
  

  

Abstract— The sleep apnea-hypopnea syndrome (SAHS) is a 
chronic respiratory disorder of high prevalence among children 
(up to 4%). Nocturnal polysomnography (PSG) is the gold 
standard method to diagnose SAHS, which is a complex, 
expensive, and time-consuming test. Consequently, alternative 
simplified methods are demanded. We propose the analysis of 
the respiratory rate variability (RRV) signal, directly obtained 
from the airflow (AF) signals. The aim of our study is to 
evaluate the usefulness of the spectral information obtained 
from RRV in the diagnosis of pediatric SAHS. A database 
composed of 946 AF and blood oxygen saturation (SpO2) 
recordings from children between 0 and 13 years old was used. 
Our database was divided into four severity groups according 
to the apnea-hipopnea index (AHI): no-SAHS (AHI < 1 
events/h), mild (1 events/h ≤ AHI < 5 events/h), moderate (5 
events/h ≤ AHI < 10 events/h), and severe SAHS (AHI ≥ 10 
events/h). RRV and 3% oxygen desaturation index (ODI3) were 
obtained from AF and SpO2 recordings, respectively. A 
spectral band of interest was determined (0.09–0.20 Hz.) and a 
total of 12 spectral features were extracted. Nine of these 
features showed statistically significant differences (p-value < 
0.05) among the four severity groups. The spectral features 
from RRV along with ODI3 were used as inputs to binary 
logistic regression (LR) classifiers. The diagnostic performance 
of LR models were evaluated for the AHI cut-off points of 1, 5, 
and 10 e/h, achieving 66.5%, 84.0%, and 88.5% accuracy, 
respectively. These results outperformed those obtained by 
single ODI3. The joint use of the spectral information from 
RRV and ODI3 achieved a high diagnostic capability in the 
most severely-affected children, thus showing their 
complementarity. These results suggest that the information 
contained in RRV spectrum together with ODI3 is useful to help 
identify moderate-to-severe SAHS. 
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I. INTRODUCTION 

The sleep apnea-hypopnea syndrome (SAHS) is a 
prevalent respiratory disorder that affects up to 4% of 
pediatric population [1]. Children affected by SAHS suffer 
from repeated apnea (airflow absence) and hipopnea (airflow 
reduction) episodes while sleeping [2]. This disease may lead 
to serious medical consequences, affecting cardiovascular 
and central nervous systems, as well as cognitive 
development of children [1], [2]. Consequently, it is essential 
for SAHS to be detected and treated timely. 

The gold standard test to diagnose childhood SAHS is in-
hospital overnight polysomnography (PSG) [3]. PSG 
involves monitoring and recording multiple biomedical 
signals from pediatric subjects during sleep, like 
electroencephalogram (EEG), electrocardiogram (ECG), 
photoplethysmography (PPG), airflow (AF), and blood 
oxygen saturation (SpO2) [3]. The recordings from PSG are 
used to compute the apnea-hypopnea index (AHI), which is 
the number of apnea and hypopnea events per hour of sleep 
(e/h) [4]. Pediatric SAHS and its severity are diagnosed 
according to AHI [4]. Despite PSG effectiveness, this test is 
complex, expensive, time-consuming and especially 
uncomfortable for children [5], [6]. 

These limitations, together with the high prevalence of 
the disease in children, have increased the demand for 
simpler diagnostic techniques. The analysis of a reduced set 
of signals is commonly used for this purpose. ECG, PPG, 
SpO2, and AF, have been widely analyzed in the pediatric 
SAHS context [7]–[11]. The analysis of respiratory rate 
variability (RRV) is proposed in our study. RRV have been 
successfully used to assist in diagnosing SAHS in both adults 
and children [11], [12]. However, the study of its spectral 
content has not been fully addressed. RRV, defined as the 
elapsed time between consecutive complete respiratory 
cycles, is directly obtained from AF [13]. This time varies 
when apnea and hipopnea events occur [11], [12]. 
Consequently, the repeated occurrence of apneic episodes 
modifies RRV signal in frequency domain [11], [12], which 
naturally leads us to its analysis. In addition, 3% oxygen 
desaturation index (ODI3) obtained from SpO2 has been 
incorporated into the study for comparison purposes, since it 
is a widely used clinical parameter to diagnose pediatric 
SAHS [14], [15]. 

