Annexes

In this document, we present in detail the calculations of our work, which lead to the results
presented in the main text. The first annex corresponds to the computation of the N = 1 case.
The last one includes the development of the N = 2 case. We have organised them in the same
way as we present the results in the principal work.

A  Annex I: N=1 Case

Here we include the expanded calculations of the first case considered in Section 3.
We start with the next Lagrangian:

B, = Rab/\zab"' ¢A7 Yy A Dy (1)

T 42
Where we use the conventions defined in Sectlon 1 of the present work.

We have the following relations:

V) = Ya” 1
Yorar = VarVar] = Yab = Va0 = 5(Ya % = 07a)
1
p =Dy :=di+ Zyabw“b A : (2)
Rab = dwab + wac A wa
1
Zal...ar = meal...arar+1...apear+l N Ne'P — Zab = §€abcd€c A ed
Then, we can write the Lagrangian like follows
1 ab
Blz 826abcdR N ef /\€+ ¢A77a€ Ap (3)

A.1 H; calculation

We are going to calculate H; = dB;. But, as we already know, we only have to calculate the
covariant exterior differential of the Lagrangian, i.e., Hy = DB;.

1 1 1
8 QEabcdDR“b AeCAel — ” 2€adeRab A De¢ A e + S—QEGdeRab A e A De?
: (4)

7 - 7 -
+§/3A’V5%e“/\p—§wAv vaDe“Ap+§wAv5’yae“ADp

Hy =—

Firstly, it is easy to prove that DR vanishes by the Bianchi identities:



DR™ = (dR + [w,R])® = (dR+w AR — RAw)®
:(dw+dw/\w—w/\dw+w/\R—R/\w)“b (5)
:(R/\w—w/\R—i—w/\R—R/\w)“bZO

In the fourth step we have used that d?> = 0 and R = dw®, and we have proved what we
wanted.

The second step consists in the fact that we can simplify the H; expression if we note that,

1 1
~ %= 2eadeR A Def A e = 3 26adeR“b A e A De? (6)

Then, if we substitute this two results in (4)) we have

1
Hy =——€.aR™ A €€ A De —|—2p/\7 Ya€* A p

Ak 2
;- (7)
- 51/) AV YD A p+ 5% A Yae A Dp

At this point, we define (as we can see from the algebra)
O% = De® 1= de® + w% A e’
ik? -
T .= De® — 7w,ya VAN 'QD
Expression which corresponds to the torsion. We take the expression of De®:

a a iHQ_ a

And we can write as,

1
Hy = eaeall™ A et A (T + W M)+ L5 ATt A p

- 515 A Yoy (T + 7%“ AY) A p+ 515 A7’ Yae® A Dp

We follow calculating Dp. We know that the covariant exterior differential for spinorial
forms is given by:

1
D) :=d\ + Z%bwab A (11)
That implies, as p is directly related with spinors by definiton, p := Dy — Dp = D(Dv),

1 1 1
E’Yabwab Np= d(d¢ + Eryabwab A 1/}) + 1’7abwab Ap

1 1 1
= d*P + *’Yabdwab N — *’yabw“b A dip + f’yabw“b Ap (12)

Dp =dp+

1 1 1 1
Z%bR“b A = JYars” "Ap+ e "Ap= %bR“b A1

Substituting in ([10)),



1 ~ .
= pCanalt A e AT+ Ceacalt® N e ADY A+ 5P A Y A p

i - . i - iK? i - . )
= VAW A p =S¥ A0y /\w)/\p+§wA75vae A Yo RY A1)

H,
(13)

. _ . 2 _ _ _
Where, the term —%1/)/\757a(%¢7“/\w)/\p vanishes by the Fierz identity: ¥y, AYy*Ap = 0.
We continue proving that,

éeabcdR“b A €SN de AP+ %1/_) A 75%6“ A %CRbC AN =0 (14)

To do that, we use which follows

YaYoe = VYabe + NabYe — NacVb (15)
Then,

7 - -
geabcdR“” Aef APyt A+ YA Y Ya€® A Ve R A9

= %eabcdR“b A e APyt A+ %& A Y Yapee™ A R A (16)
E_ 5 a be 3 7, 5 a be
+ SwAv NapYe€” N RN — 8wA7 Nac Vo€ N R N1

where the two last terms give us the next,

i - i -
e A Vonapyee® A RY Ay — SUA Vo nacye® A R A

1 - i -
= SV A e AR A G+ 2 A naeye® A RDAY (17)

i 5 a c i 5 a b i 5 a b
Zgw/\’Y%@ /\Ra/\¢+§¢/\7%€ /\RaAiﬂ:ﬂW\’Y%@ NR o NY

Which vanishes by 1) A 45y,1 = 0, because 7, are symmetric matrices.

Finally, we have the terms

ceanaR™ A e AUV A+ 2 Ay el AR A, (18)
which we are going to prove that cancel each other. We know that,

75 — 70717273 SN 75 x 6abcd,}/af)/b,yc,yd N ,}/5 o ,yabcd (19)
Then,

75%1;(: = )\€abcd’7d — 757012 = )\6012373 (20)

Where €123 = 1 and Yo12 = Yj07172] = V07172, because the 7, matrices anticommute each
other (they have different indices).

We have



PV e = =Y (P 0)mre = = e o1
2301 2.3, 372 _ 3 (21)
=7V (VM= YR=7rRr=Y
Where we have used that: 7%y = I, v'v; = I and 7%y, = I. That implies:
73:)\73—>)\:1 (22)
Then,
'75’Vabc = Cabczﬂ/d (23)
Substituting the last result in our expression, we have
éGabcdRab A e’ A QZ’Yd A ¢ + éig A Gabcdrydea A Rbc A lb -
: ; (24)
%eabcdRab A ¢7d A ¢ - %eabcdec Net A ¢’7d A ¢ =0
Finally, we arrive to the wanted expression of Hy,
1 ‘ -
H, = peadeR“b AeS AT + %ﬁ A VY% A p — %1/1 AV A p (25)
K
We can write the last term as follows,
%i AT N p — %ﬁ AV YT At (26)

A.2 DMotion equations

From we are going to obtain the equations of motion. To do that, we need to calculate
Ioo1.an Hy (0% is a gauge field or curvature) and impose that it vanishes. We have three
equations:

1. Eq. of w® — IpaH, = 0.

2. Eq. of €* — Ia H; = 0.

3. Eq. of ¥ — I;H; = 0 (it is equivalent for ).

For this, we only have to derive with respect to the correspondent form in ([25)).

