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Abstract 

I did my internship at Ciratec BVBA in Diepenbeek. They do offline and online 

programming of different types of robots and, they are involved in making robot 

standards for various applications.  

Ciratec wants to present their customers advanced automation concepts using 

collaborative robots (cobots), final assembly automation, line tracking, painting and 

gluing.   

Cobots are starting to be used more frequently in industry due to their multiple 

advantages. Final assembly automation has a big potential as this part of the car 

assembly is still not automated as body-in-white, so the use of cobots could change this.  

Further paint and glue processes are difficult to fine tune during production, so I 

investigated several ways to do this in an offline environment.  

In my internship I used software as Siemens Process Simulate, ABB RobotStudio, Fanuc 

RoboGuide and UR Polyscope. I also worked with a real Universal Robot cobot, the UR10.   

The concepts I elaborate are: gluing cell for glasses in final assembly and weld inspection 

in body-in-white using a Universal Robot; spare wheel insertion and battery insertion in 

final assembly using a Fanuc robot; body panel painting using an ABB robot, and paint 

coverage simulation with Process Simulate.  

At the end of my internship I also developed a test environment for PLC equipment using 

a Beckhoff Twincat SoftPLC. For testing we used an analog sensor with Profinet which 

will be used during a bakery automation project  

  



4 
 

Table of contents. 

Acknowledgments. ............................................................................................... 2 

Abstract ................................................................................................................ 3 

Table of contents. ................................................................................................. 4 

List of figures. ....................................................................................................... 7 

List of tables ....................................................................................................... 10 

1. Introduction. ............................................................................................... 11 

2. Universal Robots. UR10. .............................................................................. 13 

2.1. CB-Series vs e-Series..................................................................................... 13 

2.2. PolyScope. .................................................................................................... 14 

2.3. How use the robot........................................................................................ 16 

2.4. Experience with a real robot. ....................................................................... 18 

3. Backup gluing cell. ....................................................................................... 21 

3.1. Development of the idea. ............................................................................ 23 

3.1.1. Previous configuration. ......................................................................... 24 

3.1.2. Robot controller configuration. ............................................................ 25 

3.1.3. Creation of the process. ........................................................................ 26 

3.1.4. Programming of the operation. ............................................................ 27 

3.1.5. Upload a Process Simulate program to URSim ..................................... 28 

3.1.6. Upload a program from URSim to PRocessSimulate. ........................... 29 

4. Weld check cell ........................................................................................... 30 

4.1. Idea development. ....................................................................................... 31 

4.1.1. Tool creation. ........................................................................................ 31 

4.1.2. Process programming. .......................................................................... 32 

4.2. Conclusions................................................................................................... 32 

5. Spare wheel and battery insertion. .............................................................. 33 

5.1. Developing of the idea without line tracking. .............................................. 33 



5 
 

5.1.1. Create the gripper. ................................................................................ 34 

5.1.2. Creation of the different parts. ............................................................. 34 

5.1.3. Programming the movements. ............................................................. 34 

5.1.4. Robot position ....................................................................................... 35 

5.2. Developing of the idea with line tracking. ................................................... 36 

5.2.1. Line tracking. Definition. ....................................................................... 36 

5.2.2. Create the conveyor ............................................................................. 37 

5.2.3. Tracking with FANUC. ........................................................................... 38 

5.2.3.1. RCS problem. .................................................................................. 39 

5.2.3.2. Programming .................................................................................. 40 

5.2.3.3. Conclusion. ...................................................................................... 41 

5.2.4. Line tracking with ABB. ......................................................................... 41 

5.2.4.1. MOC file .......................................................................................... 41 

5.2.4.2. Conclusions ..................................................................................... 42 

6. Paint and Coverage Simulation .................................................................... 43 

6.1. Tool definition. ............................................................................................. 43 

6.2. Brush definition. ........................................................................................... 44 

6.3. Creating the process. ................................................................................... 44 

6.3.1. Generate a continuous operation ........................................................ 45 

6.3.2. Creating the mesh. ................................................................................ 46 

6.3.2.1. XT-Brep exact geometry. ................................................................ 47 

6.3.3. Programming and setting the simulation parameters. ........................ 47 

6.4. Result and conclusions ................................................................................. 48 

7. Communication between a Turck module and TwinCat3. ............................. 50 

7.1. Turck module. ............................................................................................... 50 

7.2. Connection to the Turck module ................................................................. 52 

7.2.1. IP address setup .................................................................................... 52 

7.2.1.1. Web server. ..................................................................................... 53 



6 
 

7.2.2. Problem with the firmware. ................................................................. 53 

7.2.3. Read parameters from PACTware. ....................................................... 54 

7.3. Connect to TwinCat 3 ................................................................................... 55 

7.3.1. Configuration of the devices on a TwinCat 3 project. .......................... 56 

7.4. Results and conclusions. .............................................................................. 59 

Appendix ............................................................................................................ 60 

A. Datasheets ...................................................................................................... 60 

1. UR10 ...................................................................................................... 60 

2. CR-35iA .................................................................................................. 61 

3. Turck Module ........................................................................................ 62 

Bibliography ....................................................................................................... 64 

  



7 
 

List of figures. 

Figure 1 Screenshot of Process Simulate environment ................................................. 12 

Figure 2. Left: UR10; Rigth: UR10e ................................................................................. 13 

Figure 3. Screenshot of PolyScope ................................................................................. 15 

Figure 4. Pantalla de inicio de URSim ............................................................................. 16 

Figure 5. Installation Tab ................................................................................................ 17 

Figure 6. Setup Robot window ....................................................................................... 19 

Figure 7. Safety I/O tab ................................................................................................... 20 

Figure 8: Robot on the limit position he could reach ..................................................... 22 

Figure 9: Robot colliding with itself ................................................................................ 22 

Figure 10. PUHead .......................................................................................................... 23 

Figure 11. Tool Definition Window ................................................................................. 24 

Figure 12. Screenshot of the Placement Manipulator Tool ........................................... 25 

Figure 13. Screenshots of the windows for define the tool in the controller ................ 25 

Figure 14. Weld Points .................................................................................................... 26 

Figure 15. Weld points projected ................................................................................... 27 

Figure 16. Path editor Screenshot .................................................................................. 28 

Figure 17. Structure tab in URSim .................................................................................. 29 

Figure 18. Screenshot of a . script file ............................................................................ 29 

Figure 19. Picture of the process. ................................................................................... 30 

Figure 20. Simulation of the vision system..................................................................... 31 

Figure 21. Check points on the bodywork. ..................................................................... 32 

Figure 22. Capture of the process. ................................................................................. 33 

Figure 23. Gripper ........................................................................................................... 34 

Figure 24. Pick and place operation dialog window ....................................................... 35 

file:///C:/Users/Ciratec/Google%20Drive/ERASMUS/TFG/TFG_EN_final.docx%23_Toc11704857
file:///C:/Users/Ciratec/Google%20Drive/ERASMUS/TFG/TFG_EN_final.docx%23_Toc11704859
file:///C:/Users/Ciratec/Google%20Drive/ERASMUS/TFG/TFG_EN_final.docx%23_Toc11704863


