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1. Introduction 

1.1. Overgrowth of Eichhornia crassipes 

Water hyacinth (Eichhornia crassipes) is a tropical-native free floating aquatic plant which is 

currently spread all over the world (Table 1) because of its adaptability and rapid growth rate 

(Abbasi and Ramasami, 1999; Center, 2001; Ferrer et al., 2010). Water hyacinth can tolerate a large 

temperature, nutrients and pH variation (Olivares and Colonnello, 2000; Wilson et al., 2005) 

Another fact that makes it difficult to control water hyacinth‘s overgrowth is that the seed stays 

active for up to 6 years and that the plant can regenerate from fragments of stems (Lee, 1979; 

Gunnarsson and Petersen, 2007). These characteristics recently affected human activities 

(interference with fishing, navigation and power generation) and caused environmental issues 

(block of light penetration, water stagnation and reduction of dissolved oxygen levels (Gunnarsson 

and Petersen, 2007; Malik, 2007; Ferrer et al., 2010). Because of acting as a breeding platform for 

various disease vectors the health risk has to also be accounted (Epstein, 1998). A feasible solution 

for harvested biomass is needed as soon as possible in order to reduce the costs derived from 

overgrowth and the impact caused on both human and environment. 

 

1.2. Different applications for water hyacinth 

Water hyacinth‘s moisture content is about 90% (Sivasankari and Ravindran, 2016) and, due 

to its high cellulose, hemicellulose, its moderate lignin composition (lignocellulose structure) and 

high protein content, it can be considered as a potential substrate for the following three biological 

treatments: 

1.2.1. Ethanol production 
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This process consists on a succession of various steps (pre-hydrolysis, hydrolysis, 

fermentation and distillation) to obtain sugars and transform them into ethanol as a second 

generation biofuel (Jambo et al., 2016; Rezania et al., 2017). The hemicellulose content suggests 

water hyacinth as a possible substrate for bioethanol production (Nigam, 2002) but many of the 

substances generated during the hydrolysis step may inhibit the subsequent fermentation. A 

pretreatment is needed for bioethanol production which implies additional costs (Malik, 2007). Also, 

due to the energy balance, bioethanol production is only feasible if   a lot of liquid ethanol is needed 

(Thomas and Eden, 1990). 

1.2.2. Composting 

A cheap alternative that does not require specific or expensive technology is always of big 

interest. Compost consists on degrading the organic matter aerobically to obtain a compost that can 

be used as a long-term nutrient supplement for fields as long as the pathogens are properly sterilized 

and there is no active plant seeds (Haug, 1993; Gunnarsson and Petersen, 2007). Because of being a 

cellulose and lignin rich substrate the time needed for performing a proper composting is long being 

these two compounds non-degraded after 185 operation days (Elserafy et al., 1980). 

1.2.3. Anaerobic Digestion 

The AD process can be divided into 4 different steps in the following order; Hydrolysis, 

acidogenesis, acetogenesis and methanogenesis (Meegoda et al., 2018). The methanogenesis step is 

easy to inhibit while the hydrolysis is usually the limiting step. Some authors even mention the 

―anaerobic hydrolysis‖ as a separated step when dealing with lignocellulose material (Hendriks and 

Zeeman, 2009). How does the lignocellulose matrix affect the hydrolysis process is explained in the 

section below. 
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Anaerobic digestion (AD) consists on the assimilation of organic matter under anaerobic 

conditions by microorganisms which produce CH4 (Ferry, 2010; Meegoda et al., 2018). The process 

is usually operated under a moderately low temperature (Bendixen, 1994; Lier, 1995; Smith et al., 

2005; Hartmann and Ahring, 2006; Mao et al., 2015; Meegoda et al., 2018) which means that 

operation costs are usually low compared with other processes e.g. aerobic digestion. Additionally, 

the methane produced can be utilized for producing energy by combusting it which can sometimes 

even be translated into income generation rather than just costs. AD is also defined as a strong 

method once it reaches a stable condition which can be operated with high organic matter loading 

rates (Ferguson et al., 2016; Meegoda et al., 2018) and produces less sludge as compared with an 

aerobic process. 

As a result of the above mentioned AD is considered as a suitable treatment for water 

hyacinth and investigated during this study. However, due to the presence of the lignocellulose 

matrix on the plant structure, special considerations must be taken before performing AD. The 

section below will explain what the presence of the lignocellulose matrix implies.  

 

1.3. Lignocellulose biomass 

The lignocellulose matrix which is found in the cell wall of lignocellulose biomass consists on 

a tridimensional structure of cellulose, hemicellulose and lignin where the lignin surrounds both 

cellulose and hemicellulose acting as a glue obstructing hydrolysis (Liu, 2010; Shrestha et al., 2017). 

Cellulose and hemicellulose are both polysaccharides that constitute the main carbon source during 

the AD process. Lignin, which surrounds cellulose and hemicellulose, is a polymer that anaerobic 

microorganisms cannot degrade (Benner et al., 1984; Appels et al., 2008). Therefore, the access to 

cellulose and hemicellulose (by the microorganisms) is obstructed, making hydrolysis a limiting 
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step during AD of lignocellulose biomass (Shrestha et al., 2017). A negative correlation of lignin 

content and CH4 production was reported by several authors as shown on Figure 1 (Triolo et al., 

2011; Koyama et al., 2014). In the case of water hyacinth different chemical compositions were 

reported with a remarkable variation of the lignin content from 3.2 to 26% in dry matter basis 

(Gunnarsson and Petersen, 2007; Rezania et al., 2017). Even if the lignin content is not too high 

compared with other lignocellulose substrates (Gunnarsson and Petersen, 2007; Liu, 2010; 

Puligundla et al., 2016; Rezania et al., 2017; Wang et al., 2017; Ponnusamy et al., 2019) the 

lignocellulose structure will limit hydrolysis. An effective pretreatment for either breaking or 

separating the lignocellulose matrix is necessary to optimize AD operation when using water 

hyacinth as substrate. Based on the above mentioned, the main objective of this research was to find 

a suitable pretreatment for lignocellulose substrate.  

