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ABSTRACT

We perform a time-dependent quantum computation of the van der Waals interaction between
two free identical atoms, one of which is initially excited. Making use of the perturbative approach
developed in Refs.[TH3] it is shown that, in addition to an off-resonant interaction force between the
two atoms, the two-atom system is subjected to a net force which oscillates periodically in time.
We prove that the apparently missing momentum is carried by the resonant photons which mediate
the periodic transfer of the excitation between the atoms, guaranteeing this way the satisfaction of
the action-reaction principle in the quantum realm. Remarkably, since mediating photons remain
virtual throughout the process, their momentum is virtual and thus unaccessible experimentally.
Ultimately, as the de-excitation of the system takes place, that momentum turns into actual
when carried off by the real photon which is emitted spontaneously. Hence, the directionality of
such an emission constitutes a vestige of the net force acting upon the two-atom system while excited.

En este trabajo hemos llevado a cabo un calculo cuantico, dependiente del tiempo, de la
interaccién de van der Waals entre dos dtomos libres idénticos, uno de los cuales se encuentra
inicialmente en un estado excitado. Haciendo uso del formalismo desarrollado en Refs.[TH3]
mostramos que, ademés de una fuerza de interaccién no-resonante entre los dos dtomos, el sistema
completo se encuentra sujeto a una fuerza neta que oscila periédicamente en el tiempo. Asimismo,
probamos que el momento aparentemente desaparecido es acarreado por los fotones resonantes
que median la transferencia periddica de la excitaciéon entre los dos atomos, garantizando de
esta manera el cumplimiento del principio de accién-reaccién a nivel cuantico. El hecho de que
los fotones mediadores de la fuerza permanezcan virtuales a lo largo del proceso hace que su
momento sea virtual, siendo indetectable de forma experimental. En 1ltimo término, ese momento
se convierte en actual cuando es acarreado por el fotén real emitido espontdneamente cuando la
desexcitacién del sistema atémico tiene lugar. De hecho, la direccionalidad de dicha emisién con-
stituye un vestigio de la fuerza neta que actiia sobre el sistema atémico mientras permanece excitado.

I. INTRODUCTION

Long-range interactions between neutral atoms result
from the coupling of the electromagnetic (EM) quantum
field fluctuations to the current fluctuations of the atomic
charges [4 B]. In the electric dipole approximation they
are known as van der Waals (vdW) interactions. In early
quantum mechanical studies, London [6] found out that
the interaction between close neutral atoms in the ground
state decreases as R~® with the interatomic distance.
Later, the quantum electrodynamical (QED) approach
of Casimir and Polder [7] showed that, when retardation
effects are introduced, the vdW interaction energy goes
as R™7 for large separations.

Further investigations on vdW-like interactions involv-
ing excited atoms —cf., Wylie and Sipe [8, 9] and others
[T0HI2]- revealed that the resultant forces contain two
separable components, namely resonant and off-resonant
forces. The former are mediated by resonant on-shell
photons whose frequency equals the transition frequency
between intermediate atomic states. On the contrary, the
latter are mediated by photons of any frequency.

On the other hand, Dicke’s works [I3] on the reso-
nant interaction between two identical atoms showed that
nearby identical atoms may exchange a quantum exci-
tation in a coherent manner by means of the periodic
exchange of a resonant photon. As a result, the two-
atom system behaves as a single entangled quantum sys-
tem whose evolution in time is coherent [14HI6]. Also as
a result of coherence, for the particular arrangement of
atomic phases in the so-called symmetric and antisym-

metric states, enhancement and inhibition of the sponta-
neous emission rate are obtained, respectively.

In the last decade, a renewal interest has flourished in
the vdW interaction of excited atoms, motivated by the
ever-increasing improvement in the techniques of atomic
manipulation as well as by the possibility to build g-bits
from binary atomic systems [I7]. In this respect, differ-
ent approaches to the computation of the resonant vdW
interaction between two dissimilar atoms, one of which
being excited, have led to conflicting results [1l [I8H2T].
The apparent discrepancy has been recently explained
by Donaire [3], who has pointed out that the discrepancy
lies in the different physical quantities being computed in
each approach. That is, whereas Ref.[20] deals with the
energy shift of the two-atom wavefunction, Ref.[2T] com-
putes the energy shifts of the wavefunctions of each atom,
Ref.[I] deals with the vdW potential of the excited atom,
and Ref.[I8] computes the vdW potential of the ground
state atom. Further, the latter two results imply an ap-
parent lack of reciprocity between the vdW forces acting
upon each atom. The explanation was given in Ref.[2]
in terms of the virtual momentum carried off by the res-
onant photons which mediate the resonant vdW forces.
In turn, the difference between the strengths of the res-
onant forces on each atom leads to a net force upon the
two-atom system.

Following up with the latter findings, it is the purpose
of this work to extend the investigation of the vdW forces
into atomic systems made of two identical atoms, one
of which is initially excited. The well-known degenerate
character of this system —cf., Refs. [I3] [14] [I7]— is expected



to amplify the strength of the net vdW force found out
in Ref.[2], making this way our system a suitable setup
to probe experimentally this phenomenon.