8 
 

Figure 25. Screenshot of the path editor with the properties of the movement .......... 35 

Figure 26. Basic simulation for line tracking with a FANUC robot ................................. 36 

Figure 27. Representation of line tracking ..................................................................... 37 

Figure 28. Screenshot of the FANUC software on the option selection step. ............... 39 

Figure 29. Line Tracking Settings window ...................................................................... 40 

Figure 30. Screenshot of the ABB RCS server ................................................................. 41 

Figure 31.Screenshot of the ABB robot setup ................................................................ 42 

Figure 32. Representation of a paint gun and its frames ............................................... 43 

Figure 33. Picture of the brush on the paint gun used in the model ............................. 44 

Figure 34. Picture of a bad definition of the paint gun and the brush ........................... 44 

Figure 35. Continuous process generator window ........................................................ 45 

Figure 36. Create mesh window ..................................................................................... 46 

Figure 37. Error message when the par has not exact geometry .................................. 47 

Figure 38. Screenshot of the OLP commands ................................................................ 47 

Figure 39. Paint and coverage settings window ............................................................. 48 

Figure 40. Result of the simulation................................................................................. 48 

Figure 41. Face while creating the continuous operation .............................................. 49 

Figure 42. Painting simulation with different speeds: a) v50 b) v100 c) 60 ................... 49 

Figure 43. Picture of the BLCEN-4M12MT-4AI-VI .......................................................... 50 

Figure 44. Representation of the rotary switches .......................................................... 51 

Figure 45. Screenshot of the web server ........................................................................ 53 

Figure 46. Screenshot of PACTware after searching the devices. .................................. 54 

Figure 47. Device added to the Project .......................................................................... 54 

Figure 48. Measured values. .......................................................................................... 55 

Figure 49. Screenshot of TwinCat environment. ............................................................ 55 



9 
 

Figure 50. Realtime compatible devices Window .......................................................... 56 

Figure 51. Insert Device window .................................................................................... 57 

Figure 52.Setting tab ...................................................................................................... 57 

Figure 53. Insert Box Window ........................................................................................ 58 

Figure 54. Topology of the device in TwinCat ................................................................ 58 

  



10 
 

List of tables 

Table 1. Comparison between CB-Series and e-Series ................................................... 14 

Table 2. UR10's specifications ........................................................................................ 21 

Table 3. Comparison between UR10 and CR-7iA ........................................................... 30 

Table 4. Main characteristics of CR-35iA ........................................................................ 33 

Table 5. LED status of the Turck module ........................................................................ 51 

 

  



11 
 

1. Introduction. 

I did my internship at Ciratec BVBA in Diepenbeek, where I developed advanced 

automation concepts using collaborative robots (cobots), final assembly automation, 

line tracking, painting and gluing. All these models were made with the offline 

environment software of Siemens, Process Simulate. 

Ciratec is a company that do offline and online programing of different types of robots, 

which involved in making robot standards for various applications. The company was 

created in 1998 by Jean Cloesen. Since 2016, Bart Thys and Robby Cloesen became the 

directors. Also, in October 2016, they became part of the group FFT, keeping their 

independent business unit within the FFT group. 

About the collaborative robots (cobots): they are a new generation of robots whose 

target is to work with humans in the same way. Those kind of robots are beginning to 

be used more frequently in industry because of their multiple advantages such as: 

reduced mode that can be activated when it detects a person in its work area to work 

with them, no need of security fences and detection of collisions with humans, which 

means that if the robot collides with anyone, it will stop immediately. Despite the great 

advantages that they have, they are still limited in some aspects like payload and 

reachability. During my internship I worked with two cobots: CR-35iA from FANUC and 

UR10 from Universal Robots, which I had the opportunity of trying. 

With concepts, I am referring to models that only have the robot and the part where the 

process will be made. Those concepts are used for simulation test and to present to any 

costumer. 

Finally, the model design was made with Process Simulate. Process Simulate is a 3D 

design and offline robot programing environment. It makes the programing and process 

design easier because you can use any robot without using their own software, which 

gives to you more flexibility with customers and robot brands. 

Also, Process Simulate allows you to import the programs that you make there to the 

robot format in order to upload it into the robot; and import robot programs, 

programmed with Teach Pendant or their own environment, to process simulate to be 
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modified. To make that, the robot controllers have to be correctly set up with the one 

that they need. Otherwise, the robot won’t work as it is supposed to work. 

 

Figure 1 Screenshot of Process Simulate environment 

On the following pages the different models I made will be developed and how I made 

them; and, a section about the UR10. 
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2. Universal Robots. UR10. 

During the development of my practices, as I said, I have worked in simulations with 

Cobots. The Cobot that I used the most and the one I had to learn to handle it completely 

is the UR10 of Universal Robots. 

The design of this robot is very versatile, because it is a light robot with a wide range of 

joint movements, it has an amplitude of ± 360 degrees in each joint axis. All of this allows 

movements in wide areas and even the possibility of installing the robot wherever it was 

necessary. However, the cobots have some limitation such as a limited reachability and 

payload. The reason is because working with humans the robot cannot exert too much 

force because by colliding with an operator it could cause serious damage. 

2.1. CB-Series vs e-Series 

Presently, Universal Robots have two different series of robots, CB-Series and e-Series. 

Despite the fact of being different series, they are similar robots, but with different 

controller. 

As shown on at figure 2 both robots have similar appearances. The most notable 

difference between those robots is the base, but it is not the most important. The main 

differences are in the characteristics. 

 

Figure 2. Left: UR10; Rigth: UR10e 
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As can be observed on table 1, the differences are minimal. Although the comparison is 

made with the UR10 model, the main concepts could be applied on the rest of models. 

The main differences are to be founded in precision, weight, energy consumption and 

the number of security modes, basically.   

 

Table 1. Comparison between CB-Series and e-Series 

2.2. PolyScope. 

As most of the robot brands, Universal Robots have also their own offline programming 

and simulation environment, PolyScope. Polyscope is an operative system based on 

Ubuntu specifically design for Universal Robots. With this OS you can launch an offline 

version of the software that the robots have in their Teach Pendant, URSim. In fact, there 

are three applications, one for each robot model. That is because the main way to 

program these robots are with the Teach Pendant, which is where you set all the robot 

configuration from.  

UR10 UR10e
±0.1 mm ±0.05 mm

28.9 Kg 33.5 Kg

10 kg 10 kg

1300 mm 1300 mm

6 6

Base ±360 ±360

Shoulder ±360 ±360

Elbow ±360 ±360

Wirst1 ±360 ±360

Wirst2 ±360 ±360

Wirst3 ±360 ±360

Base 1000 1000

Shoulder 1000 1000

Elbow 1000 1000

Wirst1 1000 1000

Wirst2 1000 1000

Wirst3 1000 1000

250W 350W

15 17

Repeatability

Mechanical weight

Payload

Reach

Degrees of freedom

Power consumption 

(typ.)