 

1.4. Pretreatments for enhancing CH4 production from lignocellulose biomass 

Recently lignocellulose biomass pretreatment not only prior to AD but also for other treatments has 

been widely researched. Pretreatment methods are divided into three different groups (physical, 

chemical and biological pretreatments) being always possible to apply a combination between 

pretreatments from the same or different groups. Table 2 summarizes the above mentioned types of 

pretreatments with some examples for each group. Physical pretreatments consist on a mechanical 

break of the substrate which decreases the particle size increasing the specific surface and decreases 

the crystallinity and degree of polymerization of the cellulose matrix (Palmowski and Müller, 1999; 

Taherzadeh and Karimi, 2008). Physical pretreatments are short but sometimes expensive due to the 

high energy demand (Taherzadeh and Karimi, 2008; Carrere et al., 2016). Chemical pretreatments‘ 

mechanisms are completely different depending on the kind of chemical employed (strong or 

diluted acid or base, oxidizing compounds or CO2) but the common objective pursued is to 
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solubilize the hemicellulose permitting this way microorganisms to reach cellulose (Hendriks and 

Zeeman, 2009). Even if a high temperature is not always needed for chemical pretreatments the 

addition of reagents makes it an expensive alternative (Carrere et al., 2016; Rodriguez et al., 2017). 

During biological pretreatments, cellulose, hemicellulose and lignin are degraded by fungi and 

bacteria usually at mild temperatures and without adding chemicals. On the other hand, the time 

needed for a proper operation is usually long enough not to be viable in a large scale process (Sun 

and Cheng, 2002; Taherzadeh and Karimi, 2008; Carrere et al., 2016; Andlar et al., 2018). Thermal 

pretreatments show a different response depending on how the thermal energy is applied (hot air, 

steam and infrared radiation). Also the exposure time affects both the hydrolysis efficiency and the 

volatile fatty acids (Barua and Kalamdhad, 2017) which may vary the response during a posterior 

AD process. The high temperature usually needed for producing a thermal hydrolysis and the 

possibility of generating inhibitors are two problems of this kind of pretreatment.  

Out of all the pretreatments mentioned on Table 2 the selection for this study was based on 

the simplicity and technology needed. Also the efficiency of the pretreatment and operation cost 

were important when making a choice. After considering all these points, the four pretreatments 

chosen were; Compression, sonication, steam explosion and thermal hydrolysis. 

1.4.1. Compression 

Amongst the physical processes showed on Table 2 compression is the simplest and can 

probably be the cheapest pretreatment method. Compression pretreatment applies a specific 

pressure on the substrate for separating a liquid and solid fraction. The liquid extracted depends on 

the pressure applied to cassava‘ paste and mash (Akely et al., 2010; Kolawole, 2011) which may be 

due to cell breaking. Since the lignocellulose matrix is in the cell wall (Barua and Kalamdhad, 

2018), a liquid-solid separation by means of compression would separate the easily biodegradable 
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compounds (liquid phase) and the high molecular mass compounds such as lignin, cellulose and 

hemicellulose (solid phase). The solid-liquid separation enables performing AD for just the easily 

and fast biodegradable compounds (liquid phase) while using the solid phase for a different purpose 

more suitable for its characteristics. There is barely no publications about compression of 

macrophytes and, since water hyacinth has around 90% moisture content (Sivasankari and 

Ravindran, 2016), it is important to find out which components remain on the solid phase in order 

to confirm whether compression is a suitable pretreatment or not. 

1.4.2. Sonication 

Sonication consists on applying ultrasonic waves typically within the range 20-1000 kHz to 

the objective solution generating physical and chemical processes which help altering or 

hydrolyzing a heterogeneous sample.  

The physical wave transmitted through the liquid has high and low pressure sections which 

generate cavitation zones. When these cavitation zones collapse, specific points are generated 

briefly reaching temperatures around 5000 K and pressures of 1000 atm which affects the substrate 

on both physical and chemical properties (Bussemaker and Zhang, 2013). Additional physical 

mechanisms such as shockwave, micro-jets and micro-convection occur in the solid-liquid interface 

(Bussemaker and Zhang, 2013; Luo et al., 2013). 

While the pressure wave is transmitted through the liquid mixing is enhanced and, if the 

solution is heterogeneous, because of cell wall break and mass transfer improvement the 

accessibility of biomass is also increased. On the other hand, sonication also affects chemical 

processes reducing the temperature and chemicals required. Temperature and chemicals reduction 

are produced due to breaking O-H bonds to release radicals that react afterwards being able to 

generate lots of other radicals depending on the sample. Higher frequency conditions have been 
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proven to promote chemical effects while, for low frequency ones, the main effect comes from the 

physical ones (Bussemaker and Zhang, 2013). 

Sonication has been proven to improve CH4 and H2 production either applying it to pretreat 

the sludge which enhanced biogas production by 50% (Pilli et al., 2011) or different substrates; 

apple pomace‘s H2 yield was improved up to 8% (Wang et al., 2010a), when applied to cassava 

wastewater, H2 production increased by 29% (Leaño and Babel, 2012) and, when applied to cattle 

manure, CH4 production was increased by 121% (Castrillón et al., 2011).   

Sonication pretreatment is well studied and widely spread but barely used for evaluating 

macrophytes for AD (Kist et al., 2018a) which is the aim of this study. Special consideration with 

power, frequency and concentration must be taken before performing this pretreatment. 

1.4.3. Steam explosion 

Out of the physical treatments displayed on Table 2 steam explosion (SE) is proved to be 

effective improving CH4 production during AD probably because of solubilization and destruction 

of substrate (Converse et al., 1989; Laser et al., 2002) without needing chemicals addition or a long 

operation time. This method exposes a mix of substrate and water to a high temperature and 

pressure condition, leading to hemicellulose‘s hydrolysis to form acids which catalyze the 

hydrolysis process (Gregg and Saddler, 1996). After the desired retention time is elapsed, the 

pressure in the reactor is suddenly resealed displacing the treated mixture to a flash tank (Figure 2). 

