

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería en Electrónica Industrial y Automática

Advanced automation concepts.

Autor:

Redondo Alonso, Miguel

 Responsable de Intercambio en la UVa:

de la Fuente López, Eusebio

Universidad de destino:

University College Leuven-Limburg

1

Valladolid, Junio de 2019.

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO

TÍTULO: Advanced automation concepts.

ALUMNO: Redondo Alonso, Miguel

FECHA: 20/06/2019

CENTRO: University College Leuven-Limburg (UCLL)

TUTOR: Wim Claes - UCLL

 Robby Cloesen - Ciratec

 Johan D’Hondt - Ciratec

2

Acknowledgments.

Thanks to all the UCLL for being my hosts during this amazing experience.

I would also thank to the people of Ciratec, especially to Robby Cloesen and Johan

D’Hondt for their help and trust during these months.

To my home university for allowing me to live this experience, especially to Eusebio for

his help and great effort to make this possible.

A toda esa maravillosa gente que he conocido durante esta experiencia y con la que he

vivido tantos buenos momentos.

Y sobre todo, a mi familia, mis padres y mis hermanos que han estado ahí durante todos

estos años y que me han apoyado en todo momento. También a Ana, por su

incondicional apoyo y por aguantarme todo este tiempo.

Muchas gracias a todos.

Miguel Redondo Alonso.

3

Abstract

I did my internship at Ciratec BVBA in Diepenbeek. They do offline and online

programming of different types of robots and, they are involved in making robot

standards for various applications.

Ciratec wants to present their customers advanced automation concepts using

collaborative robots (cobots), final assembly automation, line tracking, painting and

gluing.

Cobots are starting to be used more frequently in industry due to their multiple

advantages. Final assembly automation has a big potential as this part of the car

assembly is still not automated as body-in-white, so the use of cobots could change this.

Further paint and glue processes are difficult to fine tune during production, so I

investigated several ways to do this in an offline environment.

In my internship I used software as Siemens Process Simulate, ABB RobotStudio, Fanuc

RoboGuide and UR Polyscope. I also worked with a real Universal Robot cobot, the UR10.

The concepts I elaborate are: gluing cell for glasses in final assembly and weld inspection

in body-in-white using a Universal Robot; spare wheel insertion and battery insertion in

final assembly using a Fanuc robot; body panel painting using an ABB robot, and paint

coverage simulation with Process Simulate.

At the end of my internship I also developed a test environment for PLC equipment using

a Beckhoff Twincat SoftPLC. For testing we used an analog sensor with Profinet which

will be used during a bakery automation project

4

Table of contents.

Acknowledgments. ... 2

Abstract .. 3

Table of contents. ... 4

List of figures. ... 7

List of tables ... 10

1. Introduction. ... 11

2. Universal Robots. UR10. .. 13

2.1. CB-Series vs e-Series... 13

2.2. PolyScope. .. 14

2.3. How use the robot.. 16

2.4. Experience with a real robot. ... 18

3. Backup gluing cell. ... 21

3.1. Development of the idea. .. 23

3.1.1. Previous configuration. ... 24

3.1.2. Robot controller configuration. .. 25

3.1.3. Creation of the process. .. 26

3.1.4. Programming of the operation. .. 27

3.1.5. Upload a Process Simulate program to URSim 28

3.1.6. Upload a program from URSim to PRocessSimulate. 29

4. Weld check cell ... 30

4.1. Idea development. ... 31

4.1.1. Tool creation. .. 31

4.1.2. Process programming. .. 32

4.2. Conclusions... 32

5. Spare wheel and battery insertion. .. 33

5.1. Developing of the idea without line tracking. .. 33

5

5.1.1. Create the gripper. .. 34

5.1.2. Creation of the different parts. ... 34

5.1.3. Programming the movements. ... 34

5.1.4. Robot position ... 35

5.2. Developing of the idea with line tracking. ... 36

5.2.1. Line tracking. Definition. ... 36

5.2.2. Create the conveyor ... 37

5.2.3. Tracking with FANUC. ... 38

5.2.3.1. RCS problem. .. 39

5.2.3.2. Programming .. 40

5.2.3.3. Conclusion. .. 41

5.2.4. Line tracking with ABB. ... 41

5.2.4.1. MOC file .. 41

5.2.4.2. Conclusions ... 42

6. Paint and Coverage Simulation .. 43

6.1. Tool definition. ... 43

6.2. Brush definition. ... 44

6.3. Creating the process. ... 44

6.3.1. Generate a continuous operation .. 45

6.3.2. Creating the mesh. .. 46

6.3.2.1. XT-Brep exact geometry. .. 47

6.3.3. Programming and setting the simulation parameters. 47

6.4. Result and conclusions ... 48

7. Communication between a Turck module and TwinCat3. 50

7.1. Turck module. ... 50

7.2. Connection to the Turck module ... 52

7.2.1. IP address setup .. 52

7.2.1.1. Web server. ... 53

6

7.2.2. Problem with the firmware. ... 53

7.2.3. Read parameters from PACTware. ... 54

7.3. Connect to TwinCat 3 ... 55

7.3.1. Configuration of the devices on a TwinCat 3 project. 56

7.4. Results and conclusions. .. 59

Appendix .. 60

A. Datasheets .. 60

1. UR10 .. 60

2. CR-35iA .. 61

3. Turck Module .. 62

Bibliography ... 64

7

List of figures.

Figure 1 Screenshot of Process Simulate environment ... 12

Figure 2. Left: UR10; Rigth: UR10e ... 13

Figure 3. Screenshot of PolyScope ... 15

Figure 4. Pantalla de inicio de URSim ... 16

Figure 5. Installation Tab .. 17

Figure 6. Setup Robot window ... 19

Figure 7. Safety I/O tab ... 20

Figure 8: Robot on the limit position he could reach ... 22

Figure 9: Robot colliding with itself .. 22

Figure 10. PUHead .. 23

Figure 11. Tool Definition Window ... 24

Figure 12. Screenshot of the Placement Manipulator Tool ... 25

Figure 13. Screenshots of the windows for define the tool in the controller 25

Figure 14. Weld Points .. 26

Figure 15. Weld points projected ... 27

Figure 16. Path editor Screenshot .. 28

Figure 17. Structure tab in URSim .. 29

Figure 18. Screenshot of a . script file .. 29

Figure 19. Picture of the process. ... 30

Figure 20. Simulation of the vision system... 31

Figure 21. Check points on the bodywork. ... 32

Figure 22. Capture of the process. ... 33

Figure 23. Gripper ... 34

Figure 24. Pick and place operation dialog window ... 35

file:///C:/Users/Ciratec/Google%20Drive/ERASMUS/TFG/TFG_EN_final.docx%23_Toc11704857
file:///C:/Users/Ciratec/Google%20Drive/ERASMUS/TFG/TFG_EN_final.docx%23_Toc11704859
file:///C:/Users/Ciratec/Google%20Drive/ERASMUS/TFG/TFG_EN_final.docx%23_Toc11704863