1. We must derive with respect to R® and R" (the last contribution has a plus sign):

1
IpawHy = Q—K_Qeabcdec AT =0 (27)
2. The second one is,
1 ab c i 5
IraH, = @GabcdR Ne— §¢ A’ vap =0 (28)

3. As we said before, it is equivalent to derive with respect to p or p, because we have real
Spinors:

. a /L a
IHy = i7" 7ae" A p = 57771 Ab =0 (29)
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A.3 Vanishing Torsion

We can continue with the calculation of I;H;, which takes the zero value when we substitute
the equations of motion.

i
IGHy = =57°7T" Ap (30)

From the equation of w® we are going to obtain that 7% = 0 (vanishing-torsion). We note
that if we put this result in the last relation, we will have what we want. Then, we are going
to prove it.

As we said, from the first equation of motion we have (without a constant)

Eabcdec VAN Td =0 (31)

The forms e® constitute a base of T*(M) (the cotangent space of the manifold M), which
takes the expression e* = e ,dx* with e, invertible. So, the torsion reads in this basis

T =T, Ne® A e’ = epeqge’ AT Ae Ae’ =0

c d U v d cuvg o (32)
— €abed€” N Ty N e N e¥ X €gpeal un N € Eg =0

Where we have,

Ey X €gue” Ne' Ne? (Ey #0) (33)

Because we know that the e®s form a basis, so they are linearly independent. That implies,

€abed€ 9Ty = 0 0 69T, = 0 (34)

In the first relation we have contracted the ¢ index. Now, we know that

uvg wuv u uv
5abd - 59615 ab — 591)6 ad T 5ga5 bd

35
= 0930%,0% — 0930%40" ¢ — 0950" 0% + 090" 40 ¢ + 09,00 — 09,0% 46", (35)
Substituting,
Ty — T4 — 0% T %0a + 69T %0 + 64T % — 69T = 0 (36)
Interchanging the indices and reorganizing,
219 g — 209, T %0 + 269, T%q = (37)
Contracting b with g:
21 — 2T g — 2T = 2T oy — 4T% g = 0 — T"y, = (38)
Finally, we have
T =0—=T9=0 (39)
And it is what we wanted to prove.
So, we can do
?
I Hy = —575%Ta Np=0 (40)

Like we mentioned.



A.4 Einstein and Rarita-Schwinger equations

We have used the first equation of motion to derive that the torsion vanishes. Now we use the
other two to derive the Einstein and Rarita-Schwinger (R-S) equations, respectively.

a) Einstein equations:
From the second eq. of motion we have,

1 ab c (= 5
Tz Cavea BN €S = S NyPrap =0 (41)

We take the first term (without constants). Manipulating it,

€abed R A €€ = €apedR%un A €SN e? A e A €” = €peae€™* Ry N B (42)
where,
By X €cupse® A€ N e (43)
Then, we have (€peqe™’® = —0U25):

— SUS Ry N By = (6°46" ap — 6°56™ a + 0°20""40) Ry A (—E)

= (6°30%40" — 8°40"40% — 0°40%40"g + 6°40" 40" 4 6°20%40% g — 8°40" 46" ) Ry A (—E)
= [0°4(R" s — R"vu) — 6°3(R™aq — R4a) 4 6°(Rba — R4)] A (—E)

= [20°gR™ 4y — 20°y R 0q + 26°, R%pq) A (—E,) = [20°gR"™ y, — 4R ) A (—E)

(44)
We take (—4) as common factor and the fact that 0°; = n®;:
sb 1 s U
[R db — 577 dR uv] A (4Es) (45)
So,
1 sb 1 s U
?[R a — 5 all w] =0 (46)
as we know for Einstein vacuum field equations.
b) R-S equations:
From the last eq. '
i Va€s A p — %75%7” AN =0 (47)
The second term vanish if we impose that T = 0.
So, we have
Ve A p =0 (48)
We write,
75%6Z A Py A dzt A da” A dz® = 7P, A po =0 (49)
and,
’yyao-pua =0 (50)
the R-S eq.



A.5 Symmetries of the action

Finally, we would have to study the invariance. We know that I;H; = —%75fyaT"“/\ p. We would

1
need to check that T is related to Ipe H, which implies that I;H; = §X W A IpaH. Here,

X is the term that we should calculate to assure the invariance. After an easy calculation,
we obtain,

< 2
1K
K2 " A pug — 76“’)“1757“% A Ped (51)

We already have all the ingredients to work out the field variations. According to the lemma,
they are:

Xab:_' 2 _abcd 5

dw = —gxab

de = ik?ey) (52)
1

500 = de + e

With e the parameter of the gauge transformations. The difference respect to the original
variations is that 6w® = 0 in the gauge case. With these results we conclude our work in the
N =1 case.

B Annex II: N=2 Case

We present here the calculations of Section 4.

As in the N =1 case, we are going to start considering the following Lagrangian,

1 e | 1
By = —pRabAZab—l—%@bA/\vf’v(l) ADY' = SF A F 4 (F =) A(dA—a) = Sanb (53)
K

Where we have that

V(1) = Yal”
1
Yab ‘= V[aVb] = 5(%% — YY)
Rab = dwab + wac A wcb
1
Eab = §€abcdec A €d , (54)
pt = Dyt i= dt + ™ A
1K -
a = EgABwA A wB

b:= %EAB@Z;A’)/E) A @DB

Where, if we remember, A = 1,2, e'y = =%, = 1, e40e®p = —545 and the * operator is
the standard Hodge-duality.