For quantifying the intensity of this pretreatment usually severity factor (SF) is used which 

only depends on the temperature (T) and the retention time (t) but there is no term associated to the 

sudden pressure release even though it is supposed to disrupt the structure. According to Liu, (2010) 



8 

 

the general SF equation (under assumptions as a first order hydrolytic equation) is expressed as 

follows [1]: 

SF = log *t ∙ exp (
 - 00

 4. 5
)+      [1] 

As shown in Figure 3 CH4 production is affected by the SF value so it is important to find the 

optimum pretreatment condition (T and t) at which the CH4 production is maximized. The trend 

showed in Figure 3 is not lineal so it is important not to operate under too high SF values because 

CH4 will decrease as the behavior follows a parabolic trend (Lizasoain et al., 2016). The CH4 

production decrease at high SF values partially caused by the generation of inhibitory compounds as 

furfural, hydroxymethylfurfural (HMF) and phenolic compounds during the thermal step (Ferreira 

et al., 2013; Vivekanand et al., 2014). If the concentration of the different inhibitors produced is low, 

anaerobic microorganisms can acclimatize and even degrade part of the inhibitors produced before 

(Benjamin et al., 1984; Noike and Eng, 2001; Fox et al., 2003). Additionally, every substrate has 

different specific properties varying from one to another the optimum SF condition as shown in 

Figure 4. 

On the other hand, it requires specific and strong equipment capable of handling sudden 

pressure changes (which produce sudden volume changes that damage the equipment). These 

pressure and volume changes disrupt substrate‘s structure affecting the CH4 production depending 

on the pretreatment conditions. In conclusion, it is important to evaluate for the different substrates 

the best steam explosion condition not only paying attention to the hydrolysis improvement but also 

to the inhibitory compounds generation and its effects on AD. 

1.4.4. Thermal hydrolysis 
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Thermal hydrolysis (TH) includes, just like SE, a high pressure and temperature period that 

disrupts the substrate. The difference consists on not applying a sudden pressure release at the end 

of the pretreatment (Kist et al., 2018b). Because of not performing a sudden pressure change, the 

specifications required for the machine are not the same which reduces equipment specifications. 

If both SE and TH are performed in the same reactor, the influence of the pressure release 

condition can be studied to suggest if it is necessary or not for pretreating lignocellulose biomass 

before an AD process. 

 

1.5. Objectives 

The objectives of this study are the following; (1) To evaluate the performance of four 

pretreatment methods (Compression, sonication, TH and SE) on water hyacinth and (2) To assess 

how the different pretreatments affect the AD of water hyacinth. For the experiment, the conditions 

for performing AD were mainly selected based on the SCOD obtained to evaluate how the 

mechanisms of the different pretreatments affect AD‘s outcome. 

 

2. Materials and Methods 

2.1. Substrate 

Water hyacinth (E. crassipes) was bought from Charm Company (Japan) was used as a 

substrate. Water hyacinth was cut into 3-5cm pieces and stored at -20ºC. Unfroze water hyacinth 

was used for pretreatments and AD experiment within 2 days. 
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2.2. Pretreatments 

2.2.1. Compression 

The machine utilized for performing the compression pretreatment was a manual standard 

juicer (Dancer, Figure 5.). The compression step was performed 3 times in a row per sample batch 

and always applied manually. The liquid fraction separated during the operation contained small 

solid particles which were not filtered afterwards. After performing the compression, solid and 

liquid were separately frozen at -20ºC. 

2.2.2. Sonication 

2.2.2.1.Substrate preparation 

Due to applying sonication waves using a probe-sonication homogenizer (UH-50, SMT 

Company; 50W; 20 kHz), it was necessary to mill the water hyacinth beforehand. Otherwise, the 

substrate would float and block the sonication-probe not allowing a proper irradiation. After milling, 

the sample was properly mixed with the liquid faction obtained to homogenize the substrate before 

pretreating. 

2.2.2.2.Experiment design 

The pretreatment design was based on the specific energy (SpE) applied to the substrate‘s 

total solids (TS) concentration. SpE was considered as below [2] (Kist et al., 2018a): 

    
 
   

⁄   
              

                      
    [2] 

For performing sonication the TS concentration was fixed to 2g-TS/L (Dilution rate 1:5 

substrate:milliQ). The power was always 50W with a constant wavelength (20 kHz) while different 

exposure times (9, 19 and 28min) and volumes (50, 100 and 200) were tested operating this way 
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SpE within the range 70-855 MJ/kg-TS (Table 3). Since the pretreated volumes were fixed, the 

necessary amount for preparing the anaerobic digestion batch experiments was produced right 

before starting up the experiment to avoid substrate spoiling. 

2.2.3. Steam explosion and Thermal hydrolysis 

The Steam explosion reactor was rented from Nitou Kouatsu Company (Ibaraki, Tsukuba, 

Japan) to carry out the operations at Soka University, Japan (Figure 2). The reactor volume was 

2.8L with an effective volume of 1.8L. An electrical heater controls the temperature inside of the 

reactor and the pressure release valve was manually operated. 

500g of water hyacinth and 600mL of milliQ water (ratio 1:1.2 substrate:milliQ) were 

introduced from the top of the reactor. When inputting these amounts in the reactor special attention 

was paid to the upper liquid surface to ensure water hyacinth was completely soaked to prevent a 

possible incineration of the upper substrate while carrying out the pretreatment. The temperature is 

then increased until it reaches 120, 170 or 210ºC depending of the experimental conditions. When 

the desired retention time elapses, the valve is manually opened displacing the mixture of pretreated 

sample to a flash tank from where the sample was collected. After collection, the pretreated sample 

was mixed and frozen at -20ºC. In this study, steam explosion machine was operated using 2 

different procedures in the final pressure release step; sudden pressure release (Steam explosion, 

SE) which enables the final physical expansion and gradual pressure release (Thermal hydrolysis, 

TH) which prevents the final physical step producing only the thermal step also occurred during the 

SE pretreatment. These two methods were investigated in order to clarify the influence of final 

pressure release step for the pretreatment and subsequent biological process. 
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A total of 18 conditions were performed (9 for TH and 9 for SE) being the same conditions 

for both pretreatments. The combination of three temperatures (120, 170and 210ºC) and retention 

times (10, 30 and 60 min) were tested (Table 4). 

Intensity of the pretreatments is defined as severity factor (SF) which depends on the retention 

time and the temperature during the process. This variable is defined as follows [3] (Liu, 2010): 

      *     (
     

     
)+     [3] 

Where t refers to the retention time (min) and T is the temperature (ºC) during the 

pretreatment. 

