Non-linear incentive equilibrium strategies for a
transboundary pollution differential game

Javier de Frutos and Guiomar Martin-Herran

Abstract In this paper we apply non-linear incentive strategies &iasn over time
an agreement. We illustrate the use of these strategiesimeariquadratic trans-
boundary pollution differential game. The incentive stgaés are constructed in
such a way that in the long run the pollution stock (the statéable) is close to
the steady state of the pollution stock under the cooperativde of play. The non-
linear incentive functions depend on the emission ratest{obvariables) of both
players and on the current value of the pollution stock. Tredlibility of the incen-
tive equilibrium strategies is analyzed and the perforreafopen-loop and feed-
back incentive strategies is compared in their role of Imglpd sustain an agreement
over time. We present numerical experiments to illustriagerésults.

1 Introduction

This paper revisits one of the mechanisms already propostxetiliterature to en-
sure the sustainability over time of an agreement reachéukadtarting date of a
game. An agreement will last for its whole intended duratfpat any intermedi-
ate instant of time, each player stands to receive a greay@ffpbeing part of the
agreementrather than leaving it. A first approach propastteiliterature to sustain
over time an agreement is the design of an agreement whiamésdonsistent or
agreeable. In a time-consistent agreement the coordipatguffs-to-go are greater
than the non-cooperative ones along the cooperative stgéetory, and hence, no
player finds it optimal to switch to his non-cooperative cohat any intermedi-
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ate instant of time. An agreement is agreeable if the corsparcondition holds
along any state trajectory. Time-consistent agreemeatarsalyzed, among others,
in Petrosjan (1997), Petrosjan & Zenkevich (1996), Pesirog} Zaccour (2003)
and Jgrgensen & Zaccour (2001a, 2002); and agreeable agmeseane studied, for
example, in Kaitala & Pohjola (1990, 1995) and Jgrgenseh @03, 2005).

The second approach that can be generally called equitibtajproach is to em-
body the cooperative solution with an equilibrium propestigh that, by definition
each player will find it individually rational to stick to hjgzart of the coordinated
solution. One option to build a cooperative equilibriumasuse so-called trigger
strategies (Tolwinski et al. (1986), Haurie & Pohjola (1987These are strategies
based on the past actions in the game and they include a thrpahish, credibly
and effectively, any player who cheats on the agreementsé bigategies are non-
Markovian because they are based on all past informatiomeofjame evolution to
the current time.

This paper examines the use of non-linear incentive stiegems another op-
tion to implement cooperative solutions by means of norpeoative play. Entamo
& Hamalainen (1986, 1989, 1993, 1995), Jgrgensen & Zac(2001b), Martin-
Herran & Zaccour (2005, 2009) and De Frutos & Martin-tdarf2015)), among
others, propose incentive strategies to support the catipesolution in two-player
differential games. The incentive is designed in such a Waya coordinated out-
come becomes a Nash equilibrium. Incentive strategiesiaibns of the possible
deviation of the other player and recommend to each playiergtement his part of
the coordinated or agreed solution whenever the other playiing so. One im-
portant characteristic of the incentive strategies isrtbeadibility. The credibility
property of incentive strategies requires that each plaiieks to the agreed-upon
incentive strategy and does not revert to the cooperatikdiso, even when the
other player chooses to break the agreement. If the ineestiigtegies are credible
no player will be tempted for unilaterally deviate from thrgreed decision.

Incentive strategies have been extensively used in therdiitial games litera-
ture in different areas, especially environmental ecorsriigrgensen & Zaccour
(2001b), Martin-Herran & Zaccour (2005, 2009), Bretomle{2008), and De Fru-
tos & Martin-Herran (2015)) and marketing (Jgrgensen &coar (2003), Martin-
Herran & Taboubi (2005), Jargensen et al. (2006), Burattdagcour (2009), De
Giovanni et al. (2016), Taboubi (2017) and De Giovanni (9p18lany of these
works have not addressed the analysis of the credibilithefitcentive strategies.
In general, this property cannot be studied analyticallgnefor games that belong
to the class of solvable games such as linear-state and-buealratic differential
games. All the papers previously cited, except De Frutos &tiaderran (2015),
study games belonging to these classes and the incenttegrs are constructed
in such a way that the incentive equilibrium is the coopeeasiolution. Further-
more, the strategies are assumed to be linear and decisjmandent, i.e., each
player makes his current decision contingent on the cudeaision of his oppo-
nent. When the credibility property is analyzed the commamctusion is that cred-
ibility is assured only for sufficiently small values of thewation from the agreed
solution.
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This result led us to consider whether the definition of lesdrictive strategies
could help to guarantee the sustainability of an agreemettome. In De Frutos
& Martin-Herran (2015) we consider state-dependent awistbn-dependent equi-
librium strategies defined as non-linear functions of thetia variables of both
players and the current value of the state variable. Moreoitaptly, we look for
an incentive strategy equilibrium such that the steady sifithe optimal state tra-
jectory is close enough but not necessarily identical tosteady state of the state
variable under the cooperative mode of play. We show thahdentive equilibrium
is credible in a larger region than the one associated wéhugual linear incentive
strategies.

The focus of this follow-up paper is to analyze nonlineareimive strategies
if the players use open-loop strategies instead of statjolrkovian strategies
as previously assumed. We compare the performance of oopgnand feedback
incentive strategies when maintaining an agreement oweg ind we study the
credibility of the incentive strategies when one of the playdeviates from the
incentive equilibrium. The two information structures ae@mpared for the well-
known linear-quadratic transboundary pollution diffdielgame proposed in Ploeg
& Zeeuw (1992) and Dockner & Long (1993). We present numéggperiments
to illustrate the results.

