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Abstract

In this paper the one-dimensional nonparaxial nonlinear Schrödinger equation is
considered. This was proposed as an alternative to the classical nonlinear Schrödinger
equation in those situations where the assumption of paraxiality may fail. The paper
contributes to the mathematical properties of the equation in a two-fold way. First,
some theoretical results on linear well-posedness, Hamiltonian and multi-symplectic
formulations are derived. Then we propose to take into account these properties in
order to deal with the numerical approximation. In this sense, different numeri-
cal procedures that preserve the Hamiltonian and multi-symplectic structures are
discussed and illustrated with numerical experiments.
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1 Introduction

The present paper is concerned with one-dimensional nonparaxial nonlinear
Schrödinger equations (NNLS) of the form
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κutt + iut + βuxx + f(u) = 0, (1.1)

where u = u(x, t) is a complex-valued function of x ∈ R and t ⩾ 0. The
parameters κ and β are positive (with κ, in general, small) and f is a complex-
valued function of a complex variable. Equation (1.1) and its two-dimensional
version

κutt + iut + β∆u+ f(u) = 0, (x, y) ∈ R2 (1.2)

(where ∆ is the Laplace operator) were proposed in the mathematical mod-
elling of nonlinear optical devises under Kerr-type nonlinear media to gener-
ate soliton beams for transmission of information (see e. g. [9] and references
therein). In (1.1) u represents the scalar (complex) field envelope of a con-
tinuous monochromatic beam in a self-focusing Kerr-type nonlinear medium,
governed by f , and under a linear diffraction in one transverse direction (with
two directions in the case of (1.2)). Some examples of f that appear in the
physical applications are:

(1) f(u) = |u|qu, q > 0, [13]. This contains, as particular case, the cubic
NNLS equation, [10].

(2) f(u) = α|u|σu − γ|u|2σu, α, γ, σ > 0. This contains, as particular case,
the cubic-quintic NNLS equation, [12].

(3) f(u) = α0|u|2u+(α1+α2|u|2)H(x)u, where H(x) is the Heaviside function
and αj ⩾ 0, j = 1, 2, 3, [26].

(4) f(u) =

(
δ

4κ
− α|u|2

)
u, α, δ ⩾ 0, [26].

(5) f(u) =
1

2

2 + γ|u|2

(1 + γ|u|2)2
|u|2u, γ > 0, [12].

When κ = 0, Equation (1.1) reduces to the classical family of nonlinear
Schrödinger equations (NLS), [30]. In the context of nonlinear optics, the
NLS equation is used in those experiments under an assumption of paraxial-
ity. This means that the diffraction of the light is allowed to develop structure
in only one of the coordinates transverse to the direction of propagation. How-
ever, some other observations may go beyond this paraxial approximation and
require alternatives of modelling where nonparaxial effects must be taken into
account. This is the case of, e. g., the study of ultranarrow or high-intensity
beams (required in the miniaturization of Information Technology devices)
or in the interaction of individual paraxial soliton beams but propagating in
different directions which form a significant angle, [10]. An additional, rele-
vant observation in this sense was made by Feit & Fleck, [15], who pointed
out that the unphysical catastrophic collapse of self-focusing beams predicted
by the paraxial theory is due to the invalidity of this approximation in the
neighborhood of a self-focus, see also [21,1,28].
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In (1.1) and (1.2) the nonparaxial effects are mathematically represented by
the inclusion of the second-order time derivative term and its associated pa-
rameter κ. This can be expressed in different ways, depending on the above
mentioned nonparaxial situations, [11]: a small and positive value of κ may
mean that the optical wavelength is a small but non-negligible magnitude
when compared to the width of the beam or that the beam is having some
degree of spread with respect to the paraxial propagation.

To our knowledge, mathematical properties of (1.1) are known for particular
cases of f , like some of those mentioned above. We make now a brief summary
of them, see the corresponding references for details. The properties mainly
concern the existence of conservation laws and special solutions. In the first
case, three quantities, the energy-flow, the momentum and the Hamiltonian,
are known to be preserved in time by smooth enough solutions u when f is of
the form 1 and 2 in the list above, [10,12,13]. (This includes the cubic and the
cubic-quintic equations.) On the other hand, for the cubic case, plane wave
solutions

u(x, t) = Aei(kx+ωt),

will satisfy the dispersion relation

κω2 + ω+ βk2 − A2 = 0,

defining elliptic curves in the (k,ω) plane. Furthermore, equation (1.1) also
admits soliton-type solutions. This is known for almost all the cases in the list
above. The solutions have the form

u(x, t) = ρ(x− V t, η, V, κ)exp (iθ(x− V t, η, V, κ, t)) , (1.3)

for some real-valued functions ρ,θ depending on κ, the amplitude (η) and
the transverse velocity (V ) parameters, see [10,12,13] for the specific form in
the corresponding equation. Contrary to the NLS equation, the NNLS is a
two-way model and admits solutions (1.3) propagating backward or forward
(thus V may be positive or negative). As mentioned in [11] for the cubic case
(see also [12]), recovering the solitons of the NLS requires a multiple limit
κ, κη2, κV 2 → 0. Finally, it is worth mentioning that a perturbation theory for
analyzing the effect of small terms in the self-focusing, cubic NLS equation
in critical dimension, developed by Fibich and Papanicolau in [17] (see also
[16]), includes the NNLS equation (1.2), studied here as perturbation of the
NLS. The prediction of the modulation theory in that case is the formation
of decaying focusing-defocusing oscillations, instead of singular solutions, and
is in agreement with the observations of Feit & Fleck and others, [15,1,28].
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The numerical approximation to (1.1) and (1.2) presented in the literature
is focused on the cubic NNLS equation and investigates, by computational
means, the dynamics of the nonparaxial model, with special emphasis on the
description of the self-focusing of the beam, the elimination of backward wave
which accompany the propagation of the beam and the evolution of the non-
paraxial solitons. As far as the numerical techniques are concerned, the al-
gorithm used by Feit & Fleck, [15], is based on a split-step approach, in the
forward in time direction (see [11] for a modified version). On the other hand,
Fibich & Tsynkov, [18], introduce a finite difference, fourth-order method, with
nonlocal, two-way absorbing boundary conditions (ABC) in the direction of
beam propagation, in order to obtain a direct simulation of self-focusing in
the nonparaxial case. An improved version, based on introducing Sommerfield-
type local radiation boundary conditions in the discretization, was proposed
in [19]. The nonparaxial beam propagation method (NBPM), developed by
Chamorro et al., [11], is derived by using finite differences leading to an ex-
plicit algorithm for the time evolution. The resulting difference-differential
equation is computationally solved in the spectral domain with FFT tech-
niques. An efficient parallel implementation of the NBPM can be seen in [25].
Finally, it is also worth mentioning the split-step methods, based on Padé
approximation, proposed in [22] for the forward in time equation from (1.2),
with time discretization of Crank-Nicolson type.

