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Abstract
Hyperspectral image registration is a relevant task for real-time applications like
environmental disasters management or search and rescue scenarios. Traditional algo-
rithms were not really devoted to real-time performance, even when ported to GPUs
or other parallel devices. Thus, the HYFMGPU algorithm arose as a solution to such
a lack. Nevertheless, as sensors are expected to evolve and thus generate images with
finer resolutions and wider wavelength ranges, a multi-GPU implementation of this
algorithm seems to be necessary in a near future. This work presents a multi-device
MPI + CUDA implementation of the HYFMGPU algorithm that distributes all its
stages among several GPUs. This version has been validated testing it for 5 different
real hyperspectral images, with sizes from about 80 MB to nearly 2 GB, achieving
speedups for the whole execution of the algorithm from 1.18 × to 1.59 × in 2 GPUs
and from 1.26× to 2.58× in 4 GPUs. The parallelization efficiencies obtained are sta-
ble around 86% and 78% for 2 and 4 GPUs, respectively, which proves the scalability
of this multi-device version.
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1 Introduction

The task consisting in estimating the translation, rotation and scaling parameters of
a given image with respect to a second take of the same scene obtained at different
times, viewpoints and/or lighting conditions is known as image registration. During the
last years, different hyperspectral image registration techniques have been proposed,
but most of them ignore time performance. However, many real-time applications
such as the management of natural disasters or surveillance operations depend on
hyperspectral images being processed in real time. GPUs were used to boost tasks
like classification, target detection or segmentation of this kind of images, but few
efforts were made to achieve a real-time implementation of a hyperspectral registra-
tion algorithm. In [21], Ordóñez et al. introduced HYFM, a Fourier–Mellin algorithm
for hyperspectral images registration, and implemented a sequential CPU version of it.
That work was followed by HYFMGPU, a single-GPU CUDA-based version whose
performance makes it suitable to be used in real-time environments [22]. As hyper-
spectral sensors technology improve, images will have finer resolutions in both spatial
and spectral domains. Because of that, more computational power and more mem-
ory space, this latter one being a limited resource in GPUs, will be needed. In this
paper, we propose a coarse-grained multi-device implementation of HYFMGPU able
to satisfy such present and future needs. This proposal results of a thorough study of
the inner computing stages performed in each step of the original single-GPU ver-
sion. This study helped to assess the feasibility of distributing these computing stages
among several devices. This work is a full version of a short paper [3] presented in
the CMMSE 2018 conference. That initial approach was a prospective multi-GPU
implementation on which only the most embarrassingly parallel stages of the algo-
rithm were distributed, and that was evaluated using a single small image as test
case.

The rest of this paper is organized as follows: Sect. 2 summarizes the HYFMGPU
algorithm, describing then in Sect. 3 our proposal and the implementation process
followed to achieve a multi-GPU version of it. The results obtained by this approach
are introduced in Sect. 4, whereas some related research work is discussed in Sect. 5.
Finally, Sect. 6 presents the conclusions and some feasible research lines for the
future.

2 The HYFMGPU algorithm

The HYFMGPU algorithm expects a pair of hyperspectral images (reference
and target) as inputs. Its goal is to register the target image: to compute how
it is rotated, shifted and scaled with respect to the reference image. The pro-
cedure comprises six main stages, which are depicted in Fig. 1. These stages
are launched to a single GPU by means of a CUDA [13] implementation that
relies on some specific-purpose libraries, namely cuBLAS [12], cuFFT [14],
cuSOLVER [15], the NVIDIA Performance Primitives (NPP) [18], and Thrust [19].
As Fig. 1 shows, this implementation can be roughly decomposed in the following
steps:
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Fig. 1 HYFM scheme for registration of two hyperspectral images

1. Initialization Input images are transferred from the host CPU main memory to the
GPU global memory.

2. Preprocessing In Stage I, first a single-element kernel applies a Blackman filter
to both inputs to remove higher frequencies, which might be detrimental for the
precisionof the registration.Thosefiltered images are centered, and then aprincipal
component analysis (PCA) [24] is applied to each of them in order to extract their
most relevant features by retaining a reduced number of principal components
(i.e., transformed bands of the original images). Both cuBLAS and cuSOLVER
operations are used to implement this analysis. Finally, rows and columns of both
band-reduced images are expanded to the nearest common upper power of 2, and
data are transformed to complex values.