The rest of the paper is organized as follows. In Section 2 nedl recall the
formulation of the linear-quadratic transboundary padintdifferential game, its
cooperative solution, the open-loop non-cooperative Nagttegies, as well as the
steady-state pollution stocks under cooperative and noperative modes of play.
In Section 3 we define the incentive strategies and equilibbyand in Section 4 we
analyze their credibility. Section 5 concludes.

2 A linear-quadratic transboundary pollution differentia | game

For simplicity in the exposition and with the objective ofaparing our results with
those obtained in De Frutos & Martin-Herran (2015), waion a particular linear-
quadratic model that has been extensively studied in theamaental economics
literature. The formulation is borrowed from Ploeg & Zeeul®92) and Dockner
& Long (1993). Let playei’s optimization problem be given By

nl?x{vv.(ul,uz,xo) = /Om {ui <A@ - %ui> — %(piXZ} e Pt dt} (1)
s.t:X=B(ur+uw) —ax, x(0) =X, (2)

wheref,A and¢;,i € {1,2} are positive parameters andOa < 1. The control
variableu; is the emissions of player (countriyand the state variabberepresents
the accumulated stock of pollution and its dynamics is ddftmethe linear ordinary

1 To simplify the notation we will drop the explicit dependenon the time variable when no
confusion can arise.
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differential equation (2), where parameterdenotes the natural absorption rate.
The state dynamics says that the variation in the polluttonkslevel is the sum
of emissions, scaled by paramefErminus what is absorbed by nature. Assuming
that emissions are a proportional by-product of indusaglvities, the objective
of playeri is given by the difference between revenues from industdvities
and pollution damage costs. Functiar{A — %ui) represents the concave revenue
function of playeri. Pollution induces damage costs, given%zy.xz, assumed to
depend on accumulated pollution. Paramgtes a positive constant discount rate.

If countries (players) use open-loop strategies they ahaome profile of ac-
tions at the beginning of the game and commit themselvest&inréhese prean-
nounced profiles from the rest of the game. If countries chatate-dependent de-
cision rules as their strategies, they choose emissiotegtes that are functions
of the pollution stock. State-dependent Markovian stiagegnply that, whenever
countryi makes a decision that results in a change in the pollutiockstooun-
try j immediately reacts. This action and reaction pattern iegaihore competitive
behavior and the outcome of the game is further from the cadipe level

In this paper we assume that the players restrict theiesdty open-loop strate-
gies (Haurie et al. (2012)), meaning that the players basedhcisions only on time
and an initial condition. An open-loop strategy selectsdbetrol action according
to a decision ruleuj, which is a function of the initial statgy: u;(t) = pHi(xo,1).
Because the initial state is fixed, there is no need to dist#gbetweeny;(t) and
Ui(Xo,t). Using an open-loop strategy means that the player comatitfhe ini-
tial time, to a fixed time path for his control, i.e., his cheiof control at each
instant of time is predetermined. More precisely, the seadrissible controls
for Playeri, i = 1,2, % is defined as the set of non negative absolutely continu-
ous functionsy; = u;(t) defined inR, = [0,+) with values inR, such that if
(U1, U2) € % = 94 x Y, the initial value problem (2) possesses a unigue solution
defined inR.. The pair(u),u}) € % is an open-loop Nash equilibrium for the
differential game (1)-(2) if

W]_(U?,Uy) ZW]_(UJ_,U'Z\I), \NZ(U?vLIIZ\I) Z\NZ(U??LIZ)

for all u; andu, such that(uy,u}) € % and(u),up) € % .
If players agree to cooperate they solve an optimal contaddlpm in which they
jointly maximize the aggregate payoff

w0 2
W1+M:A Z |:Ui (A%Lh) %¢iX2:| e_ptdt,

subject to dynamics (2). Martin-Herran & Zaccour (2008ved that the coop-
erative optimal controls readf = y + B(a“x+ b®) where superscript stands for
cooperation and coefficiens andh® are the quadratic and linear coefficients of
the quadratic value function. These coefficients can bedanrMartin-Herran &
Zaccour (2009) (page 272) and allow us to compute the stetadg-pollution stock
under cooperation:
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Bp+a)(A+A) (3)
p+a)a+2B%(¢1+ ¢2)

Next proposition characterizes the Nash equilibrium if piteeyers do not coop-
erate and use open-loop strategies.

XgS: (

Proposition 1. Assuming interior solutions, the paiu(t),u} (t)) is an open-loop
Nash equilibrium of the differential game (1)-(2), where

Ny A ¢iXst_ _ N ¢i
O = A= 25poo b

et

g_P- V(P +20)?+ (¢1+ ¢2) B>
2 b)

and superscript N stands for Nash equilibrium.
The optimal state trajectory is

X (t) = (x0 — x0e! +xis
where XL denotes the steady state given by:

S (p+a)B(A1L+A2)
* (p+a)a+ B¢+ ¢2)

Proof. We define the current-value Hamiltonian of player

(4)

. 1 1
H'(x,ug, U2, Ai) = Ui (Ai — éui) - §¢iX2+/\i(B(U1+U2) —ax),
where); is thei-th player costate variable associated with the state biaria
Assuming interior solution, the sufficient conditions fationality derived from

the Pontryagin maximum principle include

oH'