According to the aforementioned considerations, the 
recurrence of apneas and hypopneas alters the RRV spectrum 
[11], [12]. We hypothesized that the spectrum of RRV 
contains useful information to assist in the pediatric SAHS 
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diagnosis. Consequently, the objective of our study was to 
evaluate the usefulness of the information derived from RRV 
spectrum to diagnose SAHS in children. In order to reach this 
goal, several spectral features have been derived from the 
power spectrum of the RRV signal, due to the utility that they 
have already shown in the SAHS context [11], [12]. The 
usefulness of the spectral features extracted from RRV, as 
well as their complementarity with ODI3, were assessed by 
logistic regression (LR) modelling. The AHI cut-off points 
commonly used to determine the different pediatric SAHS 
severity degrees were evaluated. 

II. SUBJECTS AND SIGNALS 
Nine hundred and forty six pediatric subjects suspected of 

suffering from SAHS participated in this study. All of them 
underwent PSG in the Pediatric Sleep Unit at the Comer 
Children’s Hospital of the University of Chicago. The study 
protocol was approved by the Ethics Committee of the 
Hospital and the legal caretakers of children gave their 
informed consent. The pediatric subjects were diagnosed 
according to the rules of the American Academy of Sleep 
Medicine (AASM) [4]. The common AHI cut-off points 1, 5, 
and 10 e/h were evaluated [16]. The population under study 
was randomly allocated in two groups: training (60%) and 
test (40%), to design and validate the proposed methodology, 
respectively. Table I shows the demographic and clinical data 
of the subjects under study. No significant differences (p-
value > 0.05) were found in age, gender, body mass index 
(BMI), and AHI between the training group and the test 
group, after applying the non-parametric Mann-Whitney test. 

PSG was conducted using a digital polysomnography 
system (Polysmith, Nihon Kohden America Inc., Irvine, CA, 
USA). All recordings included in our dataset had more than 3 
hours of total sleep time. AF recordings, acquired with a 
thermistor and sampled at 100 Hz, were used to obtain RRV 
signals. AF recordings were normalized following the 
methodology suggested by Varady et al. to minimize 
differences among children due to age [17]. Moreover, AF 
artifacts were discarded using a comparison of the standard 
deviation and the kurtosis of AF segments. RRV was 
computed as the time between consecutive inspiratory onsets 
[13]. We looked for the points that are relative maximum in 
AF (the points where the first derivative changes from 
positive to negative) and the elapsed time between 
consecutive maximum points was computed to obtain RRV 
[13]. Afterwards, an interpolation process (resampling at 100 
Hz) was required prior to the spectral analysis since the RRV 
samples do not follow a constant sampling rate [11], [12]. 
SpO2, used to obtain ODI3, was recorded by means of an 
oximeter at the sample rate of 25 Hz. Artifacts presented in 
SpO2 were removed following the methodology suggested in 
others studies [10], [15]. 

III. METHODS 

A. Spectral Analysis 
The recurrence of apneas and hypopneas causes 

alterations in RRV spectrum [11], [12]. Consequently, we 
proceeded to estimate the power spectral density (PSD) of 
each interpolated RRV signal using the Welch method 
(Hamming window of 216 samples, i.e. ≈ 655 seconds, 50% 

overlap, and length of the discrete Fourier transform of 217 
points) [18]. 

Fig.1 shows the normalized PSDs averaged for the four 
SAHS severity groups in the training set: no-SAHS (AHI < 1 
e/h), mild SAHS (1 e/h ≤ AHI < 5 e/h), moderate SAHS (5 
e/h ≤ AHI < 10 e/h), and severe SAHS (AHI ≥ 10 e/h). 

