
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-019-02925-3

1 3

Toward a BLAS library truly portable across different
accelerator types

Eduardo Rodriguez‑Gutiez, et al. [full author details at the end of the article]

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Scientific applications are some of the most computationally demanding software
pieces. Their core is usually a set of linear algebra operations, which may represent
a significant part of the overall run-time of the application. BLAS libraries aim to
solve this problem by exposing a set of highly optimized, reusable routines. There
are several implementations specifically tuned for different types of computing plat-
forms, including coprocessors. Some examples include the one bundled with the
Intel MKL library, which targets Intel CPUs or Xeon Phi coprocessors, or the cuB-
LAS library, which is specifically designed for NVIDIA GPUs. Nowadays, comput-
ing nodes in many supercomputing clusters include one or more different coproces-
sor types. To fully exploit these platforms might require programs that can adapt
at run-time to the chosen device type, hardwiring in the program the code needed
to use a different library for each device type that can be selected. This also forces
the programmer to deal with different interface particularities and mechanisms to
manage the memory transfers of the data structures used as parameters. This paper
presents a unified, performance-oriented, and portable interface for BLAS. This
interface has been integrated into a heterogeneous programming model (Controllers)
which supports groups of CPU cores, Xeon Phi accelerators, or NVIDIA GPUs in
a transparent way. The contribution of this paper includes: An abstraction layer to
hide programming differences between diverse BLAS libraries; new types of kernel
classes to support the context manipulation of different external BLAS libraries; a
new kernel selection policy that considers both programmer kernels and different
external libraries; a complete new Controller library interface for the whole collec-
tion of BLAS routines. This proposal enables the creation of BLAS-based portable
codes that can execute on top of different types of accelerators by changing a single
initialization parameter. Our software internally exploits different preexisting and
widely known BLAS library implementations, such as cuBLAS, MAGMA, or the
one found in Intel MKL. It transparently uses the most appropriate library for the
selected device. Our experimental results show that our abstraction does not intro-
duce significant performance penalties, while achieving the desired portability.

Keywords  BLAS · Parallel programming · Scientific libraries · Heterogeneous
programming · Accelerators · Coprocessors · GPU · Xeon Phi · MIC · CUDA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-02925-3&domain=pdf

	 E. Rodriguez‑Gutiez et al.

1 3

1  Introduction

The basic linear algebra subprograms (BLAS) specification [9] is widely known
in the field of scientific computing [6, 26]. It contains the definition of three sets
(called levels) of low-level mathematical routines. They perform vector-vector,
matrix-vector, and matrix-matrix operations, respectively. There are several
BLAS implementations specifically designed or tuned for different kinds of com-
puting platforms. Some examples include cuBLAS [36], whose functions are
optimized for CUDA-enabled GPUs, and the implementation included within the
Intel Math Kernel Library (MKL) [22], which exploits the specific features of
Intel platforms, such as Xeon CPUs, or Xeon Phi coprocessors.

Despite the potential performance gains of using hardware accelerators, there
are several issues associated with their use. First, each coprocessor type has its
own programming model, and architecture features which should be taken into
account for programming them. Second, the code and data transfers to these
devices are costly operations. For a given sequence of calls to BLAS routines,
a good choice of the steps where the data has to be synchronized or transferred
between host and devices becomes key. The mechanisms available to perform
these transfers are not the same for all the different BLAS implementations.
Even the same implementation may allow several options with different transpar-
ency and responsibility degrees for the programmer. Intel’s Math Kernel Librar-
ies (MKL) and cuBLAS/nvBLAS from NVIDIA provide different offloading
mechanisms [46], including fully automatic, assisted by the compiler (Compiler-
Assisted Offload, CAO), or relying on manually programmed transfers.

In addition, despite the efforts to standardize BLAS [6, 9] and create a uniform
interface, in practice the different implementations present subtle differences that
must be taken into account. For instance, the same parameters may have to be
passed either by value or by reference to different libraries. Different names or
constants should be used to indicate the same type of operations or data. Some
libraries even have extra parameters which are specific to that implementation,
such as a data structure to represent the library context in cuBLAS. Thus, writ-
ing a program that uses BLAS routines that target different kinds of computing
devices needs the combined use of different libraries, different interfaces, and
decisions in the same code.