The present paper contributes to the mathematical analysis of (1.1) and (1.2)
in a two-fold way:

(1) Three new (to our knowledge) theoretical properties are presented. We
first prove that the initial-value problem (ivp) of (1.1) is linearly well-
posed (in the sense of existence and uniqueness of solution). The second
property is the Hamiltonian structure of (1.1), which means that under
suitable hypotheses on f , the NNLS equation can be written in the form

u t = J
δH

δu

on a suitable functional space for u, where the symplectic structure is
given by some matrix operator J and δH

δu
stands for the Fréchet deriva-

tive of some Hamiltonian function H . The Hamiltonian structure is a
property shared by many partial differential equations (PDEs) which ap-
pear in the mathematical modelling, including the NLS equation, [30].
One of the consequences of the Hamiltonian formulation is the time con-
servation of the Hamiltonian H by the solutions, and the functional
derived in this paper generalizes those obtained for particular cases of
f , [12]. Additionally, the other two invariants, the energy-flow and the
momentum, are also generalized and associated to symmetry groups of
(1.1). Finally, the Hamiltonian structure can also be extended to the
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two-dimensional version (1.2).
A third theoretical property studied in the present paper is the formu-

lation of (1.1) (and its two-dimensional version (1.2)) as multi-symplectic.
We recall that a system of PDEs is said to be multi-symplectic (MS) in
one dimension if it can be written in the form, [4]

Kz t + Mz x = ∇z S (z) , (1.4)

where z (x, t) : R × R+ 7−→ R d , d ⩾ 3, K and M are real, skew-
symmetric d × d matrices, ∇z is the gradient operator in R d and the
potential S (z) is assumed to be a smooth function of z. The MS theory
generalizes the Hamiltonian formulation in the sense of the presence of a
symplectic structure with respect to each of the space and time variables.
These structures are respectively defined by the two-forms, [4,6]

k(U, V )
def
:= (MU)TV, ω(U, V )

def
:= (KU)TV U, V ∈ Rd.

Then, the multi-symplectic property of (1.4) means that if U and V are
solutions of the corresponding variational equation

KZ t + MZx = S′′(z)Z ,

(where S′′(z) stands for the Hessian matrix of S(z)) then

∂tω(U, V ) + ∂xk(U, V ) = 0 , (1.5)

The two-forms ω and k can be written in terms of the differentials dz, z ∈
Rd in such a way that the MS conservation law (1.5) is alternatively
expressed as

∂t (dz ∧ (K · dz)) + ∂x (dz ∧ (M · dz)) = 0 ,

with ∧ being the standard exterior product of differential forms, [29,23].
The symplecticity must be understood locally, as the forms vary in

space and time. This local character also affects the preservation of quan-
tities in MS systems (1.4); specifically, when the function S (z) does not
depend explicitly on x or t , then local energy and momentum conserva-
tion laws are satisfied:

E t + Fx = 0 , I t + Mx = 0 , (1.6)

where, [6]

E (z)
def
:= S (z) − 1

2
k(z x, z) , F (z)

def
:= 1

2
k(z t, z) ,

I (z)
def
:= 1

2
ω(z x, z) , M (z)

def
:= S (z) − 1

2
ω(z t, z) . (1.7)
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As in the case of the Hamiltonian structure, the MS formulation also
holds in many PDEs used in modelling, including the NLS equation, [24].
We finally note that any MS PDE system is also Lagrangian, [4].

(2) The second type of contributions of this paper concerns the numerical
approximation to (1.1). Compared to the references in the literature on
this subject, commented above, here we adopt a different point of view.
In accordance with the theoretical structures of the equation, we are
interested in the geometric numerical integration, [20]. As is well known,
this approach aims at analyzing qualitative properties of the numerical
approximation which may improve the accuracy, beyond the quantitative
measure given by the classical order of convergence. These properties
come typically from emulating, in a discrete sense, geometric structures of
the equation under study and which may have influence on the numerical
integration, especially for long term simulations.

In this case, the present paper is focused on the Hamiltonian and MS
structure to propose geometric numerical methods to approximate the
periodic initial-value problem associated to (1.1). By using the method
of lines, the discretization in space is first studied. We observe that the
use of a symmetric operator to approximate the second partial derivative
in space generates a semi-discrete system with a Hamiltonian structure as
in the paraxial case, cf. [8]. If this symmetric character is obtained from
the approximation to the first partial derivative with a skew-symmetric
operator, then the resulting semi-discrete system is also multi-symplectic,
in the sense of the preservation of some discrete MS conservation law, cf.
[5]. These properties of the spatial discretization enable us to choose a
symplectic time integration with the aim of providing the full discretiza-
tion with a symplectic,[27], an a multi-symplectic, [6], structure.

The paper is structured as follows. In Section 2, the theoretical results, con-
cerning linear well-posedness, Hamiltonian structure and MS formulation are
introduced and proved. Additional conserved quantities and the specific forms
of the MS conservation law (1.5) and the local conservation laws (1.6), (1.7)
are derived. Section 3 is devoted to the description of geometric numerical
methods and their properties when approximating (1.1), mainly focused on
the preservation of the Hamiltonian and MS structures, as well as the in-
variants of the problem. The performance of the geometric approximation is
illustrated in some numerical experiments by taking a full discretization based
on the Fourier pseudospectral collocation method in space along with the sym-
plectic time integration given by the implicit midpoint rule. The experiments
involve soliton simulations and the evolution of errors in discrete versions of
the conserved quantities. Conclusions are summarized in Section 4.