Differences among the four SAHS severity groups in the 
training dataset were evaluated using the non-parametric 
Mann-Whitney test in order to obtain the spectral bands of 
interest [12], [14]. As can be seen in Fig. 2, the spectral band 
of interest corresponds to the region that shows a greater 
tendency to reach statistically significant differences (p-value 
< 0.05 after Bonferroni correction) between the SAHS 
severity groups: 0.09–0.20 Hz. The spectral band of interest, 
obtained as indicated below, can also be observed in Fig. 1. 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA OF THE SUBJECTS 
UNDER STUDY 

 All Training 
group Test group 

Subjects (n) 946 570 376 
Age (years) 6 [6] 6 [5] 6 [6] 
Males (n) 584 (61.73%) 339 (59.47%) 245 (65.16%) 
BMI (kg/m2) 17.92 [6.17] 17.72 [6.74] 18.07 [6.01] 
AHI (e/h) 3.82 [7.80] 4.17 [8.34] 3.33 [6.44] 
Nº with AHI ≥ 1 (n) 783 (82.77%) 479 (84.04%) 304 (80.85%) 
Nº with AHI ≥ 5 (n) 397 (41.97%) 256 (44.91%) 141 (37.5%) 
Nº with AHI ≥ 10 (n) 225 (23.78%) 145 (25.44%) 80 (21.28%) 

 

 
Figure 1.  Mean and standard deviation (std) of power spectral density 

(PSD) of the four severity groups: no-SAHS (NO), mild (MILD), moderate 
(MOD), and severe (SEV) SAHS, and spectral band of interest. 

 
Figure 2.  p-values versus frequency for each of the comparisons between 
SAHS severity groups: NO vs. MILD, NO vs. MOD, NO vs. SEV, MILD 

vs. MOD, MILD vs. SEV, MOD vs. SEV. 

 

 



  

In order to study the RRV spectrum, the following 
features were extracted:   

• Median frequency (MF) of the full RRV spectrum. This 
measure, defined as the frequency component under 
which 50% of the cumulative power is obtained, allows 
to estimate the spectral power concentration [10]. 

• Maximum and minimum amplitude (MA, mA) of PSD in 
the spectral band of interest [10], [14]. 

• First-to-fourth statistical moments (Mf1-Mf4) and median 
were computed to evaluate the central tendency, 
dispersion, asymmetry, and concentration of the spectral 
information in the band of interest obtained [12], [14]. 

• Spectral entropy (SE1), quadratic spectral entropy (SE2), 
and cubic spectral entropy (SE3) were obtained to 
measure the flatness of the RRV spectrum and quantify 
the signal irregularity [11]. 

• Wootters’ distance (WD). WD is a disequilibrium 
measurement that allows to measure the RRV 
irregularity [10], [12]. 

B. Oximetry index 
ODI3 was obtained from SpO2 the recordings. The 

algorithm used for computing ODI3 is based in the study 
developed by Taha et al. [19]. 

C. Logistic Regression 
LR is a standard method for binary classification [20]. It 

estimates the posterior probability of belonging to the 
positive or negative class according to the predictor variables, 
i.e. the input features to the model [20]. The logistic function 
follows the expression: 
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where π(x) is the posterior probability of membership to the 
SAHS class, β0 is the interceptor, βi (i = 1, …, k) are the 
coefficients associated to each predictor variable, and k the 
number of features in the LR model. β0 and βi were optimized 
using the algorithm of maximum likelihood estimation [20]. 

D. Statistical Analysis 
 The spectral features extracted from RRV did not pass 

the Lilliefors normality test. For this reason, the non-
parametric Kruskal-Wallis test was used to assess the 
existence of statistically significant differences (p-value < 
0.05 after Bonferroni correction) in the obtained features 
from the four severity groups. The non-parametric Mann-
Whitney test was used to evaluate possible significant 
differences (p-value < 0.05 after Bonferroni correction) 
between each pair of SAHS severity groups. The diagnostic 
performance of the LR models was evaluated in terms of 
sensitivity (Se), specificity (Sp), and accuracy (Acc). 