A ) A=0

dUi Al l-II + B | )

X = B(up+uz) —ax, x(0)=Xo,

: JoH' L
Ai=pAi——-=(P+a)Ai+x lme PEAi(t) = 0.
Solving the system of linear ordinary differential equat@nd taking into account
the initial and transversality conditions, the expressiohuM(t) andxN(t) in the
statement can be easily derivedl

As usual in this kind of models the non-cooperative soluteads to emission
levels greater than those prescribed by the cooperativdi®ol The comparison
of (3) and (4) clearly shows that the steady state of the poliustock is lower
if players cooperate than if they do not. Then, one can asshaidf one player
deviates from the cooperative solution, he is choosin as&ion level greater than
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that corresponding to the cooperative solution. The geémeain objective of this
paper is the design of an incentive strategy implying thatlayers will not depart
importantly from their part of the coordinated solution.eSjfically, the long-run
pollution stock will be near the long-run pollution stocksamed under cooperation.

3 Incentive Equilibria

For the sake of completeness, let us recall the definitionnofnaentive equi-
librium. The admissible incentive strategies for Playare functionsy; defined
in Ry x Ry x Ry such that for every(u,uz) € %, (WA(t),¥5(t)) € Z where
W(t) = gi(ug(t),ux(t),x(t)), i = 1,2, with x(t) the solution of (2). We denote by
I; the set of admissible strategies for Player

Definition 1. A pair yi(v1,V2,X), Ya(v1,V2,X) With ¢4 € I3, i = 1,2, is an incentive
equilibrium at(uy,us) € % = 2 x U iff for all up € 24 andu € %,

W]_(U?IF_, UZ) > Wl(uL LIJZ(UL uza )2))7 VVZ(U?I: UE) > VVZ(LIJI(UL u2, )‘Z)a u2)7
wherex and X satisfy X = B(ug + @a(ug, u3,%)) — a%, andX = B((uj, uz,X) +
up) — aX, respectively, with(0) = X(0) = Xo. Furthermorey; = (1 (uj, U3, X*), Uy =
Yo (Ui, uz,Xx"), wherex* = B(uj + u3) — ax®, with x*(0) = xo.

An incentive equilibrium is thus characterized by the falliog pair of optimal
control problems

o [ o (AL 12 et
Lgirlaquvvl(uhun —/O <U. (A. 2“') 2¢|x > e Pidt, (5)
s.t.:X= B(ui + @j(ui,ui,x)) —ax, x(0) = xo, (6)
with U = argmamivvl(ui,u}‘), i,j =1,2,1 # j. The equilibrium conditioru =

wi(ui*,u]-‘,x*), i,j=1,2,i# |, has to be satisfied.

The linear incentive strategies previously proposed irditeeature are a particu-
lar case of Definition 1. This literature (except De Frutos &tiin-Herran (2015))
assumes that the incentive equilibrium is the cooperatilatisn, (uf,u$), and
the following affine function has been usually proposed asritive strategy (see,
for example, Ehtamo & Hamalainen (1986) and Martin4ider& Zaccour (2005,
2009)):

Wy (Ui, up, %) = @i (W) = uf+Dj(u —uf), §j=12i#], (7)

with Dj, j = 1,2, denoting an appropriate non-zero constant.

However, in this paper, as in De Frutos & Martin-Herran1(20 we look for
an incentive strategy equilibriuiu;, u3) such that the steady state of the pollution
stock of the system when the incentive strategies are u&ed greater but close to



Non-linear incentive equilibrium strategies 7

this value under cooperatioxf, , and lower than the steady-state value under non-
cooperationxll. In De Frutos & Martin-Herran (2015) the players use fesakbo
strategies, while in this paper they use open-loop strategies and thetsasnder
both information structures are compared.

For the sake of completeness, let us recall the form of thenitive functionsp;,
j =1,2, in Definition 1 we choose to attain the purpose:

Wy (Ui, uj, X) = (Uf+ Dj (Ui — u7)) (X — XS5 €) +Uj(1— p(X— X5 €)),  (8)
wheree > 0 is a small positive parameter apgk, €) is a smooth function satisfying
o(x,€)=0,if x<e& @(x€) =1, if x> 2¢. 9

The definition of the non-linear incentive in (8) and the ¢ufanction in (9)
show that the incentive strategy is exclusively implemdritene player deviates
from the cooperative outcome (and emits at a greater lewel) therefore, at some
timet the trajectory(t) is aboved, If x(t) is far fromxS,, then the linear incentive
in (7) applies and pushes the players’ emissions in such dheayhe pollution path
returns close to the steady-state value under cooperafioiGonversely, the non-
linear incentive strategy (8) whex(t) is close enough t& (the distance measured
by parametee) allows the players to choose any time path.

The next proposition characterizes the incentive equulibrif the non-linear
incentive in (8) is used and the players restrict themsetvepen-loop strategies.

Proposition 2. If the incentive strategy is defined by (8), then the opep-iate-
rior incentive equilibrium(uj(t),us(t)) satisfies the equilibrium conditions &=
wi(ui*,u]-‘,x*), i,j = 1,21 # j together with the following set of optimality condi-
tions:

Ui = A+ B(1+Djp(x—x55 €))&,

).(:B(Ui-i-LIJj(Ui,Uj,X))_GK X(O):X07 (10)

- ayY; L . -
Ei: <p+aBa—Xj(Ui,Uj,X)) Ei+¢ixa tlme Ptfi(t>:0’ |:1727|7éja
whereé; denotes the costate variable of player i.