The following notation will be used throughout the paper. We will alternatively
use the complex form (1.1) and its equivalent formulation as a real system for
the real and imaginary parts of u and ut. On the other hand, Hs = Hs(R), s ⩾
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0 will stand for the L2−based Sobolev space of order s, with H0 = L2. The
Fourier transform of an integrable function f is defined as

Ff(ξ) = f̂(ξ)
def
:=

∫ ∞

−∞
e−ixξf(x)dx,

with inverse operator denoted by F−1. The transform is extended to f ∈ L2

by using density arguments in the usual way. Finally, ⟨·, ·⟩n will denote the
Euclidean inner product in some Rn, where n ⩾ 1 will take different values
throughout Sections 2 and 3.

2 Some theoretical properties of the NNLS equation

In this section we will assume that the function f in (1.1) satisfies

f(z) =
∂V (z)

∂z
, (2.1)

(where z denotes complex conjugate) for some smooth, real-valued potential
V . Note that (2.1) implies that if z = x+ iy and f = Ref,+iImf then

Ref(z) =
∂V (x, y)

∂x
, Imf(z) =

∂V (x, y)

∂y
.

2.1 Linear well-posedness

We first study well-posedness of the linearized equation associated to (1.1),
that is

κutt + iut + βuxx = 0,

or, as a first-order system

ut = v, κvt = −iv − βuxx. (2.2)

By well-posedness we mean existence and uniqueness of solutions and contin-
uous dependence on the initial data in the corresponding spaces. We adopt the
strategy considered in, e. g. [3], based on the Fourier transform of (2.2) and
the representation of the solutions of the resulting system. Taking the Fourier
transform with respect to x in (2.2) we have
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d

dt

û(ξ, t)
v̂(ξ, t)

+ A(ξ)

û(ξ, t)
v̂(ξ, t)

 = 0, A(ξ) =

 0 −1

−βξ2
κ

i
κ

 .
The solution of the ivp for (2.2) with initial data u(x, 0) = u0(x), v(x, 0) =
v0(x) can be written, in the Fourier space, as

û(ξ, t)
v̂(ξ, t)

 = m(ξ, t)

û0(ξ)
v̂0(ξ)

 ,
where û0(ξ), v̂0(ξ) are the Fourier transforms of u0, v0, respectively, and m(ξ, t)
is the Fourier multiplier

m(ξ, t)
def
:= e−tA(ξ). (2.3)

We now study the structure of (2.3). Note that the eigenvalues of A(ξ) are

λ±(ξ) =
i

2κ
± 1

2κ

√
4βκξ2 − 1.

It holds that λ+(ξ) ̸= λ−(ξ) except when 4βκξ2−1 = 0, that is, when ξ = ξ± =

±1/2
√
βκ and for which λ def

:= λ+ = λ− = i/2κ. According to the corresponding
spectral decomposition of A(ξ), the Fourier multiplier (2.3) can be written,
for ξ ̸= ξ±, as

m(ξ, t)=
1

λ+(ξ)− λ−(ξ)
M(ξ, t),

M(ξ, t)=

−λ−(ξ)e−tλ+(ξ) + λ+(ξ)e
−tλ−(ξ) λ−(ξ)

(
e−tλ−(ξ) − e−tλ+(ξ)

)
−λ+(ξ)

(
e−tλ−(ξ) − e−tλ+(ξ)

)
λ+(ξ)e

−tλ+(ξ) − λ−(ξ)e
−tλ−(ξ)


As observed in [3], if m is unbounded at finite values of ξ, then the linear
ivp cannot be well-posed in any of the Sobolev spaces Hs, s ⩾ 0 because the
operators

f 7−→ m(ξ)f̂(ξ) 7−→ F−1(m(ξ)f̂(ξ)),

(where F−1 denotes the inverse Fourier transform) are not bounded maps
from Hs to L2. In our case, the only possible poles of m are precisely given
by ξ = ξ±. A tedious but direct computation shows that
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lim
ξ→ξ±

m(ξ, t) =

(1 + tλ)e−tλ λte−tλ

−tλe−tλ (1− tλ)e−tλ

 = e−tA(ξ±).

Therefore m(ξ, t) is bounded on bounded intervals and linear well-posedness
in L2 based Sobolev spaces follows, [3].

2.2 Hamiltonian structure, conserved quantities and symmetry groups

The second theoretical property considered in this section concerns the exten-
sion of the conservation laws, derived for some particular equations of (1.1),
[12], to the more general case of f satisfying (2.1). Note that, as a first-order
real system, (1.1) has the form



1 0 0 0

0 1 0 0

0 −1 κ 0

1 0 0 κ


︸ ︷︷ ︸

P (κ)



pt

qt

ϕt

φt


=



ϕ

φ

−βpxx − Ref(p, q)

−βqxx − Imf(p, q)


, (2.4)

where u = p + iq, ut = ϕ + iφ. For κ > 0 we invert the matrix P (κ) to write
(2.4) as



pt

qt

ϕt

φt


=



1 0 0 0

0 1 0 0

0 1
κ

1
κ 0

− 1
κ 0 0 1

κ





0 0 − 1
κ 0

0 0 0 − 1
κ

1 0 0 0

0 1 0 0





−βpxx − Ref(p, q)

−βqxx − Imf(p, q)

−κϕ

−κφ


,

=J(κ)δH (p, q, ϕ, φ), (2.5)

where δ
def
:=

(
δ
δp
, δ
δq
, δ
δϕ
, δ
δφ

)
,

J(κ)
def
:=



0 0 − 1
κ 0

0 0 0 − 1
κ

1
κ 0 0 − 1

κ2

0 1
κ

1
κ2 0


, (2.6)
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and, using (2.2),

H (p, q, ϕ, φ)
def
:=

∫ ∞

−∞

(
β
2
(p2x + q2x)− V (p, q)− κ

2
(ϕ2 + φ2)

)
dx. (2.7)

Then (2.5) gives the Hamiltonian formulation of (1.1) with structure matrix
given by (2.6) and Hamiltonian (2.7). In complex form, with v = ut, (2.5) is
of the form

ut
vt

 = J(κ)δH (u, v),

with

J(κ)
def
:=

1

κ

0 −1

1 i
κ

 , H (u, v)
def
:=

∫ ∞

−∞

(
β
2
|u2x| − V (u)− κ

2
|v|2

)
dx. (2.8)

The Hamiltonian formulation can be extended to the two-dimensional case
with J as in (2.8) and

H (u, v)
def
:=

∫ ∞

−∞

∫ ∞

−∞

(
β
2
(|u2x|+ |u2y|)− V (u)− κ

2
|v|2

)
dx dy.