Safety functions

Motion 

range

Maximu

m speed 

(mm/s)
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Figure 3. Screenshot of PolyScope 

The software is free and available to download from the official Universal Robots web 

page. Also, it must be installed in a virtual machine. It is important to know that the 

software for the CB-Series and e-Series are different and the applications do not work 

in the same way due to the different controller between the series. The way of 

functioning of the robots are not the same. For example, the e-Series have more security 

functions than the CB-Series and trying to use one of those functions with a CB-Series 

robot that do not have could produce important errors. 

As is said before, PolyScope is the OS; for programming the robot it must be used URSim. 

And in particular for the UR10, the URSim UR10. 

The three different versions of URSim are exactly the same, but each one is for different 

robots, because the specific robot parameters are loaded in each application.  

In figure 4, it is shown the aspect of the main screen of URSim. As can be seen, the 

appearance is the same as the one that is installed in the Teach Pendant of the real 

robot. 
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From URSim, it is possible to edit and simulate full robot programs.  

It is interesting and useful to know which different file types exist in these robots. It is 

possible to differentiate 3 types of files: 

1. .urp: this is the extension were the robot programs are saved. This is NOT a text 

file, this file was made for open and edit with URSim. 

2. .script: text file where the robot moves are written. This is not possible to be 

edited whit the graphic interface of URSim, but can be added to bigger programs. 

3. .installation: is a file where is saved the configuration of a robot: the position, 

safety limits, I/O, etc. 

4. .urcap: this files are a kind of apps for the robot. Will be explained forward. 

 

2.3. How use the robot. 

The next steps that are going to be explained about how to use the robot, can be used 

either for the real robot or the use URSim in Polyscope 

Figure 4. Pantalla de inicio de URSim 
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First thing to do is to set up the robot properly. At the installation tab there are several 

configuration options, as can be seen in figure 5. 

 

Figure 5. Installation Tab 

Of all the options shown at this tab, the most important are: 

 TCP configuration, where the data about position, orientation, weight and center 

of gravity of the TCP are introduced. 

 I/O setup. Where the all inputs and outputs of the robot are set except for the 

security I/O. 

 Mounting. Where the position of the robot is set. 

 Safety. One of the most important section, on it you can set all the aspects for 

the robot related with the security. 

o General and joint limits: they are sections where is possible to set the 

speed and joint limits in either reduce and normal mode. 

o Safety boundaries: where is possible to define the safety planes for the 

robot motion. Can be set in 4 different ways: 

 Normal: the robot stops when is close to the plane only if the 

robot is in Normal mode. 
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 Reduce: the same as the previous one but with the robot in 

reduce mode.  

 Normal and reduce. 

 Trigger to reduce: when the safety system is either in normal or 

reduce, if this limit is activated the robot switch to the reduce 

mode as long as the robot TCP is located beyond it.  

o Safety I/O: where is possible to link the inputs and outputs with the 

different safety actions. 

 Load/Save: in that section is possible to load and save a robot configuration 

(.installation files). 

2.4. Experience with a real robot. 

During one week I had the opportunity to go to the FFT factory in Fulda, Germany, to 

use a real UR10 and make some tests with the programs I had made in the office. The 

difference with my model was that the robot wasn’t handle above, but was enough for 

making the test. At that cell, the robot was mounted on a moving platform. Also, there 

were a table with a back window of a car and I could made some test with the robot and 

the widow that will be explain after.  

The first day was the first contact with the robot. The first thing I did was to check the 

basic configuration as speed and joint limits, safety: moved the robot with the Teach 

Pendant and test the free drive mode. For the robot’s free drive mode it must be pressed 

the teach Pendant button, but it is important to check before if the free drive function 

is associate with that button. It is important to know that the closer is the robot to the 

joint limits the harder is to move that join; and, if you move it to the limit the robot will 

turn on the emergency stop. 

The following thing I did was try to connect the robot with my laptop with the Ethernet 

wire. It was not possible because Universal Robots do not support the TCP/IP connection 

and, for making the communication it should be used sockets or other communication 

elements with C++. 

Other aspect I wanted to try was the record of movements. The basic software does not 

support that function, so an external application should be used; and those external 
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applications are the URCaps, which can be downloaded from the Universal Robots 

official web page. They are too easy to install: download the file into a USB drive and 

connect to the Teach Pendant; then, from the main window at Setup Robot URCaps 

click the “+” button and select the file with the .urcap extension. The application 

selected was Artiminds Essential which can be used to record the movement and set the 

recording parameters as the points recorded per second, etc. 

 

Figure 6. Setup Robot window 

The reduced mode is something that define the cobots, which allow them to work with 

humans. To make this function available a security I/O must be defined or activate a 

security plane, because if not the reduce mode limits and options won’t be available to 

modify. Those I/O are reserved to be linked with certain security related functions as 

the emergency stop, for example. The reduce mode will be active as long as the signal is 

on low level. 
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Figure 7. Safety I/O tab 

After had all the safety related options set, I decided to upload some programs I made 

with Process Simulate and try them with the full configuration of the robot done. All the 

programs showed security errors. That was because all the programs were made using 

the MoveP command, which does not support I/O during the execution. To solve this all 

the MoveP commands have to be replaced by the command MoveL. In motion aspects, 

both do the same, move the robot between two points in a linear way; but MoveL allows 

I/O during execution. 
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3. Backup gluing cell. 

The first model consist in a backup cell for the gluing of the different parts of a car that 

need it. A backup cell consist in a secondary process which can be activated when the 

main process is stopped because of any reason. 

That cell is intended to be simple and with the lowest cost possible. That is why we 

decided to use a cobot, because the lack of security fences and the possibility of working 

together with a human makes the design easier. 

The robot that is going to be used for the model is the UR10, from Universal Robots. 

These robots give more freedom in movement in comparison with other kind of robots; 

they have a ±360 degrees of motion range in each joint. 

Table 2. UR10's specifications 

UR10 

Mechanical 
weight 

Payload 
Reach 
(mm) 

Motion range 

Base Shoulder Elbow Wirst1 Wirst2 Wirst3 

28.9 Kg 10 kg 1300 ±360 ±360 ±360 ±360 ±360 ±360 

 

For the design process of the model, I was given the biggest parts of a car that need 

gluing in order to understand and make some tests about the reachability of the robot 

and ensure that the idea is viable. 

I had 3 ideas for this project: put the robot in a common position, put it in a wall with 45 

degrees of inclination, and with the robot above the work table. 

 Robot in a common position. 

The most common position for a robot in a factory is horizontal. 

As you can see in Table 1 the reachability of the robot is 1300 mm, which could be not 

long enough for reaching the biggest pieces in a factory. And that was what happened 

on simulations.  

As can be seen in Figure 8 this is the furthest position that the robot could reach. Even 

with the design it has, the following points need a configuration that is impossible to 

reach with the robot, so it can produce the block of the robot. Due to those reasons, and 

because it happened with most of the parts, the idea was discarded.  
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 Robot on the wall with 45 degrees of inclination. 

It was a feasible idea. The problem of the reachability and joint configuration of the 

robot on the pieces was solved; in some cases with little difficulty, but acceptable.  

Nevertheless, there was a huge problem. After making some test with the location of 

the robot and the work table most of the pieces were reached, but the robot collides 

with itself in some cases. In Figure 9 it is possible to see the collision. 