3. Selected bands processing and composition In this step, pairs composed of the
same PCA-extracted band from both inputs are processed by computing a high-
pass filter and a multilayer fractional Fourier transform (MLFFT) [23] (Stage II).
Log-polar coordinate maps are extracted from the MLFFT-transformed bands in
each pair (Stage III), and then a phase correlation (Stage IV) is applied on them.
Stages II and IV are FFT based so that the underlying operations are implemented
by means of the cuFFT library. Since this is a single-GPU implementation, the
device is commanded to iterate over all the band pairs in order to perform this
stage. Finally, a reduction (Stage V) is performed in the global memory of the
device in order to average the log-polar correlated maps obtained for each pair of
PCA-extracted bands.

4. Peak processing The peaks contained in the average map of log-polar coordinates
computed in the previous step are sorted in the device using the Thrust library,
selecting a given number and processing them one by one. This process starts by
rotating and scaling the first component of the target image several times using
specific functions from the NPP library. Next, a phase correlation and a cuBLAS-
basedmaximum search are performed on the cartesian grid to determine the correct
angle and translation parameters. Finally, the highest peak of all the cartesian grids
is selected, as its coordinates determine the shift parameters. In turn, their log-polar
counterparts decide the scale factor and the rotation angle. All these values are the
expected output of the Stage VI of the algorithm.
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3 Proposal of multi-GPU parallelization

Aglance at theHYFMschemedepicted in Fig. 1 quickly reveals theworkload compris-
ing Stages II, III and IV as a very interesting candidate to amulti-device coarse-grained
parallelization. Thisworkload, described in the Step 3 of the single-GPUCUDA imple-
mentation introduced in Sect. 2, is performed by a loop that iterates over the set of band
pairs extracted from reference and target images. Only this embarrassingly parallel
loop was distributed among several GPUs in the initial approach presented in [3]. To
implement that parallelization, we prepared first an OpenMP-threaded version of the
HYFMGPU host program. In such a version, a master thread controlled the parts of the
multi-device implementation that were kept as single-GPU (Steps 1, 2 and 4), whereas
a parallel section was defined to command each GPU to run its stake of Step 3. So,
in this code, once the master thread loads the images, it commands its GPU to apply
the Blackman filter, to compute the PCA, and to distribute the extracted components
equally among the GPUs available.When the program enters the parallel section, each
thread commands its GPU to convert its subset of the PCA-extracted pairs of bands
to complex data type and to perform over them Stages II, III and IV of the algorithm.
After the program exits this parallel section, the master thread takes the control back,
averaging the partial log-polar maps computed by each GPU (Stage V) and processing
the peaks (Stage VI) in order to get the final shift, scale and angle outputs expected
after this last stage.

3.1 Moving fromOpenMP toMPI

As the description of Step 3 from Sect. 2 shows, several FFT operations are performed
on the PCA-extracted bands. In our multi-GPU version of the algorithm, each GPU
performs the same FFT-based operations on a different subset of bands. So, the cor-
responding cuFFT routines will run on their own in each device, and hence separated
sets of FFT execution plans are needed. Despite creating each set of plans separately
for each GPU from its corresponding OpenMP thread, we observed that these initial-
ization operations were eventually sequentialized, since the execution time of Step 3
was always multiplied by the number of selected devices, instead of being divided
as expected. To solve this issue, we shifted from forking multiple OpenMP parallel
threads to run separated MPI processes. Since MPI programs follow a SPMD (Single
Program, Multiple Data) model, each of these processes manages an isolated host
memory region, instead of sharing all the host memory space as OpenMP parallel
threads do. This ensured the independent sets of FFT plans needed by each GPU to be
prepared in different processes each with its own memory space, eventually avoiding
the sequentialization problem.