Besides the Hamiltonian (2.7), some additional conserved quantites can also
be derived from the symmetry groups of (1.1). The co-symplectic matrix (2.6)
defines the Poisson bracket of two functionals F (p, q, ϕ, φ) and G(p, q, ϕ, φ),
[23]

{F,G} def
:=

∫ ∞

−∞
δFJ(κ)δGdx.

Note now that the functional

I2(p, q, ϕ, φ)
def
:=

∫ ∞

−∞

(
−κ(pxϕ+ qxφ) +

1

2
(pxq − pqx)

)
dx, (2.9)

satisfies {I2,H } = 0, being H the Hamiltonian (2.7). This implies, [23], that
I2 is invariant by the solutions of (2.4). In complex form, (2.9) reads

I2(u, ut)
def
:=

∫ ∞

−∞

(
−κRe(uxut) +

1

2
Im(uux)

)
dx, (2.10)
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It is not hard to see the connection between (2.9) and the symmetry group of
(2.4) consisting of spatial translations

gϵ(p(x), q(x), ϕ(x), φ(x))
def
:= (p(x+ ϵ), q(x+ ϵ), ϕ(x+ ϵ), φ(x+ ϵ)),

ϵ ∈ R, (2.11)

since the infinitesimal generator of (2.11) is

d

dϵ
gϵ(p, q, ϕ, φ)

∣∣∣∣
ϵ=0

= J(κ)



κϕx − qx

px + κφx

−κpx
−κqx


= J(κ)δI2(p, q, ϕ, φ).

The invariants H and I2 were obtained for particular cases of f in, e. g.
[10,13,12] and, in this sense, (2.7) and (2.10) extend the existence of the
Hamiltonian and momentum to the general case of (1.1) with f satisfying
(2.1). When κ = 0, (2.7) and (2.9) correspond to the formulas obtained in
[14]. For the preservation of an analogous quantity to the mass of the paraxial
case (called energy-flow in [12]) additional hypotheses on f are required, [14].

Lemma 2.1 Assume that f : C → C satisfies

f(z)= f(z), z ∈ C, (2.12)
f(ωz)=ωf(z), ω, z ∈ C, |ω| = 1. (2.13)

Then f(z) = zg(|z|) for some real-valued function g.

Proof. Note first that (2.12) implies that f(z) is real when z is real. On the
other hand, if z ∈ C, z ̸= 0, using (2.13) we have

f (|z|) = f

(
zz

|z|

)
=

z

|z|
f(z).

Therefore

f (z) =
|z|
z
f (|z|) = zg(z),

where g(|z|) def
:=

1

|z|
f (|z|) is real. Finally, (2.13) also implies that f(−z) =

−f(z), z ∈ C. In particular, f(0) = 0, which completes the proof.□
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Note that, under the hypotheses (2.12), (2.13), the functional

I1(p, q, ϕ, φ)
def
:= −

∫ ∞

−∞

(
p2 + q2

2
+ κ(pφ− qϕ)

)
dx, (2.14)

satisfies {I1,H } = 0 and, therefore, I1 is another conserved quantity of (1.1).
In complex form, (2.9) is

I1(u, ut)
def
:= −

∫ ∞

−∞

(
|u|2

2
+ κIm(uut)

)
dx. (2.15)

(For the particular cases of f considered in [10,12], an equivalent expression
for (2.15) is derived.) In this case, the symmetry group of (1.1) associated to
(2.14) consists of rotations

hα(p(x), q(x), ϕ(x), φ(x))
def
:=



cos α − sin α 0

sin α cos α 0 0

0 0 cos α − sin α

0 0 sin α cos α





p(x)

q(x)

ϕ(x)

φ(x)


,

α ∈ R, (2.16)

and its infinitesimal generator can be written as

d

dα
hα(p, q, ϕ, φ)

∣∣∣∣
α=0

=J(κ)



−κφ− p

−q + κϕ

κq

−κp


= J(κ)δI1(p, q, ϕ, φ).

For the paraxial case κ = 0, the corresponding quantity (2.14) can be seen in
[14].

Note that, in order for (1.1) to admit (2.16) as symmetry group, only the con-
dition (2.13) is needed; but the connection with (2.14) as conserved quantity
additionally requires to assume (2.12).

The relation of the quantities I1, I2 with the symmetry groups of (1.1) moti-
vates the study of solitary-wave solutions for the general case of f satisfying
(2.1), (2.12)-(2.13). They can be found as relative equilibria (see [14] and ref-
erences therein), that is, equilibria (p0, q0, ϕ0, φ0) of the Hamiltonian on fixed
level sets of the first two invariants
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δH (p0, q0, ϕ0, φ0)− μ1δI1(p0, q0, ϕ0, φ0)− μ2δI2(p0, q0, ϕ0, φ0)= 0, (2.17)
I1(p0, q0, ϕ0, φ0) = c1, I2(p0, q0, ϕ0, φ0) = c2,

for real multipliers μ1, μ2 and real c1, c2 determining the fixed level sets of I1

and I2 respectively. After some computations and if u0 = p0 + iq0, the first
equation in (2.17) reads

(β+ κμ22)u
′′
0 + f(u0) + iμ2(1 + 2κμ1)u

′
0 − μ1(1 + κμ1)u0 = 0. (2.18)

Once u0 is obtained from (2.18), the solitary-wave solution of the ivp of (1.1)
with initial conditions u(x, 0) = u0(x), ut(x, 0) = iμ1u0(x)+ μ2u

′
0(x) is derived

from this profile by a coupled rotation and translation determined by the
multipliers μ1 and μ2 respectively, that is

u(x, t) = u0(x− μ2t)e
iμ1t.

The resolution of (2.17) involves to obtain the corresponding relations between
the level set values cj and the multipliers μj, j = 1, 2. Equation (2.18) can be
explicitly solved for some functions f in a similar way, e g., to that of [14] for
the NLS equation. This is the case, for example, of the explicit formulas derived
in [10,12,13]. The existence of solutions u0 of (2.18) for a more general term
f is, to our knowledge, an open question. In this sense, classical techniques of
numerical generation, [31], may serve as a first approach.

2.3 Multi-symplectic structure

In this section we derive the MS structure of (1.1). We define the variables
v, w such that px = v, qx = w. Then (1.1) can be written as a system

−κϕt + qt − βvx=
∂V

∂p
,

−κφt − pt − βwx=
∂V

∂q
,

βpx= βv,
βqx= βw,
κpt= κϕ,
κqt= κφ, (2.19)

Now if z = (p, q, v, w, ϕ, φ)T ∈ R6, consider the vector field F : R6 → R6

given by the right hand side of (2.19)

13



F (z)
def
:= (

∂V

∂p
,
∂V

∂q
, βv, βw, κϕ, κφ)T .

