalyst (mol \%)	Time (h)	Yield(\%)	$\mathrm{Er}^{[\text {b] }}$
1	I (5\%)	6	87	$98: 2$
$2^{\text {[c] }}$	I (5\%)	8	88	$98: 2$
$3^{\text {[d] }}$	I (5\%)	7	82	$98: 2$
4	II (5\%)	6	89	$96: 4$
5	III (5\%)	7	93	$89: 11$
6	IV (5\%)	6	98	$88: 12$
7	$\mathbf{V}(5 \%)$	6	84	$95: 5$
8	V (10\%)	3.5	90	$97: 3$
9	$\mathbf{V}(2 \%)$	17	84	$94: 6$
10	VI (5\%)	8	75	$90: 10$

"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."
${ }^{[a]}$ Yields correspond to isolated compound after flash chromatography. ${ }^{[b]}$ Determined by HPLC on a chiral column. ${ }^{[c]}$ Reaction at $0{ }^{\circ} \mathrm{C}$. ${ }^{[d]}$ Reaction with 1.1 equivalent of acetylacetone.

The results collected in Table 1 show that all tested catalysts provided the addition product 3aa in excellent yields and good to excellent enantioselection, although squaramide III (entry 5), and thiourea IV derived from quinine (entry 6) were less effective than thioureas I and II (entries 1, 4), including their supported homologs \mathbf{V} and VI (entries 7, 10). Catalysts \mathbf{I} and \mathbf{V}, derived from L-tert-leucine, were more enantioselective than L-valine-derived thioureas II and VI (compare entry 1 versus 4, and 7 versus 10). When the reaction was carried out at $0{ }^{\circ} \mathrm{C}$ in the presence of thiourea I no variation in both the yield and enantioselection was observed (entry 2), and the ratio of nucleophile can be decreasing to 1.1 equivalents without modification in the enantioselectivity (entry 3).

The supported homolog \mathbf{V} catalyzes the reaction very efficiently, although with a slight decrease in the enantiomeric ratio with respect to \mathbf{I} (entry 7), but an increase in the molar ratio of catalyst to $10 \mathrm{~mol} \%$ yielded the addition product 3aa in high yield and excellent enantioselectivity (entry 8). On the contrary, an increase in the reaction time and slight lowering in the stereoselectivity were observed when the ratio of catalyst was decreased to $2 \mathrm{~mol} \%$ (entry 9). The absolute stereochemistry and the configuration at C-3 in 3aa was assigned as (S) by comparison of the sign of the optical rotation with that previously described. ${ }^{[14 \mathrm{c}]}$

The reactivity of different substituted ketimines (1b-i) with 2,4-pentanedione (2a) was studied under the experimental described conditions, and taking unsupported (I) and supported (V) thioureas as the best catalysts (Table 2). In the reactions catalyzed by thiourea I $5 \mathrm{~mol} \%$ of catalyst was used, but in those catalyzed by supported material $10 \mathrm{~mol} \%$ of catalyst was employed to short the reaction time. The results summarized in Table 2 show that the substitution of the benzyl group in 1a to a methyl group in 1c has no effect on both the reactivity and enantioselection of the reaction (compare entries 2, 3 in Table 2 with entries 1, 7 in Table 1). On the contrary, unsubstituted ketimine $\mathbf{1 b}$ yielded the addition product in excellent yield but lower enantioselection (entry 1 in Table 2).

Further attempts to diversify the ketimine structure revealed that good yields and high enantiocontrol was maintained in the reactions of 5 -substituted ketimines $\mathbf{1 d}$-i with
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

2,4-pentanedione 2a. Excellent enantioselectivities were observed in the reactions of ketimine with a methyl group (entries 4,5 in Table 2), or an electron-donating group (entries 14,15) at C-5, but a high level of enantioselection was maintained with halogens (entries 6-11) or hard electron-withdrawing group (entries 12, 13). This means that the electronic character of the substituent has a little effect on the reactivity, thought longer reaction time and higher molar ratio of catalyst were required to obtain comparable results when supported thiourea \mathbf{V} was used as catalyst.

Table 2. Effect of the substitution on the ketimines.

d: $R^{1}-M e ; R^{2}=B n-1 e: R^{1}$
1f: $R^{1}=B r R^{2}=B n \quad$ 1g: $R^{1}=F ; R^{2}=B n$
1h: $\mathrm{R}^{1}=\mathrm{NO}_{2} ; \mathrm{R}^{2}=\mathrm{Bn} 1 \mathrm{i}: \mathrm{R}^{1}=\mathrm{MeO} ; \mathrm{R}^{2}=\mathrm{Bn}$

Entry $^{[\text {[a] }}$	R^{1}	R^{2}	Catalyst (mol \%)	Time (h)	Product	Yield (\%)	$\mathrm{Er}^{[\mathrm{bc]}}$
1	H	H	$\mathbf{I}(5 \%)$	6	3ba	90	$92: 8$
2	H	Me	$\mathbf{I}(5 \%)$	6	3ca	94	$97: 3$
3	H	Me	$\mathbf{V}(5 \%)$	9	3ca	91	$95: 5$
4	Me	Bn	$\mathbf{I}(5 \%)$	4	3da	78	$97: 3$
5	Me	Bn	$\mathbf{V}(10 \%)$	9	3da	75	$97: 3$
6	Cl	Bn	$\mathbf{I}(5 \%)$	5	3ea	82	$96: 4$
7	Cl	Bn	$\mathbf{V}(10 \%)$	10	3ea	84	$91: 9$
8	Br	Bn	$\mathbf{I}(5 \%)$	5	3fa	77	$96: 4$
9	Br	Bn	$\mathbf{V}(10 \%)$	8	3fa	83	$97: 3$
10	F	Bn	$\mathbf{I}(5 \%)$	4	3ga	80	$96: 4$
11	F	Bn	$\mathbf{V}(10 \%)$	8	3ga	75	$97: 3$
12	NO_{2}	Bn	$\mathbf{I}(5 \%)$	2	3ha	90	$95: 5$
13	NO_{2}	Bn	$\mathbf{V}(10 \%)$	7	3ha	92	$90: 10$

"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

14	OMe	Bn	$\mathbf{I}(5 \%)$	6	3ia	81	$97: 3$
15	OMe	Bn	V (10\%)	9	3ia	84	$98: 2$

[^0]The scope of the reaction and the synthetic utility was studied by using different 1,3difunctional compounds as nucleophiles, including symmetrical 1,3-diketones ($\mathbf{2 b}, \mathbf{c}$), and diethyl malonate ($\mathbf{2 k}$) (Table 3). 3,5-Heptanedione ($\mathbf{2 b}$) easily reacted with ketimine 1a leading to 3ab in good yield and excellent enantioselectivity, but the reactions of 1a with dibenzoylmethane ($\mathbf{2 c}$) or diethyl malonate ($\mathbf{2 k}$) leading to 3ac and 3ak, respectively, were slower and less enantioselective. The only difference in using supported catalyst \mathbf{V} in these reactions was an increase in the reaction time to obtain similar results.

Furthermore, in an attempt to diversify the scope of the reaction we study the possibility to form two contiguous stereocenters by using prochiral nucleophiles such as unsymmetrical-substituted diketones (2d-f), and β-ketoesters ($\mathbf{2 h}, \mathbf{i}$). 2,4Hexanedione (2d), 5-methyl-2,4-hexanedione (2e), and benzoylacetone (2f) reacted easily with ketimine 1a, in the presence of both unsupported (I) and supported (V) thioureas, leading to the Mannich adducts 3ad, 3ae, and 3af, respectively, in very good yields and enantioselectivities, but without any diastereoselectivity. In a similar way, ethyl acetoacetate ($\mathbf{2 h}$) added to 1a leading to 3ah as a near equimolar mixture of diastereoisomers in high yield and very good enantioselection for both diastereoisomers, although the reaction of β-ketoester $\mathbf{2 i}$ was less enantioselective.

We suspect that the low diastereoselectivity observed for these transformations could be a consequence of the epimerization of the stereogenic center i $\square \square \square \square \square$ bifunctional chain, and we decided to follow the reaction of $\mathbf{1 a}$ with $\mathbf{2 h}$ catalyzed by \mathbf{I} every $30 \mathrm{~min} .{ }^{1} \mathrm{HNMR}$ spectra showed that the same near equimolar mixture of diastereoisomers was formed from the beginning of the reaction. This means that the bifunctional thiourea is not able to distinguish the two pro-stereogenic faces of the nucleophile, or that the epimerization occurs too quickly to be detected.

