142 printf(
"%.2lf\t",m.
m[i][j]);
156 printf(
"%.2lf\t",v.
v[i]);
165 #define clearV(vv) clearVInternal((vv).v)
166 #define clearVInternal(v) \
167 ((v)[0] = (v)[1] = (v)[2] = 0.0 )
172 #define cpyV(r,a) cpyVInternal((r).v,(a).v)
173 #define cpyVInternal(r,a) \
174 {(r)[0] = (a)[0]; (r)[1] = (a)[1]; (r)[2] = (a)[2]; }
179 #define addV(r,a,b) addVInternal((r).v,(a).v,(b).v)
180 #define addVInternal(r,a,b) \
181 {(r)[0] = (a)[0] + (b)[0]; (r)[1] = (a)[1] + (b)[1]; (r)[2] = (a)[2] + (b)[2]; }
187 #define subV(r,a,b) subVInternal((r).v,(a).v,(b).v)
188 #define subVInternal(r,a,b) \
189 {(r)[0] = (a)[0] - (b)[0]; (r)[1] = (a)[1] - (b)[1]; (r)[2] = (a)[2] - (b)[2]; }
194 #define norm(vv) normInternal((vv).v)
195 #define normInternal(v) \
196 (sqrt( pow((v)[0],2) + pow((v)[1],2) + pow((v)[2],2) ))
201 #define multSV(r,s,vv) multSVInternal((r).v,s,(vv).v)
202 #define multSVInternal(r,s,v) \
203 {(r)[0] = (s) * (v)[0]; (r)[1] = (s) * (v)[1]; (r)[2] = (s) * (v)[2]; }
208 #define clearM(mm) clearMInternal((mm).m)
209 #define clearMInternal(m) \
210 ((m)[0][0] = (m)[0][1] = (m)[0][2] = \
211 (m)[1][0] = (m)[1][1] = (m)[1][2] = \
212 (m)[2][0] = (m)[2][1] = (m)[2][2] = 0.0 )
224 #define det(mm) detInternal((mm).m)
225 #define detInternal(m) \
226 ( (m)[0][0] * (m)[1][1] * (m)[2][2] \
227 + (m)[0][1] * (m)[1][2] * (m)[2][0] \
228 + (m)[0][2] * (m)[1][0] * (m)[2][1] \
229 - (m)[0][0] * (m)[1][2] * (m)[2][1] \
230 - (m)[0][1] * (m)[1][0] * (m)[2][2] \
231 - (m)[0][2] * (m)[1][1] * (m)[2][0] )
236 #define init_matrix(mm,a,b,c,d,e,f,g,h,i) init_matrixInternal((mm).m,a,b,c,d,e,f,g,h,i)
237 #define init_matrixInternal(m,a,b,c,d,e,f,g,h,i) \
238 {(m)[0][0] = a; (m)[0][1] = b; (m)[0][2] = c; \
239 (m)[1][0] = d; (m)[1][1] = e; (m)[1][2] = f; \
240 (m)[2][0] = g; (m)[2][1] = h; (m)[2][2] = i; }
245 #define multSM(r,s,mm) multSMInternal((r).m,s,(mm).m)
246 #define multSMInternal(r,s,m) \
247 {(r)[0][0] = (s) * (m)[0][0]; (r)[0][1] = (s) * (m)[0][1]; (r)[0][2] = (s) * (m)[0][2]; \
248 (r)[1][0] = (s) * (m)[1][0]; (r)[1][1] = (s) * (m)[1][1]; (r)[1][2] = (s) * (m)[1][2]; \
249 (r)[2][0] = (s) * (m)[2][0]; (r)[2][1] = (s) * (m)[2][1]; (r)[2][2] = (s) * (m)[2][2]; }
254 #define multSI(r,s) multSIInternal((r).m,s)
255 #define multSIInternal(r,s) \
256 {(r)[0][0] = (s); (r)[0][1] = 0; (r)[0][2] = 0; \
257 (r)[1][0] = 0; (r)[1][1] = (s); (r)[1][2] = 0; \
258 (r)[2][0] = 0; (r)[2][1] = 0; (r)[2][2] = (s); }
264 #define addM(r,a,b) addMInternal((r).m,(a).m,(b).m)
265 #define addMInternal(r,a,b) \
266 {(r)[0][0] = (a)[0][0] + (b)[0][0]; (r)[0][1] = (a)[0][1] + (b)[0][1]; (r)[0][2] = (a)[0][2] + (b)[0][2]; \