Proof. Let define the Hamiltonian for playéas

1

Hi (i, uj, &i,X) = Ui (AI - éui) - %¢iX2+Ei(B(Ui + (Ui, Uj, X)) — ax).

Assuming interior strategies, the maximum principle ojtity conditions read:

2 The pollution stock and emission time-paths for the Nashiacentive equilibria as well as the
payoffs when the players use feedback strategies presiateedh this paper have been taken from
De Frutos & Martin-Herran (2015).
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oH,
—I(Ui,uj,fi,X> = Oa

(?Ui
: JoH; o . S
Ei:pfifa_xla tlme Ptfi(t>:0’ |:1727|7éja

X = B(u + Yj(u,uj, X)) —ax, x(0)=Xo.

From these conditions, those in the statement of the propognmediately follow.
O

The non-linear incentive equilibrium cannot be analyticaharacterized and
numerical methods are required for the analysis of thesmine strategies. To nu-
merically solve the system of optimality conditions (10) firet introduce a large
T > 0 and substitute the transversality conditionligmeP'&j(t) = 0 by the ap-
proximate boundary conditio& (T) = 0, i = 1,2. The resulting boundary value
problem is solved by means of a collocation method implestkint the MATLAB
subroutinebvp4c . m, see Kierzenka & Shampine (2001). The procedure is repeated
with a largerT until no differences between approximate solutions aredou

For illustration purposes we consider a symmetric exampiifix the following
values of the parametedj = A, =05,¢1=¢>=1,0 =0.2,3=1,p=0.1. The
thresholde in the cut off function in (9) is set te = 0.025 and the initial pollution
stock was set tog = 0. The parameteD; in (8) was settd; =1, j=1,2 asin
Martin-Herran & Zaccour (2009).

Using the above parameters values, we have representedureFi the phase
diagram of the optimality system (10) in the symmetric cd$e variables are the
pollution stock in the abscissas axis and emissions in tti@ates axis. The system
possesses a unique steady state (represented by a cirble figure) which is a
saddle point. In the figure the stable variety is highlighiteced colour. This curve
represents, for a given initial condition, the unique no@dér symmetric open-loop
incentive equilibrium. Note that, for simplicity, in the fige the positivity conditions
on emissions have not been imposed.

Phase Diagram, One Side @x, €, ¢€=0.025
0.15 T T T
0.1
Fig. 1 Pollution stock- 0
emissions phase diagram in B 005
the symmetric case. In red the g
stable variety of the unique \
equilibrium of (10). Param- 0 |
eters valued\; = A, = 0.5, L
p1=¢=1,0=02,p=1, A
p=01,¢=00250D;=1, 00545 0.05 01 015 0.2

j = ].7 2. Pollution Stock
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Figure 2 shows the optimal pollution and emission time-péth five different
modes of play. The solid red lines represent the cooperatate (left) and con-
trol (right) optimal time-paths. The optimal time-pathgresponding to the non-
cooperative Nash equilibrium are represented using doléttk) and dashed (black)
lines for the feedback and open-loop information strucurespectively. Finally,
solid (green) and dashed (green) lines are the optimal piatlks for the open-loop
and feedback incentive equilibrium strategies, respelgtiA first message from
Figure 2 (left) is that the incentive strategies attain rtlodjective of approaching
the long-run cooperative level of the pollution stock. Rermore, for the same
thresholde in the cutoff function the open-loop incentive equilibriisrcloser to the
cooperative optimal time-paths than the feedback incemguilibrium. The transi-
tion to the steady state in the open-loop case is smootheiinithe feedback case.
This effect is clearer in the case of emissions (right chatg main difference is in
the short run. The emissions in the feedback incentive iequim are initially very
high, while they are much lower in the open-loop case. Howefter a very short
period of time, the first ones decrease sharply, while therstones begin their
fall later. The times at which the emissions start to dediaveards their stationary
levels depend on the value of parametén the cutoff function. The smaller, the
earlier the emissions should begin their fall in order taiata steady state closer
to the cooperative steady-state. In the long run the enmissioboth open-loop and
feedback incentive equilibria are very similar to the caatige emissions.

0.4 T T T T T 0.35

—— Feedback Incentive
- = = Open-Loop Incentive
—— Feedback Nash

= = = Open-Loop Nash
— C i

o
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o
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Fig. 2 Nash, Incentive and Cooperative pollution stock and emissme-paths

4 Credibility

In this section we focus on the study of the credibility of ith@entive strategies. The
incentive strategies are credible if playjedeviates unilaterally from his incentive
equilibrium actionuj = u’j‘(x), then, it will be more beneficial for playéto follow
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the incentive strategy, rather than to stickuo= u’(x). Hence, if the credibility
property is satisfied there will not be any temptation forlateral deviation from
the pairuj; = uj(x), j = 1,2.

Definition 2. A pair of incentive equilibrium strategiag (v1,V2,X), Ya(V1,V2,X),
with ¢ € I;, i = 1,2, is credible in a sdi); x Uy C 241 x % iff given u; € Uy and
U € Uy there exisuy € %4 andu; € %, such that

Wl(w1(017u25)2)7u2) ZWl(uI)UZ)a VVZ(UJ_,LI]Z(UJ_’L]Z’X)) ZVVZ(ULUZ)) (11)

wherexandxsatisfyx = B (1 (01, Uz, X) + Uz) — ak andX = B (U + Yo (uy, Uiz, X)) —
aX, respectively, withx(0) = X(0) = Xo.