This work is organized as follows. The fundamentals
of the approach are explained in Sec II together with
the computation of the time-evolution propagator of the
atomic system. The off-resonant vdW interactions are
discussed in Sec. III. In Sec.IV we compute in full de-
tail the net resonant vdW force. In Section V we derive
the expressions for the net force acting upong the sys-
tem, as well as, the internal force between the atoms.
Sec VI is devoted to prove the satisfaction of the action-
reaction principle in our system, explaining the relation-
ship between the net vdW force and directional sponta-
neous emission. We conclude with the Discussion in Sec.
VI

II. TIME EVOLUTION OF TWO ATOM STATES

We consider the interaction of two two-level identical
atoms A and B with excitation levels wq = wg = wg. We

the atom A is excited, i.e. |¢(t)) = |Ay, B_) at time
to = 0. Although in our calculations we are considering
to — —oo this condition do not pretend to describe the
initial instant time but an adiabatic excitation of atoms.
This means that the Rabi frecuency Qgqpi, which de-
scribes the time it takes to produce an atomic transition
in a given light field, satisfies QI_%ibi < T —tg, where T
is the time of observation, see Appendix [A] Then, dy-
namical description of atom states begins when the atom
A is already excited at time ¢ty = 0. Lastly, off reso-
nant van der Waals interaction which are previous to the
initial time ¢y are neglected. The interaction Hamilto-
nian considered is the electric dipole approximation in-
teraction of each atom with the quantum EM field where
Wa g =—da g -E(Ra B), and the the total hamiltonian
reads H=Ha+ Hg+ Hgp + Wa + Wpg. As the initial
state |44, B_) is not a eigenstate of the hamiltonian, it
is necessary to study the time evolution of the atomic
states. Firstly, we are going to study the interaction of
an isolated atom with the quantum EM field and then
the interaction with a nearby atom.

The probability of decay of an atom A per unit of time
is known as decay rate I'4(T")

assume that the atoms are placed at a stationary distance d d 9
R = Rp — R4 from each other and their wave functions LaA(T) = diTP(A+—>A—,’n<) = d7T|<A*v'7k| U |A4),
do not overlap. As initial conditon we consider that only (1)
J
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FIG. 1. Diagrammatic Representation of I'4 (7). Diagrams a), b) and c¢) represent the probability of spontaneous emission of

an atom at order W3, W4 and WY$, respectively.

The contribution of the first diagram, which we denote
by T’y reads

w?4|HA|2
b= @

which coincides with the Einstein A coefficient [22],
where p, = (A_|da|Ay) is the electric dipole transi-
tion element. Making que computation of the diagrams

(

of several orders, see Appendix |B] we find
2

T
TA(T) =T —T2T + T3

05 ces — FO@iFOT, (3)

impliying that the probability of emission is

P(A+—)A_7’Yk0) =1- e_FOT' (4)

This implies that the time evolution of an atomic state



taking into account the decay processes is
U(T)|As) = e a= 30T |4y, (5)

This approach describes in an effective manner the evo-
lution of an atom as an open system. Nevertheless the
presence of a second atom B produce the transmission
of the excitation from atom A to atom B. This process
is given by the matrix element (A_, B4 |U(T)|A+, B-),
which is denoted by U, B )-a_,B,)- Furthermore,
despite the presence of atom B the excitation may re-
mains in the atom A. This process is given by the ma-
trix element (A.,B_|U(T)|A+, B_), which is denoted
by Ua, B y—»a,.,B_)- The perturbative expansion of
both processes is represented in Fig[2] diagrammatically.

A B_ A B_

A, B. U As B_ U@W

FIG. 2. Diagrammatic representation of the photon exchange.
The matrix element U, B )y=a_B,) is represented in the
first row and there is an odd number of photons exchanged
in each diagram. The matrix element U(A+,B,)—>(A+,B,) is
represented in the second row and there is a even number of
photons exchanged in each diagram.

The computation of these diagrams, developed in Ap-
pendix [B] yields

U(A+,B_)—>(A_,B+) =je~ 4T gin [Q(R) T] ,

T (6)
U(AJ”B?)_)(AJWB?) =e "4 cos [Q(R) T] ;

where

QR) = piuIe Gy (wa, R). (7)

The Green'’s function, G(wy4, R), has a real part, Q(R) =
pipiw? Re {Gij(wa, R)}, which corresponds to the os-
cillation frecuency, and an imaginary part which im-
plies a decay of the atomic states due the spontaneous
emission of the photon that they exchange. We re-
fer to this damping component as decay by influence,
I'(R) = 2p'pw? Im {G;j(wa, R)}, which is taken out of
the trigonometric functions as a negative exponential.
The frecuency of the excitation transmission must be
Q(R) > T for ensuring the photon exchange between

atom A and B. It follows therefore that Q(R) >
I'(R) + I'4 which establishes a condition on the inter-
atomic distance R. Finally, Qg < Q(R) [3].
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FIG. 3. Plot representation of % This shows that the ratio
starts to increase at closer distances than a wavelength Ao

The time evolution of atomic states is given by the
exchange of a resonant single-photon at a time. The sum
of the terms of the perturbative expansion converges to
trigonometric functions which shows the coherence time
evolution of the atomic states [I3], [I5]. This confirms the
degeneracy of the states |[A,, B_) and |A_, By ).

Summing up, total time evolution of atomic states is
given by

L _Dott(B®yp T
Ua, B y>(A_ By =i 2 e “4Tsin(QT),

rQ4T(R) (8)
- T,

Ua, B )y—(a_ By =€ —wal cos (OT) .

This implies that the population levels, neglecting decay
rate terms, evolves coherently

Pa, B )—>(A_ By =sin® (QT),
Pa, B y—(a_ By =cos> (QT), (9)
P, oy—_.By) ¥ Play,B )~ By = 1.

This result takes into account the infinite number of
shared photons between the atoms A and B. From
now on, we will denote the total decay rate of the two
atom system as I' = I'g + I'(R), and the matrix elements
U, B y—»a_ By andUia, B y—(a_ B, ) as Ueos(T) and
Usin(T) on diagramatic representation, respectively.

On the other hand, the initial excitation may also
be spontaneously emitted. This process is given by the
matrix element (A_, B_,y|U(T) |A4, B—) which is de-
noted by Ua, B )—(A_,B_ - This is represented dia-
gramatically in Fig.



T T
A_ B_ A 2 |B-
4
Vf%/v " Ve,

A, B. W A, B. U®

FIG. 4. Diagrammatic representation of the spontaneous pho-
ton emission preceded by the exchange of a resonant photon.
The emitted photon has a generic momentum k .