We note that the first two terms are very similar to the last case, with the difference that
now the spinors have the A index. It corresponds to the internal global SO(2) R-symmetries.
The new terms involve the two-forms a and b, which we have defined before, and the one-form
A and the two-form F', as we stated in Section 4.
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B.1 Action differential calculation

We are going to calculate Hy = DB,. But, we can rewrite the Lagrangian as follows,
1 ab c d s 5 a A 1 1
By = —WeabcdR ANe‘Ne —|—§@Z)A/\7 Ya€ AP —§F/\*F+*F/\dA—*F/\a—b/\dA+§a/\b (55)
K

Now, we have to calculate the exterior covariant exterior differential. We do that term by
term:

1. The first term is,

1 1
— @EabcdD(Rab A e N €d> = @Eabcd}%ab A\ e’ A Ded (56)

We know that DR® = 0, and we can join the terms with De?.

2. The second gives,

i I i — a i - a (e a c
§D(¢AM5%6“APA) = §PAA757a6 /\pA—gwAM%De ApA+§¢A/W5%e AYpe R Nip?A

(57)
1
Where we have, Dp? = Z%bRab A A,
3. To calculate the next term, we write
F=Fyne"Neb
b (& X € ) (58)
*F = /\Eabcha NeNe

Where we have defined the Hodge-duality with A a constant that we do not need to find,
at the moment (but we know that its value is 1/2, as we will see later).

Then, we have

1 A
— 5*F/\F = —§eadeF“b/\ec/\ed/\Fuv Aet A e’ (59)

So,

A A
— 5ECMD(F‘“’ ANeCNet ANFy Aet Ae') = —§eabcdDF“b AeCANe N Fy Ae' Ae

A
+ NeapeaFP N e A Det A Fpy A e¥ Ae’ — §eabchab AeSANel ANDF,, Ne A e’ (60)
+ Neaped FP N ef N e N Fuy A e A De?
4. The next reads,
D(FANdA)=D(,F)NdA+, F AND(dA) = D(.LF)NdA (61)

= XeapeaDFP A e A e A dA — 2XNeapeaF ™ A €€ A Del A dA



5. Now follows,

- )
~D(.FAa)=-D(.F)Aa— ,F A Da= —%eabcdDF“b A A el Al piia AP 62)

+ ik X eapeaF® N e A Det A e giha AP + ik XeapeaFC A e A ed Aelpia A pP

In the last term we have used the properties of the spinors.

6. We continue with,

—~ D(bANdA) = —DbANdA —bA D(dA) = —Db A dA = ikepihay® A pP AdA  (63)
In a similar form as before.
7. The last is,

1 1
§D(a/\b) :§(Da/\b+a/\Db)

64)
K2 N 3 K2 3 _ (
= € BYA NP7 NeTpver® AYP 4 et pia AP A piher® A p”

It is the simplified result.

Useful expressions:

We have all the terms of H,. But, before writing it, we are going to do two things. First,
we are going to relate De® with the torsion curvature, as in the N = 1 case. The other thing
is expressing the terms with dA in terms of the equation that involves A and F'.

We can write (as we did before)
O% = De® := de® + w A e’
ik? -
T .= De% — 7'(/1,4’)/& A 'le
The last implies,
iK? - N
D€a = Ta + TwA’}/a N d] (66)

Now, we can derive the equation that establishes the relation between F' and A, considering
the next expressions from Bj

TNF = NegpeaFP N e€ N e A Fyy Ae A e® (67)
JFN (A — a) = NegpeaFP N e A ed A (dA — a)
So,
ENEFPA Fpyy = €apeaF™ N et N e A (dA — a) (68)

Which implies,



E N Fab = eabcdec A €d A (dA — a) (69)

And (dA —a) = (dA — a)yy. Then,

ENAFyp = €aped(dA — )y A €M E = (dA — a)y N E (70)

Finally,

F=dA—a (71)

With this, we can write the terms with dA in H, as follows,

(.)dA = (L)dA—F —a) + (.)(F +a) (72)

We have all the ingredients to give the expression of H,. It reads,

H,

1 7 — 1
— 4—QeabcdRab ANeC AT + geadeR“b Aef A 1/JA7d A wA + ip}; A YPyqe® A pA
K

- 2

1 - K* - —~
= VA AT A pt+ TV A" AYE A p’

- A
+ gsz A Y27 A Ve R A 9 — 5eabcdDFa" AeCNel N Fyy Ae Ae

ab c d u v Z./\KQ ab c od A u v

+ XegpedFCNeENTCN Fyy Ne¥ N e +T€adeF NENYAY NPT N Fyy Ne¥ Ne

A
— §€abch‘“’ ANe“ANel ADF,, Ae* A e’ + NeaweaFP NeS A el A Fuy Ae* AT

Z')\HQ ab c d u ) A ab c d
+T€“deF NeCNe" N Fuy Ne* ANbay? N> + Neapea DE Ne Ne® N (dA — F —a)
+ Neaped DF™ N e A e A (F + a) — 2N eapeaF* N e AT A (dA — F — a)
— 2XeapedF P N e NTUN (F + a) — iAK apeaF° N €€ Ay A A (dA — F — a)

- KA -
— iN&2€qpea P N ef A pay AYA A (F 4 a) — 7eabcdDF“” Nef Ned Aelpiy AP
_ K3\ _ _
+ ikNeqpeaF P N eS AT N et gy NP — TEGdeF“b Aef APyt AN B g AY©
+ ik NegpedF° N €€ A e A 5AB17D_A A ,oB + i/£€ABQ/J_A75 A pB A(dA—F —a)
2

. - K - -
+ ike gty A pP A (F +a) + ZSABwA A pB A € pibery® AP

K2 A T B C .7 5 D
+Z€ BYANYT Ne" phey’ Ap

(73)
B.2 Final H, expression
We can simplify a lot of terms of this equation and give the final expression of Hs.
a) We are going to prove that
i - i -
gabed R N NPAY AU 4 2P Ay Yae” AR A YT =0 (74)

We know,
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YaYoe = Yabe 1 NabVe — NacVo
75/711{)0 = Eabcdvd

The second term gives us,

élﬂ ANAY V2 AV RY A A = %zﬂ AN €apeayle® A RY At + %/; ANV et AR Nt (T6)
And,

i@/;A AP ed A Ry A2 =0 (77)
It is because ¥4 A Yy, A 104 = 0. So,

%eabcdRab Aef ANhay® Ayt — %Eabcdec Ae* ANpay At =0 (78)

b) We take the terms that depend on torsion.