IV. RESULTS 

A. Training group 
 Table II shows the median and interquartile range (IQR) 
values of the spectral features obtained for each SAHS 
severity group, as well as their corresponding p-values after 

Bonferroni correction. All of the features, except MF, SE2, 
and SE3, obtained statistically significant differences (p-
value < 0.05) among groups. Three LR classifiers were 
trained with the 12 spectral features from RRV (LRRRV), 
using the AHI cut-offs 1, 5, and 10 e/h. Moreover, these 
features along with the ODI3 fed three more LR classifiers 
(LRRRV, ODI3). 

B. Test group 
 The diagnostic performance obtained by LRRRV and 
LRRRV, ODI3 models, and ODI3 in the test set for the 
thresholds 1, 5, and 10 e/h, is shown in table III. Binary 
LRRRV, ODI3 models achieved 66.5%, 84%, and 88.5% 
accuracy for 1, 5, and 10 e/h, respectively, outperforming the 
results obtained with single ODI3 and LRRRV. 

V. DISCUSSION AND CONCLUSIONS 
In this work, the usefulness of RRV signal to help in 

SAHS diagnosis in children has been evaluated. A spectral 
analysis of RRV was carried out for this purpose. A new 
spectral band of interest (0.09-0.20 Hz) was defined by 
means of statistical techniques, which have already shown 
their usefulness in previous studies of pediatric SAHS [10], 
[14]. Afterwards, this band was characterized by spectral 
features (MA, mA, Mf1-Mf4, median, and BP). MF, SE1, SE2, 
SE3, and WD features were also calculated to complete the  
 

TABLE II.  VALUES OF SPECTRAL FEATURES FOR THE FOUR SAHS 
SEVERITY GROUPS 

Spectral 
Features 

No-SAHS Mild SAHS Moderate 
SAHS 

Severe 
SAHS p-value Median 

[IQR] 
Median 
[IQR] 

Median 
[IQR] 

Median 
[IQR] 

MF (10-2) 4.50 [1.79] 4.35 [1.66] 4.50 [1.96] 3.89 [2.31] 0.058 
MA (10-3) 5.28 [2.03] 4.71 [1.98] 4.75 [2.10] 4.30 [3.46] < 0.05 
mA (10-6) 3.36 [23.15] 3.06 [39.78] 2.69 [68.40] 0.17 [7.60] < 0.05 
Mf1 (10-3) 1.23 [0.86] 1.22 [0.96] 1.25 [1.22] 0.89 [1.38] < 0.05 
Mf2 (10-3) 1.35 [0.52] 1.25 [0.66] 1.26 [0.69] 1.05 [1.03] < 0.05 
Mf3 (100) 1.18 [0.93] 1.04 [1.07] 1.10 [1.24] 1.50 [1.27] < 0.05 
Mf4 (100) 3.48 [3.20] 3.18 [2.69] 3.37 [3.34] 4.48 [4.59] < 0.05 
Median (10-3) 0.49 [1.03] 0.58 [1.31] 0.42 [1.65] 0.16 [1.04] < 0.05 
SE1 (10-1) 9.05 [0.51] 9.09 [0.56] 9.05 [0.71] 8.89 [0.74] < 0.05 
SE2 (10-1) 7.91 [1.24] 7.92 [1.34] 7.90 [1.16] 7.72 [1.18] 0.404 
SE3 (10-1) 6.45 [2.28] 6.35 [2.10] 6.40 [1.94] 6.32 [1.65] 0.864 
WD (10-1) 3.90 [1.08] 3.79 [1.32] 3.95 [1.63] 4.22 [1.61] < 0.05 

TABLE III.  DIAGNOSTIC PERFORMANCE OF LR MODELS AND ODI3 FOR 
AHI CUT-OFF 1, 5, AND 10 E/H 

 AHI cut-off = 1 e/h 
Se (%) Sp (%) Acc (%) 

LRRRV
 55.3 44.4 53.2 

LRRRV, ODI3 65.5 70.8 66.5 
ODI3 59.9 86.1 64.9 

 AHI cut-off = 5 e/h 
Se (%) Sp (%) Acc (%) 