2.2.4. Analytical parameters 

For all the different pretreatments samples the total chemical oxygen demand (TCOD), 

soluble chemical oxygen demand (SCOD), total solids (TS), volatile solids (VS) and total organic 

carbon (TOC) were measured following standardized methods (American Public Health 

Association, 1998). Additional analyses were performed depending on the pretreatment‘s 

mechanism. Referring to steam explosion samples, pH was measured by a pH meter (HORIBA, B-

212, Japan). For SCOD determination, samples were filtered through 0.45µm glass-fiber filters 

(Advantec, GC-50, 47mm, Japan). Also CHN (2400 CHNS/O Series II System (100V), Perkin 

Elmer) was measured for these conditions. Lignocellulose composition was measured using the 

detergent method (Van Soest et al., 2010) and a fiber analyzer (ANKOM Technology, A-200, USA). 

Due to the possibility of producing inhibitory compounds while pretreating using both steam 

explosion and sonication, phenolic compounds were measured according to Folin-Ciocalteau 

method (Singleton et al., 1998) preparing triplicates to evaluate the error outcome. Soluble lignin 

concentration was also measured following the same method explained at Koyama et al. (2017) by 
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acid precipitation of the soluble humic fraction and soluble lignin (both are accounted into the 

lignin fraction). For the compression samples, nutrients on the liquid phase were measured (HPLC; 

Column IC I-524A, Guard column IC IA-G from Shodex Company for anion analysis; Column IC 

YS-50, Guard column IC YS-G from Shodex Company for cation analysis). 

 

2.3. AD batch experiments 

2.3.1. Substrate and sludge 

The substrates used were the untreated condition and the best conditions from all the different 

pretreatments tested during this study; from both the SE and TH pretreatments the 210ºC for 10min, 

170ºC for 60min and 120ºC for 60min conditions, from sonication pretreatment all the 28min 

operations for the three different volumes tested (50, 100 and 200mL) and for the compression 

pretreatment both the liquid and solid samples were tested separately. The inoculum was a 

mesophilic anaerobic digestion sludge collected from a full-scale biogas plant, the Hokubu Sludge 

Treatment Center at Yokohama, Japan. The sludge obtained was kept at 37ºC for three days before 

starting up the batch AD experiments to replicate inoculums activity and organic content. 

2.3.2. Batch experiments 

Batch experiments were conducted using an automatic anaerobic digestion system II (AMPTS 

II, Bioprocess Control AB, Sweden). The batch experiments were designed based on the VS ratio 

between substrate and inoculum (ratio 1:2 substrate-VS:inoculum-VS). The operation volume was 

always fixed to 300mL. VS values were adjusted (always maintaining the ratio) depending on the 

pretreated sample‘s characteristics. The temperature was fixed to 37±1ºC by water thermal bath, 

agitation speed set as 100rpm operating semi-continuously every 10s for a 10s period. Before 
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starting the process‘ monitoring, all the flasks were flashed using Ar as an inert gas for 2 to 3 min to 

ensure anaerobic condition. For every batch experiment a blank condition was prepared adding only 

inoculum and milliQ water without any substrate to quantify the methane production from the 

inoculum itself. All the conditions and blanks were tested as triplicates to evaluate the error output. 

The biogas produced was guided through a CO2 absorption unit willed with a 3M NaOH solution. 

The final gas volume was automatically monitored by a gas-volume quantifier. 

2.3.3. Special considerations 

Some liquid samples were tested (liquid fraction obtained from the compression pretreatment) 

so the VS values were low. Because of this sample‘s characteristics, the volume needed for 

preparing the batch experiments was adjusted to maintain the operation volume constant. This 

derived into reducing the VS input for the batch test but the amount was adjusted with the 

inoculum‘s VS to maintain the ratio used when designing all the other experiments (ratio 1:2 

substrate:inoculum). 

2.3.4. Statistical analysis 

For simulating the AD processes, the modified Gompertz equation [4] (Donoso-Bravo et al., 

2010) was applied to the different triplicates of all the AD batch experiment‘s conditions and 

adjusted by the minimum R
2
 method: 

          (    (
        

 
)         )   [4] 

―a‖ represents the maximum value the simulation would reach if the system is stable, ―b‖ 

refers to the kinetics of the simulation and ―c‖ to the inhibitory effect during the initial phase. 
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3.  Results & Discussion 

3.1. Substrate characterization 

Moisture content obtained from untreated water hyacinth was 95%. Hemicellulose, cellulose 

and lignin compositions were 31, 28 and 9%-TS, respectively (Table 5). 

The moisture content of water hyacinth was slightly higher than usually but the chemical 

composition was similar to previous studies ensuring that the substrate is representative 

(Gunnarsson and Petersen, 2007; Rezania et al., 2017; Kist et al., 2018a; Zhang et al., 2018). 

Therefore, the water hyacinth used in this study is considered as suitable for investigating the 

effects of the four pretreatments selected and the subsequent AD operation. 

 

3.2. Pretreatments 

3.2.1. Compression 

With the compression pretreatment two thirds of the initial mass was extracted as liquid 

fraction (Figure 6). However, as showed on Table 6, the final moisture of the solid fraction after 

performing compression is still high (89%). The TCOD and SCOD values obtained from both the 

solid and liquid fractions after performing the compression are shown on Table 7. The difference 

between TCOD and SCOD for the liquid fraction is due to the presence of small root particles 

which were not filtered after performing the pretreatment. VS and TCOD mass balances are 

displayed on Table 8 and Table 9, respectively. 

The moisture of the solid fraction is high (89%), which means that compression can be 

improved with a proper machine applying a high enough pressure (Akely et al., 2010; Kolawole, 

2011). High molecular weighted compounds stay in the solid (Barua and Kalamdhad, 2018) and the 
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water-soluble compounds go with the liquid fraction. If a higher pressure is applied on the initial 

substrate, cells may break releasing more compounds that could be used as substrate during the AD 

process. These compounds are easily biodegradable. In order to evaluate whether there is still easily 

biodegradable compounds in the solid fraction after performing compression, both the liquid and 

solid fractions were tested by AD separately. 

3.2.2. Sonication 

An improvement on SCOD values compared with only milled water hyacinth was observed 

after applying sonication (Figure 7).The SCOD concentration was not directly proportional with the 

SpE applied (Figure 8). 

