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Abstract A clustering algorithm that combines the advantages of fuzzy clus-
tering and robust statistical estimators is presented. It is based on mixtures
of Factor Analyzers, endowed by the joint usage of trimming and the con-
strained estimation of scatter matrices, in a modified maximum likelihood
approach. The algorithm generates a set of membership values, that are used
to fuzzy partition the data set and to contribute to the robust estimates of
the mixture parameters. The adoption of clusters modeled by Gaussian Fac-
tor Analysis allows for dimension reduction and for discovering local linear
structures in the data. The new methodology has been shown to be resistant
to different types of contamination, by applying it on artificial data. A brief
discussion on the tuning parameters, such as the trimming level, the fuzzi-
fier parameter, the number of clusters and the value of the scatter matrices
constraint, has been developed, also with the help of some heuristic tools for
their choice. Finally, a real data set has been analyzed, to show how inter-
mediate membership values are estimated for observations lying at cluster
overlap, while cluster cores are composed by observations that are assigned
to a cluster in a crisp way.

Key words: Fuzzy clustering; Robust clustering; Unsupervised learning;
Factor analysis

Department of Statistics and Operational Research and IMUVA, University of Val-
ladolid (Spain) lagarcia@eio.uva.es · Department of Statistics and Quantitative Meth-

ods, Milano-Bicocca University (Italy) francesca.greselin@unimib.it · Department
of Statistics and Operational Research and IMUVA, University of Valladolid (Spain)

agustin@med.uva.es

1
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1 Introduction

Fuzzy clustering is a method of data analysis and pattern recognition which
allocates a set of observations to clusters in a “fuzzy” way, more formally,
constructs a “membership” matrix whose (i, g)-th element represents “the
degree of belonging” of the i-th observation to the g-th cluster.

In this sense, the clusters are “fuzzy sets” as defined in [50]. In our case, the
fuzzy sets will be based on mixtures of Gaussian factor analyzers, hence they
have a strong probabilistic meaning and our rules of operation are not those
proposed by Zadeh but those that come naturally from probability theory.

Factor analysis is a widely employed method to be used when, as it hap-
pens in many phenomena, several observed variables could be explained by
a few unobserved ones, exploiting their correlations. It is a powerful method,
whose scope of application is unfortunately limited by the assumption of
global linearity for representing data. To widen its applicability, [23] and [28]
introduced the idea of combining one of the basic form of dimensionality re-
duction - factor analysis - with a basic method for clustering - the Gaussian
mixture model, thus arriving at the definition of mixtures of factor analyzers.
At the same time, [44, 45] and [3] considered the related model of mixtures of
principal component analyzers, for the same purpose. Further references may
be found in [36] (chapter 8). Factor analysis is related to principal component
analysis (PCA) [45]; however, these two methods have many conceptual and
algorithmic differences, with the most significant being that the former aims
at modelling correlation between variables and searches for underlying linear
structures, the second focuses on their variances and identifies a reduced set
of linear transformations of variables, maximizing their variance.

With reference to other techniques for data reduction, we want in partic-
ular to mention [6], where it has been shown that the principal components
corresponding to the larger eigenvalues do not necessarily contain informa-
tion about group structure. Therefore, data reduction and clustering sep-
arately may not be a good idea. Data reduction can ameliorate clustering
and classification results, but combining variable selection and clustering can
give improved results. Mixtures of factor analysers are designed exactly for
simultaneously performing clustering and dimension reduction. Using this
approach, we aim at finding local linear models in clusters, that could be
particularly useful for datasets with a high number of observed variables.
Beyond its parsimony, this method often provides a better insight into the
structure of the original data.

In real datasets, noise and outliers contaminate the data collection, and
any assumed model is only an approximation to reality. Unfortunately, one
single outlier - if located sufficiently far away - can completely ruin the results
of many (hard and fuzzy) clustering methods, in the sense that at least one
of the component parameters estimate can be arbitrarily large. Remarkably,
the fuzzy community has been traditionally very interested in robustness
issues in Cluster Analysis (see, e.g., the large amount of references in the two
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review papers [11, 1]). In fuzzy clustering, the aim is to obtain a collection
of membership values uig ∈ [0, 1] for all i = 1 . . . n and g = 1 . . . G, where
increasing degrees of membership are meant by higher values of the uig. We
may understand why robustness in so critical in fuzzy clustering when we
observe that for an outlying observation xi, generally lying far from the G
clusters, we could obtain uig ∼ 1/G, while we would expect uig ∼ 0 for
g = 1, . . . , G, to convey a very low plausibility to belong to any cluster. In
addition, if one outlying observation xi is placed in a very distant position
but closer to cluster g than the others, then typically uig ∼ 1 and xi would
influence heavily the parameters’ estimation of cluster g.

Hence we put forward a robust methodology based on trimming, to iden-
tify outliers and to assign them zero membership values. In our approach, we
will indicate observation xi as fully trimmed if uig = 0 for all g = 1, . . . , G
and, thus, this observation has no membership contribution to any cluster.
The proposed idea trace back to the seminal paper [9], and is called impartial
trimming, or trimming self-determined by the data. We look for a method
having a reasonably good efficiency (accuracy) at the assumed model; for
which small deviations from the model assumptions should impair the per-
formance only by a small amount; and for which larger deviations from the
model assumptions should not cause a catastrophe [29].

Among the several methodologies for robust fuzzy clustering, some well-
known approaches are the “noise clustering” in [10], the use of more ro-
bust discrepancy measures [48, 34] and the “possibilistic” clustering in [33].
References concerning robustness in hard (crisp) clustering can be found in
[19, 14, 38].

An interesting robust proposal have been introduced in [7], where the Stu-
dent’s t-mixture (instead of the Gaussian), is exploited for modeling factors
and errors, allowing for outlier downweighting during the model fitting proce-
dure. Alternatively, outliers can be accomodated in the model by considering
additional mixture components. It turns out that the two alternatives, while
adding stability in the presence of outliers of moderate size, do not possess
a substantially better breakdown behavior than estimation based on normal
mixtures [27]. In other words, one only observation could completely break-
down the estimation. Hence a model-based alternative with good breakdown
properties is still missing in the literature.

