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ABSTRACT: 

3D laser scanning and photogrammetric 3D reconstruction generate point clouds from which the geometry of BIM models can be 

created. However, a few methods do this automatically for concrete architectural elements, but in no case for the entirety of heritage 

assets. A novel procedure for the automatic recognition and parametrization of non-planar surfaces of heritage immovable assets is 

presented using point clouds as raw input data. The methodology is able to detect the most relevant architectural features in a point 

cloud and their interdependences through the analysis of the intersections of related elements. The non-planar surfaces detected, 

mainly cylinders, are studied in relation to the neighbouring planar surfaces present in the cloud so that the boundaries of both the 

planar and the non-planar surfaces are accurately defined. The procedure is applied to the emblematic Castle of Torrelobatón, located 

in Valladolid (Spain) to allow the cataloguing of required elements, as illustrative example of the European defensive architecture 

from the Middle age to the Renaissance period. Results and conclusions are reported to evaluate the performance of this approach. 

1. INTRODUCTION

For the last decade both laser and photogrammetric 3D 

reconstruction have proven to be suitable technologies for the 

digitization of immovable heritage assets. They still are relevant 

documentation techniques as they are involved in a daily-

growing number of restoration and conservation projects. What 

is more, recent technological advances in the fields of optics, 

signal processing, electronics and computers have improved the 

capabilities of these technologies allowing professionals of the 

AEC industry and researchers to obtain dense point clouds and 

triangle meshes with higher accuracy and level of detail. 

According to Barrile (2015), “the world of cultural heritage is 

experiencing a phase of promotion and development of its 

assets thanks to the progress of survey techniques”. 

It should be pointed out that using point clouds as a reference to 

create the parametrical geometry required by the Building 

Information Models (BIMs) is time-consuming, costly and 

error-prone while the accuracy of the reconstructed models 

needs to be guaranteed (Xiong, 2013; Chen, 2014; Stambler, 

2014; Macher, 2017; Yang, 2018). Moreover, the result 

produced by trained modellers may differ significantly from 

each other (Xiong, 2013). On the other hand, the European 

Directive 2014/24/EU imposes BIM Level 2 for government 

centrally procured projects. Heritage is not ruled out and BIM is 

becoming adopted in a growing-pace for restoration planning, 

facility management and documentation purposes since BIM 

models allows to collect, organize and manage all the assets’ 

data into a single intelligent carrier of information (Historic 

England, 2017; López, 2017). The model is not just a virtual 

representation of the construction, but a collection of “smart 

objects” with parametric intelligence (Pocobelli, 2018). Thus, 

3D modelling of as-built heritage immovable assets from point 

clouds, widely known as Scan-to-BIM, is a key issue that has to 

be addressed during the development of heritage projects since 

the BIM follow a bottom-up process: parametric modelling of 

the specific parts for the studied heritage asset, and then 

integrating the additional information into the model. 

The automatic reconstruction of 3D models has been a 

challenging research topic and from the early beginnings 

numerous research papers based on different reconstruction 

methods have been published (Grün, 1995; Peternell, 2003; Pu, 

2007; Pu, 2009; As Habib, 2010; Haala, 2010; Xiong, 2013; 

Cheng, 2014; Zolanvari, 2016; Yang, 2018). Even though a 

wide variety of modelling techniques ranging from nearly 

manual to almost automatic have been developed (Ochmann, 

2016; López, 2018), automatic reconstruction still remains a 

major topic in which experts are putting their efforts on. 

Many researchers claim that the complete automation of the 

cloud-to-BIM methodology is not yet currently viable, and 

expert intervention is required since artificial intelligence has 

not been yet developed to a point in which it can make 

architectural assumptions on its own (Tommasi, 2016; Arayici, 

2017; Bruno, 2018). The most advanced reconstruction 

algorithms make assumptions about the shape and the main 

features of the analysed building. It is not an overstatement to 

say that there is no complete, end-to-end automated process for 

Figure 1: Overview of the proposed method. From left to right. Preprocessing; Segmentation; Classifying; Parametrization 
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generating the parametric models. 

In one hand, there is prior work on modelling the exteriors of 

buildings, but mostly has been focused on the reconstruction of 

planar façades with, at best, openings like windows and doors. 