In addition, moving the coarse-grained parallelization support of the initial multi-
device implementation from OpenMP to MPI introduced on it some issues related to
workflow synchronizations and data communications among processes. Such ques-
tions must be taken into account not only to adapt the parallelization of Step 3
introduced in our initial approach but also to distribute Steps 1, 2 and 4 among several
GPUs.
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3.2 Full algorithmwith coarse-grained parallelization

In this section, we provide a description of theMPI-based parallelization process of all
the HYFM algorithm steps, identifying which inner parts of these steps have been just
replicated and which ones have been totally distributed among the processes and their
correspondingGPUs. In these latter cases, all the particularities introducedby theusage
of MPI are also explained. Moreover, let us note that all explicit data transfers among
different GPUs referred from now on are made by properly combining CUDA API
synchronous memory copy calls and MPI communication primitives in either origin
or destination host process. Such an explicit management of data transfers allows our
implementation to run in any multi-GPU environment, no matter either the specific
features of the NVIDIA devices available or how they are connected both to their
hosts or among them. Nevertheless, future versions could rely on CUDA-aware MPI
implementations [16] and the NVIDIA Collective Communications Library (NCCL)
from CUDA 9 [17] to exploit peer-to-peer communications where available or, at
least, to avoid intermediate host buffers when data transfers among devices connected
to different nodes are needed [9].

3.2.1 Initialization

Both reference and target images are scattered among the GPUs in equally distributed
groups of rows, so given an input image of c columns, r rows and b bands, each
GPU will store in its global memory a slice of c columns, rk rows and b bands, being
k = 0, . . . , n − 1 and n the number of selected GPUs. When this distribution is not
exact, the uneven rows are cyclically assigned to each GPU in order to keep the load
balanced.

3.2.2 Preprocessing

The preprocessing step of the algorithm is composed of three different parts, on which
both reference and target images are first filtered using a Blackman window, then
normalized, and finally shrunk to a reduced number of bands by means of a principal
component analysis (PCA). In the original HYFM implementation, this analysis is
performed by a single-GPU non-iterative procedure based on that one presented in
[5].

In this MPI + CUDA approach, the GPU commanded by each process takes the
reference and target images slices loaded in Step 1 and applies on them the aforemen-
tioned Blackman filter using a single-position kernel. Once the slices of each GPU are
filtered, they must be normalized by centering the value of each pixel with relation to
the mean value of all the pixels of its band. However, the GPUs only keep for each
band the pixel values of their corresponding group of rows. So, at this point, each
GPU uses cublasSgemv to accumulate band by band the pixel values of the slices
of both filtered images in 2 arrays of b elements. Then, the host process retrieves these
arrays and performs on them an MPI_Allreduce operation, so after this message
exchange, all the processes have the full summation of each band of the input images.
Finally, each process transfers both band summations arrays to its GPU, which uses
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Fig. 2 Multi-GPU workflow for Blackman filter and image centering parts of Step 2

Table 1 Summary of replicated and distributed operations performed by each step of the MPI + CUDA
multi-GPU HYFM implementation

Step 1: Initialization Replicated –

Distributed Input images GPU loading

Step 2: Preprocessing Replicated cuBLAS and cuSOLVER handlers creation

Distributed Blackman filter, image centering, PCA calculation

Step 3: Band processing and composition Replicated cuFFT plans creation, auxiliary arrays calculation

Distributed Complex conversion, processing, composition

Step 4: Peak processing Replicated –

Distributed Peak sorting, highest peak search

Fig. 3 Workflow of distributed row-group image correlation and full correlation matrix reconstruction

them to compute the mean values needed to center the filtered images slices. Figure 2
depicts the workflow of these two first parts of the input images preprocessing. As
Table 1 provided at the end of this section summarizes, we are considering these first
parts of Step 2 as totally distributed among the GPUs, the overload derived from the
MPI-based summation and the bidirectional host–GPUs transfers it needed being the
cost of such a parallel distribution.