A sufficient, although obviously not necessary, conditiondredibility is that for
all u; € U; andu, € Uy

Wi (@ (ug,u2,X),u2) > Wi (ug,uz);  Wa(ug, Ya(ug, U3, X)) > Wa(ug, us),

wherex'andx are defined as in Definition 2, witly, = uj andu = us.

Note that, in the case of linear incentive strategigsis given by (7). Then,
Definition 2 reduces t&M (¢ (uj),u;) > Wi(u;,uj), Yu; € Uj with u’ = uf, for
i = 1,2, which is the credibility definition usually proposed iretliterature (see, for
example, Jgrgensen and Zaccour (2003), Martin-HerrdZaocour (2005, 2009)).

Definition 2 requires conditions (11) to be checked in somesstiof admis-
sible controlsU; x Uy C 24 x 7. In order to be able to analyze the credibility
properties of the non-linear incentive strategies we asstinat the set of possible
deviations is restricted to convex combinations of the evative controlu? and
the non-cooperative Nash equilibriunﬁ”: Ui = {u = 6u® + (1 — 6)uN}. Next ta-
bles allow us to illustrate the credibility of the non-liméacentive strategies and to
compare this property for the open-loop and feedback in&bion structures.

Tables 1-4 show the players’ payoffs when they play eith@nelpop (first two
columns) or feedback (last two columns) strategies (sepetsol and f, respec-
tively). Each row presents the different strategies usetthéylayers in each case.

we! Wy w, W,
U =ul,U = 3.14x10°3(3.14x 10 3]—3.68x 10 1|-3.68x 10 *
Uy =u;,Up=Ub 1.68x 1072[1.68x 10 2| 3.91x 107 | 3.91x 104
Ur=u;, U, =) 8.30x 107%]2.16 x 1072|-5.81x 1071| 3.74x 101
Ur = ¢ (uj,u), x),U; = ull[2.16x 10 °[2.39x 10 3] -3.72x 10 }[-3.79x 1071

Table 1 Players’ payoffs under open-loop and feedback strateBlager 2 deviates ta})

The first row in Table 1 shows the players’ payoffs when theyndbcooperate
and play the open-loop or the feedback Nash equilibrium.Sewe®nd row presents
these payoffs when they follow their open-loop or feedbaudentive strategies.
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Both players and under both information structures imptbe& payoffs with re-
spect to the non-cooperative Nash levels. In the third rapidyoffs are no longer
identical for both players, when player 1 continues to playpart of the incentive
equilibrium, while player 2 deviates to his part of the naoperative Nash equi-
librium. Let us note that it could be considered irratiortedttplayer 2 implements
a strategy that would provide him a smaller payoff than tisabaiated with the in-
centive strategy. Table 1 shows that the deviation fromrhbentive equilibrium to
uy provides a greater payoff to the deviating pIayer,Wg(uj,uy) > Wa (U3, u3).
The credibility of the incentive equilibrium requires theisgence of a feasibla;
such thawV (s (ug, ul, x),ud') > Wy (ui,ul)). The fourth row in Table 1 shows that
last inequality is satisfied in particular fof = uj. Furthermore, the deviating player
(player 2) is penalized becaudg( gy (Ui, ul,x), ud) < Wa(uj, us). In fact, deviating
from the incentive strategy player 2 even worsens his pagffpared to his payoff
in the non-cooperative caséb (s (uj,ud,x), u)) < Wa(ul,u}). All these results
apply when the players use either open-loop or feedbadegtes.

Table 1 also allows us to compare the relative improvemetii®players’ pay-
offs when moving from their non-cooperative mode of playhe incentive equilib-
rium as well as the relative loss with respect to the cooperablution both under
open-loop and feedback strategies. Because we are argalyzompletely symmet-
ric game, each player under cooperation receives half abthbécooperative payoff.
The individual cooperative payoff is given My = WS = 2.64 x 10~2. Let us de-
note by\/\/iNOI andV\/iNf the players’ payoffs when the open-loop and feedback Nash
equilibrium, respectively, is played (first row in Table Equivalently, let us denote
by V\/i*0| andV\/i*f the players’ payoffs when the open-loop and feedback imaent
equilibrium, respectively, is implemented (second rowal€ 1).

The comparison of the Nash equilibrium payaAf§'©! andV\/iNf with the individ-
ual cooperative payofM® shows that if the players implement the feedback Nash
equilibrium the payoffs are much smaller than if the opempl®éNash equilibrium
is played, which is, already, a 88.1% lower than the cooperanes. This loss of
welfare is a well-known consequence of the non-cooperativee of play that can
be mitigated if the players agree to follow incentive styés (both open-loop or
feedback), as can be seen in the second row of Table 1. Th&épayen the incen-
tive equilibrium is played compared to the payoffs undernmaration account for a
fall of a 36.7% and a 98.5%, under open-loop and feedbactegies, respectively.
If the incentive equilibrium payoffs are compared to the ftoperative Nash pay-
offs they show an increase of more than one order of magnituoeth cases, being
four times greater in the open-loop than in the feedback casese results clearly
show that the players can find neatly advantageous the usenelrrear incentive
strategies.