In this work, we present a software abstraction layer on top of different BLAS
implementations. The proposal is implemented in the Controller model [34],
which allows the implementation of algorithms as programming units or kernels
with a single name and interface, but several implementations. These implemen-
tations range from generic ones that use an abstraction which allows its execution
on any platform, to those specifically optimized for a kind of platform, or even for
a given architecture family. The Controller chooses the most adequate implemen-
tation of the invoked kernel based on the platform or device associated to it.

This paper provides the following contributions: (a) An abstraction layer to
hide programming differences between diverse BLAS libraries; (b) a new sys-
tem to define kernel classes that support the context and device manipulation of

1 3

Toward a BLAS library truly portable across different…

different external BLAS libraries; (c) a new kernel selection policy that considers
both programmer kernels and different external libraries; and (d) a complete new
Controller library interface for the whole collection of BLAS routines. Our cur-
rent implementation supports internally three different libraries: MKL, MAGMA,
and cuBLAS.

This proposal allows the programming of portable software with sequences of
calls to programmer-defined kernels and BLAS routines. It provides a uniform inter-
face, allowing the selection of the computational device on which the code executes,
by simply changing a single parameter that indicates the target device in the ini-
tialization of a Controller object. In this work, we focus on the use of BLAS librar-
ies in a single device at the same time. The library chooses, among those available,
the implementation that best suits the device type selected by the user. Internally, it
calls preexisting BLAS libraries specifically optimized for the target platform, such
as those provided by hardware vendors or third parties. Our proposal provides both
code portability and performance. This approach, based on an extensible library, can
also be used as run-time to generate portable code from more abstract programming
models.

We present an experimental study to verify that the proposed abstraction intro-
duces portability without significantly compromising performance. We use case
studies representing different scenarios of using BLAS routines alone, in combina-
tion with other BLAS routines, or even with other non-BLAS kernels developed
manually. They show that our approach does not impose artificial constraints on the
use of BLAS routines in comparison with applications directly programmed with
the MKL, cuBLAS, or MAGMA interfaces.

The rest of the article is structured as follows. The second section discusses some
related work. The third section is a summary of the features of the background
tools used in this work. In the fourth section, the solutions used in our proposal are
detailed. The fifth section describes the experimental work carried out to validate
this proposal. Finally, the conclusions and future work are discussed in the sixth and
last section.

2 � Related work

The idea of executing BLAS functions in parallel heterogeneous environments is not
new. The specific hardware features of different architectures have been analyzed
by various authors to produce libraries or routines targeting specific platforms, for
example, IBM 3090 mainframes [29], FPGAs [42], ARM devices [3], and KNL
Xeon Phi processors [28].

Heterogeneity has also been partially considered in distributed versions of
BLAS. There is a BLAS library designed to exploit distributed parallel platforms
called PBLAS, presented by Choi et al. [7]. A derived version, HeteroPBLAS [31],
exploits HeteroMPI [27] to execute BLAS algorithms while exploiting distributed
memory parallelism on clusters with heterogeneous CPUs. The use of this vari-
ant of MPI adds load balancing capabilities. However, HeteroPBLAS cannot take

	 E. Rodriguez‑Gutiez et al.

1 3

advantage of the computing power of coprocessors attached to the computing nodes,
since it just runs on CPU cores.

The portability of BLAS routines has also been considered. LAPACK [2] is a
library of linear algebra routines of a higher level than BLAS. Internally, LAPACK
routines are designed to perform a set of calls to a BLAS library. The MAGMA
library [11, 44] is an implementation of the LAPACK interface designed to work
using GPUs. MAGMA is built on top of two sets of BLAS routines, one designed
and optimized to be executed on GPUs (MAGMABLAS) and another for CPUs
(BLASF77). Another version, derived from the MAGMA code and thus sharing the
same interface, is MAGMA MIC [10], which has been designed for Intel Xeon Phi
coprocessors. Finally, clMAGMA [12] is another derivative of MAGMA, which has
been rewritten using OpenCL.