The principal component analysis of a filtered and centered input image is composed
of several stages. First, a correlation matrix of the input is calculated. In the single-
GPU version, it is calculated as I × I T , I being a matrix of r × c columns and b rows
that represents the input image. Figure 3 shows how this full correlation matrix can be
obtained in parallel from the slice available in each GPU. This is possible thanks to
properties of thematrix product operation. So, eachGPUcomputes a partial correlation
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Fig. 4 Workflow of distributed band extraction

matrix, all of them being gathered and summed up into a full correlation matrix and
then broadcast to all processeswith an MPI_Allreduce operation. Once everyGPU
has its copy of the full correlation matrix, it can perform its own decomposition of
it. Notice how only partial correlation matrices of just b × b elements are exchanged
among the processes. However, if each GPUwas commanded to compute its own copy
of the full correlation matrix from scratch, then bigger slices of c × rk × b elements
would have to be exchanged.

Second, each GPU computes the singular value decomposition (SVD) of its copy
of the full correlation matrix by means of the cusolverDnSgesvd function, which
returns theU×�×V T sequence ofmatrices. The latter one is transposed and then used
to transform the corresponding input image slice into a principal-component ordered
version of the slice by means of a cublasSgemm operation. As Fig. 4 shows, by
multiplying the input image slice by a submatrix with the eb (extracted bands) first
columns of V , the resulting matrix is not only a principal-component ordered version
of that slice but also a band-reduced one. However, such versions are still submatrices
with just the group of rows initially assigned to each device.

The last part of the PCA calculation consists in a MPI-based reconstruction of
the band-reduced input images, which is sketched in Fig. 5. By this reconstruction,
images are rearranged from a row-based distribution to a band-based one, since GPUs
are expecting as inputs for Step 3 slices with ebk bands, each one with r × c elements.
So first, each process k gets from its GPU the c× rk × eb slice and scatters it among
the rest of processes by means of asynchronous MPI_Isend messages, represented
as individual arrows in the left part of the figure. The data received by each process
are not retrieved from MPI buffers using as many individual MPI_Recv messages
as data packages are sent to it, but thanks to a user-defined MPI_Type_vector
the expected slice with ebk bands of r × c elements is directly reconstructed using
the parts coming from every process by means of a single MPI_Recv message.
Let us also note that a band-based distribution of input images was evaluated too.
In this alternative distribution, every GPU stored in its global memory an slice of
c columns × r rows × bk bands for each image. However, in that case the workflow
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Fig. 5 Workflow of row-to-band group redistribution

would force the GPUs to recompose the filtered and centered input images in order
to compute the full correlation matrices, which leads to a much more massive data
exchange during the PCA calculation part. These inconveniences were experimentally
confirmed, the PCA computation resulting to be up to 9 times slower than when
applying the row-based distribution strategy.

We classify the whole PCA calculation as distributed among the GPUs, in the same
way we did for the Blackman filtering and image centering parts. The cost of such a
parallel distribution is the overloads introduced by the MPI-based operations needed
to compute the full correlation matrices, by the SVD needed to perform the band
reduction, and by the rearrangement of the reduced image row-based slices in the
GPUs as groups of full image reduced bands. Moreover, the creation of the cuBLAS
and cuSOLVER handlers needed by some inner operations of both the normalization
and the PCA parts must be replicated in all the processes. The creation of these
handlers is consuming a fixed time of about 430 ms, no matter the input image sizes
or the number of GPUs available. Table 1 also includes these considerations.

3.2.3 Band processing and composition

In this step, for each input image, every GPU takes its corresponding band-grouped
slice of c columns, r rows and ebk reduced bands and performs on it the high-pass
filter, the MLFFT, the log-polar map calculation and the phase correlation, just as
it is introduced in the algorithm description from Sect. 2 and following the same
parallelization approach described in our preliminary work presented in [3]. Some of
these operations are computed by cuFFT routines that expect cufftComplex data
as inputs and that also need the previous creation of several FFT execution plans. In
this parallel implementation, the conversion of the band-grouped slices to that complex
type, the FFT plans creation, and the calculation of some auxiliary coefficient arrays
needed by those operations have been moved to this step from their original location
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at the end of the preprocessing step. Regarding the reduction of the partial log-polar
maps computed by each GPU into the final one, these maps are first gathered in a
root MPI process and then sent to its GPU in order to average them using a specific
kernel. Let us recall that these maps are in cufftComplex format, so a suitable
MPI_Type_contiguous type is defined to simplify their transfer. Finally, as it is
applied also on both the reference and the target slices processed by each device, the
complex conversion is considered as a distributed part of the algorithm. In turn, the
FFT plans creation and the calculation of the auxiliary arrays are both just replicated,
as every GPU needs its own copies of them.