 

Figure 9: Robot colliding with itself 

The problem was not the collision at all. The main problem was that if the piece was 

moved, the robot didn’t reach the whole piece. That is why the idea was discarded.  

 

 

Figure 8: Robot on the limit position he could reach 
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 Robot above the work table. 

Another idea was to put the robot on above the pieces, face down and with the base 

frame in the middle of the work table handled by a structure.  In that location, the robot 

can reach all the pieces. 

That idea wouldn’t be possible with other robot but a Universal Robots’; and that is 

because of its motion range which gives the possibility of doing a hole 360 degrees turn 

of the base.  

Those reasons are the ones that makes the idea available and what I developed. How I 

developed the idea (model, simulation, etc.) will be explained in the following lines. 

3.1. Development of the idea. 

The Process Simulate tool was used to carry out this concept.  

As a concept, all that is needed at the beginning is the robot and the parts on which the 

process is going to be carried out 

.  

Figure 10. PUHead 
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3.1.1. Previous configuration. 

The first step is to open one of the parts that we are going to use, in my case the file 

'PANOROOF_LIGHT.cojt', and place it at a normal height for a work table, around 1m 

more or less. Then place the robot at a suitable height so that the process can be carried 

out. For this type of process it is necessary to use a gluing gun. As the gun we use the 

file 'PUHead.cojt' which represents the glue gun of the Figure 10. 

After adding the tool, it must be defined. To do this, activate the Set Modeling Scope 

mode of the part; and, selecting the tool, go to ModelingKinematic DeviceTool 

Definition and pop up window of the Figure 11 will appear. In the 'Tool Type' field select 

Gun, because it is the most similar option to the use it will have. Then, in the fields 'TCP 

Frame' and 'Base' we select, respectively, the frames TCP and fr1, which is the frame 

that is in the base of the gun.  

 

Figure 11. Tool Definition Window 

Although it is a concept, the glue gun is too long for what it is supposed to be a real one, 

so the TCP was approached for not being so far away. Keeping the tool in edit mode we 

select the TCP base and, using the Placement Manipulator Tool  we place the TCP at 

an appropriate distance. 
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Figure 12. Screenshot of the Placement Manipulator Tool 

3.1.2. Robot controller configuration. 

Finally, before programming and carrying out the necessary processes, it is necessary to 

define the tool, but this time in the robot controller. This is because when a program is 

generated, the parameters of the system frames, tools, etc. are in the robot controller 

because those are the necessary ones for the proper functioning of the robot. 

 

Figure 13. Screenshots of the windows for define the tool in the controller 

In RobotSetupRobot Properties, the window on the left in Figure 13, pops up and 

you can choose the desired driver from the ones you have installed. We chose Universal 
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URScript and version 3.1. Pressing the Robot Setup button takes us to the controller 

window where we can configure multiple aspects. Within them we select the Tool 

Definitions option. In the Tool Definition window type the name in the Name frame and 

then select the TCP axes of the tool. 

3.1.3. Creation of the process. 

Now that we have the robot and the part in place and the controller and the tool 

configured, we can proceed to the creation of the process itself.  

In Process Simulate there is no option to create a gluing operation, the closest there is 

to be a welding operation. The first thing to do is add the points where you want the 

robot to move using the ProcessDiscreteCreate Weld points by pick tool. Select the 

desired points and some garnet cubes will appear on the selected locations. The dots 

must be projected onto a part so that they are attached to it and can be adapted to its 

shape 

.  

Figure 14. Weld Points 

Select the points and use the ProcessDiscrete Project Weld Points option, select 

the part on which you want to project and, thus, there are some visible points with 

orientation and manipulable (Figure 15). 
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Figure 15. Weld points projected 

With the points already created and projected on a part you must create a welding 

operation in operation Create operation new operationNew Weld Operation. In 

this way, an operation is already created with a series of points that the robot must 

follow, otherwise it could not be executed. Since this is not a real welding operation, the 

points can simply be converted into 'via' points with the function Convert to Via 

Location.  

As the last step before going on to program the operation, we must place and orient the 

points correctly, because after the projection they may be in an undesirable position or 

with an incorrect orientation, as can be seen in Figure 15. Several Process Simulate tools 

can be used to modify positions, but the most useful are: Location Manipulator and Flip 

Location. When repositioning the points, orientation is very important, since the 

orientation of the robot's TCP is what it will have when it tries to reach the points; they 

must also always be oriented in such a way that the x-axis is in the direction of 

movement. 

3.1.4. Programming of the operation. 

With all the above, the operation is already defined. All that remains to be done is to 

configure the parameters of the robot movement which, although it is more appropriate 

to program with the robot itself, can be done with Process Simulate. 
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Figure 16. Path editor Screenshot 

With the path editor tool, it is much easier to modify the parameters. Here you can 

modify the important aspects for the execution of the program such as speed, 

acceleration, type of movement, etc. Since in general all parameters are the same, it is 

enough to select all the points and using the Set Location Properties tool all the 

necessary properties are configured. 

3.1.5. Upload a Process Simulate program to URSim 

Once the operation is programmed and with the parameters well configured, the 

program can be downloaded and Process Simulate will automatically generate the file 

in the appropriate format and program language for the robot. This file is generated 

with the download to robot function. The file it generates is a .script, not an .urp. As 

explained in section 2, .script files are those that are text files with the robot 

movements, so we cannot open them directly with URSim.  

To open them with URSim and include them in a functional program, the following steps 

should be followed:  

 First, open a new program.  

 Second: add the script file to the program in structure advanceScript code 

and select the option 'file'.  
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Figure 17. Structure tab in URSim 

 Third: before including it, delete the first and last lines of the code, because if 

you add it as it is, it will cause errors when running the program.  

 

Figure 18. Screenshot of a. script file 

3.1.6. Upload a program from URSim to Process Simulate. 

The opposite process is also simple. After creating a program with URSim, multiple files 

are generated, including .urp and .script. As mentioned before, .urp files will only be 

used to open and modify them with URSim, so the file we are interested in is the .script.  

We copy it to the directory of our Process Simulate project and with the robot tool 

programUpload Program we select the copied file.  

Once uploaded, in a similar way to the previous one, it is necessary to eliminate 2 OLP 

Commands that say while(true) and end. They are usually the first and last points on the 

list. 
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4. Weld check cell 

The second concept is about checking bodywork welds. It is another process where the 

human and robot works can be combined. In this case, the robot checks the welds 

appearance, position, length and pores in places that it is impossible or difficult for 

operators to get to. 

The main idea was developed with the Fanuc’s CR-7iA, which is a smaller size cobot and 

with very approximate characteristics with the UR10’s. 

Table 3. Comparison between UR10 and CR-7iA 

UR10 
Repeatability 

Mechanical 
weight 

Payload Reach DOF 
Motion range 

Base Shoulder Elbow Wirst1 Wirst2 Wirst3 

±0.1 mm 28.9 Kg 10 kg 
1300 
mm 

6 ±360 ±360 ±360 ±360 ±360 ±360 

CR-
7iA 

          J1 J2 J3 J4 J5 J6 

±0.01 mm 55 Kg 7 Kg 
911 
mm 

6 340 166 383 380 240 720 

As I did not have the Process Simulate model for the CR-7iA, the model was developed 

with the UR10 model. 