OpenCL offers a generic interface to coordinate the execution of parallel code
on different types of devices, including CPUs and accelerators. However, for maxi-
mum performance, the internal implementations of the BLAS kernel codes should
be tuned differently for each type of device, taking into account its architectural
features. Thus, the performance portability is not easily achievable. AMD is cur-
rently contributing to the development of clBLAS [24], a BLAS library written in
OpenCL, which is part of the clMathLibraries. Another BLAS library, specifically
designed to target the Radeon GPUs, is rocBLAS [8].

SYCL-BLAS [1] defines an encapsulated C++ template function for each BLAS
routine. They are internally described in an abstract form. Several calls to BLAS can
be analyzed, fused, or optimized by the compiler. The SYCL system is built on top
of OpenCL to allow the generation of compiled versions for different architectures
from the same single code. Thus, it cannot benefit from the performance provided
by libraries fine-tuned by device vendors. The ArrayFire library [30, 48] presents
an abstraction that exploits several BLAS implementations for different devices.
However, it is restricted to predefined datatypes, a program can only work with
one backend at the same time [13], and the arrays are not portable across devices
which need different backends, compromising portability. On the other hand, mixing
calls to BLAS routines with kernels manually optimized for a specific device is also
restricted. The proposed abstractions introduce potential performance issues that
compromise efficiency in some cases [38, 45]. Both SYCL-BLAS and ArrayFire
lack support for Xeon Phi platforms using their native programming interfaces or by
offloading Intel MKL functions. In this type of devices, these mechanisms perform
better than using the OpenCL abstractions and libraries [4].

Armadillo [43] is a C++ linear algebra library based on templates and metapro-
gramming. It is built on top of BLAS and LAPACK libraries, supporting the use of
MKL, OpenBLAS, or nvBLAS for GPUs. Armadillo has been extended by Viviani
et al. [45] to allow run-time switching of the BLAS library used as a backend. How-
ever, their implementation relies on library routines with automatic data transfer
between host and coprocessor. First, only a reduced set of routines available in the
BLAS libraries are implemented with these automatic offloading mechanisms. Sec-
ond, as we will show later, this automatic transfer feature often leads to unnecessary
data transfers and poor data reusability, which impacts on performance for chained
BLAS calls.

1 3

Toward a BLAS library truly portable across different…

There are other solutions that build higher-level abstractions on top of BLAS
libraries while considering heterogeneous platforms, such as [23] and [41]. These
solutions do not expose the full BLAS interface to the programmer. The program-
mer cannot freely use several different BLAS routines in combination with other
kernels. In some cases, such as [23], the system does not provide a single level of
abstraction and the library programmer needs to deal with specific details of the
device and data transfer management. In other cases, such as [41], the programs can-
not transparently adapt the BLAS implementation to the target device at run-time.
As they focus on GPUs, the generated codes, even those that use OpenCL, are not
performance portable to other devices and coprocessor types such as Intel Xeon Phi.

In comparison with all the previously commented approaches, our proposal is
designed to offer both code and performance portability, using an expandable set
of third-party BLAS libraries. Our solution allows the development of a single
high-level code, mixing different devices and backends, abstracting the differences
between the available libraries. To obtain the best possible performance, it internally
uses the appropriate techniques of the native/vendor programming models for data
transfers or for interleaving calls to BLAS with user-defined kernels.

3 � Background

In this section, we provide a summary of the features of the tools and libraries used
as background for the development of this work.

3.1 � Specialized versions of BLAS

BLAS, acronym for Basic Linear Algebra Subprograms, is the specification for a set
of low-level linear algebra routines. BLAS supports four base datatypes for arrays.
Every routine usually has four different versions, one for each datatype. The data-
type is noted on the function name by using an s when the function is designed
for single-precision floating point numbers (e.g., SGEMM); a d for double-preci-
sion floating point numbers (e.g., DGEMM); a c for complex numbers stored as two
single-precision floating point numbers (e.g., SGEMM); and finally z, for complex
numbers stored as double-precision floating point numbers (e.g., ZGEMM). An
asterisk (*) is usually used instead of the corresponding datatype identifier when
speaking generally about a routine.