3.2.4 Peak processing

In the first part of this step, the root MPI process uses Thrust to generate a host-
side ordered indexes vector from the GPU-stored final average map. Both arrays are
broadcast to the rest of processes along with the first PCA component from both
reference and target images, since all these data structures are needed to process the
peaks pointed by a number of the top elements of the ordered indexes vector. Then,
every MPI process traverses cyclically that top subset of the ordered indexes array,
applying to each peak the operations described in Step 4 from Sect. 2 and obtaining
a partial maximum peak by means of a cublasIcamax operation. The information
of these partial peaks is on structs that are packed as MPI_Type_contiguous
messages and then gathered in the root process. Finally, this process inspects the partial
peaks received and computes the expected outputs of cartesian shift, scale factor and
rotation angle. For this step, all the operations are being considered as distributed
among the available devices, as Table 1 shows.

4 Experimental work

The performance obtained by this multi-GPU implementation has been evaluated by
registering rotated and scaled variations of five real hyperspectral images used as
references, and their main relevant properties are described in Table 2. The images
namedPaviaUniversity,Pavia Centre and Jasper Ridge are commonly used for testing
in remote sensing [20]. The smallest one, Pavia University, was the only test case used
in the prospective implementation from [3]. In turn, the images Indian North South
and Bay Area Box Line are obtained from Purdue Research Foundation MultiSpec

Table 2 Dimensions and size in MB of hyperspectral images used as test cases

Name Width Height Bands Image size (MB)

Pavia University 340 610 103 81

Pavia Centre 715 1096 102 305

Jasper Ridge 588 1286 224 646

Indian North South 614 2678 220 1447

Bay Area Box Line 512 4096 224 1879
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Table 3 Wall times in seconds for each step and the whole algorithm, and global speedups obtained for
tests run in NVIDIA GeForce Titan Black GPUs

Test case Version Wall time in seconds Speedup
Step 1 Step 2 Step 3 Step 4 Total

Pavia University HYFM 0.031 0.557 0.924 0.303 1.815 -

2-GPU 0.025 0.566 0.719 0.227 1.537 1.18×
4-GPU 0.015 0.585 0.630 0.212 1.442 1.26×

Pavia Centre HYFM 0.114 0.662 2.309 0.949 4.035 -

2-GPU 0.089 0.673 1.426 0.611 2.800 1.44×
4-GPU 0.047 0.646 1.000 0.440 2.133 1.89×

Jasper Ridge HYFM 0.241 1.061 2.327 0.933 4.562 -

2-GPU 0.186 0.971 1.441 0.631 3.230 1.41×
4-GPU 0.097 0.840 0.994 0.440 2.371 1.92×

Indian North South HYFM 0.838 2.188 8.319 3.172 14.518 -

2-GPU 0.445 1.440 4.560 2.957 9.402 1.54×
4-GPU 0.231 1.036 2.578 1.833 5.678 2.56×

Bay Area Box Line HYFM 0.912 2.622 8.330 2.845 14.709 -

2-GPU 0.706 1.662 4.553 2.345 9.265 1.59×
4-GPU 0.281 1.140 2.585 1.704 5.710 2.58×

[2] and NASA AVIRIS [11] repositories, respectively. Let us note that the number of
operations performed by the algorithm depends only on the sizes of both input images,
being independent of scale, rotation and shift differences among them. Moreover, this
is a multi-GPU distribution of the original HYFMGPU algorithm; hence, it has the
same registration precision as the reference implementation from [22]. All the tests
were run in a node equippedwith a dual-socket host CPUcomposed of 2 IntelXeonE5-
2609v3 (1.9 GHz, 6 cores each) with 64 GB of RAM, and 4 GPUs NVIDIA GeForce
GTX TITAN Black (GK110B architecture, compute capability 3.5, 15 SMs with 192
CUDA cores each up to 2880, 6 GBRAM) controlled by the 384.59 driver. The CUDA
code has been compiled under Linux using nvcc from CUDA Toolkit 9.0, as well as
the libraries used.Multi-threaded preliminary tests were supported by linking libraries
from OpenMP 3.1, whereas the MPI support was provided by mpich-3.2. The values
of the parameters that control the registration algorithm are the same as those specified
in [22]: 8 bands to be extracted in the PCA, vector α = {1, 1/4, 1/16, 1/64} for the
FFTs performed to obtain the log-polar maps, and 50 highest peaks to be examined in
the peak processing stage.