267 (r)[1][0] = (a)[1][0] + (b)[1][0]; (r)[1][1] = (a)[1][1] + (b)[1][1]; (r)[1][2] = (a)[1][2] + (b)[1][2]; \
268 (r)[2][0] = (a)[2][0] + (b)[2][0]; (r)[2][1] = (a)[2][1] + (b)[2][1]; (r)[2][2] = (a)[2][2] + (b)[2][2]; }
274 #define multVVt(r,a,b) multVVtInternal((r).m,(a).v,(b).v)
275 #define multVVtInternal(r,a,b) \
276 {(r)[0][0] = (a)[0] * (b)[0]; (r)[0][1] = (a)[0] * (b)[1]; (r)[0][2] = (a)[0] * (b)[2]; \
277 (r)[1][0] = (a)[1] * (b)[0]; (r)[1][1] = (a)[1] * (b)[1]; (r)[1][2] = (a)[1] * (b)[2]; \
278 (r)[2][0] = (a)[2] * (b)[0]; (r)[2][1] = (a)[2] * (b)[1]; (r)[2][2] = (a)[2] * (b)[2]; }
284 #define multMV(r,mm,vv) multMVInternal((r).v,(mm).m,(vv).v)
285 #define multMVInternal(r,m,v) \
286 {(r)[0] = (m)[0][0] * (v)[0] + (m)[0][1] * (v)[1] + (m)[0][2] * (v)[2]; \
287 (r)[1] = (m)[1][0] * (v)[0] + (m)[1][1] * (v)[1] + (m)[1][2] * (v)[2]; \
288 (r)[2] = (m)[2][0] * (v)[0] + (m)[2][1] * (v)[1] + (m)[2][2] * (v)[2]; }
294 #define inv(r,mm) invInternal((r).m,(mm).m)
295 #define invInternal(r,m) \
296 {(r)[0][0] = (m)[1][1] * (m)[2][2] - (m)[1][2] * (m)[2][1]; \
297 (r)[0][1] = - (m)[0][1] * (m)[2][2] + (m)[0][2] * (m)[2][1]; \
298 (r)[0][2] = (m)[0][1] * (m)[1][2] - (m)[0][2] * (m)[1][1]; \
299 (r)[1][0] = - (m)[1][0] * (m)[2][2] + (m)[1][2] * (m)[2][0]; \
300 (r)[1][1] = (m)[0][0] * (m)[2][2] - (m)[0][2] * (m)[2][0]; \
301 (r)[1][2] = - (m)[0][0] * (m)[1][2] + (m)[0][2] * (m)[1][0]; \
302 (r)[2][0] = (m)[1][0] * (m)[2][1] - (m)[1][1] * (m)[2][0]; \
303 (r)[2][1] = - (m)[0][0] * (m)[2][1] + (m)[0][1] * (m)[2][0]; \
304 (r)[2][2] = (m)[0][0] * (m)[1][1] - (m)[0][1] * (m)[1][0]; \
305 multSMInternal(r,1/detInternal(m),r); }
310 #define multMM(r,a,b) multMMInternal((r).m,(a).m,(b).m)
311 #define multMMInternal(r,a,b) \
312 {(r)[0][0] = (a)[0][0] * (b)[0][0] + (a)[0][1] * (b)[1][0] + (a)[0][2] * (b)[2][0]; \
313 (r)[0][1] = (a)[0][0] * (b)[0][1] + (a)[0][1] * (b)[1][1] + (a)[0][2] * (b)[2][1]; \
314 (r)[0][2] = (a)[0][0] * (b)[0][2] + (a)[0][1] * (b)[1][2] + (a)[0][2] * (b)[2][2]; \
315 (r)[1][0] = (a)[1][0] * (b)[0][0] + (a)[1][1] * (b)[1][0] + (a)[1][2] * (b)[2][0]; \
316 (r)[1][1] = (a)[1][0] * (b)[0][1] + (a)[1][1] * (b)[1][1] + (a)[1][2] * (b)[2][1]; \
317 (r)[1][2] = (a)[1][0] * (b)[0][2] + (a)[1][1] * (b)[1][2] + (a)[1][2] * (b)[2][2]; \
318 (r)[2][0] = (a)[2][0] * (b)[0][0] + (a)[2][1] * (b)[1][0] + (a)[2][2] * (b)[2][0]; \
319 (r)[2][1] = (a)[2][0] * (b)[0][1] + (a)[2][1] * (b)[1][1] + (a)[2][2] * (b)[2][1]; \
320 (r)[2][2] = (a)[2][0] * (b)[0][2] + (a)[2][1] * (b)[1][2] + (a)[2][2] * (b)[2][2]; }
348 for(iter=0; iter<
ITER_SJ; iter++){
351 if( A.