Several routines are defined on each BLAS level. On level 1, we can find routines
to perform scalar-vector or vector-vector operations. One instance is the *AXPY
routine, which multiplies every element of a vector by a scalar. Another example is
I*AMAX, which, given a vector, returns the index of the cell that stores the high-
est value. Level 2 includes routines for matrix-vector operations, such as *GEMV,
which returns the result of multiplying a matrix by a vector. Finally, level 3 contains
matrix-matrix operations, such as *GEMM, which obtains the result of multiplying
two matrices.

	 E. Rodriguez‑Gutiez et al.

1 3

On each device-specialized implementation of BLAS, we can find several off-
loading mechanisms to move data and execute code in coprocessors. For instance,
MKL allows the Automatic Offloading (AO) [20] of specific functions to a Xeon
Phi. This mechanism implies the automatic movement of the input data toward the
coprocessor and the retrieval of the outputs back to the host. These data movements
are performed transparently to the programmer. Even though the user has to explic-
itly enable this kind of mechanism, the decision of whether it is activated or not for a
specific call to the MKL BLAS library depends exclusively on the implementation.
The run-time takes into account the data sizes to realize whether it is worthwhile
offloading the function call [21]. The offloading to the coprocessor is only executed
when the library, taking into account data sizes, realizes that it is worth executing
the BLAS function on the coprocessor, despite the overheads associated with the
data transfers [21]. Otherwise, the routine executes on the host. This feature is only
available for a reduced set of BLAS functions. Sequences of calls to those functions
lead to multiple unnecessary data movements [5].

Another option is the use of the Intel Language Extensions for Offload (LEO).
This consists of several annotations (pragmas) for the Intel compiler that allow the
execution of explicit data communications between the host and the device when-
ever needed [35]. The interface of LEO is abstract and hides the low-level details
and primitives for doing operations with the coprocessor, such as memory alloca-
tion, data transfers using device pointers. Invocations to one or several MKL func-
tions inside LEO blocks are automatically executed in the coprocessor. This is
known as the Compiler-Assisted Offload (CAO) mode. The LEO pragma specifies
the data transfers or the reuse of arrays transferred by previous LEO pragmas. This
is a more general solution than the previous one. All BLAS functions in MKL can
be executed using this technique and the data can be reused between routine calls,
thus avoiding unnecessary data movements. However, the decisions become the pro-
grammer’s responsibility and the movements have to be synchronized with the start
or end of a LEO block. This option allows a greater degree of control at the expense
of a greater effort to determine and code the optimal movements. Another drawback
is the lower portability of the resulting code.

NVIDIA provides cuBLAS, a library specifically tailored to run on CUDA capa-
ble devices. This vendor also provides an alternative library, named nvBLAS, with a
solution similar to the MKL automatic offloading mechanism. It is completely com-
patible with the BLAS interface. Like AO in MKL, the run-time system may decide
not to execute the function in the device, while the mechanism is also available only
for a specific set of functions [37].

When the normal cuBLAS implementation is used, the memory transfers between
host and GPU must be managed through the usual calls to the CUDA library. This is
equivalent to the use of Intel LEO, but with a lower-level API. It gives more control,
but requires more development effort and reduces portability.

MAGMA [11, 44] emerges as the evolution of the LAPACK library, optimized
for GPUs. Several cuBLAS functions, such as GEMM, have incorporated some
of the MAGMA BLAS optimizations, and therefore, MAGMA has replaced their
own implementations by calls to cuBLAS [14, 15]. MAGMA functions use a
hybrid automatic approach, breaking the LAPACK routines into tasks. These tasks

1 3

Toward a BLAS library truly portable across different…

are dynamically scheduled to be executed on the GPU or on the host CPU. Subse-
quently, a MAGMA version, called MAGMA MIC [10], was designed for Xeon Phi
coprocessors, based on offloading through the use of the Xeon Phi low-level driver
functions (libSCIF and COI). For the programmer, and in terms of data transfers,
the use of MAGMA or MAGMA MIC is equivalent to the use of Compiler-Assisted
Offload.

There are several differences between MKL, cuBLAS, or MAGMA interfaces.
The MAGMA BLAS interface for the latest version available online (2.2.0) is pretty
similar to cuBLAS. However, the second version of the cuBLAS API requires a new
handle parameter that is implementation specific. This is a data structure that stores
information about the library context and should be created, passed as first param-
eter on each call to this library, and finally destroyed when no more BLAS routines
are to be used.