8

Figure 25. Screenshot of the path editor with the properties of the movement 35

Figure 26. Basic simulation for line tracking with a FANUC robot 36

Figure 27. Representation of line tracking ... 37

Figure 28. Screenshot of the FANUC software on the option selection step. 39

Figure 29. Line Tracking Settings window .. 40

Figure 30. Screenshot of the ABB RCS server ... 41

Figure 31.Screenshot of the ABB robot setup .. 42

Figure 32. Representation of a paint gun and its frames ... 43

Figure 33. Picture of the brush on the paint gun used in the model 44

Figure 34. Picture of a bad definition of the paint gun and the brush 44

Figure 35. Continuous process generator window .. 45

Figure 36. Create mesh window ... 46

Figure 37. Error message when the par has not exact geometry 47

Figure 38. Screenshot of the OLP commands .. 47

Figure 39. Paint and coverage settings window ... 48

Figure 40. Result of the simulation... 48

Figure 41. Face while creating the continuous operation .. 49

Figure 42. Painting simulation with different speeds: a) v50 b) v100 c) 60 49

Figure 43. Picture of the BLCEN-4M12MT-4AI-VI .. 50

Figure 44. Representation of the rotary switches .. 51

Figure 45. Screenshot of the web server .. 53

Figure 46. Screenshot of PACTware after searching the devices. 54

Figure 47. Device added to the Project .. 54

Figure 48. Measured values. .. 55

Figure 49. Screenshot of TwinCat environment. .. 55

9

Figure 50. Realtime compatible devices Window .. 56

Figure 51. Insert Device window .. 57

Figure 52.Setting tab .. 57

Figure 53. Insert Box Window .. 58

Figure 54. Topology of the device in TwinCat .. 58

10

List of tables

Table 1. Comparison between CB-Series and e-Series ... 14

Table 2. UR10's specifications .. 21

Table 3. Comparison between UR10 and CR-7iA ... 30

Table 4. Main characteristics of CR-35iA .. 33

Table 5. LED status of the Turck module .. 51

11

1. Introduction.

I did my internship at Ciratec BVBA in Diepenbeek, where I developed advanced

automation concepts using collaborative robots (cobots), final assembly automation,

line tracking, painting and gluing. All these models were made with the offline

environment software of Siemens, Process Simulate.

Ciratec is a company that do offline and online programing of different types of robots,

which involved in making robot standards for various applications. The company was

created in 1998 by Jean Cloesen. Since 2016, Bart Thys and Robby Cloesen became the

directors. Also, in October 2016, they became part of the group FFT, keeping their

independent business unit within the FFT group.

About the collaborative robots (cobots): they are a new generation of robots whose

target is to work with humans in the same way. Those kind of robots are beginning to

be used more frequently in industry because of their multiple advantages such as:

reduced mode that can be activated when it detects a person in its work area to work

with them, no need of security fences and detection of collisions with humans, which

means that if the robot collides with anyone, it will stop immediately. Despite the great

advantages that they have, they are still limited in some aspects like payload and

reachability. During my internship I worked with two cobots: CR-35iA from FANUC and

UR10 from Universal Robots, which I had the opportunity of trying.

With concepts, I am referring to models that only have the robot and the part where the

process will be made. Those concepts are used for simulation test and to present to any

costumer.

Finally, the model design was made with Process Simulate. Process Simulate is a 3D

design and offline robot programing environment. It makes the programing and process

design easier because you can use any robot without using their own software, which

gives to you more flexibility with customers and robot brands.

Also, Process Simulate allows you to import the programs that you make there to the

robot format in order to upload it into the robot; and import robot programs,

programmed with Teach Pendant or their own environment, to process simulate to be

12

modified. To make that, the robot controllers have to be correctly set up with the one

that they need. Otherwise, the robot won’t work as it is supposed to work.

Figure 1 Screenshot of Process Simulate environment

On the following pages the different models I made will be developed and how I made

them; and, a section about the UR10.

13

2. Universal Robots. UR10.

During the development of my practices, as I said, I have worked in simulations with

Cobots. The Cobot that I used the most and the one I had to learn to handle it completely

is the UR10 of Universal Robots.

The design of this robot is very versatile, because it is a light robot with a wide range of

joint movements, it has an amplitude of ± 360 degrees in each joint axis. All of this allows

movements in wide areas and even the possibility of installing the robot wherever it was

necessary. However, the cobots have some limitation such as a limited reachability and

payload. The reason is because working with humans the robot cannot exert too much

force because by colliding with an operator it could cause serious damage.

2.1. CB-Series vs e-Series

Presently, Universal Robots have two different series of robots, CB-Series and e-Series.

Despite the fact of being different series, they are similar robots, but with different

controller.

As shown on at figure 2 both robots have similar appearances. The most notable

difference between those robots is the base, but it is not the most important. The main

differences are in the characteristics.

Figure 2. Left: UR10; Rigth: UR10e

14

As can be observed on table 1, the differences are minimal. Although the comparison is

made with the UR10 model, the main concepts could be applied on the rest of models.

The main differences are to be founded in precision, weight, energy consumption and

the number of security modes, basically.

Table 1. Comparison between CB-Series and e-Series

2.2. PolyScope.

As most of the robot brands, Universal Robots have also their own offline programming

and simulation environment, PolyScope. Polyscope is an operative system based on

Ubuntu specifically design for Universal Robots. With this OS you can launch an offline

version of the software that the robots have in their Teach Pendant, URSim. In fact, there

are three applications, one for each robot model. That is because the main way to

program these robots are with the Teach Pendant, which is where you set all the robot

configuration from.

UR10 UR10e
±0.1 mm ±0.05 mm

28.9 Kg 33.5 Kg

10 kg 10 kg

1300 mm 1300 mm

6 6

Base ±360 ±360

Shoulder ±360 ±360

Elbow ±360 ±360

Wirst1 ±360 ±360

Wirst2 ±360 ±360

Wirst3 ±360 ±360

Base 1000 1000

Shoulder 1000 1000

Elbow 1000 1000

Wirst1 1000 1000

Wirst2 1000 1000

Wirst3 1000 1000

250W 350W

15 17

Repeatability

Mechanical weight

Payload

Reach

Degrees of freedom

Power consumption

(typ.)

Safety functions

Motion

range

Maximu

m speed

(mm/s)

15

Figure 3. Screenshot of PolyScope

The software is free and available to download from the official Universal Robots web

page. Also, it must be installed in a virtual machine. It is important to know that the

software for the CB-Series and e-Series are different and the applications do not work

in the same way due to the different controller between the series. The way of

functioning of the robots are not the same. For example, the e-Series have more security

functions than the CB-Series and trying to use one of those functions with a CB-Series

robot that do not have could produce important errors.

As is said before, PolyScope is the OS; for programming the robot it must be used URSim.

And in particular for the UR10, the URSim UR10.