Tables 2-4 present the different payoffs when player 2 desiiom the incentive
equilibrium to different convex combinations of his coogire control us, and his
part of the non-cooperative Nash equilibriuuﬁ‘,. In Tables 2, 3 and 4 the weight
assigned to the non-cooperative part decreases from 005 tnd to 0.25, respec-
tively. Concerning the rationality property of player 2efle tables show that it is
rational that player 2 deviates from the incentive equilibr when he changes to
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a strategy in which no-cooperation is weighted at least ape@tion. However,
Table 4 shows that it is irrational that player 2 deviates(zf’e): 0.75u5 + 0.25u)

or to u<23) = u§ not showed in the table. These results are applicable botthéo
open-loop and feedback incentive strategies.

The last two rows in Tables 2-4 allow to analyze the credipi6f the in-
centive strategies when player 2 deviatesugd i =1,2,3. Player 1 implements
U = wl(ul,ug>,x) with eitheruy = uj (third row) oru, = u? (fourth row). Com-
paring the entries in the third (fourth) row with those in #eeond, it can be deduced
that the incentive equilibrium is credible in the same scesavhen it is rational
for player 2 to deviate (Tables 2 and 3) and is not crediblenwthe deviation is
irrational for player 2 (Table 4). The results are quahtaly similar for open-loop
and feedback strategies.

Finally, from the comparison sz(wl(ul,u(z”,x),u(z')) andWa(uj, us) for ug €
{ui,u?} in Tables 2-3 we can deduce that deviating from the incergivategy
player 2 always worsens his payoff compared to his payofh@inhcentive equi-
librium. More precisely, ifu, = uél) = O.25u§+0.75u§ both choices for player
1, up=ujoru = u? lead to a payoff for player 2 lower than,(u;,us) re-
gardless of whether players use open-loop or feedbaclegtest Ifu, = u(22> =
0.5u5 + 0.5u), the same comment applies for the feedback case. In theloppn-
case the choica; = uj for player 1, although being credible, it does not penalize
enough player 2 with respect to his payoff in the incentiveilderium. However, if

player optimizes his choice by moving tg = u}, thenW (¢ (U}, u(22>,x),u(22)) >

Wl(wl(u*l‘,uéz),x),u(zz)) > Wi (U3, u3) and\/\/z(wl(uT,u(;),x),u(zz)) < Wb (U3, u3).

wy! Wy w/ W,
U =u,U; = U 168x 10 2[1.68x 10 2| 3.91x 10 | 391x 107
Uy = ut,Up = uf! 1.08x 102[2.01x 102|-358x 1071| 2.70x 101
Uy = g (Ui, ulY x),Up = ul) [1.28x 102[1.22x 102|~1.14x 10-1|-1.54x 10°?
Up = g (U Ul x),Up = u3P[1.36x 102[1.01x 102[—9.22x 102|-3.92x 10°?

Table 2 Players’ payoffs under open-loop and feedback strate@ieser 2 deviates to

0.2505 + 0.75u)

wy wy! w/ Wy
U—u.U,— 168x 10 2|1.68x 10 2| 391x 10 7 | 3.91x 10 7
Uy = uj,Up = uf? 2.01x 102[1.76x 102|-154x 101 1.34x 10!
Uy = g (U5, u? x),Up = ul? [2.02x 102[1.75x 102|—3.02x 102|—4.75x 102
Uy = gr (Ul u? x),Up = u?[2.26x 102[5.01x 103] 1.23x 10! |-4.46x 10°?

Table 3 Players’ payoffs under open-loop and feedback strate@ileser 2 deviates to.

0.5u5 + 0.5u)

L _
) =

@ _
7 =
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wy! Wy w, W,
U=, U= 168x 10 2| 1.68x 10 2 |[3.91x 10 7| 3.91x 10 2
Uy = uj,Up = ufY 2.88x 102| 1.44x 1072 [5.29x 102|-4.87x 102
Uy = g (Ui, uY x),Up = ul) [2.87x102| 1.45x 102 [2.08x 102|—6.00x 103
Uy = gr (Ul U x),Up = ulY [3.12x 102~ 1.41x 104]2.91x 101|519 x 10°?

Table 4 Players’ payoffs under open-loop and feedback strate@ikeser 2 deviates toé3> =
0.75u5 + 0.25u

Figure 3 for the open-loop strategies and Figure 4 for thelfaek strategies
show the time paths of the emission rates and the pollutiookstor the non-
cooperative, cooperative and incentive strategies usethdylayers, as well as
the strategies when player 2 deviates to his part of the onoperative equilib-
rium, while player 1 sticks to his part of the incentive edurilm. These time paths
allow us to analyze the credibility of the incentive stragsg The optimal paths
when the non-cooperative Nash equilibrium or the cooperaolution is played
are represented using solid black and red lines, respictiMeose associated with
the incentive equilibrium are depicted using solid blueliRinally, the solid green
line shows the time paths when player 2 deviates while play#ays the incentive
strategy.

Figure 3 shows that when player 2 deviates from the incemtipeélibrium and
follows his part of the non-cooperative Nash equilibrium #mission time-paths are
described by the black solid line starting around 0.1. WHeagey 1 responds using
the incentive strategy: = y(u;, ug ,X) his emission time-path initially starts around
0.15 and follows the incentive equilibrium strategy, desieg up to a minimum
level. When player 1 realizes that the pollution stock idffam the pollution stock
under cooperation departs from his part of the incentivelibgum and increases
the emissions up to a level similar to the non-cooperativel l&=rom this point on
the emission time-paths run very closely. This behaviardiaes into a pollution
stock time-path associated with the strategiges= @/(u;, u'g‘,x) andU; = uy that

— VU =gV
—U=uU =0,
—U=u;U=u,
[ N
_U1"*|"(“1'u2'x)' Uz—u2
—C- =,C
0.1 _U1‘“1' Uz—u2 x5 0.1
@ 2
5 %]
8 §
i E
S —u ==l
005} & 0.0t vz
—Ul—ul,UZ—u2
= N v = N
— U, =W(u,,u, x)U,=u,
—uC U =C
— U =u;U=uy
0 . . . . 0 . . . . .
0 05 1 15 2 25 3 0 0.5 1 15 2 25 3

Time Time

Fig. 3 Credibility open-loop incentive strategies
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initially evolves between the time-paths for the non-coatiee Nash equilibrium
and the incentive equilibrium. The time path initially ieases at a speed greater
than that corresponding to the Nash equilibrium. From a timéhe incentive strat-
egy used by player 1); = g(u;,u},x), allows to approximate the pollution stock
time-path under non-cooperation.