The calculation of the diagrams if Fig. [4] see Appendix
B yields

Ua, B )—(A-,B_ 7o)
(A | Wa|Ay) e -7,

= ; —1waT o5 (QT
o — (wa + i) @) (1)
(B, n|Wg|Bp)e"™ v ir
e P e Tsn @)

This result implies that the photon spontaneous emis-
sion is preceded by the exchange of the initial excitation
between both atoms. This photon possesses a generic
momentum k and can be emitted from any atom. The
first term on the right hand side of equation is the
amplitude of probability of photon emission of generic
frecuency w, which will be denoted by Ug .. Likewise,
the second term is the amplitud of probability of photon
emission of generic frecuency w, which will be denoted
by U%

sin®

IIT. OFF-RESONANT VAN DER WAALS
INTERACTION

Generically, the coupling of an atom to the quan-
tum EM field causes its EM self-interaction, which is
attributed to an energy shift in the atomic levels. In
free space this shift is known as the Lamb-shift [23]. In
the presence of another atom, it has been proved that
the off-resonant component of the interaction potential
W on the atom under study is equivalent to an energy
shift of its wave function [3].

The vdW interaction is represented by the diagrams of

Fig. B
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FIG. 5. Diagramatic representation of resonant and off-
resonant vdW interaction diagrams

The twelve diagrams shown in Fig. [f] contribute to
the fourth order interaction energy. The sum of all the
expectation values of the interaction vertices W4 and Wy
yields the vdW interaction energy [3]. The off-resonant
vdW interaction between two atoms reads [8] [@] [19], see
Appendix

(WY ap = (W) ap = (WE7) an
22U i
T
[e'e) 2
x/du U WAWE
0 W3 + w2 [w} + ]

Gz’j (iu, R)qu(iu, R)
(11)

We are considering a system with an initially excitated
atom. This implies the vdW is equal up to a sign to the
vdW interaction between ground state atoms. The off
resonant interaction is produced for al values of w with
the exception of wy where the system becomes degener-
ate. The initial atomic states evolve exchanging a single
resonant photon at a time up to the off-resonant vdW
interaction is meadures. This implies there are four pro-
cesses, which are depicted diagrammaticaly in Fig[f] and
Fig. where the time evolution of the system is taken
into account.
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FIG. 6. Diagramatic representation of the vdW interaction
between two identical atoms. The atomic states evolve in
time from the initial state |A4, B_) exchanging a resonant
photon until vdW off-resonant interaction operator is applied.
Resonant vdW contributions are not taking into account in
this diagram.

On one hand, the atoms evolve in time exchanging
the initial excitation until the vdW off-resonant interac-
tion takes place because the time evolution only shares
one resonant photon at a time. The photon exchange
is described by the matrix elements Ua, B ) a_.B,)
and Ua, B_)—(a,,B_)- Each diagramms of Fig. (6| oscil-
lates in time but the coherence behaviour yields a non-
oscillating vdW interaction which reads

Wy a, gy =—eTTWI Y4 5. (12)
Ay B_ A B_
wt +
Usin o
P
v _4_____-__31__ A_ B_ v
(W) + (wef)
1A N PR
Ui U,
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FIG. 7. Diagramatic representation of the vdW interaction
between two identical atoms with a resonant photon emitted.
Resonant photon does not intefere in the vdW interction.

On the other hand, the initial excitation is sponta-
neously emitted. The time evoultion is given by the dia-
grams of Fig. [7] The time evolution of the atomic staes is
given by the matrix element U4, B ) (A_,B_ ). The
coherent time evolution of the atom also yields a non-
oscillating vdW interacton which yields

<W0ff>(A_,B_,'yk) = (1 - e_FT) <Woff>(A_,B_)~ (13)

We obtain that the total off-resonant vdW interaction of
a two identical atom system is

(WOIHY (R,T) = (1 —2¢7TTY (WO )y (4 ). (14)

IV. RESONANT VAN DER WAALS
INTERACTION

The resonant vdW interaction involves the exchange
of a resonant photons. The time evolution of the atoms
allows us to compute resonant vdW interaction at second
order (Fig. [8). This is because an infinite number of
resonant enchanges of photons are included on the time
evolution of atomic states.

A, B_ yot A, B_
Wy =% :
Y
(Wy) = +
y
= T
A, B_  Ueos A, B_
A B_
U;nl A B- C%)ST .
T 1 =W
14
(Wg) = +
14
T - = Wp
U%. Ay B_ Usin Ay B-

FIG. 8. Diagrammatic representation of resonant vdW inter-
action.

The calculations of the diagrammatic representation
in Fig[8] see Appendix [B] have been performed using the
matrix element U4, B )—(A_,B_ ) for avoiding double
counting of photon exchange.

Computing the calculations of the diagramatic repre-
sentation we get

(Wa) = (A, B UG (T)WaUeos(T) |Ay, B=)

+ (A, B | UL (T)WaUsin(T) | A+, B-)

= paphwh e Im {Gyj(wa, R)} sin(207)
(15)



(Wp) = (A4, B_| UL, (T)WpUs,(T) | A+, B-)
+ (A, B_|U%T

cos (T) WB USin (T) |A+7 B_>

= iyt w? e T Im{Gyj(wa, R)}sin(20Q7)
(16)

We obtain that the interaction energy in each atom is
equal up to the sign. Thus (W4 + Wg) = 0,VT. This
result is consistent with the fact that our initial state is
a linear combination of the eigenstates symmetric and
antisymetric states |4y, B_) = %(|+> +|-)) [13].

V. VAN DER WAALS FORCES

On the basis of interaction energy results, vdW force
between atoms can be calculated. Straight application of
the definition of force on each atom gives

VI. CONSERVATION OF TOTAL MOMENTUM
AND DIRECTIONAL EMISSION OF PHOTONS

No external source is exerciting the net force, F .
The only entity which con compensate this apparent lose
of momentum is the shared excitation, i.e. the photon
exchanged by the atoms. The momentum of the pho-
ton P, following the interaction diagrams, has associated
time derivative of its momentum

P)=>"0r (A, B_|USH(T)
k

(22)
where the first term corresponds to the first column of
diagrams of the interaction and its complex conjugated
(c.c.) to the second column. Performing the time deriva-
tive to the time evolution operators we arrive at

(P) =" [(A4, B-| UL, (T) KW Uwoo(T) | A+, B-)
k

k U% (T)|Ay, B=)+(c.c.).