Figure 7 shows the improvement of hydrolysis due to sonication. SCOD content is increased 

which means that the pretreatment affects solubilization. Also in previous research, using sonication 

on aquatic weeds does not show a remarkable difference on SCOD values even if the SpE value is 

doubled (Kist et al., 2018a). During this study the SpE correlation with SCOD was found as 

logarithmic as shown in Figure 8 (p < 0.01). This relation means that for a low SpE value, the 

hydrolysis will be greatly improved but after reaching a certain number, it will reach a maximum.  

3.2.3. Steam explosion (SE) and thermal hydrolysis (TH) 

3.2.3.1.Morphological differences 

After performing all the different conditions for SE pretreatment (Table 4) morphological 

differences were easily perceived by mere observation of the pretreated mixture (Figure 9). For the 

different temperatures tested the differences were obvious but for different retention times and 

pressure release conditions, the appearance remained the same. 

3.2.3.2.Lignocellulose composition 
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For the lignocellulose analysis the results from the SE operations are similar to the TH ones 

(Figure 10). While increasing temperature and retention time hemicellulose content decreases 

reaching really low values for the highest temperature (210ºC). Solubilization temperatures of 

hemicellulose (Wang et al., 2017) and the lignin (Bobleter, 1994) might affect the compositional 

differences. 

3.2.3.3.Biomass solubilization 

When increasing the exposure time for the 120 and 170ºC condition, SCOD concentration 

increased but it decreases with treatment time for the 210ºC condition.  Comparing the SE and TH 

(Figure 11) operations, the solubilization was barely affected. 

The increasing SCOD trend when increasing the temperature (Figure 11) suggests 

temperature as the main parameter when performing SE probably followed by the retention time 

(both included in the SF variable) and lastly by the pressure release condition that shows a minor 

effect compared to temperature. Comparing results from the SE and TH performed during this study 

(Figure 11) the SE operation tends to achieve a slightly higher SCOD value but nothing remarkable. 

Some small SCOD variations were also obtained during previous research when performing a SE 

and a TH operations (Kist et al., 2018b). 

When plotting the SF of the different SE conditions against the SCOD obtained (Figure 12) 

the trend shows that the optimum SF value is obtained at SF = 4.2 when using SCOD as the 

selection criteria. As showed on Table 4, this value corresponds to the 210ºC for 10min retention 

time. After surpassing this optimum SF value, the SCOD decreases as demonstrated in previous 

studies (Kobayashi et al., 2004).  
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The selection of the best conditions for performing anaerobic digestion was mainly based on 

SCOD values but, in order to compare the influence of temperature (which, as mentioned above, 

seems to be really important for pretreating water hyacinth) the conditions selected were the 

following; 210ºC 10min, 170ºC 60min and 120ºC 60min. For all the conditions mentioned both the 

SE and TH pretreated substrates were tested by AD (total of 6 conditions) in order to find out if the 

pressure release condition affected the digestibility of the sample. 

3.2.3.4.Mass balances 

On every SE operation around a 15% of the initial mass is lost due to either volatilization or 

remaining matter inside the reactor after collecting the sample. The loss value (15%) did not change 

when different SE conditions were tested. 

Nutrients (C, H and N) concentration (mg/g-TS) obtained after analyzing SE and TH 

operations do not show big differences or trends. The initial carbon, nitrogen and hydrogen masses 

for the raw substrate are always higher than the pretreated ones (after correcting the dilution factor) 

excepting a few of them probably due to measurement errors (Figure 13). 

Total mass of the different elements (C, H and N) correcting the dilution rate and TS values to 

the %TS obtained from CHN analysis in order to be able to directly compare values are shown on 

Figure 13. The fact that no trend is shown means that the total amount of C, H and N remains 

constant not depending on the SE condition operated. The compounds present on the sample may 

vary but the total amount barely changes. 

3.2.3.5.Inhibitors generation 

Soluble lignin, which starts solubilizing at around 180ºC (Bobleter, 1994), showed a 

decreasing trend when decreasing the SE temperature when analyzed for the TH operation (Figure 
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14). On the other hand, there is no clear trend for the SE one (Figure 14). Also, the maximum 

concentrations obtained were 500 mg-lignin/L for both the TH and SE operations which were not 

high enough to strongly inhibit the AD process. Phenolic compounds are clearly dependent on the 

condition, being higher its production when the temperature increases in both the SE and TH 

(Figure 15) operations. More precisely, phenolic compounds show an exponential correlation with 

T and a linear correlation with the SF (Figure 16). The maximum concentration obtained during this 

study was about 700mg/L which is much lower than the 4g/L mentioned as inhibitory concentration 

during previous research (Bajaj et al., 2009). Inhibitors production is correlated with the 

pretreatment‘s temperature and time (SF) (Patwardhan et al., 2011a,b; Wang et al., 2017) which is 

also proven during this study. 

 

3.3. Anaerobic digestion batch experiments 

AD of untreated and pretreated water hyacinth was conducted to clarify the effect to methane 

productivity. Then, for the statistical analysis, the modified Gompertz equation was adjusted to the 

experimental results (Table 10). 

3.3.1. Compression 

Compression‘s CH4 yield results show a fast degradation of the liquid fraction finishing the 

digestion within approximately 7 days which is much shorter than the other conditions tested 

(Figure 17). 350 NmL/g-VS CH4 yield was obtained from this condition. On the other hand, the 

solid fraction was slowly degraded during a long time reaching 167 NmL/g-VS CH4 yield within 19 

days. The fast and efficient result obtained for the liquid fraction suggests that the easily 

biodegradable compounds were successfully collected with the liquid fraction. CHN for the solid 
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phase separated during the pretreatment show a lower concentration of nitrogen compared with the 

raw water hyacinth analyzed (Table 11). 

The main purpose of performing AD for the solid phase was to assess which kind of organic 

compounds remain there and, as shown in Figure 17, there is no lag phase. From this fact the 

presence of more easily biodegradable compounds can be inferred. This suggests that using a higher 

pressure or maintaining the pressure application for a longer time may improve the pretreatment 

method (Akely et al., 2010; Kolawole, 2011). After performing an optimized compression 

pretreatment, because of extracting liquid, the hemicellulose and cellulose composition of the solid 

fraction remaining increases. These compounds are the main substrate for ethanol production 

processes (Malik, 2007) which could be a good alternative for this fraction since CH4 production of 

the solid fraction did not obtain a good result in this study and the operation should be even worse if 

more liquid is extracted with the previous compression. 