Authors like Wan (2012), Wang (2015) and Li (2017) proposed 

algorithms to model building exteriors recognizing walls as 

planes. These resulting planes are grouped together into a single 

building volume. Despite being able to accurately detect the 

main surfaces, building models are overly-simplified and in any 

case, the representation is reduced to planar features. Truong-

Hong (2012) and Zolanvari (2018) proposed single and multi-

façade slicing methods. After being provided by a principal 

plane, the techniques slice the façade into limited portions. 

Though they are able to detect the overall boundary of masonry 

brick walls and each opening area’s boundaries (windows and 

doors), their algorithms presumes the existence of regular 

openings in almost planar walls. Finally, Xiong (2013), 

Stambler (2014), Ochman (2015) and Jung (2018) use both 

interior and exterior point clouds of the building to generate the 

more likely floor plant distribution by means of a statistical 

hypothesis about the placement of the walls and its connectivity. 

Despite accurately detecting the distribution of the rooms, the 

hypothesis used can hardly be applied to immovable heritage 

assets such as the uniformity of the walls, which must be planes 

to properly define the divisions. 

In the other hand, there are commercial plug-ins for efficiently 

using as-built point cloud data captured of existing buildings by 

laser scanners directly within BIM environments. These plug-

ins are conceived to let users get the advantages of a high-

performance point cloud application directly within these 

applications, but restricted to specific point cloud formats 

according to the brand of the laser scanner. In any case, such a 

kind of plug-ins are only oriented to 3D laser scanning data on 

recent building and civil works, but not to the built heritage, so 

they do not expressly meet related needs. 

The extensive research that has been done on this topic leads to 

the conclusion that no single previous proposal was able to 

automatically parametrize non-planar surfaces which were part 

of heritage buildings. To overcome the limitations of these 

approaches, it is presented a novel method upon the state of the 

art to automatically convert raw 3D point cloud data with both 

planar and non-planar surfaces into a 3D model. The method 

automatically reconstructs planar walls as well as round towers, 

modelled as planes and cylinders respectively, while 

simultaneously taking into account local connectivity of all 

elements. These elements, which are present in a wide range of 

heritage buildings, can be used for modelling most part of this 

type of architectural complexes. However, it must be noticed 

that the vast majority of the architectural geometries making the 

built heritage can be also modelled by means of geometrical 

primitives such as spheres, cones or torus which can be easily 

integrated into the proposed methodology upon request. The 

reconstruction is formulated as a segmentation problem which 

in successive steps classifies and parametrizes the detected 

architectural elements using a statistical model fitting. Once the 

segments have been properly classified a further 

parametrization step is carried out, so both the boundaries of the 

classified features and the common edges between planes and 

cylinders can be determined. Finally, it is worth mentioning that 

parametrized features are intended to be a basic workspace 

where more complex and detailed objects can be incorporated in 

a later stage of the digital reconstruction process. 

The proposed algorithm has been applied to a real case study: 

the Castle of Torrelobatón in Valladolid, Spain, as 

representative example of the defensive architecture from the 

Middle age to the Renaissance in Europe (López, 2018). The 

point cloud (XYZ and RGB coordinates) was collected using 

photogrammetric 3D reconstruction and exported in a later step 

to a triangular mesh. Several datasets containing representative 

architectonic features are extracted from the cloud and analysed 

so that accuracy and overall performance of the developed 

algorithm can be evaluated. 

2. METHODOLOGY

The approach comprises four main steps (see Figure 1). First, 

the raw point cloud is pre-processed by removing noisy data and 

downsizing the number of points. Once the pre-processing is 

completed, a region growing segmentation algorithm is applied 

to divide the downsized cloud into its constituent parts so they 

can be processed independently. Then, a model fitting 

classifying technique determines whether the segments can be 

interpolated by planes or cylinders. Finally, the segments are 

parametrized and the local connectivity of the detected features 

is established so the building geometry can be successfully 

extracted. Whereas pre-processing and segmentation are widely 

used algorithms in point cloud treating applications, the 

classifying and dependency analysis steps are a noteworthy 

advance upon the latest automatic modelling developments. The 

aforementioned steps are detailed in the following paragraphs. 

2.1 Data pre-processing 

2.1.1 Filtering: The point cloud data, once loaded, is filtered 

by a statistical algorithm minimizing potential problems to 

avoid an inaccurate final result or even a failure in following 

processing steps. In most cases, statistical filtering algorithms 

compare the value of a property of one of the points with the 

mean value of the property within the point cloud removing 

those which fall outside a threshold range. It is been used a 

distance-based criteria to remove distant points from their 

neighbouring points. First, the algorithm determines the mean 

distance of each point to its neighbours. Then, an overall mean 

distance for the whole point cloud is calculated. Assuming a 

Gaussian distribution, all the points falling outside of the 

confidence interval defined by the global mean distance and 

standard deviation are considered noisy and, therefore, removed 

from the point cloud. 