1 i -
ﬁeabcd}%ab Aef AT — §¢ ANV VTN p? + NeapedFP N eEANTEN Fyy A e A e’
K

+ Xeared PPN NN Fyy A e AT — 2XeapeaFP A e AT A (dA — F — q) (79)
— 2XeapeaF P N e AT A (F + a) + ikXeqpeaF ™ N e AT N e pipy AP

This can be simplified, if we note

—2XeapeaFP NS NTEN (F +a) = — 2XeapeaF™ NeS AT A Fyy A A e

- 80
— ikNeaped PP N €S ANTEN e gihg AP (80)

which gives,

1 i -
472eabcdRab ANe AT — F¥a A V1T A p? — NeapeaFP N e ANTEN Fyy A€ A e

+ Neaped FP N e A e N Fyy AN e AT — 2XeapeaF* N e AT A (dA — F — a)

1 i -

- ﬁeabcdR“b ANe AT — §¢ A ATV TN p? 4 NeapeaFP N eE A e A Fyy Ae® ATV
K

F

— 2XeapeaFP N e ANTEN (dA — a — 5)
(81)

These terms do not give problems because, as we have proved (the result in N = 1 can
be extended to any dimension in the same way), torsion vanishes, 7% = 0.
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¢) We can do the same with the terms that are proportional to (dA — F — a).

NeaedDF® N e N e A (dA — F — a) — idk’eapeaF™ N e Ayt A A (dA — F — a)
+ ke gy A pP A (dA — F — a)
(82)

They are going to vanish because one of the equations of motion implies that (dA—F—a) =
0, as we will see.

d) We continue with those that depend on F'.

A A
- §eabcdDF“b ANeCNeb N Fyy Ae Ae’ — §eabch“b ANe Ne NDF,, Ae* A e’

+ NeabedDF® N e ANed N Fuy Aev A e (83)

A A
= §eadeDFab ANeCAel A F, Aet Ae’ — EeadeFab Ae“Ael ANDF,, Ne* A e’

e) Now, we consider those of second order in F' and .

IAK2

EadeFab A eS N 1/;A7d A Q,DA N Fuv Aer Ae’
Z.)\'Li2 ab c d u ) A
—|—?eabch ANe“Ne N Fyy Ne" Nhay? N
— iNG2€qpeaF N €€ A payd AN Fuy A Ae” (84)
Z-)\"i2 ab c od A u v
=—— €aped " N EENPAY NPT N Fyy Ne" Ne
IAK?

+ Teabchab A€ A el A Fuy A e Aay’ A

f) These two of second order in ¢ and that they depend on DF? cancel each other.

IR\ —
Neabed DFP N e N el A a — TeabcdDF“b AeC Ael Aetgia AP =

IR\ - IR\ — (85)
TEabcdDF“b AeC Ael Aetpia AP — TEchdDFab ANeAel ANetpiha AP =0

g) These two of order x? vanish too.

3
) - KA _ _

— iAEapea P A e A payt APt A a — 7€abchab A€ Ahay?t At N eP g AY©
KON ab c AT d A B i c

ZTGabch Ne /\¢A7 /\1/} Ne CQ/}B/\w
K3\

- TGabchab A e’ A 'lEA/yd A ¢A A EjBCQEB’ A ¢C =0

(86)
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h) Finally, we are going to derive the Fierz identity in this case, which is more difficult than
in N=1.

K2 - - , - K2 - -
Zm”% Apy* AUE A p? +ike phay® A pP Aa+ ZéABwA A pB N e€pibey® AP
2
I‘{/ — —
+ ZEABwA AYB A Cpihey® A pP
K2 - 5 T a B A K° A B c D
= sz Ya NUBY NPT A p” — o€ BYaAY’ N p” Ne“phe N
2

2
K — — K — _
+ —epa A pP A pibey® AP + et piha AP A e pibey® A pP

4 4
K2 - 5 T a B A ’432,4 r B c .5 D
:Z¢A7 Ya NYBYE NPT A p +e BYA NP~ Ne“pihey’ N

2
’i — —_
—Z€AB¢A/\¢B/\5CD¢C’V5/\0D
K2 - 5 T a B A "‘JQA - B Cc .7 5 D
= —Pa’Va N (WYY NYT) AN p” + —eTpha A p” A (€7 Doy AT

4 4
K’ A T B c i 5 D
_Z( YA NYT) Ne” pey” A p
K2 - 5 T a B A "“JQA r c .5 D B
= VA A WY AYPT) AT+ et pla AT ey’ AYT) Ap
2
K — —
— Z€CD¢CV5 A (5AB¢A AYBY A pP
(87)
If we multiply all by 7° gives,
K2 - T a B A K2 A c 7 5 D B
—Zi/fA%/\(l/)BV ANYZ) A p +€ YAV N (€7 pYey” A7) Ap
2
,{/ — —_
+Z€CD1PC/\(5AB¢A/\¢B)/\PD=
K2 - T a B ARQB’S c T 5 D A (53)
_ZQ/}A’Ya/\(wBW ANYZ) A p v Ay A (€ pthey” NYT) A p
2
I{ — —
- Z€D0¢D N <€ABQ/1A A\ IDB) N pC =0

The expression vanishes by the Fierz rearrangement, YA A (VBy® A B) + 4B A
(e prhe AYP) + ey B A (e€p1ey® AYP) = 0, as we said.

The rest can not be simplified, and we consider them individually in Hs.

So the final expression of H, is,
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1 7 1 -
H, :@eabcd]%“b AeC AT+ ip_A AYPyae® A p?t — §¢A A Yy T A p?

A A
+ §eabcdDF“b ANeCAel A Fyy Aet Ae’ — §eabch“b ANeSAel ANDFE,, Ae* A e’

iAK?