LRRRV
 52.5 66.4 61.2 

LRRRV, ODI3 74.5 89.8 84.0 
ODI3 69.5 89.4 81.9 

 AHI cut-off = 10 e/h 
Se (%) Sp (%) Acc (%) 

LRRRV
 52.5 68.6 65.2 

LRRRV, ODI3 78.8 90.9 88.3 
ODI3 81.3 88.5 87.0 



  

spectral information from RRV. Statistically significant 
differences were observed in 9 out of the 12 extracted 
features, showing the usefulness of these features. In this 
way, a LR model fed with both the spectral features from 
RRV and the ODI3 reached moderate-to-high accuracies 
(66.5%, 84%, and 88.3%) for 1, 5, and 10 e/h, respectively. 
Therefore, the joint use of the spectral information from 
RRV and ODI3 was able to achieve high diagnostic 
capability in the most severely affected children, showing 
their complementarity. 

Several studies have evaluated the use of a reduced set of 
biomedical signals to detect SAHS in children, commonly 
assessing a single cut-off. Shouldice et al. [7] analyzed 
temporal and spectral features from 50 ECGs. They used a 
quadratic discriminant analysis (QDA) classifier, reaching 
84.0% Acc (85.7% Se and 81.8% Sp) for the threshold 1 e/h. 
Lázaro et al. [8] analyzed 21 PPGs. In their study, a linear 
discriminant analysis (LDA) classifier was used, obtaining 
86.7% Acc (100% Se and 71.4% Sp) for 5 e/h. Garde et al. 
[9] analyzed spectral and temporal features from 146 SpO2 
and PRV signals. They used LDA and the AHI cut-off 5 e/h, 
achieving 84.9% Acc (88.4% Se and 83.6% Sp). The results 
of these studies are barely generalizable due to a low number 
of subjects involved in them. By contrast, we have evaluated 
our methodology according to the three common cut-off 
points that establish the SAHS severity degrees, and 
validated our proposal with a large database. 

Some studies have already evaluated their methodologies 
according to the different degrees of SAHS severity. In this 
regard, Barroso-García et al. [11] analyzed the variability 
and irregularity of 501 AF and RRV signals. The LR models 
used in their study achieved 60% Acc for 1 e/h (60.5% Se 
and 58.6% Sp), 76% Acc for 5 e/h (65% Se and 80.6% Sp), 
and 80% Acc for 10 e/h (83.3% Se and 79% Sp). Hornero et 
al. [10] used a multi-layer perceptron neural network fed 
with features from 4191 SpO2 recordings. Their study 
reached 75.2% Acc (84% Se and 53.2% Sp), 81.7% Acc 
(68.2% Se and 87.2% Sp), and 90.2% Acc (68.7% Se and 
94.1% Sp) for cut-off points 1, 5, and 10 e/h, respectively. 
However, both studies reported lower diagnostic 
performance in 5 e/h. By contrast, our results for this cut-off 
were higher.  Pediatric subjects with an AHI ≥ 5 e/h have a 
high risk of being affected by major adverse health 
consequences and morbidities [1], [16]. Moreover, surgical 
treatment with adenotonsillectomy is recommended when 
AHI ≥ 5 e/h [1], [16]. Hence, their early diagnosis is crucial 
and an automatic detection could help in these cases. 

This study has some limitations. Although the number of 
subjects is high, an even larger database would reinforce the 
general character of our results. In addition, RRV signal has 
been analyzed only in the frequency domain, thus it could be 
interesting to conduct complementary analysis in the time 
domain. Using methods of multiclass classification or AHI 
estimation could be also useful, which constitutes another 
interesting future research line. 

In summary, a band of interest in RRV spectrum, with 
significant differences between the pediatric SAHS severity 

groups, was determined. RRV signal was characterized by 
means of spectral features. The LR model fed with these 
features and ODI3 reached high diagnostic ability for AHI 
cut-off values 5 e/h and 10 e/h, outperforming the individual 
diagnostic capability of ODI3 in all thresholds. These results 
suggest that the information contained in RRV spectrum 
combined with ODI3 is useful to help identify moderate-to-
severe pediatric SAHS. 
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