The three different versions of URSim are exactly the same, but each one is for different

robots, because the specific robot parameters are loaded in each application.

In figure 4, it is shown the aspect of the main screen of URSim. As can be seen, the

appearance is the same as the one that is installed in the Teach Pendant of the real

robot.

16

From URSim, it is possible to edit and simulate full robot programs.

It is interesting and useful to know which different file types exist in these robots. It is

possible to differentiate 3 types of files:

1. .urp: this is the extension were the robot programs are saved. This is NOT a text

file, this file was made for open and edit with URSim.

2. .script: text file where the robot moves are written. This is not possible to be

edited whit the graphic interface of URSim, but can be added to bigger programs.

3. .installation: is a file where is saved the configuration of a robot: the position,

safety limits, I/O, etc.

4. .urcap: this files are a kind of apps for the robot. Will be explained forward.

2.3. How use the robot.

The next steps that are going to be explained about how to use the robot, can be used

either for the real robot or the use URSim in Polyscope

Figure 4. Pantalla de inicio de URSim

17

First thing to do is to set up the robot properly. At the installation tab there are several

configuration options, as can be seen in figure 5.

Figure 5. Installation Tab

Of all the options shown at this tab, the most important are:

 TCP configuration, where the data about position, orientation, weight and center

of gravity of the TCP are introduced.

 I/O setup. Where the all inputs and outputs of the robot are set except for the

security I/O.

 Mounting. Where the position of the robot is set.

 Safety. One of the most important section, on it you can set all the aspects for

the robot related with the security.

o General and joint limits: they are sections where is possible to set the

speed and joint limits in either reduce and normal mode.

o Safety boundaries: where is possible to define the safety planes for the

robot motion. Can be set in 4 different ways:

 Normal: the robot stops when is close to the plane only if the

robot is in Normal mode.

18

 Reduce: the same as the previous one but with the robot in

reduce mode.

 Normal and reduce.

 Trigger to reduce: when the safety system is either in normal or

reduce, if this limit is activated the robot switch to the reduce

mode as long as the robot TCP is located beyond it.

o Safety I/O: where is possible to link the inputs and outputs with the

different safety actions.

 Load/Save: in that section is possible to load and save a robot configuration

(.installation files).

2.4. Experience with a real robot.

During one week I had the opportunity to go to the FFT factory in Fulda, Germany, to

use a real UR10 and make some tests with the programs I had made in the office. The

difference with my model was that the robot wasn’t handle above, but was enough for

making the test. At that cell, the robot was mounted on a moving platform. Also, there

were a table with a back window of a car and I could made some test with the robot and

the widow that will be explain after.

The first day was the first contact with the robot. The first thing I did was to check the

basic configuration as speed and joint limits, safety: moved the robot with the Teach

Pendant and test the free drive mode. For the robot’s free drive mode it must be pressed

the teach Pendant button, but it is important to check before if the free drive function

is associate with that button. It is important to know that the closer is the robot to the

joint limits the harder is to move that join; and, if you move it to the limit the robot will

turn on the emergency stop.

The following thing I did was try to connect the robot with my laptop with the Ethernet

wire. It was not possible because Universal Robots do not support the TCP/IP connection

and, for making the communication it should be used sockets or other communication

elements with C++.

Other aspect I wanted to try was the record of movements. The basic software does not

support that function, so an external application should be used; and those external

19

applications are the URCaps, which can be downloaded from the Universal Robots

official web page. They are too easy to install: download the file into a USB drive and

connect to the Teach Pendant; then, from the main window at Setup Robot URCaps

click the “+” button and select the file with the .urcap extension. The application

selected was Artiminds Essential which can be used to record the movement and set the

recording parameters as the points recorded per second, etc.

Figure 6. Setup Robot window

The reduced mode is something that define the cobots, which allow them to work with

humans. To make this function available a security I/O must be defined or activate a

security plane, because if not the reduce mode limits and options won’t be available to

modify. Those I/O are reserved to be linked with certain security related functions as

the emergency stop, for example. The reduce mode will be active as long as the signal is

on low level.

20

Figure 7. Safety I/O tab

After had all the safety related options set, I decided to upload some programs I made

with Process Simulate and try them with the full configuration of the robot done. All the

programs showed security errors. That was because all the programs were made using

the MoveP command, which does not support I/O during the execution. To solve this all

the MoveP commands have to be replaced by the command MoveL. In motion aspects,

both do the same, move the robot between two points in a linear way; but MoveL allows

I/O during execution.

21

3. Backup gluing cell.

The first model consist in a backup cell for the gluing of the different parts of a car that

need it. A backup cell consist in a secondary process which can be activated when the

main process is stopped because of any reason.

That cell is intended to be simple and with the lowest cost possible. That is why we

decided to use a cobot, because the lack of security fences and the possibility of working

together with a human makes the design easier.

The robot that is going to be used for the model is the UR10, from Universal Robots.

These robots give more freedom in movement in comparison with other kind of robots;

they have a ±360 degrees of motion range in each joint.

Table 2. UR10's specifications

UR10

Mechanical
weight

Payload
Reach
(mm)

Motion range

Base Shoulder Elbow Wirst1 Wirst2 Wirst3

28.9 Kg 10 kg 1300 ±360 ±360 ±360 ±360 ±360 ±360

For the design process of the model, I was given the biggest parts of a car that need

gluing in order to understand and make some tests about the reachability of the robot

and ensure that the idea is viable.

I had 3 ideas for this project: put the robot in a common position, put it in a wall with 45

degrees of inclination, and with the robot above the work table.

 Robot in a common position.

The most common position for a robot in a factory is horizontal.

As you can see in Table 1 the reachability of the robot is 1300 mm, which could be not

long enough for reaching the biggest pieces in a factory. And that was what happened

on simulations.

As can be seen in Figure 8 this is the furthest position that the robot could reach. Even

with the design it has, the following points need a configuration that is impossible to

reach with the robot, so it can produce the block of the robot. Due to those reasons, and

because it happened with most of the parts, the idea was discarded.

22

 Robot on the wall with 45 degrees of inclination.

It was a feasible idea. The problem of the reachability and joint configuration of the

robot on the pieces was solved; in some cases with little difficulty, but acceptable.

Nevertheless, there was a huge problem. After making some test with the location of

the robot and the work table most of the pieces were reached, but the robot collides

with itself in some cases. In Figure 9 it is possible to see the collision.

Figure 9: Robot colliding with itself

The problem was not the collision at all. The main problem was that if the piece was

moved, the robot didn’t reach the whole piece. That is why the idea was discarded.

Figure 8: Robot on the limit position he could reach

23

 Robot above the work table.

Another idea was to put the robot on above the pieces, face down and with the base

frame in the middle of the work table handled by a structure. In that location, the robot

can reach all the pieces.

That idea wouldn’t be possible with other robot but a Universal Robots’; and that is

because of its motion range which gives the possibility of doing a hole 360 degrees turn

of the base.