(Fa+Fp)=(Qa+Qp)
= —idr (Y(0)|UN(T)(Vr, + Vr,)U(T) [4(0))
= 7<VRAWA> - <VRBWB>3

+(Ay, B_| U4

(T) (_ik)WA Ucos(T) |A+7B_> + (C'C')
= (P)1 + (P)2 = (VR,Wa) + (VR W5) = —(F4 + Fp)

(17) (23)
where Q4 5 denote the kinetic momentum of the center This result can be depicted diagrammaticaly as
of mass of the atoms A and B [2].
Straight application of the negative gradients upon the A, B g A. B Us o A B
vdW potentials computed in the previous sections results
in T Vi, Wp
4 [ ETFV\J T ] _ X . ¥
(Fu)=R [MWJALUZ‘ e ' Ve Im {Gi;j(wa, R)}sin(2Q7) Afﬁi' B
VR, W4 =H —T
£ (1=2e7T) V(W) 4 |
(18) A, B Ul A, B. U Ul A, B
Ay B_ ydr Ay B- o yt A, B_
(Fg)=R [Qufqui‘lwi e ' VrIm{Gi;j(wa, R)}sin(207) o Wa =k _lT
P,
— (1= 2eTT) VR(WOY 4 5] *{A T } - +
(19) y 14 Y
T —1 Vr, Ws
These result yield A, B- Uy A, B. UY lé?j Al B-

Foet = (Fa+Fp) = 4R piypliw? e 17
x Ve Im{G;;(w4, R)}sin (2QT)
(20)

Fint = (Fa—Fp) =2R (1 - 2e"7) VR (W) (45 )
(21)

There is a net force exerted on both atoms which makes
the system to oscillate jointly. This net force is a con-
sequence of the resonant vdW interaction. On the other
hand, there is a force of interaction F;,; as a cibseqyebce
if the off-resonant vdW interaction.

FIG. 9. Diagrammatic representation of the time derivative
of the momentum of the photon.

The first two terms correspond to the first photon di-
agram while the complex conjugated corresponds to the
second one. Each photon pressure coincides with the sum
of the gradient of the both vertices where the photon is
emitted and absorbed.

(P)y. =y plyw? e~ (Tat2N(R)T

. (24)
x Ve Im{G;;(wa, R)}sin(2Q7)



Finally, the sum of each diagram coincides with
<VRA WA> + <VRB WB>.

The influence of atom B on atom A allow us to discuss
the directionality of photon emission. Spontaneous decay
of atom A has an uniform angular distribution

dFA wA 2 i ; ~oA
10 (*) papy (0 — kik;),

27 (25)

where © is the solid angle. Nevertheless, the angular
distribution of the decay rate by influece, where 6 denotes
the angle between R and k, is

dl'(R)  (wa\2 ; N
— 6 = (§> Wy (8:5 — kikj) sin(waReosh). (26)

Al B_ Lt Al B- i

os

7%7’; v oo
r' s A
A_ﬁ B_ A ‘7,%1[

A, B. Ut A B. U

sin

FIG. 10. Diagrammatic representation of probability of spon-
taneous emission

Then the total emission distribution of atom A is in-
fluenced by the presence of atom B which makes possible
to distinct a forward and a backward emission.

A+ TR _ (92) iy 5y — by (27)

X [1 + sin(wa Rcosh)] |

The maximal differential probability between forward

and backward emission occurs at R = ﬁ

VII. CONCLUSIONS AND DISCUSSION

The performed calculations yield that the two atom
system is subjected to a net force, F,,¢¢, which makes the
whole system to oscillate jointly. In physical grounds,
the net oscillating force is a consequence of the alternat-
ing breaking and restoration of Parity symmetry in the
atomic system. This force is balance by the time deriva-
tive of the photon momentum which is greater when the
photon has not been emitted yet. This means that the
action-reaction principle is satisfied. Furthermore, a di-
rectional emission of photons is observed. We may give
two possible interpretations of these results. Firstly, we
can afirm that the force exercised on the system van-
ishes when the photon is being emitted. Nevertheless,
this interpretation require the photon to exert a time
dependent force on the atoms. Secondly, as time expo-
nential decaying comes from the spontaneous decay pro-
cesses, this exponential factor indicates the probability
of making a measurement of the oscillating force on the
atoms. As the initial time of the system is well known,
several measurements at different times would be nec-
essary to discern the oscillating behaviour of the force
from its damped behaviour, which would correspond to
a force dissipation, or a spontaneous emission of a real
photon. Although this interpretations could be valid, an
experimental testing can give us the final answer.

Appendix A: Time Dependent Perturbative Quantum Electrodynamics (QED)

The fundamentals of the quantum mechanical approach of matter-radiation interaction based on [24] 25] are ex-
plained in this section. We also introduce a standard time-dependent perturbation theory [26] and a diagrammatic

representation of them based on the Refs [TH3].



1. Radiation Field Quantization

Classical electromagnetism is described by the electric and magnetic fields, E(r,t) and B(r,t) respectively, which
obey Maxwell’s equations

V-E=p,

V.B=0,
vAE=_-9B (A1)

ot

OE

B=J+ 2

VA + =

These fields can be expressed in terms of a scalar potential ¢(r,t) and a vector potential A(r,t),

oA
E=-Vo-5p (A2)
B=VAA.