On the other hand, a further issue inherent to the choice of Gaussian Mix-
tures (GM) is originated by the unboundedness of the likelihood, turning the
maximization of the objective function into an ill-posed problem. Therefore,
following a wide literature stream, based on [26, 30, 18, 24], we will adopt a
constrained estimation of the component covariances, to avoid singularities
and to reduce the appearance of spurious solutions. In particular, the joint
use of trimming and constrained estimation for mixtures of factor analyzers
(MFA) have previously been studied for non fuzzy clustering in [21]. The
advantage of MFA with respect to GM is due to the reduction of the number
of free parameters to be estimated. In each component, a reduced number
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of latent variables, called factors and lying in a lower-dimensional subspace,
explain the observed variables, through a linear submodel. Therefore, there
is scope for a robust fuzzy clustering approach, along the lines of [16], and
[12] for fuzzy robust clusterwise regression.

The original contribution of the present paper is to combine: i) robust
estimation techniques; ii) fuzzy clustering; iii) dimension reduction through
factor analysis; iv) the flexibility of having hard and soft assignments for
units (the “hard contrast” property introduced in [39]). The interplay be-
tween these four features provides a novel powerful model with a parsimo-
nious parametrization, specially useful in higher dimensional fuzzy clustering
problems.

The outline of the paper is as follows. In Section 2 we introduce a fuzzy
version of robust mixtures of Gaussian MFA, considering how to implement
fuzziness, trimming and constrained estimation. Section 3 presents an efficient
algorithm for its estimation. Afterwards, in Section 4, we present results on
synthetic data to show the effectiveness of the proposal. A brief discussion on
the role of the parameters involved in the fuzzy robust procedure, such as the
trimming level, the fuzzifier parameter, the number of clusters and the value
of the scatter matrices constraint, has been developed, also with the help of
some heuristic tools for their tuning. An application to real data is provided
in Section 5, also in comparison with competing methods. Conclusions and
further work are delineated in Section 6.

2 Mixtures of Gaussian factors analyzers for fuzzy
clustering

Let {X1, . . . ,Xn} denote a random sample of size n, composed by random
vectors taking values in Rp. The random sample could arise from medical
records, aerial photos, market trends, library catalogs, galactic positions, fin-
gerprints, cash flows, chemical constituents, demographic therefore several
applications could be benefited by this approach. Our goal is the identifi-
cation of a probabilistic model which can provide a reasonable explanation
of the process generating the data. Supposing that, as it happens in many
phenomena, the p observed variables could be explained by a few unobserved
ones, we adopt Factor Analysis. Factor analysis allows to summarize the
variability between a number of correlated features, through a much smaller
number of unobservable, hence named latent, factors. Under this approach,
each single variable (among the p observed ones) is assumed to be a linear
combination of d underlying common factors, with an accompanying error
term accounting for that part of the variability which is unique to it (not
in common with other variables). Considering a mixture of Gaussian factors,
the distribution of Xi is given as
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Xi = µg +ΛgUig +eig with probability πg i = 1, . . . , n, g = 1, . . . , G, (1)

where µg denotes the mean, Λg is a p × d matrix of factor loadings, and
the factors U1g, . . . ,Ung are N (0, Id) distributed independently of the errors
eig. The errors are independent identically distributed N (0,Ψg), with a p×p
diagonal matrix Ψg. In factor analysis the observed variables are independent
given the factors: hence the diagonality of Ψg. Note that the factor variable
Uig models correlations between the elements of Xi, while the errors eig
account for independent noise for Xi, in group g. The πg, called mixing
proportions, are non-negative and sum up to 1. We suppose that d < p.

Unconditionally, the density of each observation Xi is a mixture of G
normal densities, in proportions π1, . . . , πG, as

fMFA(xi;θ) =

G∑
g=1

πgφ(xi;µg,Σg), (2)

where φ(·;µ,Σ) denotes the density of the multivariate Gaussian distribution
with mean µ and covariance Σ, and

Σg = ΛgΛ
′
g + Ψg, for g = 1, . . . , G. (3)

Therefore, mixtures of Gaussian factors concurrently perform clustering and,
within each cluster, local dimensionality reduction. These models should be
especially useful in high-dimensional problems. For fixed q, the number of
parameters grows linearly in dimension p, as their covariances have pq −
q(q − 1)/2 + p free parameters [36]. A more detailed discussion of this topic
is provided in a final remark of this Section.

Our robust fuzzy method is based on a maximum likelihood criterion de-
fined on a specific underlying statistical model, as in many other proposal
in the literature. The next three steps are to modify the classical model in
(2), to incorporate fuzzy belonging of the units, impartial trimming for out-
lier handling, and constrained estimation of the component scatters. Hence,
given a trimming proportion α ∈ [0, 1), a constant c ≥ 1 and a value of the
fuzzifier parameter m > 1, a robust constrained fuzzy clustering is obtained
via the maximization of the following objective function

n∑
i=1

G∑
g=1

umig log φ(xi;µg,Σg). (4)

Fuzziness: Soft membership values uig ≥ 0 in (4) allow for overlapping
clusters, and are assumed to satisfy
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G∑
g=1

uig = 1. (5)

Trimming: To incorporate impartial trimming, we modify (5) into

G∑
g=1

uig = 1 if i ∈ I and

G∑
g=1

uig = 0 otherwise, (6)

for a subset I that identifies the “regular” units, that are the more plausible
ones, under the currently estimated model. Specifying a fixed proportion of
observations to be trimmed has been also considered for robust fuzzy clus-
tering purposes in [31, 32].

Constrained estimation: In (4), whenever x1 = µ1, setting u11 = 1, and
taking a sequence of scatter matrices Ψ1 such that |Ψ1| → 0, the likelihood
become unbounded. This is a recurrent issue in Cluster Analysis, when gen-
eral scatter matrices are allowed for the clusters. This fact has been already
noticed in fuzzy clustering, among other authors, by [25] where the authors
propose to fix the |Σg| values in advance. In our approach, the unbound-
edness problem is addressed by constraining the ratio between the largest
and smallest eigenvalues, i.e. the diagonal elements {ψgl}l=1,...,p of the noise
matrices Ψg, as follows

ψg1l1 ≤ c ψg2l2 for every 1 ≤ g1 6= g2 ≤ G and 1 ≤ l1 6= l2 ≤ p. (7)

The constant c ≥ 1 is finite, and a larger value of c leads to a less constrained
fuzzy clustering approach. Geometrically, c controls the maximal ratio among
the lengths of the axes of the equidensity ellipsoids of the errors eig to be
smaller than

√
c. Note that we are simultaneously controlling departures from

sphericity and differences among the scatters of the component errors, by
means of (7). This constraint can be seen as an adaptation to mixtures of
Gaussian factors of those introduced in [30, 18], and is similar to the mild
restrictions implemented for the model considered in [24]. They all go back
to the seminal paper [26].