Figure 4 collects the different feedback strategies. Theatiag player (player
2) initially follows the discontinuous green line startiagound 0.22, corresponding
to the emission time-path far = @(u;, uy,x) andU, = uy. This time path evolves
quite close to the non-cooperative emission time-path.usehote that although
in Figure 4 we display the time paths associated with thesdfit strategies, the
players are using feedback strategies, and as such thegkamg their optimal de-
cisions depending on the value of the state variable (tHefpmh stock). Hence, the
discontinuous green line does not coincide with the cowotislblack line because
player 1 is playingJ; = @ (u;j,u},x) instead ofu}, implying a different value of
the pollution stock. Player 1's emissions (continuous gri@ee) start around 0.33
and sharply decrease imitating the incentive equilibriimetpath up to a point
in time where the trajectory reaches the discontinuousngliee. From this time
on the emission time-paths for both players coincide andvewdose to the non-
cooperative emission time-path. The main difference wétspect to the previous
case is that in the case of open-loop strategies player Tesdus emissions too
sharply and then he has to raise them during an intermediatedof time to follow
a trajectory similar to the non-cooperative case. Howewnehe case of feedback,
the decrease in emissions towards values close to those obtircooperative sce-
nario is monotonous and smoother. As the right chart in Eigushows the pollution
stock wherJ; = ¢(uj, uy,x) andU, = uy is not far away from the non-cooperative
pollution stock even in the short term.

0.35 T T T T T 0.4 T T T T T
.3r . x| 0.35F %
L [ N
-t 03 Ul ups Uz Uy

[=}
w

o
N
A

025 —U=up U=,

o
N

— * Ny N
— U, =(u,,u,.X); U,=u,

Emissions
I
i
(%))

Pollution Stock
o
9

o
-
T

0.051

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
Time Time

Fig. 4 Credibility feedback incentive strategies
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5 Concluding remarks

This paper examines the use of non-linear incentive stiegeas another option to
sustain over time an agreement by means of non-cooperddiyelpcentive strate-
gies have been extensively used in the differential garterature in different areas
and have been proposed to support the cooperative solutibmo-player differ-
ential games. The incentive is designed in such a way thabedtmted outcome
becomes a Nash equilibrium. If the incentive strategiexezdible no player will
be tempted for unilaterally deviate from the agreed dexisis far as we know all
the previous literature on incentive strategies, excepFReos & Martin-Herran
(2015), studies games belonging to the linear-state oatigeadratic classes and
the incentive strategies are constructed in such a wayhhkahtentive equilibrium
is the cooperative solution. Furthermore, the strategiesssumed to be linear and
decision-dependent, i.e., each player makes his curremide contingent on the
current decision of his opponent. Most of the previous wiidee not addressed the
analysis of the credibility of the incentive strategies.

This paper is a follow-up of De Frutos & Martin-Herran (B)land assumes
state-dependent and decision-dependent equilibriutegtes defined as non-linear
functions of the control variables of both players and theent value of the state
variable. We relax the definition of incentive equilibriumthe sense that we look
for an incentive strategy equilibrium such that the steddtesof the optimal state
trajectory is close enough, but not necessarily identicathe steady state of the
state variable under cooperation. We show that the defnitibless restrictive
strategies helps to guarantee the sustainability of areaggat over time. We an-
alyze a well-known linear-quadratic transboundary p@ludifferential game and
present numerical experiments to illustrate the resules.cdmpare the incentive
equilibrium strategies, its credibility and the playeraypff when players use open-
loop strategies and when they focus on stationary Markaostiategies.

Acknowledgements This research is partially supported by MINECO under prigjé¢TM2016-
78995-P (AEI) (Javier de Frutos) and EC02014-52343-P ardZF17-82227-P (AEl) (Guiomar
Martin-Herran) and by Junta de Castillay Leon VA024Pad@ ®A105G18 co-financed by FEDER
funds (EU).