Table 3 shows, for each test case, the wall time consumed by Steps 1–4 from
Sect. 2 individually, and by the whole algorithm, when run in a single-GPU using the
original CUDA implementation of HYFMand in 2 and 4GPUswith theMPI+CUDA
version. Moreover, the global speedups achieved by these two latter experiments are
shown in a separated column. Those speedups range from 1.18 × to 1.59 × for 2
GPUs and from 1.26× to 2.58× for 4 GPUs, which could seem quite away from the
expected peaks of 2× and 4×, respectively. By decomposing the wall times of each
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Table 4 Disaggregated wall times in seconds for replicated and distributed parts of Steps 2 and 3 obtained
for tests run in NVIDIA GeForce Titan Black GPUs

Test case Version Step 2 Step 3

Replicated Distributed Replicated Distributed

Pavia University HYFM 0.431 0.126 – 0.463 0.461 –

2-GPU 0.431 0.135 0.93 × 0.473 0.247 1.87 ×
4-GPU 0.431 0.154 0.82 × 0.495 0.135 3.42 ×

Pavia Centre HYFM 0.428 0.234 – 0.476 1.833 –

2-GPU 0.428 0.246 0.95 × 0.472 0.954 1.92 ×
4-GPU 0.428 0.219 1.07 × 0.498 0.501 3.66 ×

Jasper Ridge HYFM 0.424 0.636 – 0.496 1.831 –

2-GPU 0.424 0.547 1.16 × 0.493 0.947 1.93 ×
4-GPU 0.424 0.416 1.53 × 0.497 0.497 3.69 ×

Indian North South HYFM 0.432 1.757 – 0.559 7.761 –

2-GPU 0.432 1.008 1.74 × 0.583 3.977 1.95 ×
4-GPU 0.432 0.604 2.91 × 0.519 2.059 3.77 ×

Bay Area Box Line HYFM 0.434 2.188 – 0.590 7.740 –

2-GPU 0.434 1.228 1.78 × 0.588 3.965 1.95 ×
4-GPU 0.434 0.706 3.10 × 0.530 2.056 3.77 ×

algorithm step according to the parallelization process summarized in Table 1, we can
weigh the influence of every inner part of each step in the global performance of this
implementation. Table 4 shows such times decomposed in replicated and distributed
parts alongwith the speedup obtained for this latter portion for Steps 2 and 3.Regarding
Step 2, the distributed speedups range from 0.93× to 1.78× for 2 GPUs and from 0.82
× to 3.10× for 4 GPUs, something expectable having in mind that the distributed part
of this step is quite intensive onMPI data transfers and synchronizations, as explained
in Sect. 3.2.2. Speedups for the distributed part of Step 3 range from 1.87 × to 1.95
× for 2 GPUs and from 3.42 × to 3.77 × for 4 GPUs, all being very close to the
theoretical peaks. Only the final gathering and averaging of the partial maps makes
this distributed part not to be embarrassingly parallel. Times for Steps 1 and 4 are
not disaggregated in Table 4, as they are considered as fully distributed. Nevertheless,
the wall times from the Step 4 (column in Table 3) are consistent with the overload
expected as a consequence of the input data broadcast and the final peak reduction
performed in this step and described in Sect. 3.2.4.