Both potentials are not uniquely determinated, as they are defined up to a gauge transformation of the form

0
A A4VX, ¢ oS (A3)
which leaves E and B invariant.
By Maxwell’s equations (Al]) the dynamical equations of the potentials are

DQA:J—V<V-A—8¢>,
ot

o
v2¢>+avA:0,

whose final form will depend on the gauge fixing.
In order to quantize the electromagnetic field, canonical formalism is convenient for defining dynamical variables.
Firstly, we associate to the free electromagnetic field a Lagrangian density of the form

L= —iF“”FW = - (E* - B?), (A5)

DN =

where A* = (¢, A) and F),, = 9, A, — 0, A,. The canonical momentum asociated to A; is

7 _ 8‘6 _ A
I (r) = T@A) — —F%, (A6)

which vanishes identically for v = 0, indicating that ‘AO is not a dynamical variable. Then the canonical variables are
the A; with a cojugated canonical momentum —F% = E? i = 1,2,3. This implies that the Hamiltonian of the free
electromagnetic field is

H= %/d% (E* +B?). (A7)

First of all we must fix the gauge. In our particular case we are using Coulomb Gauge V - A = 0 since we are going
to study radiative processes. This implies that the vector potential A can be separated in a longitudinal A} and a
transverse component A | such as

A:AH+AL, AQZO,

(A8)
V-A, =0, V/\A“:O.

and the equation of motion of the vector potential (A4) takes the form

%A, =0. (A9)



Finally, we must replace the electromagnetic canonical variables by operators and impose commutation rules which
are compatible with the fixed gauge. Coulomb Gauge commutator rules are

[Ai(r)ﬂlg( r')] = ihd;;6,;(x — r'), (A10)
[Ai(r), A;(r")] = [Ei(r), E;(x)] = 0,

a3k kik;\ /
T 2 ik-(r—r
=) = [ s (85 - Tt etete, (AL1)

Then by means of a Fourier Transform in (A9) we can expand the quantized fields in terms of transverse plane waves

with

d3k 1 r - T
Z/ 2wk -Eak’aezkr + E*GLQG—zk»r_ ,
. Pk fw [ ik- * —ikr|
E (r)=1 Z / Gn) \/ ?k €ka |0k a€ kr _ ¢ aLae k r_ , (A12)
a=1
2
. Br 1 r k. . ko]
B, (r)=1 Z o) Voo kA |€aK,ae kr ¢ aLae k r_ ,

with the following properties,

€k,a * €k,a/ = (Saa’ ; k- €k,a = 07

2 . .
, o o iRd
IV = Z ei,aefc,a = <6lj - k2 > , Wk = |k|a
a=1
(s al] = 600k~ K),

[akﬂ"akl,s] = I:alT(,r’aIc’,s:| =0.

(A13)

Finally, substituting the quantized fields (A12)) in the electromagnetic Hamiltonian (A7) and momentum operator
yields,

P 43k ;
EM = E (27T)3 Wk Ay Ok,
d3k
_ T
P= Z@ /W k af ,ax.a-

Quantum electromagnetic field in Coulomb gauge can be described as a set of vibration modes whose field amplitude is
perpendicular to the direction of propagation. This modes are interpreted as particles called photons. The space state

|v) where operators ak,q, aLa act, annihilating and creating photons respectively, represents the physical situation
where there are many types of photons with different sets of (k;, ),

(A14)

My s s g g M ) = Nk, ) ® [Ny 00) ® o ® i 0,0 © - (A15)

In this equation n{{j . is called the occupation number for the state (k;, «;). The state of zero photons, nl =0 VYj,
is called vacuum state and is represented as |0,) which satisfies

|0 >_O7 v(kjaaj)> (AlG)

and each |”{<j,a,-> is defined as
; 2 (wlci)nj n
10y = | o (aLa) 10,). (A17)

Atomic interactions mediated by radiation are carried out by these transverse photons. In the following sections
atom-radiation interactions are discussed.
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2. Time-Dependent Perturbation Theory

Based on [20], we introduce a Time-Dependent Perturbation approach which is used all along this paper.
Quantum mechanical systems are described by Schrédinger Equation

.0
i [9(0) = H(#) [¥(t)) (A18)
which has associated a time evolution operator U(t,ty) such as

(1)) = Ut to) [¢(to)) - (A19)

Few problems can be exactly solved in quantum mechanics approximate solutions are obtained by perturbation
methods. The most usual way to tackle this problem is to separate the total hamiltonian of a quantum system in two
parts

H(t) = Ho(t) + W (1), (A20)

one that can be analytically solved Hy(t), known as free hamiltonian, and W (t), called perturbation, which represents
the processes that need a perturbative analysis. When the Hy(t) solutions are known, with a time evolution operator
associated Up(t) is convenient to define the total time evolution operator U(t) as

U(t) = Us(t)Ur (1), (A21)

where Up(t) is the time evolution operator associated with the perturbation W (¢). Substituting in the Schrédinger

equation (A18)) we obtain

0
—Up = WU A22
Zat I 1Ur, ( )

or equivalently
t
U](t)ZI—i/ dr Wi (m)Ur (1), (A23)
0

where W; = Ug WUy. The time evolution of the system due to the perturbation W has been separated from the
free part associated with Hy. We are adopting, throughout the discussion, this representation known as ”Interaction
Picture”. Kets and observables will be subscripted by an “I” under this representation. Finally, the equation of
motion results

0
U [vi1(t)) = Wrli(t)), (A24)
where kets and observables are related with the previous representation or “Schédinger Picture” as

[or(t)) = Ug [vs (1))

+ (A25)
Ag(t) = UjAs(t)Uo.
If we solve the integral equation (A23)) by successive interation we obtain

Urt) =1+ > _ UM (1) (A26)

n=1

where
t T1 Trn—1

UM (1, t9) = (—i)"/ dﬁ/ de.../ dry Wi (r) Wi (72). W1 (7). (A27)

to to to

fort>m >m>...>7,>0.
Due to the time order condition we can write the time evolution operator in the interaction picture as

Uyt to) = Texp{ {—i /tt drwf(f)} } (A28)
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where 7T is the time order operator action on the exponential, giving the same result as (A26]).
We are interested in coming back to Schrodinger picture since we want to separate the proper time dependence of
operators from the time variation of the total system. Then, using equations (A25) we finally get