+ XeapeaFP NeE N e N Fyy Ne* NTY — Teabch“b A€ NYAYEANYAEN Fouy A e A e’

IAK2

- F
+ TE“deFab AeCAel ANFuy Ae Ahay’ A — 2XeapeaFP NeS AT (dA —a — =)

+ ik Negped F° N €€ A e A eABw_A A pB + i/isABw_A”ﬁ A pB ANF,, ANe" Ne’

2

+ XeaeaDFP N e N ed A (dA — F — a) — idk2eapeaF A e A gy AA A (dA — F — a)

+ ik pihay® A pP A (dA — F — a)

(89)

As we can see, the first three terms are the same as the NV = 1 case. The rest are new.

B.3 Motion equations

We are going to derive the equations of motion. Proceeding like in the other case, we have:

1. The w® equation:

1
IRabHQ == ﬁﬁabcdec VAN Td =0

2. Equation of e?:

1 T -
IraHo :@eabcd}%ab Aef — 57,0,475% A pA + NeapeaF N e A el A Fyy A et

1
—2/\eabchab/\ec/\(dA—a—§F) =0

Where we have,

0 1 0 1 0 1

1
= NeapeaFP N e N et A Fuy A e — 2XeapeaF™ N e A (dA — a — §F)

So we can write,

]TdHQ -

i
12 €abca R N\ € — 51/)/175%1 ANpt+14=0

3. 14 equation, which is the same that for ¢4:

L Hy =iy’vy,e* A p — %75%T“ A — ikXeareaFP N €€ A et A ety

— ke g P A Fuy A et A e’ — ik gPy° A (dA—F —a)=0
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And,

"0 A DY = in 7, A p* — ik (F +7°F) A e pyp®

Then,

(95)

L Hy = iv°y,e® A Dy — %75%@ A + ke Y PAyP A(F +a—dA) =0 (96)

. We calculate the F'® equation (A = 1/2):

1 1
Ippan H :Zeabcd ANt N Fyy Aev Ae’ — EEWCIFW ANeSAed Neg Aep

1
+§6abcd/\ec/\ed/\(dA—F—a):O

We note that, e® A e® A e A e = ¢?F

So,

4
1

1
4

1
IpperH = S€aped N e Ne? N(dA—F —a) =0

1 1

—aped NEENELNFy Nev Ae' — zemdF“” ANeCANel Ae, A ey
1

= ZeabchCdqu N Fyp — ZeuvchCdabE N F™

1
uved uved
= —~€abed€ EN Fuv — ~€abed€ EN Fuv =0

4

. Finally, for A, deriving respect to ¥ = (dA — a)

So,

[(;HQ = —QAEadeFab A eS A Td + )\EadeDFab A ef A Gd

— iIMZ€gpea 0 N €€ N w_A’yd APA + Z'HEAB?EA”YS ApP

= —2X€weaF N e AT+ Neapea DE® A €€ A €
— ik eapea® A €€ A hayt At — Db

(97)

(99)

(100)

. 2 B
= NeapeaDF® A ¢ A e — 2NeapoaF® A e A (T + %wﬂd A gAY — Db

=D, F—-Db=0

IsHy = D(,F —b) =0

15
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B.4 Vanishing /; H> by motion equations

We follow with the expression of I;, Hy, which is going to be null when we impose the equations
of motion. Then,

7
I; Hy=— 575%T“ A pA — iN&Z€apeaF P A e N wA ANF, Ne“Ae’

+ iAGZEpedFP N e N e A Fuy A e“~vY A wA + ik Negped F° N €€ A et A €AB,OB (102)
+iked gV pB A Fyy AN e A e¥ — 2iA%€qpeaF™ N ey N A (dA — F — a)
+ike? gy’ pP A (dA — F — a)

Simplifying,

I; Hy=— %75%T“ A p?t — i €apea F° N ey NP N F 4+ ik2 F A Fyy A ey? Ap?
+ir F AN et pp? +ine gy pP A F — 2idk%€apeaF™ A ey Ay A (dA — F — a)
+irke? gy pP A (dA — F — a)

(103)

Finally,

I; Hy=— %75%T“ A pt — i €pea FC N eyt AP N F 4 iK%, F A Fyy A ey® Ap?
+ik(,F +7°F) A e pp? — 2iAk2enpeaF N ey AYA A (dA — F — a) (104)
+ike? gy’ pP A (dA — F — a)

Now, we are going to prove that it vanish imposing the field equations. We begin making
use of the fact that, 7* = 0 and (dA — F' —a) = 0. So,

I Hy = —idR%€qpeaF " NSy NP A F +i6 F AN Fyy A"y A2 +in(LF +7°F) ne ppP (105)
We must show that these three terms are going to be cancelled. To prove it, we take ,

Ly Hy = iy, A p* — %75%7” AP —ik(,F +7°F) A e gy —ike gpPy° A (dA — F — a)

= V07,6 A p? —ik(F +7°F) Aepy? =0

(106)
where we have,
Yyae® A pt = k(L F +7°F) A e pypP (107)
From this relation we obtain,
M~y*y,e* = (LF ++°F) (108)

If we find the value of the M matrix, we will prove what we are searching. At first, we take
the slash notation: J' = v, F? and ¢ = v,e®. Then, M is going to be of the form, M oc ¢ A F.
It implies that,
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FHPF o g ANF Ay =¢ANF A ¢ (109)
We expand the right-hand term,

ENTF NV =70 A peF" A ygey° (110)

We can contract the indices in different ways:

Ya€® A Yo A yaety® =

e® A F' A eyapeq7® (0 contractions)

+2e4 A F% A 7.9¢%95 (1 contraction) (111)
+2e% A Yo A e.° (1 contraction)

+2e* A Fyp A €7 (2 contractions)

The terms with one contraction cancel each other. That means,

Vo€ A Yo N ygey® = e A F* N eMyapeay” + 26 A Fop A €

112
= —e® A F" A edeabcdfy“r’fyf’ +2e* A Fyp A ebff’ (112)

We know that, (v°7°) = —I and e* A Fy, A e’ = Fyy Ae® A e’ = F. Which that implies,