The stereoselective formation of two tertiary-quaternary contiguous carbons was also tested in the reactions of ketimine $\mathbf{1 a}$ with 3-methyl-2,4-pentanedione ($\mathbf{2 g}$), ethyl 2-
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."
methyl-3-oxobutanoate (2j), and 2-ethoxycarbonylcyclopentanone (2I). It is interesting to compare the behavior of these tertiary nucleophiles with their unsubstituted homologs. 3-Methyl acetylacetone $\mathbf{2 g}$ reacted with ketimine $\mathbf{1 a}$ leading to the addition product 3ag, but it was necessary to increase the amount of catalysts I to $20 \mathrm{~mol} \%$, and the reaction time to 168 h . In these conditions, 3ag was obtained in moderate yield (61%) and enantioselectivity (er: 82:18). The same fact was observed for the reaction of $\mathbf{2 j}$ with respect to the unsubstituted ketoester $\mathbf{2 h}$. In that case, the reaction ratio was also slower, and much longer time (120h) was required to obtain moderate yield and enantioselection but, interestingly, better diastereoselection (dr: 88:12), probably because the quaternary character of the stereocenter prevents the epimerization. Cyclic ketoester $\mathbf{2 l}$ was more reactive than $\mathbf{2 g}$ and $\mathbf{2 j}$ towards $\mathbf{1 a}$. The addition product 3al was formed in good yield and moderate stereoselection after stirring for 24 h in the reaction catalyzed by $\mathbf{I}(5 \mathrm{~mol} \%)$ or in 48 h in the presence of catalyst $\mathbf{V}(10 \mathrm{~mol} \%)$.

Table 3. Scope of the addition of different nucleophiles to ketimine 1a.
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

3ab Bn
catalyst I, 10h, yield 96%, er: 96:4 catalyst $\mathbf{V}, 14 \mathrm{~h}$, yield 77%, er: 95:5

3ae Bn
catalyst I, 30h, yield 75\%, dr : 55:45 catalyst I, 6h, yield 86\%, dr: 51:49 er: 94:6 (major); 94:6 (minor) catalyst V, 48h, yield 67\%, dr: 53:47 er: 94:6 (major); $91: 9$ (minor)

3ah Bn
catalyst I, 3h, yield 82\%, dr: 51:49 er: 95:5 (major); 95:5 (minor) catalyst V, 24 h , yield 78%, dr: 53:47 er: 93:7 (major); 93:7 (minor) er: 93:7 (major); $93: 7$ (minor) catalyst V, 6 h , yield 84%, dr: 52:48 er: 90:10 (major); 90:10 (minor)

3ai Bn
catalyst I, 8h, yield 95\%, dr: 56:44 er: 84:16 (major); 86:14 (minor) catalyst V, 24 h , yield 92%, dr: 55:45 er: 79:21 (major); 80:20 (minor)

3af Bn

3ac Bn catalyst I, 27 h , yield 88\%, er: 79:21 catalyst $\mathbf{V}, 72 \mathrm{~h}$, yield 74%, er: 77:23

3ad Bn
catalyst I, 7h, yield 82\%,dr: 52:48 er: 95:5 (major; 95:5 (minor) catalyst V, 8h, yield 93\%,dr: 51:49 er: 89:11 (major); 89:11 (minor)

3ag Bn
catalyst I (20 mol\%) 168h, yield 61\%, er:82:18

3ak Bn
catalyst I, 48h, yield 85\%, er: 87:13 catalyst $\mathrm{V}, 72 \mathrm{~h}$, yield 76%, er: 78:22

3aj Bn
catalyst I, 120h, yield 68\%, dr: 88:12 er: 87:13 (major); 84:16 (minor)

catalyst I, 24h, yield 83\%, dr: 68:32 er: 89:11 (major); 93:7 (minor) catalyst V, 48 h , yield 82%, dr: 65:35 er:75:25 (major); 69:31 (minor)

The comparison of the results obtained with thiourea \mathbf{I}, and its supported homolog \mathbf{V}, showed that the polymeric material was able to promote the stereoselective process, but it was a little less effective than the monomeric substrate. In general, the processes need longer reaction times, although maintaining the stereoselection.

The main interest of supported catalysts is related with their easy recovering and recycling, and we test the recyclability of supported thiourea \mathbf{V} in the reaction of isatin-derived ketimine (1a) with 2,4-pentanedione (2a). To this end, 1a (0.3 mmol) was reacted with two-fold excess of $\mathbf{2 a}$ at room temperature in the presence of \mathbf{V} (10 $\mathrm{mol} \%$) and DCM as solvent, for a fixed time of 3.5 h . The catalyst was recovered by
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."
filtration after each cycle, and reused after washing with DCM, and drying. The results summarized in Table 4 show that \mathbf{V} was recovered by filtration after each cycle in high yield, and it can be used for five cycles without loss of enantioselectivity and chemical activity.

Table 4. Recyclability of catalyst \mathbf{V} under the best reaction conditions

Cycle	Time (h)	Conversion (\%) $^{[\mathrm{aj}]}$	Recovered Catalyst	$\mathrm{Er}^{[b]}$
1	3.5	>99	89%	$97: 3$
2	3.5	96	94%	$96: 4$
3	3.5	>99	93%	$97: 3$
4	3.5	>99	96%	$95: 5$
5	3.5	94	89%	$96: 4$

${ }^{[a]}$ Determined by ${ }^{1}$ HNMR in the reaction mixture. ${ }^{[b]}$ Determined by chiral HPLC analysis.

To demonstrate the utility of the method, and given the biological significance of the pyrazole nucleus, ${ }^{[21]}$ we decided to prepare hybrid compounds ${ }^{[22]}$ bearing the pyrazole and 3 -aminooxindole components with potential pharmacological activity as summarized in Scheme 1. Similar structures have been prepared by organocatalytic addition of N -substituted pyrazoles or pyrazolones ${ }^{[23]}$ to oxindole derivatives, but the direct synthesis of pyrazoles bearing an acidic $\mathrm{N}-\mathrm{H}$ bond by this methodology is difficult because they always behave as N -nucleophiles. ${ }^{[24]}$

Scheme 1. Conversion of diketones 3aa, 3ae, and 3af into N-unsubstituted pyrazoles.

Condensation of symmetrical (3aa) or the mixture of diastereoisomers of unsymmetrical (3ae, 3af) diketones with ten percent excess of hydrazine monohydrate in methanol occurred easily at room temperature leading to pyrazoles 4 in good yields. As expected, ${ }^{[25]}$ the reaction of unsymmetrical derivatives was regioselective leading to $\mathbf{4 a e}$, and $\mathbf{4 a f}$ as single regioisomers. HPLC on a chiral phase of the final pyrazoles showed that the enantiomeric ratio was maintained with respect to the starting compounds, showing that there is no erosion of the enantiomeric purity during the transformation.

Conclusion

In summary, we have demonstrated that thiourea I, and polystyrene-supported thiourea \mathbf{V}, derived from L-tert-Leucine, are excellent organocatalysts for the stereoselective Mannich reaction of N -Boc-ketimines derived from isatin. The addition products were obtained in high yields and excellent enantioselectivities, although moderate to poor diastereoselection when prochiral structures were used as nucleophiles. The use of a polymeric catalyst such as \mathbf{V} is described for the first time in that kind of transformation, and it is especially important because it was easily recovered and reused maintaining the catalytic activity. Some mixtures of diastereoisomeric β-dicarbonyls were transformed into single enantioenriched N unsubstituted pyrazolyl-3-amino oxindoles, opening a new way to the preparation of that kind of compounds.

Experimental Section

General

${ }^{1} \mathrm{H}$ NMR (500 MHz) and ${ }^{13} \mathrm{C}$ NMR (126 MHz) spectra were recorded in CDCl_{3} as solvent. Chemical shifts for protons are reported in ppm from TMS with the residual CHCl_{3} resonance as internal reference. Chemical shifts for carbons are reported in ppm from TMS and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constants in Hertz, and integration.

Specific rotations were measured on a Perkin-Elmer 341 digital polarimeter using a $5-\mathrm{mL}$ cell with a $1-\mathrm{dm}$ path length, and a sodium lamp, and concentration is given in g per 100 mL . Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

IR spectrometer and are reported in frequency of absorption (only the structurally most important peaks are given).
Flash chromatography was carried out using silica gel (230-240 mesh). TLC analysis was performed on glass-backed plates coated with silica gel 60 and F_{254} indicator, and visualized by either UV irradiation or by staining with phosphomolybdic acid solution. Chiral HPLC analysis was performed on a JASCO HPLC system (JASCO PU-2089 pump and UV-2075 UV/Vis detector), a JASCO SFC system (JASCO PU2080 pump and DAD MD-2015 detector) and a Hewlett-Packard 1090 Series II instrument equipped with a quaternary pump, using a Daicel Chiralcel OD, Chiralcel OJ, Chiralpak AD-H, Chiralpak AS-H, Chiralpak IA and Lux-amylose-1 analytical columns ($250 \times 4.6 \mathrm{~mm}$). Detection was monitored at 220 or at 254 nm .