U(t,to) = Uo(t, to) Texp{[—i / t dr U (r,t0) W(7) UO(T,tO)]}. (A29)

to

As an example, first order and second order terms result

t
Ut 1) = —i/ dmUo(t — )W () Us (1, )
A (A30)
U(z)(t,to) = —/ dTl/ dTQ U()(t — T)W(Tl)Uo(Tl,7'2)W(7'2)U0(7'2,t0)
to to

Ultimately, all matter-radiation interactions considered in this paper will be evolve in time adiabatically. This
means that the interactions will be switched on “very slowly” up to the time of interaction

W, (t) =e "W(t), n—0". (A31)

In all calculations is assumed that t; — —oo. This initial condition means that the Rabi frecuency Qgqp;, which
describes the time it takes to produce an atomic transition in a given light field, satisfies Qrqp; < T — tg, i.e. the
atom is being excitated slowly enough to perform an atomic excitation transition. Furthermore, this approximation
allows us to neglect spurious terms arisen from the sudden approximation which does not describe properly the finite
time excitation of atoms [20].

This time-dependent approach will be used all along this paper for the description of matter-radiation interaction.

3. Atom-Radiation Interaction

The interaction model used in this paper, based on [25], consists on a non relativistic quantum mechanical description
of spinless charged particles coupled with the quantum radiation field already described.

The (x;,p;) variables associated with each particle of charge g; are operators in the Hilbert Space unless where
they are arguments of the electromagnetic field where they specify the point of evaluation of the fields. Under the
minimal coupling scheme the total Hamiltonian of a system of charged particles is

(p; — ejAL(x;))’ eie;
H=H . A32
EM T % o + iij e — (A32)

The coulombian interaction is not included in the minimal coupling so it is added with the last term of the hamiltonian
above. With this interaction approach we may define the state system as the tensor product of the atomic states
and photonic states |1)) = |s) ® |y). Atomic states can describe bounded states or free states of electrons. On the
other hand, photonic states gives the number of photons which are interacting with atoms. We may separate the
free hamiltonian Hy = Hgp + Hinae from the interaction terms W and make some approximations. The matter
hamiltonian H,,.; is the sum of the kinetic energy of each particle and the coulombian interaction between them

2
b; €;€;
Hpyor = E J g S A E— A33

t - 2my; + = Ar|x; — x| ( )

In our calculations, hydrogen atoms with one valence atom are involved so we set that the atom can be described as
a system of energy levels

Hyor = Zws [s) (s|. (A34)

Furthermore, we may neglect, in first approximation, the interaction of the nucleus with electromagnetic field as well
as its dynamics. This implies we only have to describe electrons whose vector position, assuming a classical two body
dynamic of the atom, is given by

x; = R{™ + ——r; SR 4 ry, (A35)
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as nucleous is much massive than electrons M,;, > m.. Furthermore the centre of mass position is much larger than
the radius of the hydrogen type atom R{™ > r;, R™ will be consider a classical variable meanwhile r; a quantum
operator.

With all this considerations the interaction hamiltonian W, eliminating Aﬁ_ terms,in the Coulomb gauge, remains

.y
W=- —Lpi-Al(x). A36

Xj: m; | o1 1(x5) ( )

where the sum runs over for every electron of the system. Computing this interaction vertex between in a excitation

process we obtain

e

(ATIW AT %) = —— (AT]p - xa e A7) e BT (A37)

As in a typical atomic transition in the optical region the wavelength of the emitted photon is much greater than the
radius of the atom, A = ‘% > |r| we can approximate e’®* & 1 by its leading term so the interaction has only a

(P - €x,o) term. This approach is known as the electric dipole E1 approximation. Using the relation [Hpq¢, 1] = —i 2
we obtain that the Hamiltonian interaction reads
Wg1 =—da-E; (R™) (A38)

where d4 = er is the electric dipolar operator. Unlike the minimal coupling approach electric dipole approximation
includes coulombian interaction between atoms. Henceforce, we assume that all fields are transverse and the symbol
1 will be omitted.

4. Diagrammatic Representation of Interactions

Based on the previous interaction model we are going to present the diagrammatic representation of interaction
processes of Ref. [IH3]. These diagrams contain temporal and spatial axis,vertical and horizontal respectively, where
the photon and atomic dynamics is depicted. Photons’ propagators are represented by wavy lines and atoms states’
propagators by straight lines, with a specific atomic state, showing the position of their centre of mass. The coupling
between photons and atoms is represented by a vertex of interaction.

A-
WD

A+

X

FIG. 11. Interaction Vertex

This diagrams represents the probability amplitude between two arbitrary states |a) and |b) at a time T
Aoy = 0|U(T) |a) . (A39)

Using the series expansion (A27) of the time evolution operator U(T) yields that the probability amplitude is an
infinite sum of amplitudes of order n in the perubation W

Aasy = YA, =37 0| U(T) |a). (A40)
n=0 n=0

Each term of the sum below corresponds to a diagram where the number of interaction vertex is equal to the order
of the expansion term. With this approach we can describe self-interaction and interatomic interactions.
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a U
FIG. 12. Interactions W take place until the time of observation T'. There is no time location but a time order of the
perturbations. Spatial distribution of perturbations is allowed provided that causality is preserved.

A diagramatic representation of probability,

P=|Au | Z A Z AT, (A41)

consists of the norm of A. As probability amplitudes are expanded as a sum of partial amplitudes A™, probability is
expresed as the sum of products of two partial probability amplitudes.
0)t (Ot Dt 41
'A( 'A( a—b + ‘A ) Aaﬁb + Aaab'A( —b + At(lﬁbA( ) b + (A42)

a—b a—b

a ymt

a U(n)

FIG. 13. Probability term of (n 4+ m) order. Both partial amplitudes evolve from the initial state |a) up to the time of
observation T whose final state is |b).

Terms with n # m stand for interference terms. The order of each product is the sum of the orders of the amplitudes

involved.
Finally, diagrammatic representation is also useful in the calculation of expectation values of operators.