It is well known that an objective function like the one in (4) is inclined to
provide clusters with similar “sizes”, say having similar values of

∑n
i=1 u

m
ig . If

this effect is not desired, it is better to replace the previous objective function
by

n∑
i=1

G∑
g=1

umig log [ pgφ(xi;µg,Σg)], (8)
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where pg ∈ [0, 1] and
∑G
g=1 pg = 1 are weights that have to be taken into

account in the maximization of the target function. Differentiating the target
function with respect to pg and equating it to 0, it is trivial to see that,
once the uig membership values are known, the weights pg are optimally
determined as

pg =

n∑
i=1

umig/

n∑
i=1

G∑
g=1

umig . (9)

The introduction of the pg weights in the target function for fuzzy clus-
tering is done in [49] (see display (2) in the cited work), but it goes back
to [43] in hard 0-1 clustering. The idea appeared under the name of “penal-
ized classification likelihoods” in [4], where Bryant motivated the usage of
the pg weights to determine which components are really present, or not, in
the mixture: when the number of groups G is larger than needed, some pg
may be set close to 0 along the estimation. The interested reader can find a
more detailed explanation of this last claim in [16] (see subsection “Weights
and number of clusters” within Section 5) and in [20], where this approach
is further developed and illustrated in the fuzzy clustering framework and in
the hard clustering case, respectively.

We conclude this section by commenting on the parsimony gained when
adopting MFA, in comparison to GM, measured in terms of the reduction of
the number of free parameters to be estimated. For each of the G component
of the mixture of Factor Analysers, we have to estimate the p-dimensional
component means µg, the p × d matrices Λg of factor loadings, and the
diagonal p-dimensional noise matrices Ψg, along with the mixing proportions

πg (g = 1, . . . , G − 1), on putting πG = 1 −
∑G−1
i=1 πg. Note that in the case

of d > 1, there is an infinity of choices for Λg, since model (1) is still satisfied
if we replace Λg by ΛgH

′, where H is any orthogonal matrix of order q. As
d(d− 1)/2 constraints are needed for Λg to be uniquely defined, the number
of free parameters, for the g-th covariance matrix of the mixture, is p+ pd−
1
2d(d − 1). In the case of Gaussian Mixture (GM) model-based approach,
each data point x is taken to be a realization of the mixture probability
density function, as defined in (2), but with full covariance matrices Σg

having 1
2p(p+ 1) parameters. To measure the gained parsimony, we observe

that the reduction in the number of free parameters to be estimated in MFA
with respect to GM is equal to

G

[
1

2
p(p+ 1)− (p+ pd− 1

2
d(d− 1))

]
=
G

2

[
(p− d)2 − (p+ d)

]
. (10)

Note that (10) can be large when p >> d.
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3 An efficient algorithm for fuzzy robust clustering
based on mixtures Gaussian factor analyzers

The algorithm for implementing the robust estimator is presented in detail
in this section. We deal, more precisely, with a fuzzy Classification version of
the Alternating Expectation - Conditional Maximization algorithm (AECM),
which is an extension of the EM algorithm, suitable for the factor structure
of the model. It is based on a partition of the parameter vector θ = {θ1,θ2},
because the target function is easy to be maximized for θ1 = {uig, pg,µg, g =
1, . . . , G} given θ2 = {uig, pg,Λg,Ψg, g = 1, . . . , G} and viceversa. At each
stage of the iterations, the optimal membership values are obtained first, then
parameters are updated by maximizing the target function on them, along
the lines of [25] or [41], where fuzzy clustering is performed with general
covariance matrices. The algorithm should be initialized several times and run
till convergence (or till reaching a maximum number of iterations), retaining
the best solution in terms of the objective function.

1. Initialization: Each iteration begins by selecting initial values for θ(0)

where θ(0) = {u(0)ig , p
(0)
g ,µ

(0)
g ,Λ(0)

g ,Ψ (0)
g ; g = 1, . . . , G}. To this aim, fol-

lowing a common practice in robust estimation, we draw G small random
subsamples from the data and fit a Gaussian factor analysis model on
each of them. In more detail, p + 1 units are randomly selected (with-
out replacement) for group g from the observed data set. The obtained
subsample, denoted by xg, is arranged in a (p + 1) × p matrix, and the

vector with the columnwise means are the initial µ
(0)
g . We may consider

model (1) in group g as a regression of xg with intercept µg, regression
coefficients Λg, explanatory variables given by the latent factors Uig, and
regression errors eig. The missing information here are the factors which,
under the assumptions for the model, are realizations from independently
N (0, Id) distributed random variables. Hence, we draw p + 1 random in-
dependent observations from the d-variate standard Gaussian, to fill a
(p+1)×d matrix ug. Then we set Λ(0)

g = ((ug)′ug)−1(ug)′xgc , where xgc is
obtained by centering the columns of xg. To provide a restricted random
generation of Ψg, the (p + 1) × p matrix εg = xgc − Λ

(0)
g ug is computed,

and the diagonal elements of Ψ (0)
g are set equal to the variances of the p

columns of the εg matrix. After repeating these steps for g = 1, . . . , G, if

the obtained matrices Ψ (0)
g do not satisfy the required inequalities (7), the

constrained maximization described in step 2.2.3 must be applied. After-

wards, p
(0)
1 , ..., p

(0)
G in the interval (0, 1) and summing up to 1 are randomly

chosen. Finally, each initial u
(0)
ig membership value is obtained by raising

at power m the posterior probability that the unit i belongs to the com-
ponent g when considering the fitted model for those initial parameters.
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2. Iterative steps: The following steps 2.1–2.6. are alternatively executed until
a maximum number of iterations, MaxIter, is reached.

2.1 First cycle: θ1 = {uig, pg,µg, g = 1, . . . , G}. We have to maximize the
objective function (8) over θ1, with Λg,Σg ∈ θ2 held fixed at their
previous evaluation.