As it is a small robot, it can be handled above like in the previous model (section 2), 

because the inspection zone will be the bodywork of the car and from that position the 

robot can reach easier all the points. To check the weld, on the robot will be mounted a 

vision system. 

 

Figure 19. Picture of the process. 
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4.1. Idea development. 

It was an easy model to make. First, a complete car model, COJT file, was placed only 

using the bodywork. Then, the robot was placed above the bodywork, in a middle point 

to reach the important parts of the piece. 

After positioning all the parts needed there were only two things to do left: creating a 

tool to simulate de vision system and the programming of the movements. 

4.1.1. Tool creation. 

As I did not have particular Vision System for the process I created a resource to simulate 

the camera of the inspection system1 [FANUC, 2018]. 

For doing that I created a new resource at ModelingComponentsCreate new 

resource and within this resource I created two elements to simulate the camera: a box, 

which pretends to be the body of the camera; and a cylinder to simulate the part which 

joints with the robot. Finally, I added a frame as the TCP; and it is separated of the object 

because, normally, the vision systems need to be on a certain distance to analyze the 

devices they want to check. 

 

Figure 20. Simulation of the vision system. 

                                                      
1 https://www.fanuc.eu/bg/en/customer-cases/audi 

https://www.fanuc.eu/bg/en/customer-cases/audi
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4.1.2. Process programming. 

The way of programming the process was the same as in the gluing cell using weld points 

and projecting them to the part. 

On a bodywork the weld parts are not as big as the car length, there is only a few parts. 

In this model I select five imaginary weld parts; especially on the most difficult shapes 

of the bodywork because I wanted to show how the robot can perform the action there. 

 

Figure 21. Check points on the bodywork. 

Going in depth with the motion parameters of the process, the robot needs to go slower  

4.2. Conclusions 

The main target of this simulation was to analyze if this process can be made by the 

company and to go in depth with different cobot processes and performances; and the 

result was successful. 
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5. Spare wheel and battery insertion. 

The following concept is about the spare and battery insertion. Nowadays, it is not very 

common to see these processes automatized, but with cobots that could change.  

Normally, cobots cannot handle with big payloads. FANUC has one which has a 

maximum payload of 35 kg, the CR-35iA.  

Table 4. Main characteristics of CR-35iA 

CR-
35iA 

Repeatability Payload 
Reach 
(mm) 

DOF 
Motion range(degrees) 

J1 J2 J3 J4 J5 J6 

±0.03 mm  35 Kg 1813  6 370 165 258 400 220 900 

The main idea is to have two of those cobots that insert at the same time the spare 

wheel and the battery in the car. Also, if it is possible, do that on line tracking. Line 

tracking is an automation practice in which the process is made on a certain part while 

it is moving, without the need to stop the line. 

 

Figure 22. Capture of the process. 

5.1. Developing of the idea without line tracking. 

The first thing to do was the simple idea, to program the insertion of the devices. But 

before that, it is necessary to prepare the gripper and mounted it on the robots. 



34 
 

5.1.1. Create the gripper. 

The idea for this gripper was to make one similar to the one that is used on the robot 

demonstration [Fanuc, 2019]2 by FANUC. For doing this I create a new resource and 

within it I added a cylinder. Instead of creating more parts, I added a TCP separate of the 

cylinder, as can be sawn on Figure 23. Then, the tool is mounted on the robot and set as 

a gripper. This gripper is used by both robots. 

 

Figure 23. Gripper 

5.1.2. Creation of the different parts. 

The way to create the parts are almost the same as to create a resource. On 

ModelingComponentscreate new part and adding new geometry; for the wheel a 

cylinder, and a box for the battery. To make them I used standard dimensions for this 

products. 

5.1.3. Programming the movements. 

This is a simple pick and place operation where the robots take the battery and the spare 

wheel and place it inside the car. To make it in Process Simulate, clicking on operation 

Create operation new operationNew pick and place operation, a dialog window 

                                                      
2 https://www.fanuc.eu/bg/en/customer-cases/audi 

https://www.fanuc.eu/bg/en/customer-cases/audi


35 
 

appears, in which you have to select the robot and the pick and place point, and the 

operation is created automatically. 

 

Figure 24. Pick and place operation dialog window 

The only problem was that it creates an operation only with these two point, and for 

this process more points are needed, mainly for the insertion part, in which is necessary 

accuracy; otherwise, the robot can hit the car instead of insert the battery and the 

wheel. That is because I added 3 points between the pick and place ones. One for rise 

the object, one in the middle of the trajectory and one last to place the parts above the 

place point. In this processes I used the linear movement for the rise and down of the 

object; and, circular for the middle trajectory. 

 

Figure 25. Screenshot of the path editor with the properties of the movement 

5.1.4. Robot position 

Having done all this, you could see that the robot did not have a wide range of motion, 

so it was necessary to modify the position in which it was so that it could perform all 

movements with more freedom and without danger of colliding with the car. After 
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different tries the final option was chosen, putting the robot at 30 degrees of inclination 

in such a way where it has more opportunities of movement and avoiding collision. 

5.2. Developing of the idea with line tracking. 

For develop this idea it is going to start from the previous part, because the structure of 

the cell is the same; but first, it is necessary to understand how the line tracking works 

and how must be done on Process Simulate. Although the aim was to add line tracking 

to the spare wheel and battery insertion concept, all the simulations were done creating 

basic elements to experiment and investigate how it works. Due to the different 

problems, the process was tested with 2 different robots. 

 

Figure 26. Basic simulation for line tracking with a FANUC robot 

5.2.1. Line tracking. Definition. 

There are some actions that need to be done in a certain moment and stop the line for 

that can make fail the process. A line tracking process is one in which the different 

actions needed are done while the production line is moving; giving the advantage of 

not stopping the line. 

The line tracking is based on the setting of a moving reference frame which modifies its 

position in the world with the line movement. And referring the action, which the robot 

must do, to that frame. Normally the movement is measured by an encoder and its 

signal is used to modify the global position of where the robot has to go.  
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The robot is not constantly following the same piece, it has a tracking space or range in 

which it follows the pieces. It normally works as follow: the robot waits until a piece 

enter in the tracking space (trigger); then, the robot starts to do the action following the 

piece and when it is finished the robot stop following the piece and waits again until the 

next piece. It can be explained as the robot catch the moving frame whit the trigger 

signal and drops it when the action is done. If the action is not done when the piece is 

on the track limit, the line stops until it finish. 

 

Figure 27. Representation of line tracking 

5.2.2. Create the conveyor 

To do a line tracking on Process Simulate the first thing to do is to create a conveyor. 

The conveyor is the moving part of the process, which you can simulate the line with. To 

create it I followed a tutorial from the Siemens help platform [Siemens, 2019]3. When 

the conveyor is created, the next step is to add an object that moves along the conveyor, 

a skid. To create it, first a resource has to be created; and, after that define it as a 

conceptual skid at controlconveyorDefine as a conceptual skid.  