Elemental analyses were carried out at the Elemental Analysis Center of the Complutense University of Madrid, using a Perkin Elmer 2400 CHN.

ESI mass spectra were obtained on an Agilent 5973 inert GC/MS system.
Starting isatin (N-Boc) ketimines 1a-i were prepared from the corresponding isatins as previously described. ${ }^{[14 c]}$ Commercially available organic and inorganic compounds were used without further purification. Solvents were dried and stored over microwave-activated 4 Å molecular sieves.

Synthesis of thiourea (IV).

To a solution of (9S)-9-deoxy-9-aminoquinine ${ }^{[26]}(0.6 \mathrm{mmol}, 194 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ was added (2-isothiocyanatoethyl) benzene ${ }^{[27]}$ ($108 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.1$ equiv) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The resulting solution was stirred overnight at room temperature. When the reaction was completed, the resulting solution was concentrated under low pressure and the residue was purified by flash chromatography (EtOAc / Methanol $=4: 1$) to afford IV as white solid ($123 \mathrm{mg}, 0.25$ $\mathrm{mmol}, 42 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=-78.9\left(c=1.04, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.67$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (br s, 1 H$), 7.49(\mathrm{~m}, 1 \mathrm{H})$, $7.38\left(\mathrm{ddd}, J_{1}=9.2, J_{2}=2.7 \mathrm{~Hz}, J_{3}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 2 \mathrm{H}), 7.04$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~m}, 1 \mathrm{H}), 5.64\left(\mathrm{ddd}, J_{1}=17.4 \mathrm{~Hz}, J_{2}=10.1 \mathrm{~Hz}, J_{3}=7.1 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.97(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.64(\mathrm{~m}, 2 \mathrm{H}) ; 3.25(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 4 \mathrm{H}), 2.29$ (br s 1H), $1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 182.4$, $158.0,147.5,144.8,140.5,140.3,138.5,131.7,128.7,128.5,126.4,122.1,115.2$,
$102.3,60.7,55.9,55.1,49.5,45.8,41.2,38.8,35.0,27.2,27.2,27.1,25.6 \mathrm{ppm}$. IR (ATR): 3234, 2940, 1620, 1530, 1506, 1473, 747, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{OS} 487.2532$; Found 487.2534.

General procedure for enantioselective Mannich reaction with N-Boc ketimines with nucleophiles using immobilized catalysts.

A mixture of N -Boc ketimines $\mathbf{1 a - i}(0.15 \mathrm{mmol})$, catalyst ($0.015 \mathrm{mmol}, 0.1$ equiv), and the corresponding nucleophile 2a-l (0.3 mmol , 2 equiv) in 0.4 mL of DCM was stirred at room temperature in a Wheaton vial until consumption of the starting material (monitoring by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). The catalyst was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 1 mL). The solid was dried until constant weight, and reused in the next cycle. After solvent removal under reduced pressure, the crude mixture was purified by flash chromatography to afford the corresponding product. The enantiomeric excess was determined by chiral-phase HPLC analysis using mixtures of hexane/isopropanol as eluent.

General procedure to enantioselective Mannich reaction with N-Boc ketimines with nucleophiles using homogeneous catalysts.

A solution of N-Boc ketimines 1a-i (0.15 mmol), catalyst ($0.0075 \mathrm{mmol}, 0.05$ equiv), and the corresponding nucleophile $\mathbf{2 a - l}$ (0.3 mmol , 2 equiv) in 0.4 mL of DCM was stirred at rt in wheaton vial until consumption of the starting material (monitoring by ${ }^{1} \mathrm{H}-\mathrm{NMR}$). After solvent removal under reduced pressure, the crude mixture was purified by flash column chromatography to afford the corresponding product. The enantiomeric excess was determined by chiral-phase HPLC analysis using mixtures of hexane/isopropanol as eluent.
tert-Butyl (S)-(1-benzyl-3-(2,4-dioxopentan-3-yl)-2-oxoindolin-3-yl)carbamate (3aa). ${ }^{[14 c]}$ Product 3aa was obtained according to the general procedure using acetylacetone $\mathbf{2 a}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $3: 1$) affording compound 3aa as a white solid, ($57 \mathrm{mg}, 0.130 \mathrm{mmol}, 87 \%$). $[\alpha] \mathrm{D}^{25}=-14.0\left(c=1, \mathrm{CHCl}_{3}\right)$ $\left[\right.$ Lit. ${ }^{[14 c]}[\alpha]_{\mathrm{D}}{ }^{20}=-2.0\left(c=1.0, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $)$ for (S) enantiomer]; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.18(\mathrm{td}, J=7.8, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=7.6, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=15,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (br s, 1H), 4.07 ($\mathrm{s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, 2.16 (s, 3H), 1.30 (s, 9H) ppm. HPLC: Chiralpak OD-H; hexane/i-PrOH 95:5, 1
$\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer $(S) t_{r}=15.30 \mathrm{~min}$, minor enantiomer $(R) t_{r}=$ 19.59 min . (er: 98:2).
tert-Butyl (S)-(3-(2,4-dioxopentan-3-yl)-2-oxoindolin-3-yl)carbamate (3ba). ${ }^{[14 \mathrm{c}]}$ Product 3ba was obtained according to the general procedure using acetylacetone 2a and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: 3:1) giving compound 3ba as a white solid, $(47 \mathrm{mg}, 0.135 \mathrm{mmol}, 90 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=+17.6\left(c=0.66, \mathrm{CHCl}_{3}\right)\left[\mathrm{Lit}^{[14 \mathrm{c}]}[\alpha]_{\mathrm{D}}{ }^{20}=\right.$ $+8.0\left(c=1.0, \mathrm{CHCl}_{3}, 87 \%\right.$ ee) for (S) enantiomer]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.31(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.9,1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6,1 \mathrm{H}), 6.72(\mathrm{~s}$, $1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. HPLC: Lux Cellulose1 ; hexane $/ i-\operatorname{PrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major enantiomer $(S) t_{r}=8.74 \mathrm{~min}$, minor enantiomer $(R) t_{r}=9.77 \mathrm{~min}$. (e.r: 89:11).

tert-Butyl (S)-(3-(2,4-dioxopentan-3-yl)-1-methyl-2-oxoindolin-3-yl)carbamate

 (3ca). ${ }^{[14 c]}$ Product 3ca was obtained according to the general procedure, using acetylacetone $\mathbf{2 a}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $3: 1$) affording compound 3ca as a white solid, $(51 \mathrm{mg}, 0.141 \mathrm{mmol}, 94 \%) .[\alpha]^{25}=-8.9\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)$ $\left[\right.$ Lit. ${ }^{[14 c]}[\alpha]_{\mathrm{D}}{ }^{20}=+11.0\left(c=1.0, \mathrm{CHCl}_{3}, 95 \%\right.$ ee) for (R) enantiomer]; ${ }^{1} \mathrm{H}$-NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{dt}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dt}, J=7.6,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$. HPLC: Chiralpak OD, hexane/iso-propanol $=95: 5,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, minor enantiomer $(R) t_{r}=24.01 \mathrm{~min}$, major enantiomer $(S) t_{r}=$ 33.25 min . (er 97:3).
tert-Butyl (S)-(1-benzyl-3-(2,4-dioxopentan-3-yl)-5-methyl-2-oxoindolin-3-yl)