m[i][i] == 0 )
continue;
356 if(i != j) x_1.
v[i] += A.
m[i][j] * x.
v[j];
358 x_1.
v[i] = (b.
v[i] - x_1.
v[i]) / A.
m[i][i];
383 double detA =
det(A);
430 printf(
"%s [-n NEWTON METHOD ITERATIONS] [-j JACOBI METHOD ITERATIONS] FILE \n",name);
432 printf(
" -n NEWTON METHOD ITERATIONS number of iterations (default 10)\n");
433 printf(
" -j JACOBI METHOD ITERATIONS number of iterations (default 100)\n");
434 printf(
" FILE input graph file\n");
455 double number = (double) random();
463 if ((random() % 100) <
P_FIXED){
490 while ((c = (
char) getopt (argc, argv,
"hn:j:")) != -1)
493 sscanf(optarg,
"%d",&
iter1);
496 sscanf(optarg,
"%d",&
iter2);
507 if(optind == (argc-1)){
510 char * graph_file = argv[optind];
512 printf(
"# Graph: %s\n",graph_file);
534 printf(
"# N fixed: %d\n",nfixed);
578 Vector v4 = {{0,100,200}};
580 Vector v5 = {{100,100,0}};
582 Vector v6 = {{200,100,0}};
584 Vector v7 = {{300,100,0}};
620 norm += pow(Gi.
v[d],2);
634 int main(
int argc,
char ** argv) {
653 for(i=0;i<
iter1;i++){
654 printf(
"# iter: %d/%d\n",i,iter1);
669 for(j=0;j<
iter2;j++){
737 double scalar = -
K * ((
L - n) / n);
763 double scalar_a, scalar_b;
776 scalar_a = -((
L-n)/(n));
778 scalar_b = (
L/(pow(n,3)));
809 Vector gij =
g(vertex,nghb_index);
813 Matrix Wij =
W(vertex,nghb_index);
820 Matrix Hij =
W(nghb_index,vertex);
853 if(nghb_index == vertex)
continue;
877 new_ei =
solve(Hii,sum);
void hit_gcTileCopyVertices(void *destP, void *srcP)
void print_help(char *name)
#define hit_tileNewType(baseType)
#define hit_cShapeEdgeTarget(s, edge)
#define hit_cShapeVertexIterator(var, shape)
void solve_system_iter(int vertex)
#define hit_cShapeEdgeIterator(var, shape, vertex)
#define hit_gcTileEdgeIteratorAt(var, vertex, edge_index)
void hit_gcTileClearVertices(void *varP)
Vector solve(Matrix A, Vector b)
#define hit_gcTileDomainShapeAlloc(var, baseType, shape, allocOpts)
#define hit_gcTileVertexAt(var, vertex)
#define hit_cShapeNvertices(shape)
Vector solve_jacobi(Matrix A, Vector b)
void hit_comInit(int *pargc, char **pargv[])
void random_coordinates()
HitShape HIT_CSR_SHAPE_NULL
#define hit_fileHBRead(hbfile)
int main(int argc, char *argv[])
void init_graph(HitTile_double graph, HitShape shape_global)
#define hit_cShapeAddEdge2(shape, x, y)
void calculate_GH(int vertex)
#define hit_tileFree(var)
void hit_shapeFree(HitShape s)
#define hit_gcTileEdgeAt(var, pos1, pos2)
#define multMV(r, mm, vv)
#define hit_clockGetSeconds(c)
#define hit_clockStart(c)