With all this created, it is time to activate the controller’s line tracking option. At the 

robot properties window, on the conveyors tab, there will appear one of the conveyor 

signals that was created before, following the tutorial, and the opportunity to add that 

signal to a conveyor clicking on the associate conveyor with signal button .  

                                                      
3https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1/tecnomatix_eMS/#uid:RoboticsMen
u_RobotConveyorTracking 

https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1/tecnomatix_eMS/%23uid:RoboticsMenu_RobotConveyorTracking
https://docs.plm.automation.siemens.com/tdoc/tecnomatix/14.1/tecnomatix_eMS/%23uid:RoboticsMenu_RobotConveyorTracking
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You can also add control points on the conveyor. There are three different types of 

points: control point, ‘generate skid appearance’ point and ‘destroy skid appearance’ 

point. 

- Control point: Creates a new control point on a selected point on the conveyor. 

With them you can modify the speed and the orientation of the skid when it pass 

through the point. 

- ‘Generate skid appearance’ point: enables you to create a skid appearance on 

that point, it is important to select a skid resource as the prototype for the 

appearance. 

- ‘Destroy skid appearance’ point: generates a skid deletion on that point. 

After creating and setting all the basic things of the conveyor, the control of the process 

featuring with the conveyor depends only on the robot controller type.  

5.2.3. Tracking with FANUC. 

On Process Simulate there is the opportunity to connect the robot controller to the RCS 

module. The RCS, or Real-time Control System, module is a reference model architecture 

suitable for real-time control problem domains. It defines the types of functions that are 

required in a real-time intelligent control system and how these functions are related to 

each other. Each robot brand has its own RCS module. This RCS module is helpful to 

make more accurate simulations, because it shows the real limits of the robots. 

In order to make the most accurate simulation, the first thing to do is connect the robot 

to this module. For this, I had to create a virtual robot using a FANUC software. This 

software is installed in Window XP virtual machine. The first thing to do after opening 

the virtual machine is to check the communication between the virtual machine and the 

host doing a ping4 from the virtual machine to the host and vice versa. Then, with the 

FANUC software you can create a robot: first, you select the robot model, and, then, 

select the options you want you robot to have. 

                                                      
4 Ping (Packet Internet Groper) is used to check if a certain network interface, from our computer or 
another, is active. The PING sends packets to the IP or host that is indicated, and tells us how long it took 
the packet to go and return, among other little information. 
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Figure 28. Screenshot of the FANUC software on the option selection step. 

After this, it is necessary to check if the robot was successfully created opening the web 

browser and writing the following direction: http://localhost::9080. In the direction it 

will appear the option to visit two sites: Named Robots and Active Virtual Robots. 

- Named Robots: Virtual robots successfully created. 

- Active Virtual Robots: The ones that are currently in use. In other words, those 

to whom we have connected through Process Simulate. 

Before connect the robot controller from Process Simulate to the virtual robot it is 

necessary to modify the file called “specific.cfg” located in the following path: 

C:\apps\robcad\rrs_bin\rcsfr13\robcad.bin\VERSION\8.30. That file is a list of robots 

that are created, so the only thing left is to add the name of the virtual robot that has 

just been created. 

Now, for connect the controller to the RCS module, on Robot Properties Controller 

switch to Connect the option on the boxes: ‘RCS in simulation’ and ‘RCS in Non 

Simulation’. Now when you want to go to the Robot Setup the controller is going to 

connect with the RCS module. 

5.2.3.1. RCS problem. 

The first idea was to do the simulation with the CR-35iA, but when it tries to connect 

with its RCS module there appear an error. After trying different things, the cobot was 

replaced by another robot model with similar characteristics, the r2000ib/165F. That 
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was made because the target of the simulation was to check how the line tracking can 

be implement with Process Simulate, and, in the end, both are FANUC robots that have 

the same controller. 

5.2.3.2. Programming 

As explained in point 5.2.1, the line tracking programming consist in making the robot 

wait until the skid object arrives to the trigger point and, thereafter, follow it until finish 

the task. 

In Process Simulate, first the line tracking option has to be configured on the robot 

controller. In the robot setup window there appears the line tracking option. In that 

settings you can select the track frame, normally one that exists yet; select the scale and 

the teach distance, and, the different boundaries for the tracking task. 

 

Figure 29. Line Tracking Settings window 

For the programming of the action I create a simple movement of the robot in order to 

follow the skid resource. For create the movements, the steps to follow are the same as 

for another process, but attaching via point to the moving resource. The final thing to 
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do is to add to the point the OLP commands to make the robot wait to the trigger and 

to drop the tracking frame. 

5.2.3.3. Conclusion. 

After different changes on the programming and configuration I was not able to make 

the line tracking works on Process Simulate. The most possible problem is that there is 

something missing on the robot configuration or in the programming, but I did not find 

it.  

With the multiple problems I had, I decided to replace the robot by an ABB; because I 

found evidences that with these robots is possible to do it. 

5.2.4. Line tracking with ABB. 

With ABB there is also the opportunity to connect the robot with the RCS module. In this 

case it is a software that has to be active while you want to use it.  

 

Figure 30. Screenshot of the ABB RCS server 

Opposite with FANUC, this RCS server can be used for any ABB robot, is not necessary 

to create virtual robots to use it. 

5.2.4.1. MOC file 

For ABB, apart from the main things that are explained before, it is necessary to add 

some extra information, because it is not enough to associate the conveyor on the robot 

properties. There is needed which is called a MOC file. A MOC file is a file generated by 

RobotStudio in which there are defined extra axes for the robot, conveyors, etc. For 
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generate this file it is necessary to create one conveyor on RobotStudio first and then 

load the file on Process Simulate. The MOC file should be uploaded from the robot setup 

window in the Load Machine Data option. 

 

Figure 31.Screenshot of the ABB robot setup 

After that, I programmed a similar task as the one I made with the FANUC robot. Also in 

this case it has to add OLP commands. The ones that have to be used are WaitWObj and 

DropWObj, which are used for waiting for the part and for drop the reference when the 

task is done.  

5.2.4.2. Conclusions 

Here happened the same as with the FANUC model, it did not work. I also think that the 

problem has to be in some missing data or because a bad configuration in Process 

Simulate.  

In this case I previously made a simulation in Process Simulate and it worked perfectly, 

so I am sure that it is possible to make it. 
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6. Paint and Coverage Simulation 

Nowadays, the final assembly processes are starting to be automatized. One of those 

processes is paint and coverage. Besides the process itself, it is important to optimize it; 

and, here is where the simulation can help. 

With Process Simulate is possible to simulate the paint and coverage due to the tools it 

has designed to do so. The goal of this concept is to know how to use those tools and 

help to optimized the processes and, also, make more visual the simulations in order to 

present them. 

6.1. Tool definition. 

First thing to do is define the tool. This is one of the most important parts of this concept, 

because with a bad definition of the tool the coverage simulation will not work. 

On Process Simulate painting tools are defined by three frames: base, tip and TCP. 

- Base: where is attached to the robot. 

- Tip: where the paint brush starts. 

- TCP: with it is possible to manage the distance between the gun and the painting 

face. 