 carbamate (3da). Product 3da was obtained according to the general procedure, using acetylacetone 2a and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) leading to compound 3da as a colorless solid, ($53 \mathrm{mg}, 0.117 \mathrm{mmol}, 78 \%$). $[\alpha]^{25}{ }_{\mathrm{D}}=-$ $9.3\left(c=0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 7.33(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (s, 1H), 6.97 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ (s, 1H), 6.58 (br. s, 1H), 5.01 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (s,$1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 201.7 ; 174.1 ; 153.9 ; 140.1,135.7 ; 132.5 ; 129.8 ; 128.8 ; 127.6 ; 127.5 ; 124.4$; 109.3; 80.4; 68.6; 62.9; 44.3; 32.3; 32.3; 28.2; 21.1 ppm . IR (ATR): 3413, 2976, 1713, 1604, 1494, 729, $697 \mathrm{~cm}^{-1}$. HPLC: Chiralpak OD, hexane/iso-propanol $=95: 5$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer (S) $t_{r}=14.39 \mathrm{~min}$, minor enantiomer (R) $t_{r}=18.46 \mathrm{~min}$. (er 97:3). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 473.2059; Found 473.2047.
tert-Butyl (S)-(1-benzyl-5-chloro-3-(2,4-dioxopentan-3-yl)-2-oxoindolin-3-yl) carbamate (3ea). Compound 3ea was obtained according the to general procedure, using acetylacetone 2a and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: 4:1 to 2:1) giving compound 3ea as colorless oil, ($58 \mathrm{mg}, 0.123 \mathrm{mmol}, 82 \%$). $[\alpha] \mathrm{D}^{25}=-25.0(c=$ $1.0, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.25(\mathrm{~m}$, 2 H), 7.12 (dd, $J=8.3, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.59 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.49 (br. s, 1H), 4.97 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}$, $3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 201.1,173.9,153.8,141.2,135.1$, $129.9,129.4,128.8,128.3,127.8,127.4,124.3,110.5,80.8,68.4,62.6,44.5,32.3$, $32.0,28.1 \mathrm{ppm}$. IR (ATR): $3405,2976,1713,1608,1482,701 \mathrm{~cm}^{-1}$; HPLC: Chiralpak OD column, hexane/iso-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer (S) $t_{r}=15.07 \mathrm{~min}$, minor enantiomer $t_{r}=19.78 \mathrm{~min}(R)$. (er 96:4). HRMS (ESIQTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5}$ 471.1687; Found 471.1681.
tert-Butyl (S)-(1-benzyl-5-bromo-3-(2,4-dioxopentan-3-yl)-2-oxoindolin-3-yl) carbamate (3fa). Product 3fa was obtained according to the general procedure, using acetylacetone 2a and catalyst $\mathbf{V}(25 \mathrm{mg}, 0.015 \mathrm{mmol})$. The crude reaction mixture was purified by flash column chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) affording compound $\mathbf{3 f a}$ as a yellowish solid, ($64 \mathrm{mg}, 0.124 \mathrm{mmol}, 83 \%$). $[\alpha]^{25}{ }_{\mathrm{D}}=-$ $31.5\left(c=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (m, 4H), 7.26 (m, 2H), $6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (br. s, 1H), 4.96 (d, $J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.82$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.16$ (s, 3H), 1.32 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.1,173.8,153.8,141.7,135.1,132.3,130.3,128.8$, $127.8,127.4,127.0,115.6,111.0,80.8,68.4,62.6,44.4,32.3,32.1,28.2 \mathrm{ppm}$. IR (ATR): 3405, 2980, 1713, 1608, 1482, $701 \mathrm{~cm}^{-1}$. HPLC: Chiralpak OD column, hexane/iso-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer $(S) t_{r}=17.60$
min , minor enantiomer $(R) t_{r}=22.8 \mathrm{~min}$. (er 97:3). HRMS (ESI-QTOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{NaO}_{5}$ 537.1001; Found 537.0996.

tert-Butyl (S)-(1-benzyl-3-(2,4-dioxopentan-3-yl)-5-fluoro-2-oxoindolin-3-

 $\mathbf{y l})$ carbamate (3ga). Product 3ga was obtained according to the general procedure, using acetylacetone 2a and catalyst I ($2.5 \mathrm{mg}, 0.0075 \mathrm{mmol}$). The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) leading to compound 3ga ascolorless solid, ($55 \mathrm{mg}, 0.121 \mathrm{mmol}, 80 \%$). $[\alpha]^{25}{ }_{\mathrm{D}}=-20.4$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{dd}$, $J=7.9, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.85(\mathrm{dt}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=8.5, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.48$ (br s, 1H), 4.98 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (s, $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.1$, $174.1,160.4,158.0,153.8,138.6,135.3,128.8,127.8,127.4,115.9,112.3,110.1$, 80.7, 68.4, 62.8, 44.5, 32.3, 32.0, 28.1 ppm . IR (ATR): 3413, 2976, 1713, 1620, 1486, $697 \mathrm{~cm}^{-1}$. HPLC: Chiralpak OD column, hexane/iso-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 220 nm , major enantiomer $(S) t_{r}=17.05 \mathrm{~min}$, minor enantiomer $(R) t_{r}=23.93 \mathrm{~min}$. (er 96:4). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{NaO}_{5}$ 477.1802; Found 477.1796.tert-Butyl
(S)-(1-benzyl-3-(2,4-dioxopentan-3-yl)-5-nitro-2-oxoindolin-3yl)carbamate (3ha). Compound 3ha was obtained according to the general procedure, using acetylacetone 2a and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $4: 1$ to 2:1) affording compound 3ha as yellow oil, ($65 \mathrm{mg}, 0.135 \mathrm{mmol}, 90 \%$). $[\alpha]^{25}{ }_{\mathrm{D}}=-$ $122.0\left(c=0.7, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=8.9, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ (br. s, 1H), 5.01 (m, 2H), 4.14 (s, 1H), $2.29(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.1,200.8$, 174.7, 153.8, 148.6, 143.5, 134.4, 129.2, 129.0, 128.1, 127.4, 126.5, 119.8, 109.2, 81.2, 68.4, 62.0, 44.8, 32.2, 31.9, 28.1 ppm . IR (ATR): 3405, 2976, 1713, 1608, 1486, $729 \mathrm{~cm}^{-1}$. HPLC: Chiralpak AD column, $\mathrm{CO}_{2} /$ methanol $=85: 15,2.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ nm , minor enantiomer $(R) t_{r}=4.41 \mathrm{~min}$, major enantiomer $(S) t_{r}=6.08 \mathrm{~min}$. (er 95:5). HRMS (ESI-QTOF) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{7}$ 504.1747; Found 504.1741.
tert-Butyl (S)-(1-benzyl-3-(2,4-dioxopentan-3-yl)-5-methoxy-2-oxoindolin-3-
$\mathbf{y l})$ carbamate (3ia). Product 3ia was obtained according to the general procedure, using acetylacetone $\mathbf{2 a}$ and catalyst $\mathbf{V}(25 \mathrm{mg}, 0.015 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) yielding compound 3ia as colorless oil, ($59 \mathrm{mg}, 0.126 \mathrm{mmol}, 84 \%$). $[\alpha] \mathrm{D}^{25}=-12.6(c$ $\left.=0.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.5, J=2.5$ Hz, 1H), 6.57 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57$ (br. s, 1H), 4.98 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.5,173.9,156.1,153.9,135.8,135.7,129.6$, $128.8,127.5,113.8,111.2,109.9,80.5,68.5,63.1,55.7,44.4,32.4,32.2,28.2 \mathrm{ppm}$. IR (ATR): 3413, 2980, 1713, 1604, 733, $697 \mathrm{~cm}^{-1}$. HPLC: Chiralpak OD column, hexane/iso-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer $(S) t_{r}=22.65$ min, minor enantiomer $(R) t_{r}=28.18 \mathrm{~min}$. (er 98:2). HRMS (ESI-QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}$ 467.2182; Found:467.2177.
tert-Butyl (S)-(1-benzyl-3-(3,5-dioxoheptan-4-yl)-2-oxoindolin-3-yl)carbamate (3ab). Product 3ab was obtained according to the general procedure, using heptane-3,5-dione $\mathbf{2 b}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: 3:1) affording compound 3ab as colorless solid, $(67 \mathrm{mg}, 0.144 \mathrm{mmol}, 96 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=-8.1\left(c=1.1, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}=-$ 52.55 ($c=1.1$, EtOAc). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81$ (br. s, 1H), 6.69 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ (d, $J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.69-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H})$, $1.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 203.8, 203.5, 174.4, 153.8, 142.4, 135.7, 129.4, 128.7, 127.6, 127.5, 123.3, 122.8, 109.5, 80.3, 66.6, 63.1, 44.3, 38.6, 38.7, 28.1, 7.4, 7.2 ppm. IR (ATR): 3409, 2976, 1713, 1612, 754, $697 \mathrm{~cm}^{-1}$; HPLC: Chiralpak OD column, hexane/iso-propanol $=$ 95:5, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer $(S) t_{r}=8.89 \mathrm{~min}$, minor enantiomer (R) $t_{r}=12.35 \mathrm{~min}$. (er 96:4). HRMS (ESI-QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} 487.2209$; Found 487.2216.
tert-Butyl (S)-(1-benzyl-3-(1,3-dioxo-1,3-diphenylpropan-2-yl)-2-oxoindolin-3$\mathbf{y l})$ carbamate (3ac). Product 3ac was obtained according to the general procedure,
using 1,3-diphenylpropane-1,3-dione 2c and catalyst I ($2.5 \mathrm{mg}, 0.0075 \mathrm{mmol}$). The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: $8: 1$ to $4: 1$) to yield compound $\mathbf{3 a c}$ as colorless solid, ($74 \mathrm{mg}, 0.132 \mathrm{mmol}, 88 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}=+14.2\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 2H), 7.32 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.28-7.23$ (m, 1H), 7.14 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (t, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 192.1, 191.9, 174.5, 153.9, 142.5, 136.8, 136.6, 136.1, 133.8, 133.7, 128.8, 128.7, 128.6, 128.5, 127.7, 127.6, 125.2, 122.9, 109.1, 80.1, 66.1, 64.1, 56.0, 44.2, 28.2 ppm. IR (ATR): 3441, 2972, 1717, 1616, 749 , $685,567 \mathrm{~cm}^{-1}$; HPLC: Chiralpak OD column, hexane/iso-propanol $=95: 5,0.5$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, major enantiomer $(S) t_{r}=29.08 \mathrm{~min}$, minor enantiomer $(R) t_{r}=$ 32.46 min . (er 79:21). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}$ 561.2389; Found 561.2388.