Note that the Jacobian F ′(z) is symmetric for all z and therefore Poincaré’s
lemma implies that F is conservative, that is F = ∇z S for some potential
S . Thus system (2.19) can be written in the form (1.4) in R6 with

K =



0 1 0 0 −κ 0

−1 0 0 0 0 −κ

0 0 0 0 0 0

0 0 0 0 0 0

κ 0 0 0 0 0

0 κ 0 0 0 0


, M =



0 0 −β 0 0 0

0 0 0 −β 0 0

β 0 0 0 0 0

0 β 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (2.20)

leading to the MS formulation of (1.1). A potential is given by

S(z) = V (p, q) + β

(
v2 + w2

2

)
+ κ

(
ϕ2 + φ2

2

)
. (2.21)

In this case, the conservation law of multi-symplecticity has the form (1.5)
with

ω = dp ∧ dq − κ(dp ∧ dϕ+ dq ∧ dφ), k = −β(dp ∧ dv + dq ∧ dw). (2.22)

Similarly, the local energy and momentum conservation laws have the form
(1.6), (1.7) with

E (z)=V (p, q) + κ

(
ϕ2 + φ2

2

)
+
β
2
(pvx + qwx), (2.23)

F (z)=
β
2
(vϕ+ wφ− pvt − qwt) ,

I (z)=
κ
2
(−pϕx − qφx + vϕ+ wφ) +

1

2
(pqx − qpx) , (2.24)

M (z)=V (p, q) + κ

(
ϕ2 + φ2

2

)
− 1

2
(pφ− qϕ− κ(pϕt + qφt)) .

The MS formulation can be extended to the two-dimensional version (1.2). As
before, we write u = p + iq and define the variables ϕ, φ, v1, w1, v2, w2 such
that

pt = ϕ, qt = φ, px = v1 qx = w1, py = v2 qy = w2.
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Then, in terms of z = (p, q, v1, w1, v2, w2, ϕ, φ)
T ∈ R8, equation (1.2) admits

a MS formulation in 2D (cf. [4,5])

Kz t + M1z x + M2z y = ∇z S (z) ,

where

K =



0 1 0 0 0 0 −κ 0

−1 0 0 0 0 0 0 −κ

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

κ 0 0 0 0 0 0 0

0 κ 0 0 0 0 0 0



, M1 =



0 0 −β 0 0 0 0 0

0 0 0 −β 0 0 0 0

β 0 0 0 0 0 0 0

0 β 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



,

M2 =



0 0 0 0 −β 0 0 0

0 0 0 0 0 −β 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

β 0 0 0 0 0 0 0

0 β 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



,

and

S(z) = V (p, q) + β

(
v21 + w2

1

2
+
v22 + w2

2

2

)
+ κ

(
ϕ2 + φ2

2

)
.

In this case, the MS conservation law has the form

∂tω+ ∂xk1 + ∂yk2 = 0,

where

ω= dp ∧ dq − κ(dp ∧ dϕ+ dq ∧ dφ),
kj =−β(dp ∧ dvj + dq ∧ dwj), j = 1, 2.
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Corresponding formulas for the local conservation laws can be derived.

3 Numerical discretization of the NNLS equation

In this section we study the numerical approximation to the periodic initial-
value problem of (1.1) with f satisfying (2.1), (2.12), (2.13). As mentioned in
the introduction, the purpose here is searching for geometric discretizations
emulating qualitative properties of the continuous NNLS equations, mainly
focused on the Hamiltonian and MS structures.

First it may be worth mentioning the influence of the imposition of periodic
boundary conditions on these two formulations. In the case of the MS struc-
ture, note that the symplecticity is understood locally, the conservation law
(1.5) does not depend on specific boundary conditions. However, by integrat-
ing (1.6) on a one-period interval (a, b) (with period L = b− a) in the spatial
domain, periodic boundary conditions imply the preservation of the global
energy and momentum

E def
:=

∫ b

a
E (z(x, t))dx, I def

:=
∫ b

a
I (z(x, t))dx, (3.1)

where E, I are given by (2.23) and (2.24), respectively.

Note also that the periodic initial-value problem of (1.1) retains a Hamiltonian
structure, with co-symplectic matrix (2.6) and a Hamiltonian HL

def
:= −E of

(3.1). Additionally, I in (3.1) defines the corresponding version I2L
def
:= −I of

(2.9). Finally, it is not hard to see that when f satisfies (2.12), (2.13), then
the functional

I1L(p, q, ϕ, φ)
def
:= −

∫ b

a

(
p2 + q2

2
+ κ(pφ− qϕ)

)
dx, (3.2)

analogous to (2.14), is preserved in time by the solutions. Note finally that
by integrating (1.5), with ω and k given by (2.22), on (a, b) and using the
periodic boundary conditions, then

ω̃ =
∫ b

a
ωdx, (3.3)

is constant in time.
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3.1 Semi-discretization in space

By using the method of lines, we firstly discretize in space. For that, we con-
sider an integer N ⩾ 1. On a uniform grid of N points xj, j = 0, . . . , N − 1,
on an interval (a, b) and stepsize h = (b− a)/N , the second partial derivative
in space is approximated by some grid operator Ah in such a way that the
following semi-discrete second-order equation holds

κ
d2

dt2
uh(t) + i

d

dt
uh(t) + βAhuh(t) + f(uh(t)) = 0, (3.4)

where uh(t) is a complex, N -vector approximating the exact solution u(·, t)
at the grid values and f(uh) is the vector whose components are obtained
by evaluating f at the components of uh. With a similar proof to that of
Theorem 6.1 in [8], it can be seen that, whenever Ah is a symmetric matrix,
(3.4) admits a Hamiltonian formulation

d

dt



ph(t)

qh(t)

ϕh(t)

φh(t)


= J(κ)∇Hh(ph, qh, ϕh, φh), (3.5)

with J(κ) as in (2.6), uh = ph + iqh, u
′
h = ϕh + iφh and

Hh(ph, qh, ϕh, φh)
def
:= −1

2
(β (⟨ph, Ahph⟩N + ⟨qh, Ahqh⟩N)

+κ (⟨ϕh, ϕh⟩N + ⟨φh, φh⟩N))− ⟨Gh(ph, qh), 1N⟩N ,

Gh(ph, qh)
def
:= V (ph, qh),

where 1N denotes the vector of length N with all its components equal to one
and V (ph, qh) is obtained by evaluating V at each component of (ph, qh). We
also notice that hHh is the natural discretization of the Hamiltonian HL = −E
in (3.1).