2.1.1 Membership values: Based on the current parameters, and setting
Σg = ΛgΛ

′
g + Ψg, if

max
1≤g≤G

pg φ(xi;µg,Σg) ≥ 1,

then we make a hard assignment:

uij = I

{
pj φ(xi;µj ,Σj) = max

1≤g≤G

[
pg φ(xi;µg,Σg)

]}
where I{·} is the 0-1 indicator function, which takes value 1 if the
expression within the brackets holds; otherwise we make a fuzzy as-
signment:

uij =

[(
log
[
pj φ(xi;µj ,Σj)

]∑G
g=1 log

[
pg φ(xi;µg,Σg)

]) 1
(m−1)

]−1
.

2.1.2 Trimming: Evaluated the n quantities

ri =

G∑
g=1

umig log
(
pgφ(xi;µg,Σg)

)
, (11)

we sort them to obtain r(1) ≤ . . . ≤ r(n), and their α-quantile r([nα]).
To incorporate impartial trimming, we modify the membership val-
ues as

uig = 0 for every g = 1, ..., G whenever i /∈ I, (12)

for I =
{
i : r(i) ≥ r([nα])

}
.

2.1.3 Update parameters: Given the uig membership values obtained in
the previous step, then the pg weights are optimally determined as
(9). The component location parameters µg are obtained as weighted
means, with weights umig , for g = 1, . . . , G, as

µg =

∑n
i=1 u

m
igxi∑n

i=1 u
m
ig

.
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2.2 Second cycle: θ2 = {uig, pg,Λg,Ψg, g = 1, . . . , G}, and we have to
maximize the objective function (8) over θ2, with θ1 held fixed at their
previous evaluation.

2.2.1 Membership values: as in step 2.1.1

2.2.2 Trimming: as in step 2.1.2

2.2.3 Update parameters: After re-evaluating the optimal weights pg from
the updated membership values, we have to obtain optimal Λg and
Ψg. With some matrix algebra, and setting

γg = Λ′g(ΛgΛ
′
g + Ψg)

−1,

it is straightforward to obtain the updated ML-estimates

Λg = Sgγg
′[γgSgγg

′ + Iq − γgΛg]−1

Ψg = diag
{
Sg −ΛgγgSg

}
where Sg denotes the weighted sample scatter matrix in group g:

Sg =

∑n
i=1 u

m
ig

(
xi − µg

) (
xi − µg

)′∑n
i=1 u

m
ig

.

During the iterations, due to the updates, it may happen that the
matrices

Ψg = diag
{
Sg −ΛgγgSg

}
= diag (ψg1, ..., ψgp)

do not satisfy the required constraint (7). In this case, we set

[ψgk]t = min {c · t, max(ψgk, t)} , for g = 1, . . . , G; k = 1, . . . , p,

and fix the optimal threshold value topt by minimizing the following
real valued function:

f(t) =

G∑
g=1

pg

p∑
k=1

(
log ([ψgk]t) +

ψgk
[ψgk]t

)
. (13)

As done in [15, 16], topt can be obtained by evaluating 2pG+1 times
f(t) in (13). Thus, Ψg is finally updated as

Ψg = diag
(
[ψg1]topt , ..., [ψgp]topt

)
, (14)

where pg is defined as in (9). It is worth remarking that the given con-
strained estimation provides, at each step, the parameters Ψg that
maximize the target function in the constrained parameter space.
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3 Evaluate target function: After performing the iterations, the value of the
target function (8) is evaluated. If convergence has not been achieved be-
fore reaching the maximum number of iterations, MaxIter, the results are
discarded.

The set of parameters yielding the highest value of the target function (among
the multiple runs) and the associated membership function uig are returned
as the final output of the algorithm. Notice, in passing, that a high number
of initializations and a high value for MaxIter are seldom required, as it will
be seen in Section 4.

Some remarks featuring the algorithm follow. In our initialization strat-
egy, the initial values for the parameters in each population are based on
small subsamples, aiming at ideally covering, in an increasing number of tri-
als, the full parameter space. Our proposal is based on the idea that a small
subsample has to be ideally drawn for each group and then the information
extracted from the subsample is completed with random data generated un-
der the model assumptions. This “free” exploration of the parameter space
may also lead to spurious solutions or even singularities along the iterations,
and the constraint on the scatter matrices plays the role of protecting against
those undesired solutions. By considering many random initializations, we are
confident that the optimal parameters, in terms of the target function, can
be approached inside the restricted parameter space. The number of random
initializations should increase with the number of groups G, the dimension p
and in the case of very different group sizes.

The proof of the optimality of the membership values adopted in step 2.1.1
can be found in [16]. It is also worth remarking that the usual monotone con-
vergence of the target function in the proposed fuzzy robust AECM algorithm
holds true when incorporating trimming and constrained estimation for Ψg
matrices. To prove this, notice that, when performing the trimming step, the
optimal observations have been retained, i.e. the ones with the highest contri-
butions to the objective function. The set I identifies the “regular” units, that
are the more plausible ones, under the currently estimated model. Secondly,
the optimality of the estimation of the parameters µg,Λg and Ψg has been
shown in [21]. Being the target function monotonically non-decreasing along
the iterations, the algorithm allows one to find a local maximum. By consider-
ing several random initializations, we aim at reaching the global maximum.
Finally, we want to remark the crucial effects of trimming, for robustness
purposes. By setting ui1 = . . . = uiG = 0 for all i /∈ I, and improving the
model estimation along the iterations, the more outlying observations do not
contribute to the parameter estimate in the target function (4). This type of
trimming is the basis of the “concentration steps” applied in high-breakdown
robust methods [40].
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4 Numerical results on artificial data

We present here some experiments on synthetic data, to show the perfor-
mance of the proposal. Our methodology has been developed to be as general
as possible; its generality comes at the cost of having to set in advance four
quantities: the number of clusters G, the fuzzifier parameter m, the trimming
level α and the value of the constant c for the eigenvalue ratio of the noise
matrices. Along with our numerical experiments, we provide a first discussion
on the combined effects of these parameters, as well as on their tuning.

We choose a two component population in R7, from which we draw two
samples. Aiming at providing a plot of the obtained results, we looked at
a model reducing the original 7-dimensional variables into 2 unidimensional
factors (otherwise we could not find a unique bivariate space, for the two
components, to represent the data). The first two variables in the first group
of observations X1 are defined as follows:

X11 ∼ N (0, 1) + 4 + 0.5 · N (0, 1) and X12 ∼ 5 ∗X11 − 19 + 3 · N (0, 1);

and in the second group of observations X2 are given as:

X21 ∼ N (0, 1) + 4 + 0.5 · N (0, 1) and X22 ∼ X21 + 10 + 2 · N (0, 1).