tert-Butyl ((S)-1-benzyl-3-(2,4-dioxohexan-3-yl)-2-oxoindolin-3-yl)carbamate

(3ad). Product 3ad was obtained according to the general procedure, using hexane-2,4-dione $2 \mathbf{d}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was subjected to flash chromatography (hexane/ethyl acetate: 8:1 to $4: 1$) affording compound 3ad as an inseparable mixture (52:48) of diastereoisomers. Colorless oil, ($55 \mathrm{mg}, 0.123 \mathrm{mmol}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (br. s, 0.52 H) (major diastereoisomer), 6.71 (dd, $J=7.5, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.61 (br. s, 0.48 H) (minor diastereoisomer), $5.07-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.93-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}$, 0.48 H) (minor), $3.96(\mathrm{~s}, 0.52 \mathrm{H})$ (major), $2.59(\mathrm{~m}, 0.52 \mathrm{H})$ (major), $2.51(\mathrm{~m}, 1 \mathrm{H}), 2.33$ ($\mathrm{s}, 1.56 \mathrm{H}$) (major), $2.30-2.22(\mathrm{~m}, 0.48 \mathrm{H})$ (minor), 2.16 ($\mathrm{s}, 1.44 \mathrm{H}$) (minor), 1.30 (s , $9 \mathrm{H}), 1.02\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.44 \mathrm{H}\right.$) (minor), $0.97\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.56 \mathrm{H}\right.$) (major) ppm. ${ }^{13} \mathrm{C}$ NMR. (101 MHz, CDCl_{3}) δ 204.3, 203.9, 201.3, 201.0, 174.4, 174.2, 153.8, 142.5, $142.4,135.6,129.4,129.4,128.8,128.8,127.6,127.5,127.5,123.7,123.2,122.9$, $122.8,109.5,80.4,67.8,67.6,62.9,44.3,44.3,38.9,38.8,32.1,28.1,7.4,7.2 \mathrm{ppm}$. IR (ATR): 3409, 2976, 1713, 1612, 754, 733, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-i-Amylose-1 column, hexane/iso-propanol $=90: 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Major diastereoisomer: $t_{r}=9.98 \mathrm{~min}$ (minor enantiomer), $t_{r}=21.31 \mathrm{~min}$ (major enantiomer) (er: 95:5). Minor diastereoisomer: $t_{r}=11.04 \mathrm{~min}$ (minor enantiomer), $t_{r}=28.44 \mathrm{~min}$ (major
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."
enantiomer). (er 95:5). HRMS (ESI-QTOF) m/z: [M Na] ${ }^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 473.2052; Found 473.2047.

tert-Butyl ((S)-1-benzyl-3-(5-methyl-2,4-dioxohexan-3-yl)-2-oxoindolin-3-

$\mathbf{y l})$ carbamate (3ae). Product 3ae was obtained according to general procedure, using 5-methylhexane-2,4-dione 2e and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was subjected to flash chromatography (hexane/ethyl acetate: 8:1 to 4:1) leading to compound 3ae as an inseparable mixture (55:45) of diastereoisomers. Colorless oil, ($52 \mathrm{mg}, 0.113 \mathrm{mmol}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37$ (m, 2H), $7.35-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.45 \mathrm{H})$, 6.98 (br. s, 0.45 H) (minor diastereoisomer), $6.96-6.90$ (m, 1H), 6.69 (dd, $J=12.8$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.42 (br. s, 0.55 H) (major diastereoisomer), $5.11-5.00(\mathrm{~m}, 0.45 \mathrm{H})$ (minor), 4.93 (s, 1H), 4.79 (s, 0.55H) (major), 4.28 (s, 0.55H) (major), 3.96 (s, 0.45 H) (minor), $2.54-2.46(\mathrm{~m}, 0.55 \mathrm{H})$ (major), $2.42-2.34(\mathrm{~m}, 0.45 \mathrm{H})$ (minor), 2.37 (s, 1.35 H) (minor), $2.20(\mathrm{~s}, 1.65 \mathrm{H})$ (major), $1.29(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1.65 \mathrm{H})$ (major), 0.97 (d, $J=6.9 \mathrm{~Hz}, 1.35 \mathrm{H}$) (minor), 0.90 (d, $J=6.7 \mathrm{~Hz}, 1.65 \mathrm{H}$) (major), 0.83 $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1.35 \mathrm{H})$ (minor) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.4,207.3$, $201.4,200.3,174.5,174.1,154.0,153.7,142.8,142.1,135.7,135.6,129.5,129.5$, $128.8,128.7,128.0,127.7,127.6,127.5,127.5,123.9,123.2,122.7,109.5,80.4,80.3$, $66.3,65.7,63.3,63.1,44.4,44.3,43.5,43.2,32.0,31.8,28.1,17.7,17.4,17.1 \mathrm{ppm}$. IR (ATR): 3405, 2976, 1713, 1612, 754, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-i-Amylose-1 column, hexane/iso-propanol $=90: 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Major diastereoisomer: $t_{r}=7.51$ \min (minor enantiomer), $t_{r}=11.74 \mathrm{~min}$ (major enantiomer) (er 94:6). Minor diastereoisomer: $t_{r}=9.22 \mathrm{~min}$ (minor enantiomer), $t_{r}=17.70 \mathrm{~min}$ (major enantiomer). (er 94:6). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} 487.2209$; Found 487.2203.

tert-Butyl ((S)-1-benzyl-3-(1,3-dioxo-1-phenylbutan-2-yl)-2-oxoindolin-3-

$\mathbf{y l})$ carbamate (3af). Product 3af was obtained according to the general procedure, using 1-phenylbutane-1,3-dione $\mathbf{2 f}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was subjected to flash column chromatography (hexane/ethyl acetate: $8: 1$ to $4: 1$) affording compound 3af asan inseparable mixture (51:49) of diastereoisomers. Orange oil, ($64 \mathrm{mg}, 0.129 \mathrm{mmol}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46-7.22(\mathrm{~m}, 7.51 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.51 \mathrm{H})$ (major
diastereoisomer), $6.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.49 \mathrm{H}$) (minor diastereoisomer), 6.72 (d, $J=7.8$ $\mathrm{Hz}, 0.51 \mathrm{H}$) (major), 6.67 (d, $J=7.8 \mathrm{~Hz}, 0.49 \mathrm{H}$) (minor), 6.38 (br s, 0.49 H) (minor), $5.13(\mathrm{~s}, 0.51 \mathrm{H})$ (major), $4.99(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~m}, 0.51 \mathrm{H})$ (major), $4.79(\mathrm{~s}, 0.49 \mathrm{H})$ (minor), 4.71 ($\mathrm{s}, 0.49 \mathrm{H}$) (minor), 2.35 ($\mathrm{s}, 1.47 \mathrm{H}$) (minor), 2.13 ($\mathrm{s}, 1.53 \mathrm{H}$) (major), 1.31 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8,200.8,193.9,193.8,174.6$, 174.1, 154.0, 153.8, 143.1, 142.3, 136.9, 136.6, 135.8, 135.7, 134.3, 134.0, 129.4, 129.3, 128.9, 128.7, 128.7, 128.4, 127.7, 127.6, 127.5, 124.6, 123.9, 122.8, 122.7, $109.3,80.3,63.5,63.2,62.5$, $44.5,44.3,31.4,28.2 \mathrm{ppm}$. IR (ATR): 3417, 2976, 1713, 1612, 733, $693 \mathrm{~cm}^{-1}$. HPLC: Lux-Amylose-1 column, hexane/iso-propanol $=$ 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Major diastereoisomer: $t_{r}=15.95 \mathrm{~min}$ (major enantiomer), $t_{r}=48.98 \mathrm{~min}\left(\right.$ minor enantiomer) (er: 93:7). Minor diastereoisomer: $t_{r}=$ 17.72 min (major enantiomer), $t_{r}=74.87 \mathrm{~min}$ (minor enantiomer). (er 93:7). HRMS (ESI-QTOF) m/z: [M+Na] ${ }^{+}$Calcd. for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 521.2052; Found 521.2047.