Those reasons are the ones that makes the idea available and what I developed. How I

developed the idea (model, simulation, etc.) will be explained in the following lines.

3.1. Development of the idea.

The Process Simulate tool was used to carry out this concept.

As a concept, all that is needed at the beginning is the robot and the parts on which the

process is going to be carried out

.

Figure 10. PUHead

24

3.1.1. Previous configuration.

The first step is to open one of the parts that we are going to use, in my case the file

'PANOROOF_LIGHT.cojt', and place it at a normal height for a work table, around 1m

more or less. Then place the robot at a suitable height so that the process can be carried

out. For this type of process it is necessary to use a gluing gun. As the gun we use the

file 'PUHead.cojt' which represents the glue gun of the Figure 10.

After adding the tool, it must be defined. To do this, activate the Set Modeling Scope

mode of the part; and, selecting the tool, go to ModelingKinematic DeviceTool

Definition and pop up window of the Figure 11 will appear. In the 'Tool Type' field select

Gun, because it is the most similar option to the use it will have. Then, in the fields 'TCP

Frame' and 'Base' we select, respectively, the frames TCP and fr1, which is the frame

that is in the base of the gun.

Figure 11. Tool Definition Window

Although it is a concept, the glue gun is too long for what it is supposed to be a real one,

so the TCP was approached for not being so far away. Keeping the tool in edit mode we

select the TCP base and, using the Placement Manipulator Tool we place the TCP at

an appropriate distance.

25

Figure 12. Screenshot of the Placement Manipulator Tool

3.1.2. Robot controller configuration.

Finally, before programming and carrying out the necessary processes, it is necessary to

define the tool, but this time in the robot controller. This is because when a program is

generated, the parameters of the system frames, tools, etc. are in the robot controller

because those are the necessary ones for the proper functioning of the robot.

Figure 13. Screenshots of the windows for define the tool in the controller

In RobotSetupRobot Properties, the window on the left in Figure 13, pops up and

you can choose the desired driver from the ones you have installed. We chose Universal

26

URScript and version 3.1. Pressing the Robot Setup button takes us to the controller

window where we can configure multiple aspects. Within them we select the Tool

Definitions option. In the Tool Definition window type the name in the Name frame and

then select the TCP axes of the tool.

3.1.3. Creation of the process.

Now that we have the robot and the part in place and the controller and the tool

configured, we can proceed to the creation of the process itself.

In Process Simulate there is no option to create a gluing operation, the closest there is

to be a welding operation. The first thing to do is add the points where you want the

robot to move using the ProcessDiscreteCreate Weld points by pick tool. Select the

desired points and some garnet cubes will appear on the selected locations. The dots

must be projected onto a part so that they are attached to it and can be adapted to its

shape

.

Figure 14. Weld Points

Select the points and use the ProcessDiscrete Project Weld Points option, select

the part on which you want to project and, thus, there are some visible points with

orientation and manipulable (Figure 15).

27

Figure 15. Weld points projected

With the points already created and projected on a part you must create a welding

operation in operation Create operation new operationNew Weld Operation. In

this way, an operation is already created with a series of points that the robot must

follow, otherwise it could not be executed. Since this is not a real welding operation, the

points can simply be converted into 'via' points with the function Convert to Via

Location.

As the last step before going on to program the operation, we must place and orient the

points correctly, because after the projection they may be in an undesirable position or

with an incorrect orientation, as can be seen in Figure 15. Several Process Simulate tools

can be used to modify positions, but the most useful are: Location Manipulator and Flip

Location. When repositioning the points, orientation is very important, since the

orientation of the robot's TCP is what it will have when it tries to reach the points; they

must also always be oriented in such a way that the x-axis is in the direction of

movement.

3.1.4. Programming of the operation.

With all the above, the operation is already defined. All that remains to be done is to

configure the parameters of the robot movement which, although it is more appropriate

to program with the robot itself, can be done with Process Simulate.

28

Figure 16. Path editor Screenshot

With the path editor tool, it is much easier to modify the parameters. Here you can

modify the important aspects for the execution of the program such as speed,

acceleration, type of movement, etc. Since in general all parameters are the same, it is

enough to select all the points and using the Set Location Properties tool all the

necessary properties are configured.

3.1.5. Upload a Process Simulate program to URSim

Once the operation is programmed and with the parameters well configured, the

program can be downloaded and Process Simulate will automatically generate the file

in the appropriate format and program language for the robot. This file is generated

with the download to robot function. The file it generates is a .script, not an .urp. As

explained in section 2, .script files are those that are text files with the robot

movements, so we cannot open them directly with URSim.

To open them with URSim and include them in a functional program, the following steps

should be followed:

 First, open a new program.

 Second: add the script file to the program in structure advanceScript code

and select the option 'file'.

29

Figure 17. Structure tab in URSim

 Third: before including it, delete the first and last lines of the code, because if

you add it as it is, it will cause errors when running the program.

Figure 18. Screenshot of a. script file

3.1.6. Upload a program from URSim to Process Simulate.

The opposite process is also simple. After creating a program with URSim, multiple files

are generated, including .urp and .script. As mentioned before, .urp files will only be

used to open and modify them with URSim, so the file we are interested in is the .script.

We copy it to the directory of our Process Simulate project and with the robot tool

programUpload Program we select the copied file.

Once uploaded, in a similar way to the previous one, it is necessary to eliminate 2 OLP

Commands that say while(true) and end. They are usually the first and last points on the

list.

30

4. Weld check cell

The second concept is about checking bodywork welds. It is another process where the

human and robot works can be combined. In this case, the robot checks the welds

appearance, position, length and pores in places that it is impossible or difficult for

operators to get to.

The main idea was developed with the Fanuc’s CR-7iA, which is a smaller size cobot and

with very approximate characteristics with the UR10’s.

Table 3. Comparison between UR10 and CR-7iA

UR10
Repeatability

Mechanical
weight

Payload Reach DOF
Motion range

Base Shoulder Elbow Wirst1 Wirst2 Wirst3

±0.1 mm 28.9 Kg 10 kg
1300
mm

6 ±360 ±360 ±360 ±360 ±360 ±360

CR-
7iA

 J1 J2 J3 J4 J5 J6

±0.01 mm 55 Kg 7 Kg
911
mm

6 340 166 383 380 240 720

As I did not have the Process Simulate model for the CR-7iA, the model was developed

with the UR10 model.

As it is a small robot, it can be handled above like in the previous model (section 2),

because the inspection zone will be the bodywork of the car and from that position the

robot can reach easier all the points. To check the weld, on the robot will be mounted a

vision system.

Figure 19. Picture of the process.

31

4.1. Idea development.

It was an easy model to make. First, a complete car model, COJT file, was placed only

using the bodywork. Then, the robot was placed above the bodywork, in a middle point

to reach the important parts of the piece.

After positioning all the parts needed there were only two things to do left: creating a

tool to simulate de vision system and the programming of the movements.