3.3.2. Sonication 

Sonication obtained 174, 159 and 200 NmL-CH4/g-VS for the 50, 100 and 200mL conditions, 

respectively. Compared with the untreated substrate (264 NmL-CH4/g-VS), results show a negative 

effect of sonication on AD (Figure 18) showing a lower CH4 yield and also a slower response.  

Sonication improves both physical and chemical processes (Bussemaker and Zhang, 2013) 

and, because of not improving the hydrolysis as much as initially expected (Figure 7), the extra 

energy provided may have affected the molecular structure of the substrate. Luo et al., (2013) 

mentions that due to lignocellulose being a non-volatile structure, cavitation zones are not the main 

source of structure alteration but the shockwave, micro-jets and micro-convection mentioned on the 

introduction section. When it comes to parameters for the sonication, the power usually used for 

delignification varies from 1 to 3 W/mL (Shirsath et al., 2012) and the concentration varies from 2 
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to 5%wwt since for a higher concentration, sonication efficiency is decreased (Montalbo-lomboy et 

al., 2010; Nitayavardhana et al., 2010; Yunus et al., 2010). During this study the initial design 

pursued a different approach, some of these criteria were followed (power applied varied from 0.25 

to 1 W/mL; concentration was fixed to 2%wwt) but not all of them, which could be a reason for the 

results obtained. 

 Chemical reactions are more likely to occur on a high frequency sonication condition 

(Bussemaker and Zhang, 2013) which is just the opposite than the applied on this study but, as a 

possibility during some applications (Bizzi et al., 2019), inhibitors generated from lignocellulose 

structures were also measured for this pretreatment. Both soluble lignin (Figure 19) and phenolic 

compounds (Figure 20) did not show any trend or high values. Soluble nutrients remained constant 

(Figure 21) when comparing with the milled sample before sonication. This result means both that 

the heat produced during the sonication pretreatment did not volatilize nutrients and no nutrients 

were hydrolyzed from the solid phase. 

Sonication pretreatment not only did not improve AD but also inhibited it which contradicts 

most of the previous research (Sangave and Pandit, 2006; Wang et al., 2010a; Wu-Haan, 2010; 

Castrillón et al., 2011; Pilli et al., 2011; Leaño and Babel, 2012). Probably the problem for not 

working was the power applied. Other authors suggested to supply powers from 1 to 3 W/mL 

(Shirsath et al., 2012). Also some other non-measured inhibitors such as furfural compounds (Bizzi 

et al., 2019). After testing SpE in this study, it should not probably be used as the main design 

parameter for this sonication pretreatment. The reason was not found during this study so further 

research is needed. 

3.3.3. Steam explosion and thermal hydrolysis 
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The results obtained from the AD batch experiments of the untreated and SE samples are 

shown in Figure 22. For comparing the SE and the TH conditions, error bars must be accounted. 

The difference between the 170ºC and 210ºC conditions are important because of their respective 

error bars but the 120ºC conditions have big error bars not being able to ensure if the results are 

different or the same. 

3.3.3.1.Methane production rate 

The kinetics parameter of the simulation (―b‖ from Table 10) shows that the 170ºC and the 

120ºC conditions were initially faster than the untreated condition. Therefore, hydrolysis of water 

hyacinth was successfully enhanced by means of the pretreatments. However, the 210ºC conditions 

were slower than the untreated. This may be because of inhibitors or recalcitrant substances 

produced (Taherzadeh and Karimi, 2008) or because of the degradation of easily biodegradable 

compounds during the pretreatment since the temperature is high (potentially being the reason for 

the low productivity for 210℃ samples). These recalcitrant compounds are produced by the 

condensation of substances between polymers not affected by the pretreatment, creating a bond 

(Taherzadeh and Karimi, 2008). Also, the soluble lignin concentration was not high enough for a 

complete inhibition but it could help, even more during the initial days, because of the 

microorganisms needing to adapt (Koyama et al., 2017a). Measured soluble lignin and phenolic 

compounds concentrations are shown on Figure 23 for the different AD batch experiments and 

comparing them with the final CH4 yield achieved. 

3.3.3.2.Final CH4 yield achieved 

Methane yield for the SE and TH operations from 120ºC are 179 and 192 NmL-CH4/g-VS, 

respectively (Figure 22). The difference is not big because of being a low temperature that does not 

produce a big overpressure during the pretreatment. It also ended up producing less CH4 yield than 
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the untreated condition. It is possible that, as mentioned by other authors (Wang et al., 2017), 

hemicellulose monosaccharides easily cracked producing 1-hydroxy-2-propanone, furanone and 

other small compounds  possibly inhibiting the AD. 

On the other hand, cumulative methane yield of the 170ºC (347 and 295 NmL-CH4/g-VS for 

SE and TH conditions, respectively) and the 210ºC conditions (304 and 283 NmL-CH4/g-VS for SE 

and TH, respectively) show a remarkable difference between the SE and the TH operations being 

unexpectedly bigger for the 170ºC instead of the 210ºC. As showed in Figure 9 the remaining solid 

fraction for the 170ºC is more than the present on the 210ºC which might have helped enlarging this 

CH4 yield difference. Another factor enhancing the 170ºC results is that, due to the high water 

content, longer retention times are more effective for SE and TH pretreatments (Brownell et al., 

1986; Hendriks and Zeeman, 2009). About reasons for a possible reduction on CH4 yield for the 

210ºC condition is that, when surpassing the 200ºC threshold, cellulose suffers disruption of intra- 

and intermolecular hydrogen bonds (Wang et al., 2017), ether-linkages on the lignin molecules are 

broken producing extra phenolic compounds (Chu S., 2013; Collard and Blin, 2014). Furfural 

compounds production is also increased after surpassing the 190ºC threshold (Thomsen et al., 2009; 

Ferreira et al., 2013). Additionally, the crystallinity of the cellulose and lignin structure affects the 

pyrolysis mechanisms involved (Wang et al., 2017). 