 

Figure 32. Representation of a paint gun and its frames 
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6.2. Brush definition. 

To simulate the brush, the paint gun model must have a cone with the vertex on the tip 

frame and the base on the TCP frame. To define the brush, at ProcessPaint and 

CoveragePaint Brush Editor select the cone and the origin frame, which is the tip 

frame. 

 

Figure 33. Picture of the brush on the paint gun used in the model 

It is important to define the brush and the paint gun with the correct frames, otherwise 

the simulation will not work properly and the cone will become purple that indicates 

that there is a problem with the brush definition. 

 

Figure 34. Picture of a bad definition of the paint gun and the brush 

6.3. Creating the process. 

For this part there are three tasks: generate the robot movements along the painting 

face, create a point mesh, which will help for simulate the paint; and set the OLP 

commands on the path editor for chose, open and close the paint gun. 
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6.3.1. Generate a continuous operation 

A continuous operation is one that is developed in one or more faces of a part. After 

selecting the faces, you select the length of the operation and the times that you want 

to repeat it along the face. This is very useful for painting, because is an easy way to 

program the robot to move through a face to cover it.   

At ProcessContinuousContinuous Process Generator its dialog window appears. 

There you can select between Coverage pattern and Arc, depending on whether it is for 

painting or an arc operation.  

 

Figure 35. Continuous process generator window 

On the coverage pattern first you can select the faces you want to cover. Then, the start 

and end points of the movements. Also, you can select the spacing between the strokes 

and the number of it that you want to be before and after. On the Operation tab you 
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should select the robot and the tool. Also, on the Continuous projection tab is possible 

to define how to distribute the locations setting their orientation, segment length and 

tolerance; and, in addition to that, it is possible to select the optimization parameters 

for arcs and line segment creations.  

6.3.2. Creating the mesh. 

With the operation created the next step is to create a 3D mesh of points. It is for the 

measuring of the coverage. It is essential for the coverage simulation. 

To create the mesh, go to processPaint and Coverage Create Mesh. Then, select 

the parts you want to create the mesh on. In the Create mesh window it is possible to 

see if the part has an exact geometry and if it has already a mesh. Also it is possible to 

modify the tessellation tolerances with you can make the mesh more accurate. The 

creation of the mesh takes time, so it is better to set the appropriate values of the 

parameters. Those parameters are: 

- Distance:  The maximum distance allowed between adjacent vertices of the 

mesh. 

- Deviation: This sets the maximum allowed divergence of the approximate 

geometry from the exact geometry 

- Angle: This sets the maximum angle allowed between adjacent approximation 

items 

 

Figure 36. Create mesh window 
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6.3.2.1. XT-Brep exact geometry. 

At first I had a different part to paint on, but it did not have an exact geometry, what 

caused an error and the no process of the mesh. 

 

Figure 37. Error message when the par has not exact geometry 

The XT-Brep exact geometry is a data format that Siemens use and is one of the best in 

providing solid representation for JT files. The meshes are created thanks to the 

information that this kind of formats give.  

This exact geometry is something similar to the writing permission on a document, 

because it gives lot of information about the design of the parts of the products. Some 

factories do not want to put at risk a product that will go on sale soon, products such as 

cars, and because of that they usually do not give models with this information, to avoid 

the copies. 

6.3.3. Programming and setting the simulation parameters. 

After creating the mesh and the continuous operation, the only things left are the OLP 

commands and the option for the covering during the simulation. 

On the continuous operation, in the first point it must be added two commands: 

ChangeBrush and OpenPaintGun. The first one is for selecting the brush wanted, here is 

not possible to select the brush, it must be written with the exact name; and, the second 

one is for activate the painting. 

 

Figure 38. Screenshot of the OLP commands 
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Finally, at processPaint and Coverage Paint and coverage settings we can 

configure the color of the different layers and what we want to see as the mesh (only 

while the window is open), paint or the brush while the simulation is not running. And 

for activate the Paint and Coverage it is important to activate the option Paint and 

Coverage during simulation. 

 

Figure 39. Paint and coverage settings window 

6.4. Result and conclusions 

The results of the simulations were not as I expected. The coverage does not fit to the 

face shapes, as can be seen on Figure 40. If the geometry is one created with Process 

Simulate there is no problem, but with an imported one yes.  

 

Figure 40. Result of the simulation 

In Figure 40 it is possible to see that the coverage is not good, because the paint is not 

equal along the faces. For example, on the picture of the right can be seen that there 

are some zones where a second layer (color blue) appears and that is because of a bad 

paint distribution.  
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At first I thought that the problem was in the mesh creation, but I realized that Process 

Simulate does not recognize the shape while the creation of the continuous operation 

(Figure 41). 

 

Figure 41. Face while creating the continuous operation 

You can also see that depending on the speed that you program the movements, the 

result of the painting is different. With less speed the painting will have a better 

distribution.  

 

Figure 42. Painting simulation with different speeds: a) v50 b) v100 c) 60 

To sum up, the tool is not as useful as I thought. The intended use of this application was 

to optimize the painting processes and for making a more realistic simulation. But now 

this is not good enough for that. 

  

a) b) c) 
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7. Communication between a Turck module and TwinCat3. 

The aim of this part is to read the values of a distance sensor from Beckhoff's TwinCat 

software via a Truck input module.  

The sensor is a Keyence IL-600, a laser sensor that is connected to one of the analog 

input channels of the Turck BLCEN-4M12MT-4AI-VI. The Turck module is connected with 

the laptop via a PROFINET adapter to Ethernet. 

To reach the final result of reading the sensor data in TwinCat it is necessary to go step 

by step. First, check the configuration of the Turck module and whether it is possible to 

communicate with it via the Ethernet connection. Then, configure a project in TwinCat 

and read the data received from the module. 

7.1. Turck module. 

The BLCEN-4M12MT-4AI-VI is an input module from Turck. It has four analog inputs, two 

fieldbus ports, which will be connected to the Ethernet port and auxiliary power, one 

input and one output connectors. About the last ones, the input one is connected to a 

power source.  

 

Figure 43. Picture of the BLCEN-4M12MT-4AI-VI 

Apart from the different ports, there are status LEDs that give information about the 

status of the different parts of the module such as inputs, bus connection, etc. For 
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example, if the measure is out of range, it is possible to know because the status LED of 

the channel starts to blink. 

Table 5. LED status of the Turck module 

 

Apart from all this there are two rotary switches, covered by a small glass, that are used 

either for setting the IP address or the device mode operation. With them it is possible 

to set the configuration parameters necessaries for the connection. 

 

Figure 44. Representation of the rotary switches 

The different operation modes of the device that can be determined by the switches are 

the following: 

- 00: default configuration 



52 
 

- 01-92: rotary mode 1...92 that correspond to the las octet of the module’s IP 

address. The 100,…,254 are available with the PGM mode 

- 93: BOOTP, that obtains the IP address from the BOOTP server. 

- 94: DHCP, that obtains the IP address from the DHCP server. 

- 95: PGM, in which you can change the IP address from the web server of the 

device. That is what I chose, and will be explained before more in deep. 

- 96: PGM-DHCP, which is the out-of-the-box mode and provides the customer 

with powerful and convenient IP address setup. 