4.1.1. Tool creation.

As I did not have particular Vision System for the process I created a resource to simulate

the camera of the inspection system1 [FANUC, 2018].

For doing that I created a new resource at ModelingComponentsCreate new

resource and within this resource I created two elements to simulate the camera: a box,

which pretends to be the body of the camera; and a cylinder to simulate the part which

joints with the robot. Finally, I added a frame as the TCP; and it is separated of the object

because, normally, the vision systems need to be on a certain distance to analyze the

devices they want to check.

Figure 20. Simulation of the vision system.

1 https://www.fanuc.eu/bg/en/customer-cases/audi

https://www.fanuc.eu/bg/en/customer-cases/audi

32

4.1.2. Process programming.

The way of programming the process was the same as in the gluing cell using weld points

and projecting them to the part.

On a bodywork the weld parts are not as big as the car length, there is only a few parts.

In this model I select five imaginary weld parts; especially on the most difficult shapes

of the bodywork because I wanted to show how the robot can perform the action there.

Figure 21. Check points on the bodywork.

Going in depth with the motion parameters of the process, the robot needs to go slower

4.2. Conclusions

The main target of this simulation was to analyze if this process can be made by the

company and to go in depth with different cobot processes and performances; and the

result was successful.

33

5. Spare wheel and battery insertion.

The following concept is about the spare and battery insertion. Nowadays, it is not very

common to see these processes automatized, but with cobots that could change.

Normally, cobots cannot handle with big payloads. FANUC has one which has a

maximum payload of 35 kg, the CR-35iA.

Table 4. Main characteristics of CR-35iA

CR-
35iA

Repeatability Payload
Reach
(mm)

DOF
Motion range(degrees)

J1 J2 J3 J4 J5 J6

±0.03 mm 35 Kg 1813 6 370 165 258 400 220 900

The main idea is to have two of those cobots that insert at the same time the spare

wheel and the battery in the car. Also, if it is possible, do that on line tracking. Line

tracking is an automation practice in which the process is made on a certain part while

it is moving, without the need to stop the line.

Figure 22. Capture of the process.

5.1. Developing of the idea without line tracking.

The first thing to do was the simple idea, to program the insertion of the devices. But

before that, it is necessary to prepare the gripper and mounted it on the robots.

34

5.1.1. Create the gripper.

The idea for this gripper was to make one similar to the one that is used on the robot

demonstration [Fanuc, 2019]2 by FANUC. For doing this I create a new resource and

within it I added a cylinder. Instead of creating more parts, I added a TCP separate of the

cylinder, as can be sawn on Figure 23. Then, the tool is mounted on the robot and set as

a gripper. This gripper is used by both robots.

Figure 23. Gripper

5.1.2. Creation of the different parts.

The way to create the parts are almost the same as to create a resource. On

ModelingComponentscreate new part and adding new geometry; for the wheel a

cylinder, and a box for the battery. To make them I used standard dimensions for this

products.

5.1.3. Programming the movements.

This is a simple pick and place operation where the robots take the battery and the spare

wheel and place it inside the car. To make it in Process Simulate, clicking on operation

Create operation new operationNew pick and place operation, a dialog window

2 https://www.fanuc.eu/bg/en/customer-cases/audi

https://www.fanuc.eu/bg/en/customer-cases/audi

35

appears, in which you have to select the robot and the pick and place point, and the

operation is created automatically.

Figure 24. Pick and place operation dialog window

The only problem was that it creates an operation only with these two point, and for

this process more points are needed, mainly for the insertion part, in which is necessary

accuracy; otherwise, the robot can hit the car instead of insert the battery and the

wheel. That is because I added 3 points between the pick and place ones. One for rise

the object, one in the middle of the trajectory and one last to place the parts above the

place point. In this processes I used the linear movement for the rise and down of the

object; and, circular for the middle trajectory.

Figure 25. Screenshot of the path editor with the properties of the movement

5.1.4. Robot position

Having done all this, you could see that the robot did not have a wide range of motion,

so it was necessary to modify the position in which it was so that it could perform all

movements with more freedom and without danger of colliding with the car. After

36

different tries the final option was chosen, putting the robot at 30 degrees of inclination

in such a way where it has more opportunities of movement and avoiding collision.

5.2. Developing of the idea with line tracking.

For develop this idea it is going to start from the previous part, because the structure of

the cell is the same; but first, it is necessary to understand how the line tracking works

and how must be done on Process Simulate. Although the aim was to add line tracking

to the spare wheel and battery insertion concept, all the simulations were done creating

basic elements to experiment and investigate how it works. Due to the different

problems, the process was tested with 2 different robots.

Figure 26. Basic simulation for line tracking with a FANUC robot

5.2.1. Line tracking. Definition.

There are some actions that need to be done in a certain moment and stop the line for

that can make fail the process. A line tracking process is one in which the different

actions needed are done while the production line is moving; giving the advantage of

not stopping the line.

The line tracking is based on the setting of a moving reference frame which modifies its

position in the world with the line movement. And referring the action, which the robot

must do, to that frame. Normally the movement is measured by an encoder and its

signal is used to modify the global position of where the robot has to go.

37

The robot is not constantly following the same piece, it has a tracking space or range in

which it follows the pieces. It normally works as follow: the robot waits until a piece

enter in the tracking space (trigger); then, the robot starts to do the action following the

piece and when it is finished the robot stop following the piece and waits again until the

next piece. It can be explained as the robot catch the moving frame whit the trigger

signal and drops it when the action is done. If the action is not done when the piece is

on the track limit, the line stops until it finish.

Figure 27. Representation of line tracking

5.2.2. Create the conveyor

To do a line tracking on Process Simulate the first thing to do is to create a conveyor.

The conveyor is the moving part of the process, which you can simulate the line with. To

create it I followed a tutorial from the Siemens help platform [Siemens, 2019]3. When

the conveyor is created, the next step is to add an object that moves along the conveyor,

a skid. To create it, first a resource has to be created; and, after that define it as a

conceptual skid at controlconveyorDefine as a conceptual skid.

With all this created, it is time to activate the controller’s line tracking option. At the

robot properties window, on the conveyors tab, there will appear one of the conveyor

signals that was created before, following the tutorial, and the opportunity to add that

signal to a conveyor clicking on the associate conveyor with signal button .

3https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1/tecnomatix_eMS/#uid:RoboticsMen
u_RobotConveyorTracking

https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1/tecnomatix_eMS/%23uid:RoboticsMenu_RobotConveyorTracking
https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1/tecnomatix_eMS/%23uid:RoboticsMenu_RobotConveyorTracking

38

You can also add control points on the conveyor. There are three different types of

points: control point, ‘generate skid appearance’ point and ‘destroy skid appearance’

point.

- Control point: Creates a new control point on a selected point on the conveyor.

With them you can modify the speed and the orientation of the skid when it pass

through the point.

- ‘Generate skid appearance’ point: enables you to create a skid appearance on

that point, it is important to select a skid resource as the prototype for the

appearance.