All these “N (0, 1)” distributions are taken as independent ones. With this
choice, we have:

Λ1 = (1, 5)′, Λ2 = (1, 1)′, Ψ1 = diag(0.25, 9), Ψ2 = diag(0.25, 4),

and

Σ1 =

[
1.25 5

5 34

]
, Σ2 =

[
1.25 1

1 5

]
.

After drawing 100 points for each component, to check the robustness of our
approach, we add some pointwise contamination X3 to the data, in the form
of 11 points close to the point (4,50), as follows

X31 ∼ 4 + 0.03 · N (0, 1) X32 ∼ 50 + 0.03 · N (0, 1);

and 11 more points, denoted by X4, close to the point (6,-20), with

X41 ∼ 6 + 0.03 · N (0, 1) X42 ∼ −20 + 0.03 · N (0, 1).

Finally, we complement the data matrix, and the contamination, with stan-
dard normally distributed random variables Xij ∼ N (0, 1) for j = 3, . . . , 7.
In this way, we build a dataset where one factor is explaining the correlation
among the 7 variables, in each component of the “regular” data, while no
linear structure is embedded in the contamination.

Figure 1 shows, in the left panel, a specimen of randomly generated data
from the given mixture, while in the right panel it reports results obtained
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Fig. 1 Left panel: synthetic data (data drawn from X1 in green, from X2 in red, and

contamination drawn from X3 and X4 in black). Only the two first coordinates are plotted.

Right panel: Robust fuzzy classification of the synthetic data, with fuzzifier m = 1.1. Blue
points are the factor scores of the 7-dimensional data in the estimated latent factor space.

Black crosses (denoted by “×”) are trimmed units. The strength of the membership values

is represented by the color usage: a mixture of red and green colors that can turn into
brownish colors.

from the proposed robust estimation with α = 0.1. We see that the estimation
is robust to the most dangerous outliers, like the pointwise contamination
(although we have used the seven variables when applying the algorithm,
only the first two variables are represented in the plots).

Noise matrices constraint: An important feature of our approach is rep-
resented by the constrained estimation of the cluster scatters matrices. To
show its effectiveness to discard spurious maximizers, we firstly perform a
fuzzy clustering with c = 100, allowing some controlled variability within
and between clusters eigenvalues, and successively we perform an almost un-
constrained estimation, with c = 1010. Results for c = 1 have been shown
in Figure 1. In the right panel of Figure 2, we see that using c = 1010 and
searching for three clusters, we got a poor solution, with a few observations
following a random pattern, clustered apart (in blue).

The fuzzifier parameter m: To observe the effect of the fuzzifier parameter
m on the clustering, we perform the robust estimation with G = 2 clusters, 30
random initializations, a maximal number of iterations equal to 50, c = 100,
and α = 0.1, and compare the obtained results considering different values
for m. From the definition of the fuzzifier, we recall that m = 1 provides
“hard” clustering through robust Gaussian MFA, as it has been done in a
classification EM version of the procedure introduced in [21]. In the m = 1
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Fig. 2 Left panel: Fuzzy classification of the synthetic data, with c = 10 and G = 2. Right

panel: Almost unconstrained fuzzy classification of the synthetic data, with c = 1010 and
G = 3, generating a spurious solution. Blue points are belonging to a third component.

case, each observation is fully assigned to a cluster or trimmed off, as shown
in Figure 3 (a). On the opposite side, we have all the non-trimmed observa-
tions shared with approximately equal membership values for larger values
of m, like m = 1.2, as can be seen in Figure 3 (f). Intermediate values of m
yield perhaps more interesting membership values. By taking into account
the updating step for the membership values in step 2.1.1 of the algorithm,
it is important to see that “hard 0-1” clustering assignments can be done
for observations clearly in the “cores” of the clusters. However, more fuzzy
assignments (uig in the open (0, 1) interval) may appear for observations out-
side these “cores”. This type of property was named as “hard contrast” in
[39], to overcome a known shortcoming of fuzzy clustering. It is desirable, in-
deed, that the cluster centers, which are weighted means of all objects, should
not be influenced by observations that clearly do not belong to these clusters.
An analogous effect would distort scatter matrices as well, computed inside
the clustering algorithm. To avoid or at least highly reduce these unwanted
effects, outlying objects should be discarded, clusters centers become crisp,
whereas “doubtful” observations remain fuzzy assigned. To obtain such a so-
lution, the choice of the value of m (also in relationship with an adequate
scale) plays a key role.

Scale and fuzzifier parameter m: The proposed approach is equivariant
with respect to location shifts and rotations, while it is not affine equivariant,
due to the constraint on the noise term variance. Clearly, choosing a large
value of c turns the procedure into an almost affine equivariant one, at the
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Fig. 3 Effects of the value of the fuzzifier parameter m on the cluster membership values
(for panels (a), (b) and (c) we set m = 1, m = 1.1 and m = 1.13; while for panels (d), (e)

and (f) we set m = 1.16, m = 1.17 and m = 1.2, respectively)

risk of incurring spurious solutions (as shown before). In this paragraph we
want to discuss a second inherent issue, shared with other likelihood-based
fuzzy clustering algorithms, as in [22], [46], [49] and [41]. Figure 4 shows in
the first row panels the effect of the fuzzy clustering when all the variables
in the artificial data are scaled by a constant factor, say divided by 2, in
the second panel, and divided by 50 in the third one, considering m = 1.17.
There is an interplay between the scale and the fuzzifier parameter, in such a
way that the scale of the variable leads to changes in the results when m > 1,
while when m = 1 (hard clustering) results are scale independent.

Hence, to suggest the user plausible values for the scale of the data and the
fuzzifier parameter, in one only shot, we may base our analysis on some useful
and well understandable quantities, like the percentage of hard assignment,
and the relative entropy. The relative entropy is defined as∑G

g=1

∑n
i=1 uig log uig

[n(1− α)] logG
.

Then, we apply a procedure by simultaneously changing the scale (horizontal
axis with legend on the upper part of the plot in Figure 5), and the fuzzifier
parameter m (legend in the lower horizontal axis), and draw the results in
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Fig. 4 In the upper panels, results of the robust fuzzy clustering with m = 1.17 obtained

on the artificial data, when a change in scale is considered (from panel (a) to panel (b), all

the variables have been scaled by a factor of 2, while in panel (c) by a factor of 50. In the
lower panels, results of the hard clustering (with m = 1, same scaling as before, from left

to right)

terms of hard assignment and relative entropy. Let us suppose that the user
wants to obtain a clustering solution with 70% of observations crisply assigned
and low relative entropy, say around 0.1. Inspecting the plot in Figure 5 we
can derive guidelines for choosing a scale factor equal to 0.97 and a value
m = 1.7 for the fuzzifier parameter. By a scale factor we mean a number
which scales or multiply the values in a dataset.