tert-Butyl (R)-(1-benzyl-3-(3-methyl-2,4-dioxopentan-3-yl)-2-oxoindolin-3-

 yl)carbamate (3ag). Product 3ag was obtained according to the general procedure, using 3-methylpentane-2,4-dione $\mathbf{2 g}$ and catalyst $\mathbf{I}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$. The crude reaction mixture was purified by flash chromatography (hexane/ethyl acetate: 8:1 to 4:1) affording compound 3 ag as a yellowish solid,($41 \mathrm{mg}, 0.092 \mathrm{mmol}, 61 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}$ $=-13.7\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, Chloroform-d) $\delta 7.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 2H), $7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.3,174.2,153.9,144.0,135.8,129.2,128.7,127.8,127.6,124.9,122.9$, $108.9,80.1,68.3,44.5,30.3,28.7,28.1,15.8 \mathrm{ppm}$. IR (ATR): 3421, 2980, 1713, 1612, $754,697 \mathrm{~cm}^{-1}$. HPLC: Lux-Amylose-1 column, hexane/iso-propanol $=95: 5,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, minor enantiomer $(S) t_{r}=27.14 \mathrm{~min}$, major enantiomer $(R) t_{r}=$ 49.35 min . (er 82:18). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 473.2052; Found 473.2047.Ethyl (S)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-3oxobutanoate (3ah). Product 3ah was obtained according to the general procedure fromethyl 3-oxobutanoate $\mathbf{2 h}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was subjected to flash chromatography (hexane/ethyl acetate: $8: 1$ to 4:1) affording compound 3ah as an inseparable mixture (51:49) of diastereoisomers.

Yellow oil,($55 \mathrm{mg}, 0.117 \mathrm{mmol}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37$ (m, 2.51 H) (major diastereoisomer), 7.31 (dt, $J=7.7, J=4.0 \mathrm{~Hz}, 2.49 \mathrm{H}$) (minor diastereoisomer), $7.24(\mathrm{dt}, J=7.8, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=7.7, J=1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ (br. s, 0.49 H) (minor), 6.39 (br. s, 0.51 H) (major), 4.99 (dd, $J=15.4, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ $4.06(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 0.49 \mathrm{H})$ (minor), $3.92(\mathrm{~s}, 0.51 \mathrm{H})$ (major), $2.25(\mathrm{~s}, 1.53 \mathrm{H})$ (major), 2.15 ($\mathrm{s}, 1.47 \mathrm{H}$) (minor), $1.29(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.53 \mathrm{H})$ (major), $1.12\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.47 \mathrm{H}\right.$) (minor) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6,200.3$, 174.3, 174.2, 166.6, 166.0, 154.0, 153.7, 143.1, 142.9, 135.7, 129.4, 129.4, 128.7, 128.7, 128.3, 128.0, 127.6, 127.5, 124.2, 124.0, 122.8, 122.7, 109.3, 80.3, 80.3, 62.1, 62.1, 61.9, 61.8, 60.6, 44.4, 44.4, 32.1, 31.1, 28.1, 13.8, 13.8 ppm. IR (ATR): 3417, 2980, 1713, 1612, 754, 733, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-i-Amylose-1 column, hexane/isopropanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Major diastereoisomer: $t_{r}=15.96 \mathrm{~min}$ (major enantiomer), $t_{r}=38.75 \mathrm{~min}$ (minor enantiomer) (er 95:5). Minor diastereoisomer: $t_{r}=26.60 \mathrm{~min}$ (major enantiomer), $t_{r}=53.92 \mathrm{~min}$ (minor enantiomer). (er 95:5). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 489.2002; Found: 489.1996.

Ethyl (S)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-3-oxo-3phenylpropanoate (3ai). Product 3ai was obtained according to the general procedure, using ethyl 3-oxo-3-phenylpropanoate $\mathbf{2 i}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075$ mmol). The crude reaction mixture was subjected to flash chromatography (hexane/ethyl acetate: 4:1 to 2:1) giving compound 3ai as an inseparable mixture (56:44) of diastereomers. Yellow oil, ($45 \mathrm{mg}, 0.142 \mathrm{mmol}, 95 \%$). ${ }^{1} \mathrm{H}$-NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{dd}, J=8.4, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.4, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.51$ (m, 2H), $7.43-7.35$ (m, 4H), $7.33-7.22$ (m, 3H), 7.17 (dt, $J=7.7, J=$ $1.2 \mathrm{~Hz}, 0.56 \mathrm{H}$) (major diastereoisomer), $7.15-7.10$ (m, 0.44H) (minor diastereoisomer), 6.97 (m, 0.56 Hz) (major), 6.92 (br. s, 0.44 H) (minor), 6.87 (t, $J=$ $7.6 \mathrm{~Hz}, 0.44 \mathrm{H}$) (minor), 6.74 (d, $J=7.8 \mathrm{~Hz}, 0.56 \mathrm{H}$) (major), 6.70 (d, $J=7.8 \mathrm{~Hz}$, 0.44 H) (minor), 6.60 (br. $\mathrm{s}, 0.56 \mathrm{H}$) (major), $5.02(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 0.56 \mathrm{H})$ (major), $4.79(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 0.44 \mathrm{H})$ (minor), $4.28-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.33$ (s, 9H), $1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.32 \mathrm{H})$ (minor), $1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.68 \mathrm{H}$) (major) ppm. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.7,191.6,174.4,174.2,166.2,165.9,154.1$, 153.7, 143.0, 142.7, 137.0, 136.3, 135.9, 135.9, 134.0, 133.6, 129.4, 129.2, 128.7,
128.7, 128.7, 128.5, 128.4, 127.7, 127.5, 127.5, 124.7, 124.2, 122.7, 122.6, 109.2, 109.2, 80.2, 62.4, 62.1, 56.6, 55.2, 44.4 , 44.3, 28.2, 13.8, 13.8 ppm. IR (ATR): 3421, 2976, 1713, 1612, 754, 733, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-Amylose-1 column, hexane/isopropanol $=80: 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Major diastereoisomer: $t_{r}=7.85 \mathrm{~min}$ (minor enantiomer), $t_{r}=26.56 \mathrm{~min}$ (major enantiomer) (er 84:16). Minor diastereoisomer: $t_{r}=9.25 \mathrm{~min}$ (minor enantiomer), $t_{r}=21.02 \mathrm{~min}$ (major enantiomer). (er 86:14). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 551.2158; Found: 551.2153.

Ethyl (R)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-methyl-3-oxobutanoate (3aj). Product 3aj was obtained according to the general procedure, using ethyl 2-methyl-3-oxobutanoate $\mathbf{2 j}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075$ $\mathrm{mmol})$. The crude reaction mixture was subjected to flash chromatography (hexane/ethyl acetate: $8: 1$ to $4: 1$) leading to compound 3aj asan inseparable mixture (88:12) of diastereoisomers. Orange oil, ($49 \mathrm{mg}, 0.102 \mathrm{mmol}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dt}, J=7.3, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=7.7, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{br} . \mathrm{s}, 0.12 \mathrm{H})$ (minor diastereoisomer), 6.67 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.61 (br. s, 0.88 H) (major diastereoisomer), $4.98(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H})$, $4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 0.36 \mathrm{H})$ (minor), $2.09(\mathrm{~s}, 2.64 \mathrm{H})$ (major), 1.30-1.21 (m, $12 \mathrm{H}), 1.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2.64 \mathrm{H}$) (major), 1.12 (t, $J=7.0 \mathrm{~Hz}, 0.36 \mathrm{H}$) (minor) ppm. ${ }^{13}{ }^{\text {C NMR (}} 101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.4,174.1,169.8,169.4,153.9,153.8,144.2,144.1$, 138.2, 135.8, 129.2, 129.0, 128.6, 128.6, 127.9, 127.8, 127.6, 127.5, 127.5, 125.4, $124.6,122.8,122.6,108.8,108.8,79.9,65.1,63.6,62.4,62.1,44.6,44.5,29.3,28.1$, 16.1, 15.9, 13.8, 13.7. IR (ATR): 3421, 2980, 1713, 1612, 754, 729, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-Amylose-1 column, hexane/iso-propanol $=95: 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$. Major diastereoisomer: $t_{r}=16.60 \mathrm{~min}$ (minor enantiomer), $t_{r}=32.94 \mathrm{~min}$ (major enantiomer) (er 87:13). Minor diastereoisomer: $t_{r}=22.60 \mathrm{~min}$ (minor enantiomer), t_{r} $=42.45 \mathrm{~min}$ (major enantiomer). (er 84:16). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 503.2158; Found: 503.2195.
Diethyl (S)-2-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-
$\mathbf{y l}$)malonate (3ak). Product 3ak was obtained according to the general procedure, using diethyl malonate $\mathbf{2 k}$ and catalyst $\mathbf{I}(2.5 \mathrm{mg}, 0.0075 \mathrm{mmol})$. The crude reaction mixture was purified by flash column chromatography (hexane/ethyl acetate: 4:1)
afforded compound 3ak as yellow oil, ($63 \mathrm{mg}, 0.128 \mathrm{mmol}, 85 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}=-11.3(c=$ $0.9, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dt}, J=7.7 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ $(\mathrm{dt}, J=7.6 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $15,7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.18$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ; 174.1$, $166.8,166.7,153.9,143.2,135.7,159.5,128.9,127.6,127.5,124.1,122.6,109.2$, 80.4, 62.1(2C), 60.9, 55.6, 44.4, 28.1, 25.3, 13.9, 13.8 ppm . IR (ATR): 3417, 2980, 1717, 1612, 749, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-Amylose-1 column, hexane/iso-propanol $=$ 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$, major enantiomer $(S) t_{r}=24.33 \mathrm{~min}$, minor enantiomer $(R), t_{r}=34.67 \mathrm{~min}$. (er 87:13). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7} 497.2288$; Found: 497.2282.