(O) = WO O(t) = ¥(0)| U H)OU () [ (0)) . (A43)
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y(to) ymt

y(to) U™

FIG. 14. Digramatic representation of the expectation value of the operator O

Each time evolution operator is power expanded, up to the desired order, and the system evolves from the initial
state |1(t9)) to the time T at which the operator O is applied.

5. Interactions Between Atoms in Electric Dipole Approximation: Diagrammatic Rules

Let A and B two two levels atoms separated a distance R = Rp—R 4. Under the E'1 approximation the coulombian
interaction is neglected and the interaction hamiltonian of the system results W = —d4 -E; (R4) —dp - E| (Rp).
All the interactions are retarded taking account of the finite speed of propagation of electromagnetic radiation. This
implies that the interactions between atoms are at least of second order in W. Suppose the initial state of the system
is |[A4, B_). The transmision of the initial excitation from A to B leading to a final state |A_, By ) is given by the
matrix element A = (A_ B, |U® |A,, B_) which is represented by the time ordered diagrams

R R
— «—
A- B+ A- P
Wy W,
_I_

W, Wa

A+ B Af B-
A B A B

FIG. 15. Diagramatic representation of the interaction between two atoms by the exchange of a photon.

The photon propagation is given in the matrix element by the correlation function

(0| E(R4)E(Rp) [0) = / 0 / dkk? (H—f{f() kR (A44)
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Integration in the solid angle yields

(0JE(RA)E(RB)[0) = — /OO k2 1, GOk, R) (A45)

0 '/T

where GO (k, R) is the dyadic Green’s function of the electric field induced at R induced by an electric dipole of
frecuency w = ck in free space. It reads

GO (k,R) = (0] [E(R4)E(R5p))][0) = — (A46)

keikR
4m [

kR T (kR?Z  (kR)?

where @ = [-RR, 8 = I-3RR. We denote the real and imaginary part of the the Green’s function as Re{G)(k, R)}
and Tm{G© (k, R)}, respectively. The real part corresponds to the coulombian potential between both atoms while
the imaginary part corresponds to the radiation field interaction. Furthermore, the reciprocity in frecuency w implies
GO*(w) = GO(~w). As Green’s function do not depends on time we may give some rules for “reading” time
dependent diagrams:

1. Compute the integration of the time evolution represented on the diagram. This integration typically yields a
product of fractions with polynomials of order one in w as denominators.

2. Each photon propagation corresponds to an electric correlation function (0| E(R4)E(Rpg)|0). The integration in
frecuencies must consider the time integrals computed of the previous step

3. Each vertex has associated a transition dipole element py = (A_|da |AL)

This rules has an implicity integration on every photon orientation.

Appendix B: Calculations Details
1. Decay Rate I'(T) Eq.(3)

The time evolution of inferior probability amplitude at leading order of I'(T") which is represented in Fig. [1|a) reads

T T ,—iwaT
_ Z/ dr ¢ (T=T)nTo—iwat _ _&_ (B1)
oo w— (wa +in)

Then the probability of decay at leading order is

g [T dw e Im{Gj(w, R)}
Pa= s [ o v o= 2

*

As Im{G;;} = %, we integrate along the contour Cy the Green’s function G;; and its conjugated part G;; along

the the contour C_.
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Im(w)

Cs

Re(w)

FIG. 16. Contours of integration C'; and C_

The integrals along the arcs tends to zero as w — oo and we neglected the contributions of the vertical axis since
are exponentially damped and they are small. Then the value of the integral on the real axis is the residue associated
to the simple poles. The final result, as R —, reads

d Ty Pwd  wilpal®
Tp=—— 4 =44 B3
AT dr 6 3r (B3)

The poles of the second order decay rate, which corresponds to the diagram Fig. (1| b), are given by

T T T, . . ’ ’ . ’ " 12 . " enTeiiwAT
)3/ dT/ dT’/ dT/lefzw(Tf'r)enTefzwA(7'77' )en'r efzw('r -7 )6777 e~ waT . (B4)
—o0 —o0 —o0 W= (WA - “7)
This lead to the integration in frecuencies

dw ww? Im{G;j(w, R)} Im{G (v, R)}
2Re {Z/JANANANA/ / 7 2w — (wa —in)] [w— (wa +30)] [ — (wa +in)] } ,n— 07, (B5)

which yields
A2 Wi etnT
Pf) = —Ha P s dT? ,42 7 Im{Gij(w, R)} Im{Gpq(w, R)} = et (B6)

Finally, the poles of the third order decay rate, which corresponds to the diagram Fig. 1| ¢), are separated in the
contribution of the first diagram and the contribution of the conjugated diagrams. The first diagram has the poles

dw dw' [ dw"” "7 w2 Im{G,j(w, R) }w? Im{G,q (', R) }w"? Im{G,s(w", R)}
_ 1 b) ) s ) , 0+
“A“A“A“A“A“A/ / / T A2 [w— (wa — )] [ — (wa + 3] [0 — (wa — 3n)] W — (wa + inz] "

The time integration of conjugated diagrams results

T T 7_/ 7_// 7_///
. . . ’ ’ S ’ 1" 1" "
_ )5/ dT/ dT// dT/// dT”// dTZ’Ue—ZUJ(T—T)eT]Te—’LUJA(T—T )en'r oW (' =7 )6777 e—zwA(T —7'"")
—00 —o0 —o0 —o0 —o0 (BS)

1"

3 iv
X 6777' e WAT

N VA 1) v
w' (1T T )6777 e

As result of time integration we obtain

9Red P dw dw’ dw” ST w2 Im{Gj(w, R)}w? Im{G,q (', R)}w"? Im{G,s(w", R)} n
e A A B i | iy i e vt i U

(B9)
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The sum of both contributions yields

i s d® €817 ,6 9
r® — —#A#QNZN?ANANA Im{G;;(w, R — 0)} Im{Gpq(w, R — 0)} Im{G,s(w, R — 0) T3 e A _ 51“8. (B10)

Summing the contributions of each diagram we obtain

[(T) =Ty — 22T + gngQ. (B11)

which do not coincide with Eq. . It is necessary to divide each term of the sum by n”~! where n is the order in T
of the calculated diagram. We adopt the criterion of dividing each term of the perturbative expansion of a probability
amplitude by n" for the resumation of the perturbative expansion terms.