—e* A FP A edeabcdfy5’y5 +2e* N Fp A ebny’ = €apea P N €% A e + 2v°F

113
= €peadFC Ne® N et + 290 F (113)
As we remember,
L= NegpeaFP Nef Net = N =1/2
1 114
— = §eabch“b AeCAel = 2 F = epeaF® A el A e? (114)
So,
beadFP N e N et +27°F = 2, F + 29°F = 2(,F + 7°F) (115)
That is,
(F +7°F) = My yae” o ¢ AF Ay 70e” = 2(.F +7°F)
1 116
— (LF+~°F) = §¢AF/\75%6“ (116)
And as a conclusion,
1
M = §¢ AF (117)

Now, as we said, we can complete our proof. We write,
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I Hy = —idiPeaeaF ™ A ey ANt N F + ik F A Fyy A e'y” A
+ik(F +°F) A et pp”
- 2
1R
= S CanaF™ Ny NG AF 4 iR F N Fyy ety Ay

+ %¢ AF A yae® N pp®
2
= —CwaaF™ N ey YA NF + ik F A By A€ty At (118)

- 2
- %¢ ANFEN(F4+~F) AetgelBoyp©

;2
K :
- _?Eabchab AN €C7d A wA ANF + ZHQ*F A Fyp N eu,yv N wA

ir? 5 A
—7¢/\F/\(*F+’YF)/\¢

In the last step we have taken that, e?pefo = =64 — =04 = —1if A = C. Afterwards,

we consider the last term of the last line,

A

iK? iK?
- 7¢/\F/\<*F+’)/5F)/\wA = —7’}/a€a/\’)/chbc/\<*F+’Y5F)/\wA

. 9
:—%( CA FPy0 4 26 A Fuy?) A (F +7F) A g4

i b A i b 5 A .2 b A
= ——e"NF" e N FANY —Te“AFCAfyabcfy FANY? —ire® N Fyy’ N F AN

2
—ik%e? A Fyy APy°F A
it b A ir? b d A .2 b A
= —7€a/\FC"}/abC/\*F/\1/J +76aAFcAeabcd7 FANY? —ir“e® N Fyy’ N F AY
—ik%e® A Fyp AP7°F A
iK> iK2

= —7€a A FbC'Yabc ANV VAN ¢A + TEbcadec A ea“Yd A l/JA NF — Z"%z*F A Fab A eafyb A Q/}A
— iK% A Fyy APy F A

(119)
Coming back to I, H,

iK?

- Hy = —7eabchab ANeNENYANF + k2 F A Fuy A ey’ A2
iK> 5 A
—7¢/\F/\(*F—|—’y FYA
ir? b d A . 2 A K b A
= —7eabch“ ANeN NPT NF + ik F N Fyy A ey AN — TGG/\FCfYabc/\*F/\w
-2
+ %ebcadec A 6“7‘1 A wA ANF —ik2, FANFy A e“’yb A wA — iK% N Foy A 7b75F A @bA
ir? b A .2 b5 A
= —76“/\Fc'yabc/\*F/\¢ — k€N Fyy NV’ F N
(120)
We have,
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. 2
K .
I; Hy = —76(1 A Fbc%bc ALF N 1/1‘4 — k2 N Fo A 7b75F A @DA
i b t A
= _Tea NF C’}/abceuth NF"™ Ne¥ Ne A ZD
— k2 A Fyy A ’yb'y5FuU Aev Ae’ A 1/JA
. 2
K
= —Te“ ANF bceabcd”yd’ﬁeuth AFYAe? Aet A wA

— K2 A Fyy A 7b75Fm, Aev Ae’ A wA

(121)

. 2
K

= —TFbceabcdfydny’ewwt AFYWAeAe? Aet A wA

— K2 Ey APy Ae® A et Ae¥ A ph

We rewrite the expression using the next fact, e A e® A e¢ = e F,.

-2
1K
I; Hy = —TFbceabcdvdvs‘eum AF"™ A e E NP —ik? Foyy APy Fup A €™ By Ap? (122)
We can note that,

€uth€awtg - eutheagwt = _2<5au59v - 5av5gu) (123)

and the equation reads,

-2
1K
I; Ho = 7(5%5% — 09,69 F*Capeay™® N F™ N By ANp™ — ik*Foy Ay Fup A €™ 9B, A op?

(6%, — 5“g69u)Fbceabcd7d75 NF"NEg N\ wA — ik E,, A 7b75Fm, N€e™MIE, N QbA
= iK2FCapeay™y® N F N Ey A — ik2Fopy APy Fup A €9 E, A p?

iK?
2

(124)

To do the third step we have taken: §%,—0%,69, = 6%, +06%, = 20%,. At next, we interchange
the g index in the first term,
IjaHoy = ik F*€apeqy™y® N F A B9 Nt — ik Fopy Ay Y Fup A €9 Eg N b (125)
Now, we make contractions of the low indices a, b, ¢, d and d

I;4Ho :22'/{2Fbceagcd’yd75 ANF% AN EI A + m2Fbceabcgvd75 ANFe N EIANYA

126
— ik Ep APy Fyy A €I B, A 9™ (126)

where it gives,
2K F*eageay™y® N F% A B9 Nt =0 (127)

Due to the contraction of the b index in F* A F'%,. So that, after reorganize:

150 Hy = ir”€" Fogy'y® N Fye A Eg AN — ik Fyy*y° A Fuy NEg A =0 (128)

And the proof is completed.
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B.5 I; H; in terms of fermionic, vierbein and F @ equations

Knowing that this equation vanishes when we substitute motion equations, we are going to
work with it. We are going to manipulate it, writing this relation in a more comfortable way.
What we want to do is writing it in terms of motion equations. If we remember, it was (the
parameter A = 1/2)

| -
I, Hy == 5979T° A p* = uscaF™ Ny N NF ik F A Fyy A ey A9

+ik(,F +7°F) A et pp? — in%eqpeaF® A ey Ay A (dA — F — a) (129)
+ ike gy’ pP A (dA — F — a)
As we said before,
(F+7°F) = My°yqe” (130)

1
Where we have, M = §¢ A F. We use this fact to express our relation in terms of I, Hy =
E(14). We have,

E(1p4) = iv°7.e A p? — %75%7” A —ik(,F+~°F) Ne ppP —ine gpBy° A(dA—F —a) = 0
(131)
We multiply all by kM:

KME({a) = ikM~ 7, A p* — %M VT A A
— ik M (F +~7°F) Aepp? — i Me? pypPy° A (dA— F — a)

(132)

We add and substract this last expression in ({129)) obtaining
i 5 a A Z.K’2 ab c.d A - 2 U v A
Ileng—gy YL N p —7eabch NeNY NPT NF + ik N Fyy N ey N
+ik(.F 4+ ~7°F) A 8PP — ik eqpeaF N ey A A (dA — F — a)
+ ke gy pP AN (dA — F — a) + KME(1)4) — ik M~ y,e® A p?