- 97-99: Vendor specific address. 

7.2. Connection to the Turck module 

As I said before, the first step is to connect the Turck module and check if it is possible 

to read from it. For it, the first step is to configure the IP address, then configure the 

general settings and, finally, check if it is possible to read from the device. 

7.2.1. IP address setup 

As the connection is via Ethernet, it is important to set up correctly the IP address, and 

for that there are the rotary switches (Figure 44). Normally, the rotary switches are in 

the position 00, which is the default configuration that has the following parameters: 

- IP address:   192.168.1.254 

- Subnet mask:  255.255.255.0 

- Default gateway: 192.168.1.1 

The device mode operation I chose was the PGM (95) because it is possible to change 

the IP address from the web server of the device, giving me the possibility of select the 

whole range of addresses in an easy way. 

To select this, I firstly had to rotate the switches to the 95 position and cycle the power 

to the device. With this mode the device keeps the last address used, in my case the 

default one. Once the device is on, the IP address can be changed from the web server. 

The IP address I chose for the device was 192.168.1.190. 
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7.2.1.1. Web server. 

To have access to the web server it is necessary to enter the current IP address into the 

web browser. From the web server it is possible to see the device information about the 

gateway, network, Ethernet and the parameters and values of the inputs. For the last 

ones is necessary to log in as administrator with a password, which by default is 

“password”. Also from here is where is possible to change the IP address, at 

gatewayNetwork configuration.  

 

Figure 45. Screenshot of the web server 

7.2.2. Problem with the firmware. 

One of the biggest problems I had with the device was that I could not connect to the 

ARGEE5 environment and I could not see and change the parameters of the inputs. 

Without that I could not see if the device was receiving data. All of that was because of 

the device’s firmware was not update.  

For the firmware update I had to use PACTware, a software supported by Turck for 

device management. For doing that, first it is necessary to search the devices. On Project 

window, with right click on “HOST PC” add device and select “BL Service Ethernet”. Then, 

                                                      
5 ARGEE: Programming environment of Turck. 
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on Online available devices tab it has to be selected the network in with it is going to 

search for devices and, then, click on the Search button  and the device appears. 

 

Figure 46. Screenshot of PACTware after searching the devices. 

When the device is found, to update the firmware click on the Firmware download 

button .  Then, the latest firmware file should be selected and, when the download 

is finished, search again and check the firmware version it has. 

7.2.3. Read parameters from PACTware. 

After solving the problem with the firmware I was able to have access to ARGEE and to 

all the features of the web server. 

Also, I was able to read values from PACTware. Starting from what has been done for 

the firmware update, it is possible to connect to the device with the Add device/DTM to 

project button .  Now, the device is added to the project and, automatically, 

PACTware scan the device and find its full topology.  

 

Figure 47. Device added to the Project 
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Now that the device is added and connected, it is possible to read the values of the 

different channels. For that, with a right click on the input module part and select the 

Measured value option the value read will be displayed. 

 

Figure 48. Measured values.  

7.3. Connect to TwinCat 3 

After ensure that the module received the signal from the sensor and I could read it with 

PACTware, the next step was to connect the signal with TwinCat 3. 

TwinCat 3 is a SoftPLC developed by Beckhoff. TwinCat turns almost any PC-based 

system into a real-time control. 

 

Figure 49. Screenshot of TwinCat environment. 

Most of the information about TwinCat is for previous versions of Windows so that I 

used TwinCat in a virtual machine with Windows 7. For the communication between the 

virtual machine and the computer, the network has to be configured as a bridge. 
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The laptop has not a PROFINET adapter itself, but with the PROFINET wire to Ethernet it 

is possible to connect the module to the laptop. Because of that, the PC needs a specific 

driver to make it able to receive data from a PROFINET device. Just in case I install the 

drivers on the virtual machine and the laptop itself. It is possible to do from the network 

connection setting of Windows and, also, from TwinCat. There, at TWINCAT tab in the 

Show Realtime Ethernet Compatible Devices… option appears a window like Figure 50 

in which is possible to see the compatible devices. There, on the incompatible devices 

group appears the full name of the Ethernet device; selecting it and clicking on the Install 

button the driver will be installed and the name of the Ethernet appears on the 

compatible devices group. 

 

Figure 50. Realtime compatible devices Window 

7.3.1. Configuration of the devices on a TwinCat 3 project. 

In TwinCat it is possible to add the Turck module. For doing that, the controller must be 

declared first and within the device itself. From the Solution Explorer at I/O Devices 

doing right click selecting Add New Item option there appear a Window. On that window 

select “Profinet I/O Controller (RT)”. 



57 
 

 

Figure 51. Insert Device window 

Now, on the Solution Explorer appears the controller. In its options, on the Adapter tab, 

click on the Search... button to select in which port the device is located and select the 

Ethernet adapter. Then, on the Settings tab it is possible to configure the IP of the 

controller. There it must appear the IP of the controller (not the module’s IP) and the 

subnet mask and Gateway directions. Those last ones are the ones configured before on 

the module’s web server. As I did not make any change on that parameters, the subnet 

mask and the gateway are the default ones, as can be sawn on Figure 52. 

 

Figure 52.Setting tab 

The controller is already configured. Now it is turn of the module. First, add a new item 

within the controller and select “PROFINET IO Device” within the miscellaneous group.  



58 
 

 

Figure 53. Insert Box Window 

After that, the GSDML 6file of the module has to be selected to charge all the options 

and configuration of the file. In my case I selected the file: GSDML-V2.3-Turck-BLCEN-

20180921-010400.xml. Now on the Solution explorer appears the full topology of the 

Turck module. 

 

Figure 54. Topology of the device in TwinCat 

                                                      
6 General Station Description Markup Language file is the device description technology for PROFINET 
devices, regarding its identification, its structure, its communication features, its process data, its 
parameters and its diagnosis. [Profibus, 2017] 
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The last thing to do is the IP address configuration of the device. On the Device tab within 

the module options it is possible to do that. There, the subnet mask and the gateway 

are the same as in the controller; only it is possible to change the IP address. So, there I 

wrote the one I set before with the web server: 192.168.1.190. 

7.4. Results and conclusions. 

After doing all the configuration correctly I could not read the measuring data from the 

module. The only values I could read were the state values, which inform that there 

were an error and that the device was not found. 

One of the problems could be in the driver, because the driver were developed for Intel 

Ethernet cards and mine was a Realtek. Nevertheless I was able to install the drivers in 

my laptop. Also, I tried to run TwinCat from my laptop instead from the virtual machine, 

but when I tried to switch TwinCat to run mode the PC break down and a blue screen 

appears. Apparently, the drivers cause the problem so I had to uninstall all. 

I tried to use another laptop with an Intel card and it did not work either. Because, first, 

I had problems installing the drivers, and when the drivers were installed I did not read 

anything. The only software I could read from was PACTware. 

All this could be because some configuration were wrong or, it is possible that read a 

Turck module is still not supported by TwinCat or that it is only possible to be read from 

their own software. 
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Appendix 

A. Datasheets 

1. UR10 
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2. CR-35iA 
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3. Turck Module 
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