Minor differences arise in the way of passing specific parameters in MKL, cuB-
LAS, MAGMA and MAGMA MIC. For instance, scalars alpha, beta, etc., have to be
passed by reference (using pointers) on all cuBLAS calls, whereas they are passed
by value on Intel MKL. Another problem lies in the different values that each imple-
mentation assign to the constants or enumerated datatypes used to define operations,
such as cublasOperation_t or CBLAS_TRANSPOSE. CBLAS libraries (the C
binding of the original BLAS) have an extra parameter to declare if the input matrix
must be accessed in row-major order (common for programming languages like C)
or column-major order (used by software coded in Fortran). MAGMA MIC is based
on MAGMA. Thus, very minor differences appear between these two implementa-
tions, comparing with both MKL or cuBLAS.

3.2 � The original controller model

This work aims to provide a functional and performance portable BLAS library.
Thus, as the foundation of our implementation, we select a programming model
designed for heterogeneous computing, which allows the development of specialized
versions of the same kernel for different architectures or programming platforms.
Different levels of abstraction and granularity are supported, providing a lot of ver-
satility and control to the system-software programmer. The selected programming
model and framework is the Controller model [32–34]. In this section, we describe
the main features that support its selection.

The Controller model for heterogeneous programming is implemented as a
modular library, extensible and portable. It is programmed in C language, with an
object-oriented approach in mind. It is usable and interoperable across both C and
C++ languages. It introduces a new abstract entity, called Controller, which is asso-
ciated with a device on creation. This device can be either a GPU, an Intel Xeon Phi
(MIC) or a group of CPU cores that are managed transparently like an accelerator.
The Controller entity includes mechanisms to: (1) attach or detach a data structure
to/from its context; (2) create or destroy data structures which are only allocated in
the device context; and (3) launch kernels (computing routines) that are executed on
the device.

	 E. Rodriguez‑Gutiez et al.

1 3

In order to achieve uniformity on the data structure management, the Control-
ler model implementation relies on the Hitmap library [17]. This library allows the
definition of indexed data structures, such as arrays or graphs. Data structures are
instances of a structured type named HitTile, which contains metadata and pointers
to the memory areas containing the data. Hitmap allows the declaration and manip-
ulation of HitTiles with base types which can be either native or structured types
declared by the programmer (see lines 2–5 in Fig. 1). The library includes a uniform
interface to declare index spaces, the construction or destruction of HitTiles, and
access to the data stored in a HitTile. The same interface is used to access data in
both the host and kernel codes, with a portable row-major order view (see lines 16,
21, and 24 in Fig. 1).

In order to define a kernel, the Controller library uses a generic interface dec-
laration where the kernel name, number and names of parameters, datatypes, and
their Input/Output role are detailed. Kernel parameters in the Controller model are
values of native or programmer-defined types or references to HitTiles of any base
type. (see lines 9–13 in Fig. 1). A kernel with a unique name can be declared several
times by using different platform identifiers. Thus, each declaration can be tuned
for the specific architecture, even using pragmas, datatypes, or primitives which are
specific to a programming model and the compiler that generates the code for it. For
instance, it is possible to use CUDA syntax and primitives on kernels declared for
GPUs in order to reserve and use shared memory, synchronize threads in a block,
etc. There are situations where the code of a kernel is simple enough for it to be
appropriate for any device. They can be simple prototype kernels or simple opera-
tions that do not require specific device optimizations. Some examples include the

1 /∗ Struc tured type f o r 2D po in t s ∗/
2 typedef struct {
3 int x , y ;
4 } Point2D ;
5 hit t i l eNewType (Point2D) ;
6
7 /∗ Cont ro l l e r k e rne l : scopy ∗/
8 /∗ Relocate data in 1D arrays with s t r i d e s ∗/
9 CAL KERNEL GENERIC(scopy , 5 , IVAL, int , n ,

eliTtiH,NI01 Point2D ∗ , x ,
,LAVI11 int , incx ,

eliTtiH,OI21 Point2D ∗ , y ,
,LAVI31 int , incy)

14 {
15 int row = threadId . x ;
16 h i t (x , row∗ incx) = h i t (y , row∗ incy) ;
17 }
18
19 . . .
20 // Domain dec l a ra t i on and a l l o c a t i o n
21 HitTi le Point2D vA = h i tT i l e (Point2D , hitShape (s i z e)) ;
22
23 // I n i t i a l i z a t i o n o f one c e l l in the hos t
24 h i t (vA, 3) = { 10 , 20 } ;
25 . . .