Trimming level α: After discussing the robustness of the procedure to
pointwise contamination, now we consider 22 noisy observations added to
the artificial data as a result of a uniformly distributed random variable
with support in a hyperrectangle including all the “good” observations. We
want to show how the robust procedure performs, with different choices of
the trimming level α. In our fuzzy clustering proposal, observations that are
identified as non plausible ones, under the estimated model, are trimmed
off. They do not contribute to parameter estimation, neither they belong
to any cluster, in other words their membership level is equal to 0 for all
the estimated clusters. We understand that the trimming level plays a key
role in the robust estimation. To determine a correct trimming level, there
are cases in which the researcher has some intuition or knowledge about
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Fig. 5 Percentages of hard assignment (blue curve) and relative entropy (red curve) ob-

tained when simultaneously changing the fuzzifier parameter and the scale.

the amount of noise in the data at hand, hence he can set the parameter
α accordingly. If the contamination level is not known, we are interested in
studying the effect of a value of α greater/lower than needed, on the robust
estimation. Figure 6 shows, in the upper panel, the data contaminated by
noise, where the contamination is represented by the 22 black observations.
In the three lower panels of the same Figure 6, we show the results of the
robust estimation, when a lower than needed (α = 0.05, left panel), adequate
(α = 0.1, central panel) and greater than needed trimming level (α = 0.2
right panel) have been adopted. We observe that the factor structure of the
model is still recovered even for α = 0.2 where the trimming level is twice
its correct value; while for α = 0.05 the estimation is poor (and for α = 0
it is spoiled out; results are not shown for sake of brevity). Based on our
experience, we would suggest to start with a (high) conservative choice of α
and then decrease it, on the light of a careful analysis of the plausibility of a
few trimmed observations close to non trimmed ones.

To help the researcher to set a reasonable value for the trimming level, it is
useful to recall that the quantities r(i) defined in (11) measure the evidence of
the belonging of observation xi to the estimated model. Data with r(i) lower
than r([nα)]) are identified as outlying observations and trimmed off. The
information conveyed by the r(i) values can be employed to give guidance on
the choice of the trimming level, as we can see in Figure 7, where the points
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Fig. 6 Considering 22 noisy observations (in black) added to the original artificial dataset

(upper panel), in the lower panels we show the results of the robust fuzzy clustering, with

m = 1.16, when a different trimming level is employed. The colors here represent the fuzzy
membership values, whereas trimmed observations are denoted by black crosses.

{
(i/n, r(i))

}n
i=1

have been plotted, highlighting also the α value employed for
the estimation, with reference to the results shown in the three lower panels in
Figure 6, respectively. The appropriate choice of α can be derived by finding
an elbow in the plot, in other words a value α0 such that r(i) is steep for
i/n < α0 and the slope of the curve decreases for α > α0. For instance, in
the leftmost panel of Figure 7, we see that α = 0.05 is not a good choice,
because the curve

{
(i/n, r(i))

}n
i=1

is still quickly increasing around α = 0.05,
and the red line “cut” it too early, much before its elbow. On the opposite
rightmost panel, we see that α = 0.2 would trim too much observations,
and with some undesirable side effect, classifying points with almost equal
contribution to the target function indifferently among the trimmed or among
the non trimmed observations. The appropriate choice is suggested in the
central panel, where α = 0.1.

Number of groups G: The estimation of the number of groups is a highly
discussed topic within the clustering community, due to the fact that it is in-
trinsically related to the definition of what a cluster is. The number of groups,
say G, in the fuzzy mixture can be explored by means of the “classification
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Fig. 7 Plots of the points
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(i/n, r(i))
}n

i=1
, with reference to the robust fuzzy clustering

shown in the lower panels of Figure 6. The employed trimming levels are highlighted by

the vertical lines.

trimmed likelihood curves”, once that a value for the parameter c has been
set by the user (based on some previous knowledge that the user has on the
data and/or on the type of clusters he is particularly interested in, depending
on his/her final clustering purposes) and after incorporating the desired fuzzi-
ness by the choice of the fuzzifier parameter m. These curves are graphical
tools, obtained by plotting the target function for a range of values of G and
α that can be inspected to derive a reasonable choice for these parameters.
They were introduced in hard clustering problems in [20]). Figure 8 shows
the classification trimmed likelihood curves obtained for the artificial dataset
with added uniform noise, previously shown in the lower row panels in Figure
6. We monitor the maximum value obtained by the objective function (8),
depending on a number of groups from 1 to 4, and a trimming level from 0
to 0.2. We see that, when reaching the trimming level α = 0.1, the results
obtained for 2, 3 or 4 clusters almost virtually coincide. This means that with
a lower trimming proportion, we would need a third or a fourth cluster to
accommodate the noisy data. However, whenever the noisy observations have
been identified and trimmed off, we are able to discover two main clusters in
that artificial dataset.

5 An application to real data

It has been said that fuzzy clustering appears as a “hedge” against the un-
certainty incorporated in any clustering model, as well as some a posteriori
evaluation scheme providing a way to appraise algorithmically suggested clus-
tering [2]. In this section, our aim is to apply the proposed approach to a real
dataset concerning 202 athletes at the Australian Institute of Sport, and to
highlight the advantages of fuzzy clustering. Data have been made publicly
available in connection with the book [8]. Data refers to 102 male and 100 fe-
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Fig. 8 The classification trimmed likelihood curves for the artificial data, with added 0.1%

noise, obtained with c = 50 and m = 1.1.

male athletes collected at the Australian Institute of Sport. It consists of 202
observations on the following 11 biometrical or hematological variables, apart
from gender and sport: red cell count (RCC), white cell count (WCC), Hema-
tocrit (Hc), Hemoglobin (Hg), plasma ferritin concentration (Fe), body mass
index weight/height (BMI), sum of skin folds (SSF), body fat percentage
(Bfat), lean body mass (LBM), height (in cm, Ht) and weight (in kg, Wt).
The dataset is available within the sn package in R. We aim at studying
the joint linear dependence among these biometrical and blood composition
variables, through a fuzzy clustering method, to highlight atypical patterns
and athletes’ features that would better require a fuzzy classification. We will
exploit the conjecture that a strong correlation exists between the hematolog-
ical and physical measurements. Therefore, a robust MFA may be estimated,
assuming the existence of some underlying unknown factors (like nutritional
status, hematological composition, body weight status indices, and so on)
which jointly explain the observed measurements. We rely on previous work
on this data in [21], where, based on a trimmed version of the Bayesian
Information Criterion, the authors suggest to employ G = 2 clusters, and
underlying d = 6 factor dimension.