The behaviour of the spatial semi-discretization with respect to the invariants
(2.9) and (2.14) is as follows. With a similar proof to that of Theorem 6.2 in
[8], it can also be checked that, when Ah is symmetric and f(z) as in Lemma
2.1, then

I1,h = −1

2
(⟨ph, ph⟩N + ⟨qh, qh⟩N) + κ (⟨ph, φh⟩N − ⟨qh, ϕh⟩N) , (3.6)
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is an invariant of the semidiscrete system (3.5). Note that hI1,h is the natural
discretization of I1L in (3.2).

On the other hand, the behaviour with respect to (2.9) can also be studied in
a similar way to that of the paraxial case, see [8]. If in (3.4) we assume that

Ah = B2
h, (3.7)

then a natural discrete version of I2L is hI2,h where

I2,h =−κ (⟨Bhph, ϕh⟩N + ⟨Bhqh, φh⟩N)

+
1

2
(⟨Bhph, qh⟩N − ⟨ph, Bhqh⟩N) . (3.8)

In a similar way to [8], it can be proved that, when DBh = −BhD for the
N × N matrix D which reverses the order of the components of the vector
to which it is applied (i.e. (Dx)j = xN−j−1, j = 0, . . . , N − 1) and the initial
conditions are symmetric in the space interval of integration (i.e Dph(0) =
ph(0), Dqh(0) = qh(0), Dφh(0) = φh(0), Dϕh(0) = ϕh(0)), it happens that
I2,h(t) = 0 for every time t. On the other hand, for general initial conditions,
if Bh is a skew-symmetric matrix, under the same hypotheses of Theorem 5.1 in
[8], hI2,h, where in (3.8) Bh is substituted by the pseudospectral differentiation
operator, is a quasiinvariant in the sense described in the same theorem.

The last property of the semi-discretization in space considered here concerns
the multi-symplecticity. Let zh(t) = (zh, j(t))

N−1
j=0 ∈ R6N , where zh, j(t) is an

approximation to

z(xj, t) = (p(xj, t), q(xj, t), v(xj, t), w(xj, t), ϕ(xj, t), φ(xj, t)), j = 0, . . . , N−1,

(with zh, j(0) = z(xj, 0)). If Ah satisfies (3.7), then (1.4), (2.20), (2.21) can be
discretized in the form

K
d

dt
zh, j + M(Chzh) j = ∇z S (zh, j) , (3.9)

for j = 0, . . . , N − 1, where Ch
def
:= Bh ⊗ I6, with I6 the 6 × 6 identity matrix

and ⊗ standing for the Kronecker product of matrices. In terms of zh(t), (3.9)
can be written as

(IN ⊗K)
d

dt
zh + (IN ⊗M)Chzh = ∇z S (zh) , (3.10)

where IN denotes the N ×N identity matrix, ∇z S (zh) stands for the vector
of length 6N matrix with components ∇z S (zh j) ∈ R6, j = 0, . . . , N − 1. By
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using some properties of the Kronecker product, we have (IN⊗M)Ch = Bh⊗M

and therefore (3.10) reads

(IN ⊗K)
d

dt
zh + (Bh ⊗M)zh = ∇z S (zh) . (3.11)

The approximation is multi-symplectic in the following sense: let U, V ∈ R6N

be solutions of the variational equation associated to (3.11),

(IN ⊗K)
d

dt
Z + (Bh ⊗M)Z = S′′ (zh)Z ,

where S′′ (zh) is the block diagonal matrix with 6 × 6 blocks S′′ (zh,j), j =
0, . . . , N − 1 and the j-th component of S′′ (zh)Z is given by S′′ (zh,j)Zj,
being Z = {Zj}N−1

j=0 , Zj ∈ R6. Then, we have

∂t⟨(IN ⊗K)U, V ⟩6N + ⟨(Bh ⊗M)U, V ⟩6N − ⟨U, (Bh ⊗M)V ⟩6N = 0. (3.12)

Using the property (Bh ⊗M)T = (BT
h ⊗MT ) and the skew-symmetry of M,

then (3.12) reads

∂t⟨(IN ⊗K)U, V ⟩6N + ⟨(Bh ⊗M)U, V ⟩6N + ⟨(BT
h ⊗M)U, V ⟩6N = 0, (3.13)

which represents the discrete MS conservation law preserved by (3.11). We
finally note that

⟨(IN ⊗K)U, V ⟩6N =
N−1∑
j=0

⟨KUj, Vj⟩6.

Therefore, if Bh is skew-symmetric, then (3.13) leads to the conservation of
total symplecticity in time,

∂t
N−1∑
j=0

ω j = 0 , ω j(U, V )
def
:= ⟨KUj, Vj⟩6,

cf. [5]. Note that h
N−1∑
j=0

ω j is the natural discretization of ω̃ in (3.3).

3.2 Full discretization

The Hamiltonian structure of the semi-discrete system (3.5) suggests to use
symplectic methods in order to preserve the geometric character of the full dis-
cretization. Note first that, although the integrability of (3.5) (and of (1.1)) is,
to our knowledge, not known, a good behaviour with respect to the preserva-
tion of the discrete Hamiltonian (3.6) is expected, at least when approximating
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soliton-type solutions, [14]. On the other hand, as far as (3.6) is concerned,
observe that this is a quadratic invariant associated to the symmetric matrix

S1,h = −1

2



IN 0 0 −κIN
0 IN κIN 0

0 κIN 0 0

−κIN 0 0 0


.

Then, with a similar proof to that of Theorem 6.3 in [8], we have

hI1,h(p
n
h, q

n
h , ϕ

n
h, φ

n
h)− hI1,h(p

0
h, q

0
h, ϕ

0
h, φ

0
h) = 0,

where (pnh, qnh , ϕn
h, φ

n
h) denotes the approximation to (ph(tn), qh(tn), ϕh(tn), φh(tn))

at tn = n∆t (with time step ∆t) given by a symplectic Runge-Kutta method.
We also notice that, after full discretization, I1L is also conserved.