Fig. 1   Example of types and kernel declaration, and HitTile manipulation, using the Controller model

1 3

Toward a BLAS library truly portable across different…

initialization of a single matrix element, a dot product, the update of a matrix ele-
ment with the values of the neighbor cells in a stencil computation, etc. To avoid the
declaration of several kernels with the same code, one for each device, the Control-
ler model also provides a GENERIC type of kernel. The programmer can use this to
declare new kernels that include only neutral code that can be executed on any kind
of platform (see an example in line 9 of Fig. 1). The Controller provides a thread-
index identifier space similar to that of CUDA or OpenCL, except that it is defined
in row-major order for all types of devices (CPUs, Xeon Phi, GPUs). In CPU and
Xeon Phi devices, it makes the code easier to be vectorized. For GPU devices, the
indexes are automatically adapted to column-major order to preserve the coalescing
property when neighbor threads access neighbor data. This improves the portability
of the kernel codes. The thread-space and kernel definitions are done in fine grain.
The Controller is responsible for grouping the threads into blocks (for GPUs) or
generating coarse-grained OpenMP tasks that internally iterate with loops through
their local index space for an efficient execution.

The HitTile real parameters in a kernel launch should have been previously
attached to, or created in, its context. The attachment of a data structure to a Con-
troller context implies that the data in the host is transferred to the image created on
the device context before it is used by a kernel. In the detachment operation, if the
structure has been modified on the device (it has been used as output by any previ-
ously launched kernel), the updated data is copied back to the memory image in the
host. Memory transfers to the device can be either eager or lazy. They are executed
during the attachment operation or they are delayed until the data is needed by a
launched kernel. The Controller is responsible for managing the queue of kernel
execution requests and for handling the memory transfers transparently.

This system of kernel declarations allows the progressive development of a
library of specialized versions of each kernel. The Controller selects the most appro-
priate version for the target architecture by prioritizing it over the generic ones.

The Controller model includes one more which is key for the development of ker-
nel libraries. It includes the possibility of declaring a special type of kernel whose
code is executed in the host, even if the target device is an accelerator. This allows
the creation of kernels which execute in the host, but include calls to specialized
libraries suited for a specific type of device. However, this type of kernel does not
allow the generation, storage, and retrieval of the context information and device
configuration needed by some BLAS library implementations.

4 � Solution proposal

In this section, we describe our proposal to achieve a portable and efficient BLAS
library. In this work, we revise and extend the Controller model to implement a
multidevice/multilibrary backend. The purpose is to transparently support the dif-
ferent BLAS versions that can be used for different types of devices with a single
unified interface. The new proposal is based on modifying the following features
of the original Controller model: (a) change the original library kernel structure to
support library contexts and its device configuration; (b) introduce a new extended

	 E. Rodriguez‑Gutiez et al.

1 3

classification of kernels to support different tagged library implementations for the
same routine; (c) design a more sophisticated policy module for kernel selection that
also allows the prioritization of different libraries for each device type. These new
features provide a flexible run-time priority mechanism to select the most appropri-
ate library kernel version for the target architecture. Then, we can build a library of
Controller kernels that works as an abstraction layer on top of any BLAS library
(see Fig. 2), providing a full, unified and portable library interface for BLAS.

Library kernel structure modification For each type of device, the original Con-
troller model supported only one specialized kernel and one non-specific library
kernel with the same name. The original non-specific library kernels structure did
not support context information or accessing the device as required by some BLAS
implementations. Thus, the original library kernel structure is redesigned to allow
both the manipulation of the device configuration and the generation, storage, and
retrieval of library context information when needed. With the new changes, the
library kernels can access the device directly. The Controller internal structure is
updated to include an extension to store generic context information and device con-
figuration for libraries. The structure of the general Xeon Phi kernels is also adapted
in the new Controller version to support the interoperability of BLAS routines with
manually developed kernels, avoiding performance degradation.