Aiming at selecting the value of the trimming level α, we employ the
information conveyed by the sorted r(i) values. In the associated plot, we
look for a value of α that it is able to isolate a few observations having
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the smallest contributions to the target function, when compared with the
remaining data. This empirical approach, shown in the left panel of Figure
9, has suggested us the choice of α = 0.05. Finally, to choose a scale factor
and a value for the fuzzifier parameter m, we can base our decision on the
desired percentage of hard assignments, jointly with the advisable relative
entropy. The right panel of Figure 9 show us, once more, that the scale plays
an important role in fuzzy clustering, due to its interplay with the fuzzifier m.
As we are here dealing with multivariate data with disparate column scales
(see Table 1), we need a different scale for each column. The value in the
scale legend (upper horizontal legend) should be read as the multiple of the
column standard deviation (or a robust variability measure) to be adopted
for each variable in the dataset.
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Fig. 9 Plots for guiding the choice of the parameters when analyzing AIS data with fuzzy
clustering. In the left panel we see how to choose the trimming level α = 0.05. The right

panel shows how to pick the fuzzifier parameter m and the scale, based on the desired

percentage of hard assignment and the relative entropy.

Finally, we have chosen three different values of the fuzzifier, say m = 1.1,
m = 1.4 and m = 1.8 (on the scaled data) to show the effects of an increasing
level of fuzziness (results in Figure 10).

Comparing the three plots, we may see that the observations in rows 11,
68, 75, 99, 113, 133, 160, 163, 166, and 178 of the AIS dataset are consistently
trimmed in the three estimated models (labels have been added in the upper
panel). In the central plot, the only difference is that observation in row
93 has been trimmed, instead of the one in row 113. This could suggest to
analyze more in detail the data of these athletes. Just to give one example, we
may inspect the information we have for the female athlete in row 11, who
plays basketball and whose weight is 96.3 kg and height is 193.4 cm (just
to mention two of the 11 variables). Median values of these two variables in
the group of female athletes are, respectively, 68.1 kg and 178 cm. In [21],
where clustering is based on robust MFA, two common factors have been
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identified both in the group of male ad female athletes: a first hematological
factor, with a very high loading on Hc, followed by RCC and Hg, and second
factor, loading heavily on Ht, and in a lesser extent on Wt and LBM, that
may be denoted as a general nutritional status. Hence observations that are
consistently trimmed in the three plots are expected to have an unusual score
on the factors.

The identification of outliers could have a very important role for the
trainer or the physician that follow the team, to study a possible relation-
ship among sport performances and exceptional values of some hematological
and/or biometrical variables. Observing different membership levels, for this
type of data, could also provide a particularly useful information. On the
one side, athletes whose features are almost paradigmatic in their gender (or
discipline) group are denoted by high levels of membership and can be easily
identified. Like, for example, athlete in row 29, in the group of female, la-
beled in the central plot of Figure 10, colored with full red (with u29,1 = 0.999
and u29,2 = 0.001) has the features shown in first row of Table 1, that can
be interpreted as “paradigmatic”. Similar considerations hold for the ath-
lete in row 188, in the group of male athletes, colored with full green (with
u188,1 = 0.008 and u188,2 = 0.993), whose measurements can be found in the
last row of Table 1, that can be considered as a prototype for male athletes.

Conversely, athletes having unusual scores on the underlying factors, are
denoted by low membership levels, and this could be a valuable information
to be maintained up-to-date for team coachers, to assign a proper training
regime, as well as for sport nutritionists to indicate an adequate diet. Such
an example is athlete in row 70 where u70,1 = 0.511 and u70,2 = 0.489 or
athlete in row 130 with u130,1 = 0.469 and u130,2 = 0.531. Table 1 reports -
in the second and third row - the observed variables for athletes that do not
openly qualify for belonging to a group.

Table 1 Features for some athletes in the AIS dataset

row# gender sport RCC WCC Hc Hg Fe BMI SSF Bfat LBM Ht Wt

29 F Row 4.2 7.5 38.4 13.2 73 20.5 74.7 16.6 41.5 156.0 49.8

70 F Field 4.6 5.8 42.1 14.7 164 28.6 109.6 21.3 68.9 175.0 87.5

130 M B.Ball 4.5 5.9 44.4 15.6 97 20.7 41.5 7.2 73.0 195.3 78.9
188 M Row 4.8 9.3 43.0 14.7 150 25.1 60.2 10.0 78.0 186.0 86.8

The reader accustomed to employ mixture models for clustering would
perhaps comment that we may use the probability of belonging of a unit
to a component of the mixture to draw such considerations. We want to
stress here the advantage of using such a fuzzy approach with selection of
the percentage of hard assignment, and where the fuzzifier directly controls
how much clusters may overlap, to accomodate “doubtful” observations. We
are here conjugating, in a fresh approach, the beneficial effects of crisp and
fuzzy clustering to obtain a robust estimation.
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At the end of this section, we would like to highlight the effectiveness of
the proposed method, and compare it with other approaches in the litera-
ture. The natural benchmarks to our proposal are the mixtures of Factor An-
alyzers (MFA), and their robustification through trimming and constrained
estimation in [21]. We may also want to compare with the fully parameter-
ized Mixture of Gaussian (MG), in both robust and non-robust versions, as
well as their fuzzy counterparts, to compare with previous work in [16]. Our
first aim is to compare their clustering performances, reported in Table 2,
when running the associated (trimmed and untrimmed) EM algorithm from
60 random initializations, with maximum number of iterations set to 30. To
be more precise, the algorithm described in [21] is applied with α = 0 and
c = 1010 in the non-robust case for MFA and with α = 0.05 and c = 50
for robust MFA. We adopted the same choice of the parameters for the fully
parameterized MG, estimated using the tclust package, for its fuzzy version
described in [16], and for the proposed fuzzy MFA. To obtain Table 2, we
have assigned even the trimmed observations, by resorting to the membership
values that would have been obtained from the (robustly) estimated parame-
ters and the proposed model. We can see that the proposed methodology has
nice clustering performance, at least for the inspected values of the fuzzifier
parameter m. Furthermore, we may appreciate the beneficial effect of us-
ing trimming and also, for the AIS data, the advantage of combining robust
methods with models that are able to capture the underlying latent struc-
ture among variables. In other words, the model conveys how hematological
factors and physical measurements play a slightly different role in male and
in female athletes. Parsimony in model parameters has been pursued, too.