References

1. Breton, M., Sokri, A., Zaccour, G.: Incentive equilibmun an overlapping-generations envi-
ronmental game. European Journal of Operational Resd8&1687—699 (2008)

2. Buratto, A., Zaccour, G.: Coordination of advertisinggtgies in a fashion licensing contract.
Journal of Optimization Theory and Applicatioh42 31-53 (2009)

3. De Frutos, J., Martin-Herran, G.: Does flexibility féeite sustainability of cooperation over
time? A case study from environmental economics. Journ@ptimization Theory and Ap-
plications165 657—677 (2015)



16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Javier de Frutos and Guiomar Martin-Herran

De Giovanni, P.: A joint maximization incentive in closkep supply chains with competing
retailers: The case of spent-battery recycling. Europeamal of Operational Resear268
128-147 (2018)

De Giovanni, P., Reddy, P.V., Zaccour, G.: Incentivetsgi@s for an optimal recovery pro-
gram in a closed-loop supply chain. European Journal of @joeral ResearcB49, 605-617
(2016)

. Dockner, E.J., Long, N.V.: International pollution casit cooperative versus noncooperative

strategies. Journal of Environmental Economics and Managé25, 13—-29 (1993)

. Ehtamo, H., Hamalainen, R.P.: On affine incentivesiforamic decision problems. In: Basar,

T. (ed.) Dynamic Games and Applications in Economics, pp687 Springer-Verlag, Berlin
(1986)

. Ehtamo, H., Hamalainen, R.P.: Incentive strategias equilibria for dynamic games with

delayed information. Journal of Optimization Theory ancphgations63, 355-369 (1989)

. Ehtamo, H., Hamalainen, R.P.: Cooperative incergtyailibrium for a resource management

problem. Journal of Economic Dynamics and Confrgl659—-678 (1993)

Ehtamo, H., Hamalainen, R.P.: Credibility of linemuilibrium strategies in a discrete time
fishery management game. Group Decision and Negotidtiaii—37 (1995)

Haurie, A., Pohjola, M.: Efficient equilibria in a diffemtial game of capitalism. Journal of
Economic Dynamics and Contrll, 65-78 (1987)

Haurie, A., Krawczyk, J.B., Zaccour, G.: Games and Dyindbames. World Scientific, Sin-
gapore (2012)

Jorgensen, S., Martin-Herran, G., Zaccour, G.: Aapitiey and time-consistency in linear-
state differential games. Journal of Optimization Theargt Applications119 49-63 (2003)
Jorgensen, S., Martin-Herran G., Zaccour, G.: Shadity of cooperation overtime in
linear-quadratic differential games. International Garheory Review7, 395-406 (2005)
Jorgensen, S., Taboubi, S., Zaccour, G.: Incentivestaiter promotion in a marketing chan-
nel. In: Haurie, A., Muto S., Petrosjan, L.A. and Raghavak,S. (eds.) Annals of the Inter-
national Society of Dynamic Games, Vol. 8, pp. 365—-378. [Bkser, Boston (2006)
Jargensen, S., Zaccour, G.: Time consistent side pagnimeadynamic game of downstream
pollution. Journal of Economic Dynamics and Coni28] 1973-1987 (2001)

Jorgensen, S., Zaccour, G.: Incentive equilibriuntesgias and welfare allocation in a dy-
namic game of pollution control. Automati&a, 29-36 (2001)

Jorgensen, S., Zaccour, G.: Time consistency in cotgedifferential games. In: Zaccour,
G. (ed.) Decision and Control in Management Science (in iHofdlain Haurie), pp. 349—
366. Kluwer Academic Publishers, Dordrecht (2002)

Jorgensen, S., Zaccour, G.: Channel coordination mwer incentive equilibria and credibil-
ity. Journal of Economic Dynamics and Cont&, 801-822 (2003)

Kaitala,V., Pohjola, M.: Economic development and egbée redistribution in capitalism:
Efficient game equilibria in a two-class Neoclassical growiodel. International Economic
Review31, 421-437 (1990)

Kaitala V., Pohjola, M.: Sustainable internationalesgnents on greenhouse warming: A
game theory study. In: Carraro, C., Filar, J.A. (eds.) Aarddlthe International Society of
Dynamic Games, Vol. 2, pp. 67-87. Birkhauser, Boston (1995

Kierzenka, J. , Shampine L.F.: A BVP Solver based on Resi@ontrol and the MATLAB
PSE, ACM TOMS27, 299-316 (2001)

Martin-Herran, G., Taboubi, S.: Incentive stratedi@ shelf-space allocation in duopolies.
In: Haurie, A., and Zaccour, G. (eds.) Dynamic Games: Themy Applications, GERAD
25th Aniversary Series, pp. 231-253. Springer, New Yorl§0

Martin-Herran, G., Zaccour, G.: Credibility of in¢ee equilibrium strategies in linear-state
differential games. Journal of Optimization Theory and Kgagions126, 1-23 (2005)
Martin-Herran, G., Zaccour, G.: Credible linear imee equilibrium strategies in linear-
quadratic differential games. In: Bernhard, P., Gaitsgdrgnd Pourtallier, O. (eds.) Annals
of the International Society of Dynamic Games, vol. 10, ppl-291. Birkhauser, Boston
(2009)



Non-linear incentive equilibrium strategies 17

26. Petrosjan, L.A.: Agreeable solutions in differentianges. International Journal of Mathe-
matics, Game Theory and Algebral65-177 (1997)

27. Petrosjan, L.A., Zaccour, G.: Time-consistent Shap#ye allocation of pollution cost con-
trol. Journal of Economic Dynamics and Cont23] 381-398 (2003)

28. Petrosjan, L.A., Zenkevich, N.A.: Game Theory. Worléegtfic, Singapore (1996).

29. Taboubi, S.: Incentive mechanisms for price and adiegi coordination in dynamic
marketing channels. International Transactions in Opmrat Research (2017) doi:
10.1111/itor.12467

30. Tolwinski, B., Haurie, A., Leitmann, G.: Cooperativeudipria in differential games. Journal
of Mathematical Analysis and Applicatiodd9, 192—-202 (1986)

31. Van der Ploeg, F., De Zeeuw, A. J.: International aspafgtellution control. Environmental
and Resource Economi@s117-139 (1992)