2.1.2 Resampling: The resampling algorithm modifies the 

number of points of the input point cloud without changing the 

geometrical dimension or the resolution of the initial data set by 

adding or removing points from the digitized scenes. 

Resampling is used to decrease the point cloud density in order 

to boost the processing speed and ensuing computationally 

intensive steps. The algorithm generates an octal tree from the 

data set, a uniform recursive voxel grid in which 3D space is 

divided. Then, all the points belonging to the same voxel of the 

grid are replaced by its centroid. Despite not being necessary, 

this step greatly diminishes the overall computation time when 

compression parameters are properly adjusted. 

2.2 Segmentation 

The local connectivity between primitives is a key topological 

problem which must be addressed for the correct interpretation 

of the cloud. Analysing the whole point cloud at one time is an 

almost impossible task which may lead to very long processing 

times, highly inaccurate results or, failures in most cases. The 
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segmentation of a point cloud consists on classifying every 

single point of the data set into multiple regions so points 

belonging to the same region will share the same properties. 

Surface normals, an important property of geometric surfaces, 

have to be estimated to correctly segment the point cloud. The 

direction of the surface normal at a certain point of a given 

mathematical surface can be retrieved as the vector 

perpendicular to the surface in the analysed point. As point 

clouds contain discrete superficial samples of the real scene, 

determining the normal to a point has been approximated by the 

problem of estimating the normal of the plane tangent to the 

surface in that point, which in expressed in mathematical terms 

as a least-square plane fitting estimation problem. Once the 

surface normals are calculated, a region growing segmentation 

algorithm is applied to merge points close enough in terms of 

surface normals orientation into a point cloud. Hence, the data 

set is divided into constituent parts, being each region a 

collection of points considered as part of the same surface.  

The applied algorithms are pretty straight-forward so far and 

parameter tuning is not required with the exception of the 

resampling algorithm, which can be parametrized by the leaf 

size of the generated octree. However, segmentation phase 

requires a little few setting parameters: a threshold value for the 

deviation of neighbouring normals, a threshold value for the 

curvature and optionally, a cut-off value for the lower number 

of points that a region must have. The optimal values were 

explored in an experimental iterative process and for an optimal 

computation performance, the minimum size of the segment 

was related with a percentage of the total number of points of 

the cloud. 

2.3 Classifying 

The aim of the classifying stage is to assign a label to every 

single segmented point cloud extracted from the initial dataset 

based on its outer shape. It is noteworthy that, due to the sheer 

complexity of the problem, the algorithm makes a little few 

assumptions about the shape of the point clouds analysed. 

Hence, the algorithm is focused on the analysis of walls and 

towers even though more advanced architectonic features could 

be further added such as domes or vaults as discussed in 

conclusions section. The different segments are labelled 

according to the mathematical model that best fits the points of 

the region, namely: 1) planes; 2) cylinders; 3) and undefined. 

The classifying step relies on the statistical algorithm RANSAC 

(RANdom SAmple Consensus; Fischler, 1981), which is 

capable of estimating the parameters of a fitted model through 

an iterative process, assuming that the starting data is comprised 

of both inliers and outliers. Inliers (points closer to the model 

than a certain threshold distance specified by the user) are used 

to estimate the model, while outliers are put aside during the 

estimation process. 

The advantage of RANSAC relies on the ability to do a robust 

estimation of the model parameters with empty areas or a 

relevant amount of noise in the initial dataset. However, the 

upper bound on the number of iterations must be manually set, 

and the final outcome may not be optimal or not even fit the 

points in a good way if the chosen model was inadequate. 

Further, a high percentage of points adjusted can be a 

misleading metric since it does not necessarily mean that the 

selected model is the best fitted to the dataset. To avoid this 

major problem a classifying algorithm has been implemented 

that selects the best fitting model between the aforementioned. 

The parameters of both the fitting plane and cylinder are 

estimated for every single dataset and the model that explains 

the largest amount of points is selected if a high enough 

percentage of them are considered inliers, a parameter manually 

specified by the user. Otherwise, the segment is classified as 

undefined. Just the model is validated, the inliers are projected 

onto the selected surface and saved for later usage while the 

outliers are discarded. 