Ethyl (R)-1-(1-benzyl-3-((tert-butoxycarbonyl)amino)-2-oxoindolin-3-yl)-2-oxocyclopentane-1-carboxylate (3al). Product 3al was obtained according to the general procedure, using ethyl 2-oxocyclopentane-1-carboxylate $\mathbf{2 I}$ and catalyst \mathbf{I} (2.5 $\mathrm{mg}, 0.0075 \mathrm{mmol}$). The crude reaction mixture subjected to flash chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) giving compound 3al as an inseparable mixture (68:32) of diastereoisomers. Colorless oil, ($59 \mathrm{mg}, 0.123 \mathrm{mmol}, 82 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}=-13.9$ $\left(c=0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27(\mathrm{~m}, 5 \mathrm{H}), 7.17$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (br. s, 0.69 H) (major diastereoisomer), 7.01 (br. s, 0.31 H) (minor diastereoisomer), $6.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.72 (d, $J=7.8 \mathrm{~Hz}, 0.69 \mathrm{H}$) (major), 6.68 (d, $J=7.5 \mathrm{~Hz}, 0.31 \mathrm{H}$) (minor), 5.05 (m, $0.31 \mathrm{H})$ (minor), $4.93(\mathrm{~m}, 1.38 \mathrm{H})$ (major), $4.75(\mathrm{~m}, 0.31 \mathrm{H})$ (minor), 4.41-4.24 (m, 2 H), $2.48(\mathrm{~m}, 0.31 \mathrm{H})($ minor $), 2.37-2.31(\mathrm{~m}, 1.69 \mathrm{H})$ (major), $2.27-2.22(\mathrm{~m}, 0.69 \mathrm{H})$ (major), $1.93(\mathrm{~m}, 0.31 \mathrm{H})$ (minor), $1.89-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 217.4,217.3,210.4,210.3,174.7,173.5,153.8,153.5,144.0$, $143.8,135.9,135.7,129.4,129.4,128.6,127.8,127.6,124.2,122.8,122.7,109.1$, $79.9,62.8,62.4,44.5,44.5,39.4,39.2,28.1,19.5,19.3,13.9 \mathrm{ppm}$. IR (ATR): 3421, 2976, 1749, 1713, 1612, 754, 733, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-Cellulose-1 column, hexane/iso-propanol $=97: 3,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$. Minor diastereoisomer: $t_{r}=$ 28.38 min (major enantiomer), $t_{r}=33.33 \mathrm{~min}$ (minor enantiomer) (er 89:11). Major diastereoisomer: $t_{r}=29.90 \mathrm{~min}$ (major enantiomer), $t_{r}=37.08 \mathrm{~min}$ (minor
enantiomer). (er 93:7). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 515.2158; Found: 515.2211.

General procedure for the preparation of pyrazole derivatives.

A solution of dicarbonyl derivative (0.15 mmol), hydrazine monohydrate ($8 \mu \mathrm{~L}, 0.165$ mmol, 1,1 equiv) in methanol (3.5 mL) was stirred at room temperature for 2 h . The reaction was monitored by TLC until consumption of the starting material. After solvent removal under reduced pressure, the crude mixture was purified by flash column chromatography on silica gel (hexane/ethyl acetate: $4: 1$ to $2: 1$) to afford the corresponding products.

tert-Butyl

(R)-(1-benzyl-3-(3,5-dimethyl-1H-pyrazol-4-yl)-2-oxoindolin-3-
$\mathbf{y l})$ carbamate(4aa). Compound 4aa was obtained according to general procedure using compound 3aa ($65 \mathrm{mg}, 0.15 \mathrm{mmol}$). The crude reaction mixture was purified by flash column chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) afforded compound 4aa as colorless oil, ($40 \mathrm{mg}, 0.092 \mathrm{mmol}, 61 \%$). $[\alpha]_{\mathrm{D}}{ }^{25}=+101.6\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}$, $6 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,154.0$, 143.0, 135.8, 129.2, 128.7, 127.6, 127.2, 124.6, 122.7, 109.1, 44.0, 28.1, 12.8 ppm . IR (ATR): 3672, 3314, 1714, 1614, 1489, 1364, 749, $699 \mathrm{~cm}^{-1}$. HPLC: Lux-i-Amylose-1 column, hexane/iso-propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, t_{r}=32.73 \mathrm{~min}$ (major enantiomer), $t_{r}=20.14$ (minminor enantiomer) (er $>99:<1$). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{3} 433.2241$; Found 433.2234.

tert-Butyl (R)-(1-benzyl-3-(5-isopropyl-3-methyl-1H-pyrazol-4-yl)-2-oxoindolin-

 3-yl)carbamate(4ae). Compound $\mathbf{4 a e}$ was obtained according to general procedureusing compound $\mathbf{3 a e}(70 \mathrm{mg}, 0.15 \mathrm{mmol})$. The crude reaction mixture was purified by flash column chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) afforded compound 4ae as colorless oil, ($42 \mathrm{mg}, 0.091 \mathrm{mmol}, 61 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=+217.0(c=0.4$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-$ $7.20(\mathrm{~m}, 6 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~m}$, $1 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 2.88\left(\mathrm{dt}, \mathrm{J}_{1}=13.8, \mathrm{~J}_{2}=6.9 \mathrm{~Hz}\right), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.9$, 153.8, 143.0, 135.7, 129.4, 128.7, 127.6, 127.3, 124.5, 122.7, 109.1, 44.1, 28.1, 25.4, 23.2, 23.0, 13.2 ppm. IR (ATR): 3272, 1708, 1612, 1487, 1366, 1253, 747, 730, 697,cm^{-1}. HPLC: Lux-i-Amylose-1 column, hexane/iso- propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=254 \mathrm{~nm}, t_{r}=17.92 \mathrm{~min}$ (major enantiomer), $t_{r}=13.76 \mathrm{~min}$ (minor enantiomer), (er 95:5). HRMS (ESI-QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}$ 495.2398; Found 495.2391.
tert-Butyl (R)-(1-benzyl-3-(3-methyl-5-phenyl-1H-pyrazol-4-yl)-2-oxoindolin-3$\mathbf{y l})$ carbamate(4af). Compound $\mathbf{4 a e}$ was obtained according to general procedureusing compound $\mathbf{3 a e}(75 \mathrm{mg}, 0.15 \mathrm{mmol})$. The crude reaction mixture was purified by flash column chromatography (hexane/ethyl acetate: $4: 1$ to $2: 1$) afforded compound 4ae as colorless oil, ($46 \mathrm{mg}, 0.093 \mathrm{mmol}, 62 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=+126.8(c=0.2$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.31(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~m}, 4 \mathrm{H}), 7.11\left(\mathrm{dt}, \mathrm{J}_{1}=7.8, \mathrm{~J}_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.84(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, 3 H), 1.19 (s, 9H) ppm. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.5,153.4,143.1,135.9$, 130.7, 130.4, 130.0, 129.2, 128.9, 128.8, 128.1, 127.7, 124.9, 122.9, 112.3, 109.0, $44.4,28.1,11.9 \mathrm{ppm}$. IR (ATR): 3239, 1717, 1612, 1487, 1366, 1244, 747, $697 \mathrm{~cm}^{-1}$. HPLC: Lux-i-Amylose-1 column, hexane/iso- propanol $=90: 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, t_{r}=27.48 \mathrm{~min}$ (major), $t_{r}=18.42 \mathrm{~min}$ (minor), (er 93:7). HRMS (ESI-QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3} 461.2553$; Found 461.2547.

Acknowledgements

Authors thank the Spanish MINECO (Project FEDER-CTQ 2014-59870-P) and Junta de Castilla y León (Projects: FEDER-VA115P17, and VA149G18) for financial support.