In the case of the quadratic quantity (3.8), the associated matrix is

S2,h =
h

2



0 Bh κBh 0

−Bh 0 0 −κBh

−κBh 0 0 0

0 κBh 0 0


.

When Bh is skew-symmetric, S2,h is symmetric and the invariant would also be
conserved by integrating (3.5) in time with a symplectic Runge-Kutta method.
In particular, this holds whenBh is the pseudospectral differentiation operator.

Similarly, when (3.9) is discretized in time with a symplectic method, we ob-
tain a fully discrete scheme which preserves by construction a discrete version
of (3.13) and, consequently, is multi-symplectic, [6,24].

3.3 Numerical experiments

In order to illustrate the previous results, the periodic initial-value problem
of (1.1) on a long enough interval (a, b) with β = 1/2 and f(u) = |u|2u was
numerically integrated to approximate the soliton-type solution of the form
(1.3) given by
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u(x, t)= ρ(x+ V t, η, V, κ)exp

i
√

1 + 2κη2

1 + 2κV 2

(
t

2κ
− V x

)
− it

2κ

 ,
ρ(X, η, V, κ)= η sech

(
ηX√

1 + 2κV 2

)
. (3.14)

The spatial discretization was performed with the Fourier pseudospectral col-
location method, so that Ah in (3.4) corresponds to the evaluation at the
collocation points of the second derivative of the trigonometric interpolant
polynomial based on the nodal values of the semidiscrete approximation uh.
It is well known that Ah satisfies (3.7) with

(Bh)lj = Re
 2πi

N(b− a)

N/2−1∑
m=−N/2

θm(j−l)
N m

 , i, j = 0, . . . , N − 1,

where θN = e−
2πi
N . Therefore, Bh is skew-symmetric and Ah is symmetric.

Using the fact that the Discrete Fourier Transform diagonalizes Ah, the pseu-
dospectral method is in practice implemented in Fourier space for the discrete
Fourier coefficients of uh.

For the time integration, we have chosen the implicit midpoint rule, which is a
symplectic Runge-Kutta method, and therefore the conservation of quadratic
invariants is expected. On the other hand, the formulation of the fully discrete
method as multi-symplectic (a property which is a consequence of the study
developed in Sections 3.1 and 3.2) can be used to derive a numerical dispersion
relation in a more direct way, [2,6,7]. Let zn

i be the numerical approximation
at time tn to the value of z at the i-th grid point and define the operators on
R6

Dxz
n
i

def
:=

zn
i+1 − zn

i

∆x
, Dtz

n
i

def
:=

zn+1
i − zn

i

∆t
,

Mxz
n
i

def
:=

zn
i+1 + zn

i

2
, Mtz

n
i

def
:=

zn+1
i + zn

i

2
, (3.15)

and i = 0, . . . , N − 1. When (3.9) is discretized in time with the implicit
midpoint rule we obtain

KDtz
n
j + MMt(Chz)

n
j = ∇z S (Mtz

n
j ) , (3.16)

where Dt,Mt are given by (3.15), zn = (zn
j )

N−1
j=0 and znj is an approximation

to zh,j(tn). Note that since Mt is an operator on R6 and (IN⊗Mt)(Bh⊗I6) =
Bh⊗Mt, then system (3.16) can be solved iteratively for zn+1/2 def

:= (IN⊗Mt)z
n

by the fixed point algorithm
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[
(IN ⊗K) +

∆t

2
(Bh ⊗M)− ∆t

2
(IN ⊗ L)

]
Z [ν+1] =(IN ⊗K)zn

+
∆t

2
N (Z [ν]), (3.17)

for ν = 0, 1, . . ., where

∇z S (z) = L(z) +N(z),

with the linear (L) and the nonlinear (N) part of the gradient ∇z S (z) and,
for Z = {Zj}N−1

j=0 , Zj ∈ R6, (N (Z))j = N(Zj), j = 0, . . . , N − 1. For the
case of (1.4), (2.20), (2.21) and in terms of the discrete Fourier coefficients of
zn+1/2 = (p, q, v, w, ϕ, φ), the fixed-point system (3.16) will have the form

q̂(m)− β∆t
2
μ2mp̂(m)− κϕ̂(m)= q̂n(m)− κϕ̂n(m) +

∆t

2
Â(m), (3.18)

−p̂(m)− β∆t
2
μ2mq̂(m)− κφ̂(m)=−p̂n(m)− κφ̂n(m) +

∆t

2
B̂(m),

p̂(m)− ∆t

2
ϕ̂(m)= p̂n(m),

q̂(m)− ∆t

2
φ̂(m)= q̂n(m),

for −N/2 ⩽ m ⩽ N/2 − 1, where μm
def
:= im 2π

b−a
, Â(m), B̂(m) are the m-th

discrete Fourier coefficients of

A(p, q)
def
:=

∂V (p, q)

∂p
, B(p, q)

def
:=

∂V (p, q)

∂q
,

respectively and

pn+1 = 2p− pn, qn+1 = 2q − qn, ϕn+1 = 2ϕ− ϕn, φn+1 = 2φ− φn.

as the approximation at tn+1 from the resolution of (3.18) by the corresponding
algorithm (3.17). Note that the contribution of the variables v and w is given
by

μmp̂
n(m)= v̂n(m),

μmq̂
n(m)= ŵn(m),

and this is used to simplify the rest of the equations leading to the final form
(3.18). Its complex version is
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κχ̂(m) + iû(m) + β
∆t

2
μ2mû(m)= κχ̂n(m) + iûn(m)− ∆t

2
f̂(u)(m),

û(m)− ∆t

2
χ̂(m)= ûn(m),

for −N/2 ⩽ m ⩽ N/2 − 1, where u = p + iq, χ = ϕ + iφ and un+1 =
2u− un, χn+1 = 2χ− χn.

The previous formulation is now used to derive a dispersion relation for the
numerical method. Observe that the linear dispersion relation of (1.4), (2.20),
(2.21) is

D(k,ω)
def
:= κω2 + ω+ βk2 = 0. (3.19)

Note that using the operators defined in (3.15), the scheme (3.16) can be
written in Fourier space as

Dtq̂n(m)− βμmM̂tvn(m)− κDtϕ̂n(m)= ̂A(Mtpn,Mtqn)(m),

−Dtp̂n(m)− βμmM̂twn(m)− κDtφ̂n(m)= ̂B(Mtpn,Mtqn)(m),

βμmM̂tpn(m)= βM̂tvn(m),

βμmM̂tqn(m)= βM̂twn(m),

κDtp̂n(m)= κM̂tϕn(m),

κDtq̂n(m)= κM̂tφn(m).