2.4 Parametrization 

While planes are parametrized by its scalar equation, cylinders 

are represented by the point-slope equation of its axis and the 

radius. However, these equations define infinite geometrical 

surfaces and limits need to be established. 

Two assumptions are made about the walls: 1) they can be 

modelled as planes; 2) they have rectangular shape. This 

simplification eases and robusts the connectivity-establishing 

process and, a coarse simplification is made, without loss of 

information since the proposed approach tries to recreate the 

“as-build” 3D model as opposed to the “as-is” model. To 

parameterize the walls, a multi-step approach is applied with the 

aim of determining the four vertices of the rectangle. First, the 

boundaries of the clouds related to each wall are enlarged. 

During the segmentation of the cloud the bordering points of the 

segments were excluded due to the irregularities of the surface 

normals, reducing the overall area of the cloud compared to the 

surface of the theoretical wall. 

The cloud is enlarged by projecting points onto the edges 

defined by the intersections of the current analysed plane with 

the rest of detected walls. Then, points from both the cloud 

related to the plane and the points of the rest of the walls are 

projected onto the shared edge. In order to optimize the 

computational performance, only the bordering points of the 

walls are taken into account during the calculations. If the two 

projected datasets are close enough to the points of the wall, the 

projected points are added to the main cloud. Enlarging walls 

close to towers is done in a similar projection method approach. 

So, the bordering points of the walls are projected onto the 

cylinders and this auxiliary data set is projected a second time 

but onto the plane to ensure its coplanarity with the wall. If the 

projected points are close enough to the wall, the auxiliary data 

set is added to the main cloud. 

Next, the vertices of the wall are determined using underlying 

information contained in the enlarged cloud. The algorithm 

iterates through the points and keeps the maximum and 

minimum registered values of the XYZ coordinates. Then, four 

auxiliary vertices are generated as candidates for the two lower 

vertices of the plane combining the values of the registered 

coordinates XY always keeping constant the value of the 

coordinate Z. The Euclidean distance between the vertices and 

the plane is determined and the two farthest are discarded. The 

upper vertices are obtained replacing the value of the Z 

coordinate of the two remaining vertices for the maximum Z 

value registered. Finally, the four vertices are projected onto the 

plane to ensure its coplanarity and saved for further refinement 

using the mathematical equations of the edges. By intersecting 

them it is possible to replace previously calculated vertices with 

the intersections, which have a higher accuracy. The new points 

are compared with the original vertices and if one of them is 

close enough to one intersection, a replacement takes place (in 

which case the coordinates of the other vertices are modified to 

keep the proportions of the rectangle). The flowchart of the 

proposed methodology is shown in Figure 2. 
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Figure 2: Flowchart of the proposed methodology to calculate 

the vertices of the walls. 

To parametrize the towers, it is assumed the premise that the 

towers can be modelled as cylinders. The RANSAC 

parametrizes this geometrical feature with the point-slope of the 

axis and the length of the radius. If the slope deviates more than 

a certain angle with respect to the OZ axis, the cylinder is 

discarded as candidate to tower. In order to establish the limits 

of the cylinder, the centre of their bases are calculated. First the 

points with maximum and minimum value of the Z coordinate 

are determined by iterating through the points of the cloud and 

two planes perpendicular to the OZ axis are defined containing 

one of each points respectively. Then, the coordinates of the 

centres of the bases are obtained intersecting the axis of the 

cylinder with these planes. So, having the radius, the two 

centres of the bases and the slope, the limits of the cylinder can 

be well-stablished. It must be noticed that the cylinders are 

defined on their own, as opposed to the planes that are defined 

according to the dimensions of their neighbouring planes and 

cylinders. 

 

Finally, both planes and cylinders are saved as IFC2x3 wall 

type models so they can be imported in BIM modelling 

environments. Since the geometry of the detected features was 

generated following the requirements of this standard no further 

conversions are required when importing the models. 

 

2.5 Results 

The results obtained when applying the described algorithms to 

a real-world point cloud of the Castle of Torrelobatón as well as 

a synthetic cloud are described in the next paragraph. The two 

point clouds were selected to stress the methodology by testing 

case-corner situations such as wide gaps between the detected 

features and multi-encounter primitive situations. The trials 

were conducted on a Windows 10, Intel(R) Core i5 3470@3.2 

GHz CPU with 16GB of memory. The processing time spent on 

each reconstruction step and the parameter selection is detailed 

in Table 2 for both the real-world and the synthetic point clouds. 