- ‘Destroy skid appearance’ point: generates a skid deletion on that point.

After creating and setting all the basic things of the conveyor, the control of the process

featuring with the conveyor depends only on the robot controller type.

5.2.3. Tracking with FANUC.

On Process Simulate there is the opportunity to connect the robot controller to the RCS

module. The RCS, or Real-time Control System, module is a reference model architecture

suitable for real-time control problem domains. It defines the types of functions that are

required in a real-time intelligent control system and how these functions are related to

each other. Each robot brand has its own RCS module. This RCS module is helpful to

make more accurate simulations, because it shows the real limits of the robots.

In order to make the most accurate simulation, the first thing to do is connect the robot

to this module. For this, I had to create a virtual robot using a FANUC software. This

software is installed in Window XP virtual machine. The first thing to do after opening

the virtual machine is to check the communication between the virtual machine and the

host doing a ping4 from the virtual machine to the host and vice versa. Then, with the

FANUC software you can create a robot: first, you select the robot model, and, then,

select the options you want you robot to have.

4 Ping (Packet Internet Groper) is used to check if a certain network interface, from our computer or
another, is active. The PING sends packets to the IP or host that is indicated, and tells us how long it took
the packet to go and return, among other little information.

39

Figure 28. Screenshot of the FANUC software on the option selection step.

After this, it is necessary to check if the robot was successfully created opening the web

browser and writing the following direction: http://localhost::9080. In the direction it

will appear the option to visit two sites: Named Robots and Active Virtual Robots.

- Named Robots: Virtual robots successfully created.

- Active Virtual Robots: The ones that are currently in use. In other words, those

to whom we have connected through Process Simulate.

Before connect the robot controller from Process Simulate to the virtual robot it is

necessary to modify the file called “specific.cfg” located in the following path:

C:\apps\robcad\rrs_bin\rcsfr13\robcad.bin\VERSION\8.30. That file is a list of robots

that are created, so the only thing left is to add the name of the virtual robot that has

just been created.

Now, for connect the controller to the RCS module, on Robot Properties Controller

switch to Connect the option on the boxes: ‘RCS in simulation’ and ‘RCS in Non

Simulation’. Now when you want to go to the Robot Setup the controller is going to

connect with the RCS module.

5.2.3.1. RCS problem.

The first idea was to do the simulation with the CR-35iA, but when it tries to connect

with its RCS module there appear an error. After trying different things, the cobot was

replaced by another robot model with similar characteristics, the r2000ib/165F. That

40

was made because the target of the simulation was to check how the line tracking can

be implement with Process Simulate, and, in the end, both are FANUC robots that have

the same controller.

5.2.3.2. Programming

As explained in point 5.2.1, the line tracking programming consist in making the robot

wait until the skid object arrives to the trigger point and, thereafter, follow it until finish

the task.

In Process Simulate, first the line tracking option has to be configured on the robot

controller. In the robot setup window there appears the line tracking option. In that

settings you can select the track frame, normally one that exists yet; select the scale and

the teach distance, and, the different boundaries for the tracking task.

Figure 29. Line Tracking Settings window

For the programming of the action I create a simple movement of the robot in order to

follow the skid resource. For create the movements, the steps to follow are the same as

for another process, but attaching via point to the moving resource. The final thing to

41

do is to add to the point the OLP commands to make the robot wait to the trigger and

to drop the tracking frame.

5.2.3.3. Conclusion.

After different changes on the programming and configuration I was not able to make

the line tracking works on Process Simulate. The most possible problem is that there is

something missing on the robot configuration or in the programming, but I did not find

it.

With the multiple problems I had, I decided to replace the robot by an ABB; because I

found evidences that with these robots is possible to do it.

5.2.4. Line tracking with ABB.

With ABB there is also the opportunity to connect the robot with the RCS module. In this

case it is a software that has to be active while you want to use it.

Figure 30. Screenshot of the ABB RCS server

Opposite with FANUC, this RCS server can be used for any ABB robot, is not necessary

to create virtual robots to use it.

5.2.4.1. MOC file

For ABB, apart from the main things that are explained before, it is necessary to add

some extra information, because it is not enough to associate the conveyor on the robot

properties. There is needed which is called a MOC file. A MOC file is a file generated by

RobotStudio in which there are defined extra axes for the robot, conveyors, etc. For

42

generate this file it is necessary to create one conveyor on RobotStudio first and then

load the file on Process Simulate. The MOC file should be uploaded from the robot setup

window in the Load Machine Data option.

Figure 31.Screenshot of the ABB robot setup

After that, I programmed a similar task as the one I made with the FANUC robot. Also in

this case it has to add OLP commands. The ones that have to be used are WaitWObj and

DropWObj, which are used for waiting for the part and for drop the reference when the

task is done.

5.2.4.2. Conclusions

Here happened the same as with the FANUC model, it did not work. I also think that the

problem has to be in some missing data or because a bad configuration in Process

Simulate.

In this case I previously made a simulation in Process Simulate and it worked perfectly,

so I am sure that it is possible to make it.

43

6. Paint and Coverage Simulation

Nowadays, the final assembly processes are starting to be automatized. One of those

processes is paint and coverage. Besides the process itself, it is important to optimize it;

and, here is where the simulation can help.

With Process Simulate is possible to simulate the paint and coverage due to the tools it

has designed to do so. The goal of this concept is to know how to use those tools and

help to optimized the processes and, also, make more visual the simulations in order to

present them.

6.1. Tool definition.

First thing to do is define the tool. This is one of the most important parts of this concept,

because with a bad definition of the tool the coverage simulation will not work.

On Process Simulate painting tools are defined by three frames: base, tip and TCP.

- Base: where is attached to the robot.

- Tip: where the paint brush starts.

- TCP: with it is possible to manage the distance between the gun and the painting

face.

Figure 32. Representation of a paint gun and its frames

44

6.2. Brush definition.

To simulate the brush, the paint gun model must have a cone with the vertex on the tip

frame and the base on the TCP frame. To define the brush, at ProcessPaint and

CoveragePaint Brush Editor select the cone and the origin frame, which is the tip

frame.

Figure 33. Picture of the brush on the paint gun used in the model

It is important to define the brush and the paint gun with the correct frames, otherwise

the simulation will not work properly and the cone will become purple that indicates

that there is a problem with the brush definition.

Figure 34. Picture of a bad definition of the paint gun and the brush

6.3. Creating the process.

For this part there are three tasks: generate the robot movements along the painting

face, create a point mesh, which will help for simulate the paint; and set the OLP

commands on the path editor for chose, open and close the paint gun.

45

6.3.1. Generate a continuous operation

A continuous operation is one that is developed in one or more faces of a part. After

selecting the faces, you select the length of the operation and the times that you want

to repeat it along the face. This is very useful for painting, because is an easy way to

program the robot to move through a face to cover it.

At ProcessContinuousContinuous Process Generator its dialog window appears.

There you can select between Coverage pattern and Arc, depending on whether it is for

painting or an arc operation.