A final comparison between the different AD performed is displayed (Tables 12, 13 and 14) 

showing ratios of general interest. In terms of CH4 yield the best performances were for the liquid 

fraction obtained from compression pretreatment (350 NmL/g-VS) and the 170ºC 60 min SE 

condition (347 NmL/g-VS). Both obtained a 39.1 and 37.9% CH4 yield improvement, respectively. 

Amongst them, the fastest is the compression condition (8 days against 17). 
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On the other hand, because of the low COD composition of the liquid compressed fraction, 

the best conditions for total cumulative CH4 production would be both the 170ºC 60 min SE and TH 

conditions. An interesting fact is that the best conditions for the mL-CH4/g-raw substrate are the 

170ºC 60min SE operation but also the untreated one with a 10.7 and 10.2 mL CH4/g-raw, 

respectively.  

 

4. Conclusion 

 Compression: separated a big amount of liquid with a low SCOD concentration 

improving CH4 yield a 39% with AD of the liquid fraction. The pretreatment can still 

be optimized and an alternative for the solid fraction is necessary. 

 Sonication: improved SCOD values until reaching a maximum value but inhibited the 

AD. A different approach for designing the pretreatment is necessary. 

 Thermal hydrolysis (TH): the optimum SCOD value was obtained from 210ºC 10 min 

but the highest CH4 yield was 170ºC 60 min. CH4 yield was improved a 16%. 

 Steam explosion (SE): the optimum SCOD value was obtained from 210ºC 10 min but 

the highest CH4 yield was also 170ºC 60 min. CH4 yield was improved a 38%. 

 Differences between TH and SE were not found during the pretreatments assessment. 

For AD application, inhibitors and pressure release method played a determinant role.  

The best pretreatments were SE (170ºC 60 min) and compression (liquid fraction). SE uses 

the whole substrate therefore it‘s a better option when the aim is to generate CH4. On the other hand, 

AD of compression pretreatment was faster. If there is an alternative use for the solid fraction, 

compression may be better. 
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Figure 1. CH4 yield and lignin content correlation (Koyama et al., 2014)  

CH4 yield of different plant biomass during anaerobic digestion batch 

experiments . Cua = (Koyama et al., 2014),      = aquatic weeds (Cheng et al., 

2010; Wang et al., 2010),       = herbaceous plants (Gunaseelan, 2007; Triolo et 

al., 2011; Xie et al., 2011; Frigon et al., 2012),      = fruits and vegetable waste 

(Gunaseelan, 2007) 
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Figure 2. Equipment used for SE and TH pretreatment of water hyacinth in 

the present study 
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Figure 3. CH4 production from different SF conditions using 

bamboo stem as substrate (Kobayashi et al., 2004) 
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Figure 4. Relationship between lignin content and optimum SF. 

  

: Wheat straw (Theuretzbacher et al. 2015) 

: Reed (Lizasoain et al. 2016) 

: Miscanthus (Menardo et al. 2013) 

: Bulrush (Wang et al. 2010) 

: Birch (Vivekanand et al. 2013) 

: Salix (Horn et al. 2011) 

: Bagasse (Vivekanand et al. 2014) 

: Aquatic Weed (E. nuttallii) (Suzuki’s Master thesis) 

: Aquatic weed (P. maackianus)  (Suzuki’s Master thesis) 
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Figure 5. Manual juicer used for compressing  water 

hyacinth during the present study 
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Figure 7. Sonication SCOD as compared with milled* substrate. 

Standard deviation bars were calculated using the different monoplicates for 

each condition performed 

*milled water hyacinth without applying any extra alteration to quantify the 

influence on SCOD of milling the substrate 
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Figure 8. Correlation between SCOD improvement obtained by sonication 

pretreatment with the specific energy (SpE) applied 
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Figure 9. Pretreated steam explosion (SE) and thermal hydrolysis (TH) 

morphological differences 
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 Figure 10. Lignocellulose composition from raw, steam explosion (SE; 

A) and thermal hydrolysis (TH; B) pretreated conditions in this study. 
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Figure 12. Correlation between SCOD from steam explosion (SE) and 

thermal hydrolysis (TH)  pretreatments against severity factor (SF)  
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Figure 14, Acid precipitate obtained from the different steam explosion (SE; A) 

and thermal hydrolysis (TH; B) pretreatment conditions during this study 
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Figure 15, Phenolic compounds produced for steam explosion (SE; A) and 

thermal hydrolysis (TH; B) 
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Location Reference 

Europe (Belgium) Verbandt (1990) 

North America (USA) Center et al. (2001) 

South America (Brazil, 

Amazon basin) 

Cilliers et al. (1996); Center et al. (2001); 

Carlini et al. (2018) 

Africa (Egypt, Nile river) Elserafy et al. (1980); Cilliers et al. (1996); 

Carlini et al. (2018) 

Asia (India, Papua New 

Guinea, Australia, Philippines) 

Beshir and Bennett (1984); Jayanth (1988); 

Cilliers et al. (1996); Center et al. (2001); 

Nigam (2002); Carlini et al. (2018) 

Table 1. Eichhornia crassipes spreading all over the world    
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Table 2. Comparison of pretreatment methods.    

Pretreatment Advantage Disadvantage  Reference 

Physical 

Milling 
Increase the surface 

area of biomass 
High energy demand  

Taherzadeth and 

Karimi (2008) 

Izumi et al. (2010) 

Microwave 

No risk of inhibitors 

formation 

Short treatment time 

High cost 
Passos et al. (2013) 

Travaini et al. (2016) 

Steam 

explosion 

Cost effective 

Hydrolysis of 

hemicellulose 

Short treatment time 

Risk of inhibitors 

formation 

Taherzadeh and 

Karimi (2008) 

Thermal 

hydrolysis 

Cost effective 

Hydrolysis of 

hemicellulose 

Non required special 

equipment 

Risk of inhibitors 

formation 
Kist et al. (2018b) 

Compression Simple operation 
Remaining nutrient-rich 

solid phase 

Akely et al. (2010) 

Kolawole et al. (2011) 

Sonication 

Delignification 

Hemicellulose and 

cellulose hydrolysis 

Novel pretreatment. 