2. Matrix Elements U Eqs.@

In this section, I write the calculation of first two terms of the perturbative expansion of the matrix element
Ua,.B)—(a_,B,)- The contour of integration of Fig. is used. The time integral of the first order term of the
matrix element Ua, B )~ (a_,B,) of Fig. |2 IlS

—/ dT/ dr'eiwn(T—7 e”Te_“’(T_T/e”T/e_i“’“/,77 —07. (B12)

This lead to the integration in frecuencies

C dw 21T e~ AT 2 Tm {Gy; (wa, R)} o ,
Ul =iy / — Y : = iplyplywie TGy (wa, R) = ipdwie “2TG (wa, R
sin KAy 0 T 277 [(U—(UJA+Z77)] HAlAW A ]( A ) Ha ( A )
(B13)

The time integral of the third order term of the matrix element U4, B_)-a_ B,) of Fig. [2]is

7

/ d’T/ dr' dT/// dT//// d’Tw/ d,]_vefin(Tf‘r)em'efiw(‘rfr')en'r'
(B14)

_ _ _ - _ " [ N O T R o) v v
zwA('r T en'r e iw' (" -1 )en'r iwp (T Tt )en'r e W (r T )en'r e iwat’

This time integral leads to

UD i i 1P i / dw/ dw’ / dw” e T e=iwaT 2 Tm {Gy; (w, R)} w? Im {Gy; (W', R)} w? Im {Gy; (W, R)}
s TATATARATATA 480% [w — (wa + in)] [w' — (wa +i3n)] [ — (wa +50)]
9, . 9
= i A A HAWE Gij (WA, R) Gpg (Wa, B) Grs (wa, R) = i pfwi G (wa, R)
(B15)

Dividing each term by n" we obtain the first two terms of the function the matrix element Ua, B ) 4_,B,) @
Similar calculations are needed for the U4, B )4, ,p_) matrix element.

3. Matrix Elements U Eqgs.([10)

In this section, I write the calculation of the diagrams of the second row of Fig. [4| corresponding to the matrix
element U, B_)—(A_,B_ ) Lhe time integration of the first diagram taking into account the vertex of interaction
yields

T T ,—iwaT T —iwaT
UL = *i/ dr T (A K| W |AL) e @A™ = — et A KWAL) e emt .

— B16
. o —(wa s o~ (on ) (B16)

The photon of the final state has a generic momentum k.
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The time integral of the second diagram results

T T T/ TI/ T///
. . . !’ ’ . ! ’7 " 1" . 1" 1"’
(72)5/ dT/ dT’/ dT”/ dT//// dTWE*“U(T*T)enTG*“UA(T*”' )67]7' e~ (r'—7 )en'r 672w5(‘r —7'"")
—00 —o00 —o0 —o0 —o00 (Bl?)

/

17
x el e

—iw!! (T/// _Tzv)enTw e—iwATw

After lengthy similar calculation the time integration yields

_ T ,—iwaT
Bw _ (A= | WAL) e?e 4, 4 2 Bl
ucos 8772 [(U — (WA + 5“7)] /U’AOJAG (wAv R) . ( 8)

The remaining pole of uc(;; uc(,?g are equivalent by means of integration. This implies that

(A= WAy ) enTetoaT i 2
UY . ~ — 1—- G R) ). B19
cos W — (WA Zn) HaWy 8772 (UJA7 ) ( )

Dividing each term by it n™ this matrix element converges to

_ nT ,—iwaT
U;;s — <A ,’Yk| W(|A+:—€ )6 e J oS (QT) . (B20)
w— (wy +1in

4. Off Resonant vdW Interaction

Since G; is analytic in the upper half-plane, it is useful ot consider the integral

I — / gzl B) (B21)
c WeExz+in
on the contour of Fig. [17] [9].
Aly
P- P

FIG. 17. Integration contours for Green’s Function

For the It we use the contour Py on te complex z plane. In the upper half-plane G;;(z, R) falls off at least as fast
as |z| so the integrand of (B21)) vanishes at |z| — co. Hence, using I we find

*  Gyw.R ®  Gyli&R
/ PRRCICIED :i/ duy-Gi1 6 ) (B22)
0 We +w+1in 0 we + 1€ +in

whereas form I_ we get

/ dzM - Z/ de + 2miGyj(wa, R). (B23)
C 0

We 2z +in we — 1€ 41
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From this properties we are able to vdW non resonant interactions by terms of a Wick rotation w = iu. We obtain

i J P4 oo
quw:f%ﬁgm@/ s
0

™

wwawpg

wi + u?] [wh +u?]

Gij (i, R)Gpg(iu, R). (B24)

From this Wick rotation is clear that the vdW non resonant potential changes its sign when one of the atoms is

initially excitated.

5. Resonant vdW Interaction

In this section, I write the integral expressions of (W,) and (Wj4) of Egs. and and Fig. In all the

calculation w > € is considered.

(Wa) = — 2Re piy iy / w?Im {Gyj(w, R)} e~ 4T cos(QT) x /
0

2 ..
:Re{i/dww Im{GU(w’R)}eQ"Tsin

T |w—(wa—in)

0 T
(Wa) = —2u’y iy Re/ WA Im {Gyj(w, R)} e 4T sin(QT) x / dre(T=T) N7 ¢i@AT cog ()
0 —o00

) 2 -
— Re {ZM’ILAH‘TA / dﬂw Im {G’Lj (Wa R)}@Q’I’]T Sln(2QT)} 1 — 0+'

T [w—(wa+in)

T
dre(T=T) N e AT gin (Qr)
o (B25)

@QTU},n—»0+

(B26)
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