Table 2 Clustering performances of different models, in terms of number of misclassified

units on the AIS dataset (different values of the fuzzifier m have been considered for fuzzy
clustering)

robust fuzzy MFA robust non-robust robust fuzzy MG robust non-robust
MFA MFA MG MG

m m

1.1 1.4 1.8 1.1 1.4 1.8

2 4 10 3 7 9 8 9 8 17

6 Concluding remarks

In this paper, we propose a novel FCM-type fuzzy clustering scheme pro-
viding two significant benefits when compared with the existing approaches.
First, it provides a well-established space dimensionality reduction framework
for fuzzy clustering algorithms based on factor analysis, allowing concurrent
performance of fuzzy clustering and, within each cluster, local dimensionality
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reduction. Second, it exploits the outlier tolerance advantages of procedures
base on impartial trimming to provide a novel, soundly founded, nonheuris-
tic, robust fuzzy clustering framework. Third, our proposal allows for soft
as well as hard robust clustering, hence it encompasses both methodologies.
Fourth, it enable the property of “hard contrast” of the solution: outlying ob-
jects should be discarded, clusters centers become crisp, whereas “doubtful”
observations remain fuzzy assigned.

This way, the proposed model yields a significant performance increase for
the fuzzy clustering algorithm, as we experimentally demonstrate.

Comparing the fuzzy approach to classical model-based clustering via mix-
tures, we would like to stress that in both methodologies we obtain a “degree
of belonging” of the i-th observation to the g-th cluster. To contrast the two
approaches, we remark that in the fuzzy approach we can control the level
of fuzziness and/or a percentage of units to be crisply assigned to groups, as
well as a relative entropy to be fulfilled by the solution, while in the mixture
approach they arise as a byproduct of the estimated model. Based on our
findings, we observed that small deviations from the model assumptions im-
pair the performance of the fuzzy classifier only by a small amount, and that
good efficiency is obtained on data without contamination.

With respect to robustness, that is our second qualifying point, roughly
speaking, it is worth to recall that two main approaches can be found in the
literature. The first, based on mixture modeling, aims at fitting the outliers in
the model, e.g. by considering additional mixture components or by allowing
heavy-tailed components. The second, based on trimming, just try to trim
them off, without assuming any distribution for them. Hence, in comparison
with fuzzy mixtures of Student’s t factor analyzers in [7], our proposal, being
based on the constrained estimation of scatters and trimming off a proportion
α of the most outlying observations, provides good breakdown properties of
the estimators (see [42] and [17]), in the sense of [27]. Yet, the complexity of
the EM algorithm is considerably reduced, as it does not require the com-
plicated estimation of the degree of freedom parameter, for which a closed
solution in the EM algorithm is not available. Another interesting feature of
our approach is that trimming, as a by-product, leads to the identification of
outlying observations.

The effectivity of our proposal is also due to the parameters involved along
the fuzzy robust estimation, like the noise matrices constraint c, the fuzzifier
parameter m, the trimming level α, the dimension of the underlying space
d and the number of groups G. The entire Section 4 have been devoted to
the discussion on the role of the tuning parameter, with the help of artificial
data. Some tools for helping the user to make a reasonable choice for the
trimming level, the number of clusters, as well as the fuzzifier parameter
have been developed, also discussing their interplay. The usefulness of such
tools has been exemplified, both on the artificial dataset and also through
an application to a real data set. In the real data application, where athletes
features are analyzed, we have also shown how the fuzzy approach provides
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a way to identify athletes whose features are almost paradigmatic in their
gender or discipline group, while athletes with low scores on the underlying
factors, are a relevant information to be kept up-to-date for team coachers.
Future research lines include developing more formal tools for helping the user
to choose the several tuning parameters that this very flexible methodology
requires.
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31. J. Kim, R. Krishnapuram, R. Davé, Application of the least trimmed squares tech-

nique to prototype-based clustering, Pattern Recogn. Lett. 17 (1996) 633–641.
32. F. Klawonn, Noise clustering with a fixed fraction of noise, in: Applications and Sci-

ence in Soft Computing, Springer, Berlin-Heidelberg-New York, 2004, pp. 133–138.
33. R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering, IEEE T. Fuzzy

Syst. 1 (1993) 98–110.
34. J.  Leski, Towards a robust fuzzy clustering, Fuzzy Set. Syst. 37 (2003) 215–233.
35. J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Obser-

vations, in: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and

Probability, Berkeley, University of California Press, 1, 1967, pp. 281–297 .
36. G.J. McLachlan., D. Peel, Finite Mixture Models, John Wiley & Sons, New York,

2000.
37. S. Miyamoto, M. Mukaidono, Fuzzy c-means as a regularization and maximum entropy

approach, in: Proceedings of the 7th International Fuzzy Systems Association World

Congress, IFSA’97, 2, 1997, pp. 86–92.
38. G. Ritter, Robust Cluster Analysis and Variable Selection, Chapman & Hall/CRC

Monographs on Statistics & Applied Probability, 2015.
39. P.J. Rousseeuw, E. Trauwaert, L. Kaufman, Fuzzy clustering with high contrast, J.

Comput. Appl. Math. 64 (1995) 81–90.
40. P.J. Rousseeuw, K. Van Driessen, A fast algorithm for the minimum covariance de-

terminant estimator, Technometrics 41 (1999) 212–223.
41. P.J. Rousseeuw, L. Kauffman, E. Trauwaert, Fuzzy clustering using scatter matrices,

Comput. Stat. Data An. 23 (1996) 135–151.
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Fig. 10 Fuzzy clustering on the AIS dataset, with different choices of the fuzzifier param-
eter: in the upper panel m = 1.1, in the central panel m = 1.4, in the lower panel m = 1.8.
By × we denote trimmed observations, by ♦ the misclassified ones