Mechanisms not fully 

understanded 

Bussemaker and 

Zhang (2013) 

Luo et al. (2013) 

Chemical 

Alkali 

High delignification 

ability 

Short treatment time  

High cost 

Risk of inhibitors 

formation 

Carrere et al. (2016) 

Taherzadeh and 

Karimi (2008) 

 

Acid 

Hydrolysis 

hemicellulose 

Short residence time 

High cost 

Risk of inhibitors 

formation 

Carrere et al. (2016) 

Taherzadeh and 

Karimi (2008) 

Ozone 

Low generation of 

inhibitory compounds 

Operation at ambient 

temperature 

Short treatment time 

Large amount of ozone 

required; high cost 

Sun and Cheng (2002) 

Travaini et al. (2016) 

Taherzadeh and 

Karimi (2008) 

Biological 

Fungi 

Delignification 

Low energy demand  

No chemical demand 

Low treatment rate 

Long treatment time 

Taherzadeh and 

Karimi (2008) 

Sun and Cheng (2002) 
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Time (min) Volume (mL) 
Specific Energy 

(MJ/kg-TS) * 

  9.5 50 285.0 

19.0 50 570.0 

28.7 50 855.0 

  9.5 100 142.5 

19.0 100 285.0 

28.7 100 430.5 

  9.5 200   71.3 

19.0 200 142.5 

28.7 200 215.3 

Table 3. Sonication conditions in this study 

* See equation on Materials and Methods 
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Temperature (ºC) Time (min) Severity Factor * 

120 10 1.6 

120 30 2.1 

120 60 2.4 

170 10 3.1 

170 30 3.5 

170 60 3.8 

210 10 4.2 

210 30 4.7 

210 60 5.0 

Table 4. Steam explosion and thermal hydrolysis 

conditions in this study 

* See equation on Materials and Methods 
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Parameter Chemical composition 

TS (g/g)   0.05 

VS (g/g)   0.04 

VS/TS   0.81 

TOC (g/kg-wwt) 54.00 

Carbon (% TS) 37.71 

Hydrogen (% TS)   5.23 

Nitrogen (% TS)   7.60 

Lignin (% TS)   9.04 

Hemicellulose (% TS) 31.13 

Cellulose (% TS) 28.02 

Table 5. Characteristics of Eichhornia crassipes  

used on this this study 

62 



TS (%) VS (%) Moisture (%) 

Raw substrate   4.79 3.86 95.21 

Liquid fraction   0.69 0.21 99.31 

Solid fraction 10.72 9.47 89.28 

Table 6. Total solids (TS), volatile solids (VS) and moisture content (%) 

of raw substrate and compressed fractions (liquid and solid fractions) 
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Sample TCOD (g/L) TCOD (g/L) 

Liquid fraction (g/L)   3.24 2.39 

Solid fraction (g/kg*) 70.53 - 

Table 7. Compression TCOD and SCOD 

*kg of raw substrate 
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VS Balance 

  Mass (g) % g-VS 

Raw substrate 373.84 100 14.43 

Liquid 247.78   66   0.52 

Solid 112.69   30 10.67 

Total sample 360.47   96 11.19 

Loss   13.37    4   3.24 

Table 8. VS mass balance for compression 

pretreatment 
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TCOD balance 

TCOD(g/kg-wwt) 
Raw  

mass (g) 
TCOD (g) 

Raw substrate 54.00 100 5.40 

Solid 70.53   30 2.13 

Liquid    3.24*   66 0.21 

Loss -    4 3.06 

Table 9. TCOD mass balance for compression 

pretreatment 

*g-TCOD/L 
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Pretreatment a* b* c* 

Untreated 232   35 -0.40 

SE 210ºC 10min SE 313   30  0.36 

210ºC 10min TH 288   29  0.53 

170ºC 60min SE 339   42 -0.19 

170ºC 60min TH 291   45 -0.13 

120ºC 60min SE 172   36 -0.47 

120ºC 60min TH 178   52 -0.20 

Sonication 50mL 28min 168   30 -0.44 

100mL 28min 159   34 -0.21 

200mL 28min 182   30 -0.40 

Compression Liquid 336 132  0.16 

Solid 146   24 -0.61 

Table 10. Simulation parameter using the modified Gompertz’s equation 

for CH4 yield results of AD batch experiments 

*a, b and c indicate the stabilization point, the kinetics factor and the 

inhibition factor, respectively. These values are calculated according to the 

modified Gompertz’s equation as shown on the matherials and methods 

section 
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Condition Carbon (% TS) Hydrogen (% TS) Nitrogen (% TS) 

Raw water hyacinth 37.71 5.23 7.60 

Compression Solid 42.51 5.81 5.02 

Table 11. Compression CHN results compared with raw substrate 
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Condition 
CH4 yield 

(NmL/g-VS) 

Improvement 

(NmL/g-VS) 

Improvement 

(%) 
Time (d) 

Untreated 252     -      - 19 

SE 210ºC 10min SE 285   34  13.4 16 

210ºC 10min TH 283   31  12.4 17 

170ºC 60min SE 347   95  37.9 17 

170ºC 60min TH 293   41  16.3 14 

120ºC 60min SE 179 -72 -28.8 18 

120ºC 60min TH 192 -59 -23.6 16 

Sonication 
50mL/28:45min 174 -78 -30.8 11 

100mL/28:45min 159 -92 -36.7 10 

200mL/28:45min 199 -53 -21.0 13 

Compression Liquid 350   98  39.1   8 

Solid 167 -85 -33.7 19 

Table 12. Different pretreatment’s AD comparison based on CH4 yield 
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Condition 
SCOD 

(g/L) 

TCOD 

(g/L) 

Cumm*-CH4 

/SCOD 

Cumm*-CH4 

/TCOD 

Untreated -   54.0 -   5.06 

210ºC 10min SE 9.3 -   46.06 - 

210ºC 10min TH 9.3 -   45.45 - 

170ºC 60min SE 8.1 -   63.80 - 

170ºC 60min TH 7.7 -   56.72 - 

120ºC 60min SE 4.0 -   51.75 - 

120ºC 60min TH 3.7 -   60.67 - 

Compr liquid 2.4   3.2   69.01 50.92 

Compr solid - 70.5 -   2.73 

50mL 28min 1.2 - 151.06 - 

100mL 28min 1.2 - 135.03 - 

200mL 28min 1.1 - 191.65 - 

Table 14. AD’s CH4-production/COD ratios 

* Total amount in NmL-CH4 produced during the batch AD experiment 
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