References

[1] a) A. Ali, H. Demiray, I. Khan, A. Ikhlas, Tetrahedron Lett. 2014, 55, 369. b) D. Paniagua-Vega, C. M. Cerda-García-Rojas, T. Ponce-Noyola, A. C. Ramos-Valdivia. Nat. Prod. Commun. 2012, 7, 1441. c) K. Wang, X.-Y. Zhou, Y.-Y. Wang, M.-M. Li, Y.-S. Li, L.-Y. Peng, X. Cheng, Y. Li, Y.-P. Wang, Q.-S. Zhao, J. Nat. Prod. 2011, 74, 12. d) M. Kitajima, H. Kobayashi, N. Kogure, H. Takayama, Tetrahedron 2010, 66, 5987.
[2] For recent reviews see: a) J. S. Yu, F. Zhou, Y.L. Liu, J.A. Zhou. Synlett 2015, 26, 2491. b) F. Zhou, Y.-L. Liu, J. Zhou Adv. Synth. Catal. 2010, 352, 1381.
[3] For recent reviews see: a) K. Shen, X. Liu, L. Lin, X. Feng Chem. Sci. 2012, 3, 327. b) J. E. M. N. Klein, R. J. K. Taylor Eur. J. Org. Chem. 2011, 6821.
[4] a) R. Dalpozzo Org. Chem. Front. 2017, 4, 2063. b) J. Kaur, S. S. Chimni, S. Mahajan, A. Kumar RSC Adv. 2015, 5, 52481. c) P. Chauhan, S. S. Chimni. Tetrahedron: Asymmetry, 2013, 24, 343. d) R. Dalpozzo, G. Bartoli, G. Bencivenni Chem. Soc. Rev. 2012, 41, 7247.
[5] V. V. Vintonyak, K. Warburg, H. Kruse, S. Grimme, K. Hübel, D. Rauh, H. Waldmann Angew. Chem. Int. Ed. 2010, 49, 5902.
[6] For a recent review: M. Freckleton, A. Baeza, L. Benavent, R. Chinchilla Asian J. Org. Chem. 2018, 7, 1006.
[7] a) Q. Huang, Y. Cheng, H. Yuan, X. Chang, P. Li, W. Li Org. Chem. Front. 2018, 5, 3226. b) J. Feng, W. Yan, D. Wang, P. Li, Q. Sun and R. Wang Chem. Commun. 2012, 48, 8003.
[8] M. K. Choudhary, T. Menapara, R. Tak, R.I. Kureshy, N.H. Khan ChemistrySelect 2017, 2, 2224.
[9] a) S. Karahan, C. Tanyeli. New J. Chem. 2017, 41, 9192. b) M. MontesinosMagraner, C. Vila, A. Rendón-Patiño, G. Blay, I. Fernández, M. C. Muñoz, J. R. Pedro. ACS Catal. 2016, 6, 2689. c) M. Montesinos-Magraner, C. Vila, R. Cantón, G. Blay, I. Fernández, M. C. Muñoz, J. R. Pedro Angew. Chem., Int. Ed. 2015, 54, 6320.
[10] a) H. Wang, K. Wang, Y. Ren, N. Li, B. Tang, G. Zhao Adv. Synth. Catal. 2017, 359, 1819. b) Y. L. Liu and J. Zhou Chem. Commun. 2013, 49, 4421.
[11] a) J. Liu, F. M. Zhu, Y. B. Chu, L. H. Huang, Y. F. Zhou Tetrahedron: Asymmetry, 2015, 26, 1130. b) C. Beceno, P. Chauhan, A. Rembiak, A. Wang, D. Enders Adv. Synth. Catal. 2015, 357, 672. c) S. Nakamura, S. Takahashi, D. Nakane, H. Masuda. Org. Lett. 2015, 17, 106. d) T. Z. Li, X. B. Wang, F. Sha, X. Y. W. Tetrahedron, 2013, 69, 7314.
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."
[12] J. Dai, D. Xiong, T.Yuan, J. Liu, T. Chen, Z. Shao Angew. Chem. Int. Ed. 2017, 56, 12697.
[13] N. Hara, S. Nakamura, M. Sano, R. Tamura, Y. Funahashi, N. Shibata Chem. Eur. J. 2012, 18, 9276.
[14] a) D. Isibol , S. Karahan , C. Tanyeli. Tetrahedron Lett. 2018, 59, 541. b) T.-Z. Li, X.-B. Wang, F. Sha, X.-Y. Wu J. Org. Chem. 2014, 79, 4332. c) W. Yan, D. Wang, J. Feng, P. Li, D. Zhao, R. Wang. Org. Lett. 2012, 14, 2512.
[15] a) K. S. Rao, P. Ramesh, L. R. Chowhanb, R. Trivedi. RSC Adv. 2016, 6, 84242. b) X.-B. Wang, T.-Z. Li, F. Sha, X.-. Wu Eur. J. Org. Chem. 2014, 739.
[16] S. Ricko, J. Svete, B. Štefane, A. Perdih, A. Golobic, A. Meden, U. Groselj Adv Synth Catal. 2016, 358, 3786.
[17] a) J. M. Andrés, F. González, A. Maestro, R. Pedrosa, M. Valle Eur. J. Org. Chem. 2017, 3658. b) J. M. Andrés, M. González, A. Maestro, D. Naharro, R. Pedrosa Eur. J. Org. Chem. 2017, 2683. c) J. M. Andrés, N. de la Cruz, M. Valle, R. Pedrosa, ChemPlusChem 2016, 81, 86. d) J. M. Andrés, M. Ceballos, A. Maestro, I. Sanz, R. Pedrosa Beilstein J. Org. Chem. 2016, 12, 628. e) R. Pedrosa, J. M. Andrés, D. P. Ávila, M. Ceballos, R. Pindado Green Chem. 2015, 17, 2217.
[18] a) J. M. Andrés, A. Maestro, M. Valle, I. Valencia, R. Pedrosa ACS Omega 2018, 3, 16591. b) J. M. Andrés, A. Maestro, M. Valle, R. Pedrosa J. Org. Chem. 2018, 83, 5546.
[19] J. M. Andrés, A. Maestro, P. Rodríguez-Ferrer, I. Simón, R. Pedrosa Chemistry Select 2016, 1, 5057.
[20] J. M. Andrés, J. Losada, A. Maestro, P. Rodríguez-Ferrer, R. Pedrosa J. Org. Chem. 2017, 82, 8444.
[21] V. Kumar, K. Kaur, G. K. Gupta, A. K. Sharma. Eur. J. Med. Chem. 2013, 69, 735.
[22] a) S. Vandekerckhove, M. D'hooghe. Bioorg. Med. Chem. 2015, 23, 5098. b) S.
"This is the peer reviewed version of the following article: Advanced Synthesis and Catalysis, 2019, Volume361, Issue15, Pages 3645-3655. Which has been published in final form at https://doi.org/10.1002/adsc.201900414 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."

Sandhu, Y. Bansal, O. Silakari, G. Bansal. Bioorganic. Med. Chem. 2014, 22, 3806.
[23] a) C. Vila, F. I. Amr, G. Blay, M. C. Muñoz, J. R. Pedro Chem. Asian J. 2016, 11, 1532. b) F. I. Amr, C. Vila, G. Blay, M. C. Muñoz, J. R. Pedro. Adv. Synth. Catal. 2016, 358, 1583. c) X. Bao, B. Wang, L. Cui, G. Zhu, Y. He, J. Qu, Y. Song. Org. Lett. 2015, 17, 5168.
[24] a) H. Wang, C. Guo. Angew. Chem. Int. Ed. 2019, 58, 2854. b) S. Boncel, K. Saletra, B. Hefczyc, K. Z. Walczak. Beilstein J. Org. Chem. 2011, 7, 173. c) S. Gogoi, C.-G. Zhao, D. Ding. Org. Lett. 2009, 11, 2249.
[25] For a recent review see: S. Fustero, M. Sánchez-Roselló, P. Barrio, A. SimónFuentes. Chem. Rev. 2011, 111, 6984.
[26] C. G. Oliva, A. M. S. Silva, D. I. S. P. Resende, F. A. A. Paz, J. A. S. Cavaleiro. Eur. J. Org. Chem. 2010, 3449.
[27] T. Kim, Y.-J. Kim, I.-H. Han, D. Lee, J. Hama, K. S. Kang, J. W. Lee Bioorg. Med. Chem. Lett. 2015, 25, 62.

[^0]: ${ }^{[a]}$ The reaction was carried out with 0.15 mmol of ketimine, two-fold excess of acetylacetone, and \mathbf{I} (5 $\mathrm{mol} \%$) or $\mathbf{V}(10 \mathrm{~mol} \%)$ in 0.4 mL of DCM at rt. ${ }^{[b]}$ Yields after purification by flash chromatography. ${ }^{[c]}$ Measured by HPLC on a chiral column.