Figure 35. Continuous process generator window

On the coverage pattern first you can select the faces you want to cover. Then, the start

and end points of the movements. Also, you can select the spacing between the strokes

and the number of it that you want to be before and after. On the Operation tab you

46

should select the robot and the tool. Also, on the Continuous projection tab is possible

to define how to distribute the locations setting their orientation, segment length and

tolerance; and, in addition to that, it is possible to select the optimization parameters

for arcs and line segment creations.

6.3.2. Creating the mesh.

With the operation created the next step is to create a 3D mesh of points. It is for the

measuring of the coverage. It is essential for the coverage simulation.

To create the mesh, go to processPaint and Coverage Create Mesh. Then, select

the parts you want to create the mesh on. In the Create mesh window it is possible to

see if the part has an exact geometry and if it has already a mesh. Also it is possible to

modify the tessellation tolerances with you can make the mesh more accurate. The

creation of the mesh takes time, so it is better to set the appropriate values of the

parameters. Those parameters are:

- Distance: The maximum distance allowed between adjacent vertices of the

mesh.

- Deviation: This sets the maximum allowed divergence of the approximate

geometry from the exact geometry

- Angle: This sets the maximum angle allowed between adjacent approximation

items

Figure 36. Create mesh window

47

6.3.2.1. XT-Brep exact geometry.

At first I had a different part to paint on, but it did not have an exact geometry, what

caused an error and the no process of the mesh.

Figure 37. Error message when the par has not exact geometry

The XT-Brep exact geometry is a data format that Siemens use and is one of the best in

providing solid representation for JT files. The meshes are created thanks to the

information that this kind of formats give.

This exact geometry is something similar to the writing permission on a document,

because it gives lot of information about the design of the parts of the products. Some

factories do not want to put at risk a product that will go on sale soon, products such as

cars, and because of that they usually do not give models with this information, to avoid

the copies.

6.3.3. Programming and setting the simulation parameters.

After creating the mesh and the continuous operation, the only things left are the OLP

commands and the option for the covering during the simulation.

On the continuous operation, in the first point it must be added two commands:

ChangeBrush and OpenPaintGun. The first one is for selecting the brush wanted, here is

not possible to select the brush, it must be written with the exact name; and, the second

one is for activate the painting.

Figure 38. Screenshot of the OLP commands

48

Finally, at processPaint and Coverage Paint and coverage settings we can

configure the color of the different layers and what we want to see as the mesh (only

while the window is open), paint or the brush while the simulation is not running. And

for activate the Paint and Coverage it is important to activate the option Paint and

Coverage during simulation.

Figure 39. Paint and coverage settings window

6.4. Result and conclusions

The results of the simulations were not as I expected. The coverage does not fit to the

face shapes, as can be seen on Figure 40. If the geometry is one created with Process

Simulate there is no problem, but with an imported one yes.

Figure 40. Result of the simulation

In Figure 40 it is possible to see that the coverage is not good, because the paint is not

equal along the faces. For example, on the picture of the right can be seen that there

are some zones where a second layer (color blue) appears and that is because of a bad

paint distribution.

49

At first I thought that the problem was in the mesh creation, but I realized that Process

Simulate does not recognize the shape while the creation of the continuous operation

(Figure 41).

Figure 41. Face while creating the continuous operation

You can also see that depending on the speed that you program the movements, the

result of the painting is different. With less speed the painting will have a better

distribution.

Figure 42. Painting simulation with different speeds: a) v50 b) v100 c) 60

To sum up, the tool is not as useful as I thought. The intended use of this application was

to optimize the painting processes and for making a more realistic simulation. But now

this is not good enough for that.

a) b) c)

50

7. Communication between a Turck module and TwinCat3.

The aim of this part is to read the values of a distance sensor from Beckhoff's TwinCat

software via a Truck input module.

The sensor is a Keyence IL-600, a laser sensor that is connected to one of the analog

input channels of the Turck BLCEN-4M12MT-4AI-VI. The Turck module is connected with

the laptop via a PROFINET adapter to Ethernet.

To reach the final result of reading the sensor data in TwinCat it is necessary to go step

by step. First, check the configuration of the Turck module and whether it is possible to

communicate with it via the Ethernet connection. Then, configure a project in TwinCat

and read the data received from the module.

7.1. Turck module.

The BLCEN-4M12MT-4AI-VI is an input module from Turck. It has four analog inputs, two

fieldbus ports, which will be connected to the Ethernet port and auxiliary power, one

input and one output connectors. About the last ones, the input one is connected to a

power source.

Figure 43. Picture of the BLCEN-4M12MT-4AI-VI

Apart from the different ports, there are status LEDs that give information about the

status of the different parts of the module such as inputs, bus connection, etc. For

51

example, if the measure is out of range, it is possible to know because the status LED of

the channel starts to blink.

Table 5. LED status of the Turck module

Apart from all this there are two rotary switches, covered by a small glass, that are used

either for setting the IP address or the device mode operation. With them it is possible

to set the configuration parameters necessaries for the connection.

Figure 44. Representation of the rotary switches

The different operation modes of the device that can be determined by the switches are

the following:

- 00: default configuration

52

- 01-92: rotary mode 1...92 that correspond to the las octet of the module’s IP

address. The 100,…,254 are available with the PGM mode

- 93: BOOTP, that obtains the IP address from the BOOTP server.

- 94: DHCP, that obtains the IP address from the DHCP server.

- 95: PGM, in which you can change the IP address from the web server of the

device. That is what I chose, and will be explained before more in deep.

- 96: PGM-DHCP, which is the out-of-the-box mode and provides the customer

with powerful and convenient IP address setup.

- 97-99: Vendor specific address.

7.2. Connection to the Turck module

As I said before, the first step is to connect the Turck module and check if it is possible

to read from it. For it, the first step is to configure the IP address, then configure the

general settings and, finally, check if it is possible to read from the device.

7.2.1. IP address setup

As the connection is via Ethernet, it is important to set up correctly the IP address, and

for that there are the rotary switches (Figure 44). Normally, the rotary switches are in

the position 00, which is the default configuration that has the following parameters:

- IP address: 192.168.1.254

- Subnet mask: 255.255.255.0

- Default gateway: 192.168.1.1

The device mode operation I chose was the PGM (95) because it is possible to change

the IP address from the web server of the device, giving me the possibility of select the

whole range of addresses in an easy way.

To select this, I firstly had to rotate the switches to the 95 position and cycle the power

to the device. With this mode the device keeps the last address used, in my case the

default one. Once the device is on, the IP address can be changed from the web server.

The IP address I chose for the device was 192.168.1.190.

53

7.2.1.1. Web server.

To have access to the web server it is necessary to enter the current IP address into the

web browser. From the web server it is possible to see the device information about the

gateway, network, Ethernet and the parameters and values of the inputs. For the last

ones is necessary to log in as administrator with a password, which by default is

“password”. Also from here is where is possible to change the IP address, at

gatewayNetwork configuration.