+ %Mfy"’%T“ AP iR M (L F +9°F) A e g 4+ ik*Me? ppP4° A (dA — F — a)

(133)
Where it gives,
ik(,F +°F) Aetpp? —ikMAPy,e® A p* =0 (134)
and,
ir>

- 7eabch“b/\ewd/\wf‘ AF +ik%, F NFpy A"y ApA +ik2 M (,F +~°F) Ae gy = 0 (135)

Like we have proved before. This implies that:
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I3,

Hy = — LY5%Ta A p? — ik2€qpeaF A ey AP A (dA—F —a)+ ike 2 pB A (dA—F —a)

2
Y RMEB(D4) + LM~y T A A + ik Med gy P A (dA - F — a)

2
(136)

The following step is changing T® and (dA— F' —a) terms by others proportional to Iz Hy =

E(w®) and Ippa Hy = E(F®), respectively. We are going to do it one by one:

o Firstly,

: 1
—%75%TaApA XA B@™) (137)

ab,A

We have to calculate X", which has the structure

X0 = me P ye A ply + ne™ iy e, A ply (138)
We only need to find m and n. Then, we know that

1

5,3 Cabed® AT (139)

E(wab)

So,

i 1 1
=5V T A = me ™ e A pig Neaprse” AT + e ™y 5 ey A ply Neaprse” AT

4K? 42" (140)
We deal with it separately. Starting with,
1 abed b r S 1 C r S
@me Y2y A pud N €gprs€ NT7° = _EW@SV vee' A pud ANe " NT
1
=5 mey Yo" A Pt A et AT + ﬁm’y‘r’%e” A pis A et AT (141)
1 1
=5 2m'y Yo" A pit A et AT + 2,27 5, T¢ A pt
The other gives us,
1
2" neSyte, N ph A eaprse” N TS = ~on 2n5f§757“eu AplyNem AT
K
_ 1 5 u A c Td Te
_—wnyyeu/\pcd/\e/\ +22n776u/\p6d/\e/\ (142)
_ 1 5 _ u A c Td 1 5_ u A d TC
——@nyyeu/\pcd/\e/\ —@nvveu/\pdc/\e/\
1
= ——any5fy“eu A p Aef AT?
K
So we have,
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a /L u (& Z C 2/L u (&
VeI N pt = —?mfyf’fyce A pfd ANeS AT+ ?mfyg”ycT Apt — En’y% €y /N p‘;l AeS ANT?

(143)
We note,
Yoy T A p? fmv%Tc Ap?t
i 92 (144)
——m’y Yot A pih A ef /\Td——nv Ylew A ph AeC AT =0
Which gives, respectively,
m = —ik>
1 21 —iK?
—mP e A pag N et AT = =ny>ytey Apyg ANeC ANTT = m =2n —n = 5
K K
(145)
And,
ab,A __ 2 abcd 5 Z./{/Z abcd 5 u
X7 = VY€ N plag — €Y e A P (146)
Secondly,
WK 5. a g AL ob.A
EMV VoI Nt = 52 A E(w®) (147)

This case is very similar as before. The differences are: a minus sign, a s factor and that
we have to substitute p* by (M1)?. It means, if we introduce these changes in the first
expression, we will directly obtain X, abd,

-3
a (L C K a C u
X5t = eyt N (M) + ey ew A (M) (148)
Thirdly, 1
ey pP AN (dA—F —a) = §X§b’AE(F“b) (149)

Where the equation,

E(F®) = ;eabcdec ANe? A (dA - F —a) (150)
That is,
ike 5y P A (dA—F —a) = =X A eqpeac® AN el A (dA — F —a) (151)
Here, X5 abA g going to have the form,
X A = Ae®edgA pnB o8 (152)

Which implies,
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A A
ZEabcdé_AB,.)/E)pgi/\GOLbrser/\es/\ (dA—F—a) _ _750d€AB,Y5pgl/\er/\es/\ (dA—F—a)

2 rs
A A
= —55‘4375,05; ANeCAet A (dA —F —a) + Eéﬁfe“‘mf’pz ANel Nef A (dA — F —a)
A A
= —gsAnyE’pcB;l ANefNe AN (dA—F —a) — 557??6143’}/5/)2[ ANeCNed A(dA — F — a)
A A
= —§€A375p3 A(dA—F —a)— 55,??5A375p3 A(dA—F —a)
= X5y’ pP A (dA - F —a)
(153)
Finally,
— XV P AN (dA - F —a) = ikepy°pP A (dA = F —a) = X\ = —ix (154)
and
X9 = —jgetteded gy pB (155)
e Fourthly,
1
ik2Met gy B A (dA— F — a) = §ij’AE(Fab) (156)

We can see that it is almost equal to the previous case. This one only varies on p? —
(M)P and a « factor. Doing this it gives,

XA = ittt M) (157)

e Fifthly,
— ik%eapeg FP N ey ANYAN(AA — F —a) = ;ng’AE(F“b) (158)

Substituting E(F) we have

1
— ik €apeaF ™ A ey A YA N (dA—F —a) = Zng’A A €apede’ N el A (dA — F —a) (159)

X4 takes the form,

X504 = AF Py Aot pF oy At (160)

Then,
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A
7Fab’}/c/\wc’A/\Eabrser/\es/\<dA—F—a)