 

The real-world point cloud has 177.397 points and contains 

three towers and three walls and has been prepared to prove the 

performance of the application in a real world environment (see 

Figure 3a). During the first stage, the pre-processing algorithms 

decreased the size of the cloud in a nearly forty percent. The 

segmentation process was able to extract seven segments from 

the pre-processed cloud and 36.957 points (36.40%) were left 

unsegmented (Figure 3b). For a segment to be considered as 

part of a category, a 75% of its points had to be considered as 

inliers (Figure 3d, outliers in grey colour) as empirical rule of 

thumb based on the overall adjustment achieved for the 

RANSAC for both planes and cylinders and also taking into 

account the upper fitting percentage achieved by the undefined 

segments. With this settings, the classifying algorithm correctly 

labelled three of the samples as planes (P), three as cylinders 

(C) and one of them was classified as undetermined (U) as seen 

in Table 1 (see also Figure 3c). In this table the percentage of 

inliers is presented as well as their overall mean distance to the 

fitted model. 

 

Segment 1 2 3 4 5 6 7 

Plane % 81 10 11 83 100 12 59 

Cylinder % 0 91 93 25 46 99 36 

Label P C C P P C U 

µ (mm)  42 72 62 48 28 67 — 

σ (mm) 1.6 2.2 2.5 1.6 0.8 2.0 — 

Table 1: Real-world point cloud. Percentage of inliers adjusted 

for each model, mean distance (µ) and standard deviation (σ). 

With regard to the parametrization process, the algorithm was 

able to accurately detect the encounters of the walls with the 

cylinders. The local connectivity projection-based method, the 

relations between the different detected features and the results 

are represented in Figure 3f. 

ºStep Sub-step Parameter(s) Real-world  Synthetic  Remark 

Time (s) Value Time (s) Value 

Loading — 1.45 — 8.03 — — 

Pre-processing Filtering Neighbouring points 0.08 50 0.75 50 Assumed 

Resizing Leaf size 0.04 0.60 0.18 0.4 User-specified 

Segmentation Surface normal Neighbouring points 0.58 50 2.06 50 Assumed 

Segmentation Smoothness threshold 0.50 0.04 1.67 0.02 User-specified 

Minimum segment % 1 1 User-specified 

Classifying Plane inlier threshold 0.14 0.30 0.39 0.25 User-specified 

Cylinder inlier threshold 0.30 0.25 User-specified 

Minimum inliers percentage 75 85 User-specified 

Parametrization Plane to plane threshold 0.05 2 1.25 2.5 User-specified 

Plane to cylinder threshold 2 1.5 User-specified 

2.84 14.32 Total time 

Table 2: Parameters selection and time consumption for each modelling step
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Additional architectonic features of the towers may be 

parameterized exploiting the intrinsic revolution nature of this 

element. By using information gathered during the 

parametrization of the cylinders it is possible to characterize the 

battlements of the tower. The proposed algorithm segments the 

initial point cloud of the castle applying a filtering algorithm 

that cuts off points inside a given range along one or more 

coordinate axis. The points that fall inside a 3D voxel resting on 

the top centre of the cylinder are filtered, being the side of the 

cube a parameter related to the radius of the cylinder. Finally, 

the extracted dataset is projected onto a plane that contains the 

axis of the cylinder being the bordering points of the dataset the 

profile of these revolution features. In this manner, the 

battlements of the towers have been parameterized using the 

proposed approach. The algorithm was able to extract correctly 

the profile of the battlements of the towers using the 

unsegmented points to optimize the computational performance 

and the final outcome is shown in Figure 4d. 

 

 
Figure 4: a) Segmentation; b) Unsegmented; c) Projection of 

the extracted revolution points; d) Polygonal profile. 

 

The synthetic point cloud has been populated from 

representative elements of the castle containing several walls 

and towers (Figure 5a). The model is relatively simple in terms 

of the diversity of its categories; it mainly consists of the 

structural elements under study. One million points were 

generated for the whole model using subsamples from the 

original data. The segmentation step generated 31 different 

datasets and the final parameterized model contains 20 planes 

and 11 cylinders (see Figure 5b, Figure 5c). 