Kernel classes To transparently support several alternative BLAS libraries for
the same device type, we have extended the kernel classes. The Controller library
has an enumerated type for the names of the kernel classes that can be used by
the programmer. It is straightforward to introduce new class names and to use

Table 1   Kernel classes for the
Controller model, indicating
which classes can be matched
with each Controller type

The new introduced or modified classes are highlighted in italics

Kernel class Controller type Content/library

GENERIC Any Generic code for any device
CPU CPU Optimized native CPU code
libCPU CPU Calls to Intel MKL
CUDA CUDA Optimized CUDA kernel code
libGPU CUDA Calls to cuBLAS
libMAGPU CUDA Calls to MAGMA
XPHI Xeon Phi Optimized Xeon Phi kernel code
libXPhi Xeon Phi Calls to Intel MKL
libMAXPhi Xeon Phi Calls to MAGMA MIC

Fig. 2   Abstraction layers and tools used in the proposed solution

1 3

Toward a BLAS library truly portable across different…

them to define kernels. We propose to use a name defining a new type of ker-
nel for each vendor-provided or third-party scientific library, on each device (see
Table 1). With these new classes, we can define kernels with the same name and
interface, whose code invokes functions of the desired library and device type.

Selection policy The second part is to modify the internal method of the Con-
troller that selects the version of a given kernel, which is executed for a given tar-
get device. Supporting several library implementations of the same function for
the same device implies a decision about which version is prioritized at launching
time. It is also possible that some functions are defined in one library implemen-
tation, but not in others. We define a selection policy module inside the Controller
that works with an order or priority list of kernel classes for each type of device.
In the current implementation, a fixed policy is hardcoded into the Controller
entity code. This policy defines, for each kernel name used in a launch operation,
which implementation is selected. It chooses one of the versions available from
among those declared in the source file or through included header files. If no
implementation is available at compile time, a compilation error is raised. The
current run-time policy prioritizes the implementation that uses the specific ven-
dor library (libCPU, libXPhi, or libGPU). If this version is not present at compile
time, it uses the kernels that use the MAGMA library version (libMAXPhi, or
libMAGGPU). If it has still not been found, it looks for a kernel provided by the
programmer (the original kernel classes CPU, GPU, XPhi). Finally, if no other
implementation is found, it executes the non-optimized kernel, designed for any
kind of device (the original GENERIC kernel class). This kernel selection stage
does not fail at run-time. At least one eligible kernel implementation should be
provided at compile time in order to generate the executable.

Multi-library Finally, to provide the common interface for each BLAS function
name, we develop a collection of kernels, which are wrappers to call the actual
functions of the corresponding library. This intermediate layer is a library named
HitCntrlBLAS (see Fig. 2). In this library, each BLAS function is a Control-
ler kernel with the same name and five different implementations. There is one
implementation for each new kernel class. Each one represents a combination of
device and library type (MKL for CPUs, MKL for Xeon Phi, MAGMA MIC for
Xeon Phi, cuBLAS for GPUs and MAGMA for GPUs). Lines 2–10 in Fig. 3 show
an example of kernel implementation for the scopy function of BLAS, targeting
Xeon Phi, calling the MKL implementation.

The proposed interface for each function is common and uniform. Inside each
implementation, the details needed to perform the proper call to the correspond-
ing library are managed. The Controller internal fields have been extended to sup-
port any contextual data needed by a specific library. For example, the libGPU
kernel implementations manage internally the handle needed for cuBLAS calls.
See lines 14–21 in Fig. 3. This handle is created and destroyed with the Con-
troller if it is associated with a GPU during the creation operation. Other dif-
ferences regarding the APIs of the libraries used are solved within each kernel
implementation.

Data transfer management has been previously solved inside the Controller
library. It uses either CUDA or CAO, depending on the type of device associated

	 E. Rodriguez‑Gutiez et al.

1 3

to the Controller. The HitTile structures from the Hitmap library also provide a uni-
form interface for data structure management before or after the third-party library
call.