Figure 45. Screenshot of the web server

7.2.2. Problem with the firmware.

One of the biggest problems I had with the device was that I could not connect to the

ARGEE5 environment and I could not see and change the parameters of the inputs.

Without that I could not see if the device was receiving data. All of that was because of

the device’s firmware was not update.

For the firmware update I had to use PACTware, a software supported by Turck for

device management. For doing that, first it is necessary to search the devices. On Project

window, with right click on “HOST PC” add device and select “BL Service Ethernet”. Then,

5 ARGEE: Programming environment of Turck.

54

on Online available devices tab it has to be selected the network in with it is going to

search for devices and, then, click on the Search button and the device appears.

Figure 46. Screenshot of PACTware after searching the devices.

When the device is found, to update the firmware click on the Firmware download

button . Then, the latest firmware file should be selected and, when the download

is finished, search again and check the firmware version it has.

7.2.3. Read parameters from PACTware.

After solving the problem with the firmware I was able to have access to ARGEE and to

all the features of the web server.

Also, I was able to read values from PACTware. Starting from what has been done for

the firmware update, it is possible to connect to the device with the Add device/DTM to

project button . Now, the device is added to the project and, automatically,

PACTware scan the device and find its full topology.

Figure 47. Device added to the Project

55

Now that the device is added and connected, it is possible to read the values of the

different channels. For that, with a right click on the input module part and select the

Measured value option the value read will be displayed.

Figure 48. Measured values.

7.3. Connect to TwinCat 3

After ensure that the module received the signal from the sensor and I could read it with

PACTware, the next step was to connect the signal with TwinCat 3.

TwinCat 3 is a SoftPLC developed by Beckhoff. TwinCat turns almost any PC-based

system into a real-time control.

Figure 49. Screenshot of TwinCat environment.

Most of the information about TwinCat is for previous versions of Windows so that I

used TwinCat in a virtual machine with Windows 7. For the communication between the

virtual machine and the computer, the network has to be configured as a bridge.

56

The laptop has not a PROFINET adapter itself, but with the PROFINET wire to Ethernet it

is possible to connect the module to the laptop. Because of that, the PC needs a specific

driver to make it able to receive data from a PROFINET device. Just in case I install the

drivers on the virtual machine and the laptop itself. It is possible to do from the network

connection setting of Windows and, also, from TwinCat. There, at TWINCAT tab in the

Show Realtime Ethernet Compatible Devices… option appears a window like Figure 50

in which is possible to see the compatible devices. There, on the incompatible devices

group appears the full name of the Ethernet device; selecting it and clicking on the Install

button the driver will be installed and the name of the Ethernet appears on the

compatible devices group.

Figure 50. Realtime compatible devices Window

7.3.1. Configuration of the devices on a TwinCat 3 project.

In TwinCat it is possible to add the Turck module. For doing that, the controller must be

declared first and within the device itself. From the Solution Explorer at I/O Devices

doing right click selecting Add New Item option there appear a Window. On that window

select “Profinet I/O Controller (RT)”.

57

Figure 51. Insert Device window

Now, on the Solution Explorer appears the controller. In its options, on the Adapter tab,

click on the Search... button to select in which port the device is located and select the

Ethernet adapter. Then, on the Settings tab it is possible to configure the IP of the

controller. There it must appear the IP of the controller (not the module’s IP) and the

subnet mask and Gateway directions. Those last ones are the ones configured before on

the module’s web server. As I did not make any change on that parameters, the subnet

mask and the gateway are the default ones, as can be sawn on Figure 52.

Figure 52.Setting tab

The controller is already configured. Now it is turn of the module. First, add a new item

within the controller and select “PROFINET IO Device” within the miscellaneous group.

58

Figure 53. Insert Box Window

After that, the GSDML 6file of the module has to be selected to charge all the options

and configuration of the file. In my case I selected the file: GSDML-V2.3-Turck-BLCEN-

20180921-010400.xml. Now on the Solution explorer appears the full topology of the

Turck module.

Figure 54. Topology of the device in TwinCat

6 General Station Description Markup Language file is the device description technology for PROFINET
devices, regarding its identification, its structure, its communication features, its process data, its
parameters and its diagnosis. [Profibus, 2017]

59

The last thing to do is the IP address configuration of the device. On the Device tab within

the module options it is possible to do that. There, the subnet mask and the gateway

are the same as in the controller; only it is possible to change the IP address. So, there I

wrote the one I set before with the web server: 192.168.1.190.

7.4. Results and conclusions.

After doing all the configuration correctly I could not read the measuring data from the

module. The only values I could read were the state values, which inform that there

were an error and that the device was not found.

One of the problems could be in the driver, because the driver were developed for Intel

Ethernet cards and mine was a Realtek. Nevertheless I was able to install the drivers in

my laptop. Also, I tried to run TwinCat from my laptop instead from the virtual machine,

but when I tried to switch TwinCat to run mode the PC break down and a blue screen

appears. Apparently, the drivers cause the problem so I had to uninstall all.

I tried to use another laptop with an Intel card and it did not work either. Because, first,

I had problems installing the drivers, and when the drivers were installed I did not read

anything. The only software I could read from was PACTware.

All this could be because some configuration were wrong or, it is possible that read a

Turck module is still not supported by TwinCat or that it is only possible to be read from

their own software.

60

Appendix

A. Datasheets

1. UR10

61

2. CR-35iA

62

3. Turck Module

63

64

Bibliography

Universal Robots. (2009-2018) Manual of UR10 version 3.8.

Fanuc. (2019). Audi uses FANUC collaborative robots to check welds. Available at:

https://www.fanuc.eu/bg/en/customer-cases/audi

Siemens Product Lifecycle Management Software Inc. (2018). Tracking objects on

conveyors. Available at:

https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1.2/tecnomatix_eMS/#

uid:RoboticsMenu_RobotConveyorTracking

Siemens Product Lifecycle Management Software Inc. (2018). Coverage during

Simulation. Available at:

https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1.2/tecnomatix_eMS/#

uid:xid1179708

Siemens Product Lifecycle Management Software Inc. (2018). Generating a continuous

coverage pattern process. Available at:

https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1.2/tecnomatix_eMS#

uid:index_xid1015765:xid1095247:xid1579323:xid1579170

Siemens Product Lifecycle Management Software Inc. (2018). Create a paint trigger.

Available at: https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1.2/

tecnomatix_eMS#uid:index_xid1015765:xid1095247:xid1183005:Operations_Menu_Cr

eatePaintTrigger

Juckes, J. (2010). XT B-Rep: Making it real. Available at:

https://www.plm.automation.siemens.com/ja_jp/Images/XT-in-JT_tcm821-115289.pdf

Turck Inc. (2016). BLCEN Ethernet/IP. Configuration guide.

Profibus. (2017). GSDML Specification for PROFINET. Available at:

https://www.profibus.com/download/gsdml-specification-for-profinet/