  

Figure 3: a) Preprocessed; b) Segmented; c) Primitives (cylinders in red, walls in blue, undefined in green); d) Inliers and outliers 

(grey); e) Projected inliers; f) Parametrization and improved shape (detail). 
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Segment 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Plane (%) 100 100 99.7 12.6 100 11.7 100 100 100 12.7 100 99.6 46.5 13.3 100 

Cylinder (%) 14.2 2.7 0,0 100 0.0 100 0.0 2.4 3.0 98.3 23.4 24.3 100 100 13.9 

Remark 1* 

µ (mm) 44.5 23.2 19.5 63.9 22.5 69.8 23.2 21.9 21.0 67.9 23.4 20.1 56.6 64.7 25.0 

σ (mm) 1.0 0.4 0.7 2.1 0.4 2.6 0.4 0.3 0.3 1.9 0.4 0.6 1.3 2.2 0.6 

Segment 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

%Plane 100 100 100 100 30.8 22.3 19.1 71.9 38.3 100 100 100 99.3 99.8 100 12,4 

%Cylinder 26.4 35.2 2.4 18.2 100 100 100 100 99.4 11.1 12.1 17.4 22.0 18.0 19.7 100 

Remark 3* 1* 2* 2* 3* 

µ (mm) 19.9 24.4 20.2 22.9 55.3 60.5 62.6 52.4 81.0 22.7 20.9 24.2 31.5 22.0 20.3 70.9 

σ (mm) 0.3 0.5 0.2 0.4 1.2 1.8 1.8 0.9 3.2 0.3 0.3 0.5 1.0 0.3 0.3 3.0 

Table 3: Synthetic point cloud. Percentage of inliers adjusted for each model, mean distance (µ) and standard deviation (σ). 

As seen in Table 3, the proposed algorithm is truthfully 

successful in detecting the walls and towers within the point 

cloud and all the segments are recognized correctly in terms of 

its assigned category. With regard to the accuracy of the model, 

Lerones (2010) pointed out that a geometric resolution of 15mm 

during the acquisition process is precise enough. Taking into 

account this figures, it is been assumed that a modelling error in 

the order of magnitude of a little few centimetres can be 

acceptable for an as-built 3D model. Based on this 

considerations, it can be stated that the geometrical accuracy of 

Figure 5: Synthetic point cloud. a) Pre-processed point cloud; b) segmented; c) Classified; d) Final model 
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the model, represented by the mean distance of the points to 

their fitted model (see Table 3), is precise enough since the 

planes have an overall mean distance of 24±1 mm and the 

cylinders have a slightly larger mean distance of 64±2 mm 

which can be explained by the higher complexity of their 

parametrization but that still falls in the proposed range of 

distances. 

 

In the other hand, the reconstructed model still has some 

remaining errors, which may be caused by limitations in the 

proposed methods. Firstly, three towers were segmented down 

the midline (marked with * in Table 3) and registered as two 

different towers. Secondly, the intersection algorithm was not 

able to detect one of the intersections between a plane and the 

cylinders. It is noteworthy that the proposed method relays on 

manual parameter tuning and therefore is still human-error 

prone. This drawback does not affect the overall result since the 

parametrization step is robust enough to extract the main 

features of the detected primitives even with incomplete 

information, as seen in Figure 5d. 

 

3. CONCLUSIONS 

This paper presented a novel method for the parametrization of 

architectonic features of immovable heritage assets using point 

clouds as suitable input data. The proposed method was 

evaluated using samples of the photogrammetric 3D 

reconstruction of the Castle of Torrelobatón showing the 

feasibility of the proposed methodology. The different 

implemented algorithms produced satisfactory results during the 

analysis and parametrization stages, yielding accurate 

connectivity between planes (walls) and cylinders (round 

towers). The effective outcome of the parametrization stage, 

based on a projection based method, supported the chosen 

workflow since the final 3D model was accurate enough based 

on the defined metrics. 

 

The implemented pipeline suggests many avenues for future 

research. The basic set of mathematical primitives, comprised of 

planes and cylinders, can be further increase adding cones or 

spheres to analyse more advanced elements such as covered 

towers or domes respectively in a similar projecting-based 

approach increasing the set of architectonic features detected. 

Moreover, the final model provided by the algorithm could be 

further enriched by implementing an opening-detection system 

further than latest methods that are only applicable to planar 

façades. Finally, the segmentation of the cylinders could be 

improved in order to detect a unique tower instead of several 

portions of the same architectonic element. 
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