Multiplying the equations 1 and 2 by Mt and using equations 3 to 6, we obtain

DtM̂tqn(m)− βμ2mM̂2
tpn(m)− κD2

t p̂
n(m)=Mt

̂A(Mtpn,Mtqn)(m),

−DtM̂tpn(m)− βμ2mM̂2
t qn(m)− κD2

t q̂
n(m)=Mt

̂B(Mtpn,Mtqn)(m),

or, in complex form (u = p+ iq)

κD2
t û

n(m) + iDtM̂tun(m) + βμ2mM̂2
tun(m) +Mt

̂f(Mtun)(m) = 0,(3.20)

for −N/2 ⩽ m ⩽ N/2− 1. Then, substituting unj = ei(jξ+nω̃) into (3.20) leads
to the numerical dispersion relation

D̃(ξ, ω̃)
def
:= D(ψ1(ξ), ψ2(ω̃)) = 0, (3.21)

where D is given by (3.19) and

ψ1(ξ)
def
:=

ξ

h
, ψ2(ω̃)

def
:=

2

∆t
tan (ω̃/2) , ξ, ω̃ ∈ (−π, π).
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Fig. 1. Euclidean relative error in the soliton-type solution vs. time (log-log scale),
h = 0.2

Equation (3.21) shows the approximate preservation of the linear dispersion
relation (3.19) by (3.20).

For the nonlinear case, assuming that f satisfies (2.12), (2.13), the dispersion
relation is

D(k,ω)
def
:= κω2 + ω+ βk2 − g(1) = 0,

where f(z) = zg(z), g as in Lemma 2.1. Now, the inclusion of the operator
Mt in the nonlinear term of (3.20) leads to the numerical dispersion relation
of the form

κψ2(ω̃)
2 + ψ2(ω̃) + βψ1(ξ)

2 − g(| cos(ω̃/2)|) = 0.

The following numerical experiments study the accuracy and geometric prop-
erties of the scheme when approximating (3.14). As parameter values, we
have taken η = 1, V = 1, κ = 10−4 and, as space interval of integration,
[a, b] = [−150, 50]. The final time of integration is T = 100.

We first check the order of convergence. Figures 1 and 2 show the relative
errors in the discrete L2-norm of the solution and the derivative respectively
when N = 1000 nodes have been considered in space, and the stepsizes ∆t =
1/5, 1/10, 1/20, 1/40 have been taken in time, apart from the tolerance 10−13

for the fixed-point iteration associated to the midpoint rule. The spectral
accuracy of the pseudospectral approximation and the regularity of (3.14)
make the error in space negligible and it can be observed that the error is
divided by 4 when the time-stepsize is halved, as it corresponds to the second
order of the midpoint rule. Moreover, the growth of error with time is at
most linear in both the solution and the derivative, as it also happened when
integrating solution solutions of the paraxial NLS equation with the same
integrators, [14].
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Fig. 2. Euclidean relative error in the time derivative of the soliton-type solution vs.
time (log-log scale), h = 0.2
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Fig. 3. Relative error in I1,h of the soliton-type solution vs. time (log-log scale),
h = 0.2.

The behaviour of the method with respect to the quantities I1,h, I2,h and Hh

is illustrated in Figures 3, 4 and 5, respectively. They display the evolution
of the relative error between the values of the corresponding quantity at the
numerical solution and that of the (exact) initial condition. Figures 3 and 4
show that the errors in I1,h and I2,h are of the size of the tolerance and double
precision round-off, which corroborates the previous results of preservation
when using a symplectic method. As for the Hamiltonian, Figure 5 shows that
the relative error keeps small and, up to the final time of integration, does not
grow with time. Note also that, when the time-stepsize ∆t is halved, the error
is divided by 16. This fourth order of the error in the Hamiltonian may be
explained, as in the paraxial case (see [14]) by using (2.17). The fact that, at
the soliton-type solution (3.14), the variational derivative of the Hamiltonian
is a linear combination of the variational derivatives of I1 and I2 implies that,
in first approximation, the error in the natural discretization of H is also
negligible and just the error corresponding to O(∆t4) can be observed.
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Fig. 4. Relative error in I2,h of the soliton-type solution vs. time (log-log scale),
h = 0.2.
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Fig. 5. Relative error in Hh of the soliton-type solution vs. time (log-log scale),
h = 0.2.

4 Concluding remarks

In the present paper we consider nonlinear Schrödinger equations of nonparax-
ial type (NNLS), proposed as an alternative to the NLS approach in those
models with non-negligible nonparaxial effects. The formulation considered
here attempts covering different versions of the NNLS equation presented in
the literature, like the cubic, the cubic-quintic and other cases, [10,12,13,26].
The paper contributes to several mathematical properties of the equations. We
first establish linear well-posedness results (existence and uniqueness of solu-
tion of the linerized initial-value problem in suitable Sobolev spaces). Then
the Hamiltonian structure and two additional conservation laws are derived,
extending the results obtained in [12], relating the invariants with symmetry
groups of the equations and with the existence and generation of solitary-wave
solutions as relative equilibria. A third theoretical property proved in this pa-
per is the derivation of a multi-symplectic formulation, meaning the existence
of a symplectic structure with respect to both the space and time variables.
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The present paper finally studies the preservation of some of these properties
in the numerical approximation to the NNLS equations. We establish condi-
tions on the spatial and time discretizations in order for the resulting schemes
to preserve discrete versions of the continuous invariants as well as the MS
structure. These results are compared with those of the paraxial case and il-
lustrated with some numerical experiments for the cubic NNLS by using a
Fourier pseudospectral discretization in space and the implicit midpoint rule
as time integrator.

Several features motivate to extend this research to the two-dimensional ver-
sion of the NNLS equations. The first are suggested in some remarks of the
present paper and concern the extension of the theoretical results (mainly the
Hamiltonian and the MS structures) to the bi-dimensional case. An additional
challenge, specially from the viewpoint of the numerical approximation, is the
presence of new phenomena in 2D, like singularity formation in the NLS and
its relation with the inclusion of nonparaxiality in the new models.
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