Besides the aforementioned data transfer and synchronization overloads, let us
also recall that Steps 2 and 3 perform some replicated parts whose time cost can be
considered as fixed no matter the input images size or the number of GPUs available.
Amdahl efficiencies for each test case have been calculated computing these fixed
times as not parallelizable. The line chart of Fig. 6 represents these efficiencies in
relation to the size in MB of the input images, and grouped by the number of GPUs
used. Moreover, the ideal efficiency is represented as a constant horizontal dotted line
at the 100% value. All the tests cases obtained quite high efficiencies which are stable
around 86% and 78% for 2 and 4 GPUs, respectively.
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Fig. 6 Evolution of parallelization efficiencies against input images size in MB for the tests run in NVIDIA
GeForce Titan Black GPUs

5 Related work

Spatial unmixing algorithms [8] are another kind of hyperspectral analysis procedures
that perform PCAs based on SVDs. For example, Jiménez et al. [7] implement a
single-GPU version of the spatial-spectral endmember extraction algorithm [25] that,
unlike HYFMGPU, computes SVDs by means of a CPU LAPACK routine. However,
they still rely on cuBLAS for matrix multiplications.

Lončar et al. cover in [10] how multiple FFT operations are integrated in
both OpenMP- and MPI-based solvers for the dipolar Gross–Pitaevskii equation,
a condensed matter physics problem. They present first a couple of multi-threaded
multi-CPU implementations that are based on the aforementioned parallel program-
ming standards. Both versions use the FFTW3 [4] library for FFT routines, since it is
tailored to their specific needs. Moreover, they also present an MPI-based implemen-
tation that distributes the work among several nodes in a cluster, each with a single
NVIDIA GPU. In this case, the solver must call cuFFT routines, as there is no CUDA
version of FFTW3. They also state that such a combination of MPI processes and
cuFFT routines should work properly in a single cluster node with several GPUs,
something that our work confirms.

CUDA-aware MPI implementations are commonly exploited in different multi-
device versions of algorithms from multiple applied science scopes. For instance,
Glaser et al. [6] implement strong scaling versions of general-purpose molecular
dynamics simulations on GPUs, and Lončar et al. use it too in the aforementioned
solver from [10]. Deep learning and data analytics are other scopes that are tak-
ing advantage of CUDA-aware MPI implementations, for example by exploiting it
to support efficient large message broadcast operations [1]. That work also exploits
NCCL in order to optimize intra-node communications among directly connected
GPUs.
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6 Conclusions and future work

In this paper, we present a coarse-grained distributed, multi-device version of the
original HYFMGPU CUDA implementation, starting with a thorough study of all the
steps that compose this registration algorithm. In a very first approach, we opted for
OpenMP to support the multi-device distribution of the Band Processing step, but
some sequentialization issues related to the cuFFT routines called in this step led us to
develop the full distributed version using MPI. Due to the properties of the different
parts of the algorithm, we had to deal with multiple communication and synchroniza-
tion points along the MPI-based implementation, as well as with the fixed latencies
introduced by some specific-purpose libraries used by the GPUs. Nevertheless, this
multi-device version of HYFMGPU is able to boost the registration process of the test
cases up to 1.59× using 2 GPUs and up to 2.59× for 4 GPUs, and with quite high and
stable parallelization efficiencies around 86% and 78%, respectively. It must be noted
that these test cases are real hyperspectral images that cover a wide range of sizes from
about 80 MB to nearly 2 GB, which proves this implementation to have a robust scal-
ability. The results have shown that GPUs are adequate platforms to perform efficient
registration even for large images. The computational efficiency achieved have practi-
cal applications, especially for environments where real-time registration is required,
for example, in the case of disaster and damage control or surveillance.

In relation to feasible future research lines, the development of a version based on
both NCCL and a CUDA-aware MPI environment stands up as a promising option to
improve the data communication and synchronization operations among GPUs. On
the one hand, such an implementation of the algorithm should be less error-prone and
easier tomaintain, as all the transfer operations nowexplicitly codedwill be replacedby
their equivalent library calls. On the other hand, important performance improvements
can be expected thanks to the transparent exploitation of peer-to-peer data transfers
among GPUs, if supported by the underlying hardware. Moreover, there are some
CUDA-related fine-grain optimizations taking into account several GPU architectures
that by now are being inherited from the original single-GPU implementation. Further
optimizations for both current and upcoming GPU architectures could be studied.
A survey of such details will help to exploit, for instance, the asynchronous CUDA
API. The usage of this interface might lead to discover delay slots on which the fixed
latencies derived from the cuFFT plans and cuBLAS/cuSOLVER handlers creations
could be hidden.
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