4
+ %F“C’yb AYAN €qppse” A e* A (dA — F — a)
= i\F“b% A YA N egprse” A €SN (dA—F —a)
'ZF“C’yb A wA A €aps€” Ne* N (dA—F — a) (161)
+ %F“nyb A YA A eanse” A e A (dA — F — a)
- %F“C PAYA N €qpese” Nt A (dA — F —a)
':F“cvb A @ZJA A €apre€ Ne*N(dA—F —a)

We note that,

%F“yb/\wf/\ecbrser/\es/\(dA—F—a) = —%Fc“fyb/\z/)f/\ecbrser/\es/\(dA—F—a) (162)

and, if we change it to the left-hand side:

%F“'yb A wf A €aprs€ Ne* N (dA — F —a) + %Fc‘l’yb A 1/1;4 A €ars€” A€ N (dA—F —a)

= gF“cvb A @Z)f A €aprs€” N€* N (dA — F — a)
(163)

We can see too,

%F‘wvb AN €qpese” Ne* A (dA — F —a) + %F“cyb AV A eqpree” Ne* A (dA — F — a)

= ﬁFacvb A Qﬁf A €apes€” N e N (dA — F —a)

2
(164)
So, operating
A b A T A LS
ZF Ve NV N €aprse” Ne* A (dA— F —a)
+ %F‘wyb AYAN €qppse” A e* A (dA — F — a)
B iF“b% NN eaprse” Ae* A (dA = F —a) (165)
- %F“vb A A €aerse” N e A (dA = F — a)
- %F“vb AU A €apese” A €* A (dA — F — a)

Then, we can write
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A
ZF‘“’% AP N eqrse” Ne* A (dA — F — a) + %F%b AYLE N €qerse” AN e* A (dA — F — a)

+ HF‘””yb A wf A €qpes€” N €* A (dA — F — a) = —ik*eapeaF° A ey A A A (dA—F —a)

4
(166)
What gives us
%FGCV” A YA N €apese” N e* A (dA — F — a)
= —ik%eapeaF P N ey AN YA N (dA — F — a)
(167)
A b A
ZFG Ye NV N €aprs€” N €S A (dA — F — a)
—i—%F“nyb AN €aers€” NS N(dA—F —a) =0

Working with the first expression,

—Heacst‘w/\esyb/\wA/\(dA—F—a) = —imQGQdeF“b/\ecyd/\wA/\(dA—F—a) — = 4ir?

4
(168)
and with the second one,
A ab c,A r s
ZF Ye NV N €aprs€” N €A (dA — F — a)
- —gF%b AYA A €qurse” A€ A (dA— F — a) (169)
—>A:—g—m:—2m?
Finally,
Xt = 20k Fy, Aot + dik? Flocytl A o2 (170)
With all these results we can rewrite I;, Hy in terms of motion equations:
1
1; Ho zi[xf‘bvf‘ A E(w™) + X594 A B(w™) + X§" 4 B(F) am)
+ XPAB(F) + XA E(F)] + kME(U)
If we call:
Xab’A _ Xizb,A + X;Lb,A
yobd = x4 4 X4 4 X (172)

ZAB =rkM

we can write,
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1 1 _
I Hy = ixava A E(w™) + 5Y“b»*“z«j(zwb) + Z4 NE(p) =0 (173)

Because, F(w®™) = 0, E(F®) =0 and E(¢4) = 0. Substituting be’A (1=1,2,3,4,5) and
simplifying:

iK? iK>
Iy, Ho =~ [Tealwdf%eu N (Pg = KM g) + T€ab6d757u€u A (Pl = K(M) )] A E(w™)

— [ire®ed gy® (pB, + k(M) E) + 2ik>F®y, A poA — 4ik? Flacyt a 4] A B(F®)
+ ZA5 NE(pp) =0
(174)

B.6 Supersymmetry transformations

We have just what we were searching for. To finish our work, we are going to study the
supersymmetry transformations. Firstly, recalling the algebra,

Rab — dwab + wac A WCb

- 2
1R~ —
T = de® + w% A € — —ay* A
! 2 (175)
ph = dp + e A A
F=dA—a

And the curvature associated to F° is DF%. If we set the curvatures equal to zero, we
recover the Maurer-Cartan equations:

dw™® = —w?. A\ w®

.2
IK* -
de® = —w% N eb + 71#,47“ A A

1 (176)
d,@Z}A = _Zyabwab A QzDA
dA =a
Working in the group space, we use the Lie derivative:
Ly =dix +ixd (177)
Where we have,
ixpt = et (178)

With € the transformation parameter. Due to this fact, we can calculate easily the super-
symmetry transformations of the gauge fields:

i) For w,

Lyxw® = dw® = dixw™ + ixydw® = —ix (W A wd’) =0 (179)

So,
Sw™® =0 (180)
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ii) The e* variation,

. 2 _
Lye® =0e® = dixe® +ixde® = —ix(w® A e’) + %ix (pay® A
B (181)
ik

=5 (e A A —hayt Net) = iR"Eay Ap?
and the final result is,

Se® = ik%E " A ap? (182)
iii) The 1* one,

1 1
Ly = 69t = dixpp® +ixdyp”® = de® — Jqapix (W A7) = det + L™ A et (183)

which gives,

1
St = de + Zyabw“b A et = Det (184)
iv) For A,
LyA=6A=dixA+iydA=iya= %AB@X(&A AB) )
. 185
1R _ n . _
= S BEANYT = A AYP) = ine ey AT
Then,
SA = ike ges NP (186)
v) Finishing with the F%° one,
LxF® =§F" = dix F* 4 ixdF*® = 0 (187)
So,
SF™ =0 (188)

We have just obtained the original transformations, but we are looking for those which are
modified by X4, Y4 and Z45. These variations are calculated according to the Lemma
defined in the second section of this work. It tells us that the variations are the same as before,
but we have to add some new terms to them. As result of doing this,

5wab — —EAXab’A
de® = ire A
S = de* + i%bwaba‘ — ZApeP (189)
0A = iket gespB
SF — _g,yabA

And we have what we wanted.
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