The result is a system that allows the programmer to develop a single main pro-
gram, using the Controller entity to launch generic BLAS kernels with a portable
and uniform interface. The programmer can select the available libraries or change
the selected devices with a single parameter value on the Controller object construc-
tion. An example for a study case is presented in the following section.

Main code example Figure 4 presents a snippet of the main coordination code of a
Controller program to compute a sequence of matrix-matrix multiplications. It uses
the modified Controller model and the HitCntrlBLAS library previously discussed.
In lines 2–9, the Controller system is initialized and the data structures needed in the
host are declared and initialized using HitTiles. Line 12 shows the construction of
a Controller associated to the first GPU on the system. In lines 15 and 16, we show
how an internal variable, with memory only allocated in the device, is created for
the C matrix. The HitTile is declared as a tile with no memory allocated in the host.
This tile structure is used to declare the array dimensions, to store the pointer to the
device data when it is created in the Controller (line 16), and to track the HitTile use
in the kernel launching functions. In line 19, the two input matrices are attached to
the Controller context, implying data transfers to the device. In line 22, an object
representing the index space of logical threads is constructed. This space is inter-
nally transformed into a grid of groups (for GPUs), or a collection of coarse-grained
tasks (for OpenMP threads in CPUs or Xeon Phi). It is used in the kernel launch
operations found in lines 26–31. These lines represent the main code of the algo-
rithm, launching kernels of the HitCntrlBLAS library. Line 35 detaches a matrix

Fig. 3   Example of the declaration of two different implementations of the scopy BLAS kernel, in the
HitCntrlBLAS library: libGPU for GPU-CUDA devices using cuBLAS, and libXPhi for Intel MIC Xeon
Phi using MKL

1 3

Toward a BLAS library truly portable across different…

used as an output parameter during the launch operations. Thus, it implies a transfer
of data from the device to the host. Lines 37–40 detach, destroy, and free the rest of
the data structures in both the device and the host.

5 � Experimental study

This section presents an experimental study with two objectives. The first is to show
the portability of the approach. The second is to show that this portability does not
compromise efficiency. We test that the proposed abstractions do not impose a rel-
evant performance overhead when comparing with the same programs developed
with the original BLAS libraries and manually tuning the memory transfers.

Fig. 4   Code snippet of the main program for a sequence of matrix-matrix multiplications, using Control-
lers and HitCntrlBLAS libraries. In this case, the Controller is attached to the first GPU found in the host

	 E. Rodriguez‑Gutiez et al.

1 3

The source code of both the library and the case study programs, together with
the experimental data obtained during the performance evaluation, is available upon
request to the authors.

5.1 � Case study: problems description

We study three different problems that present different challenges for a heterogeneous
programming model, showing different features of the proposal and covering different
scenarios found in a wide range of application classes. The first is a loop of calls to the
same BLAS routine, a *GEMM matrix-matrix multiplication, which is a key kernel in
multiple scientific applications and a classic test-bed case for high-performance pro-
gramming systems. The main kernel of this program presents a computational load that
increases quickly with the input-data size, quickly diminishing the effect of the data
transfers. It allows the efficiency of the kernel launching and execution procedures to be
tested easily. The second implements a classical GEMVER algorithm using a sequence
of calls to different BLAS libraries. This program uses kernels with a low computa-
tional load. It allows the testing of the interface and parameter passing across BLAS
routines, as well as the efficiency of the device and data transfer management for a
wide range of input-data sizes. The last one is a program that applies the Sobel filter to
an image, mixing kernels developed manually by the programmer with calls to BLAS
routines. It tests the interface across the different programming abstractions, library and
manually developed kernels. It also presents a better balance than the previous cases
between data transfer and computation times.

Matrix multiplication sequence The first computes C = A × Bn . It multiplies a square
matrix A by another square matrix B several times [47]. We choose an implementation
based on a loop that computes the recursive expression: Ck = Ck−1 × B ∶ k ∈ [1, n] ,
where C0 = A . Several BLAS libraries, such as Intel MKL, do not allow the use of the
same variable as input and output on the same call. Therefore, the result of multiply-
ing Ck × B cannot be stored back in C in the same function call. This forces the pro-
grammer to use a third matrix, allocated only on the device memory, to store the par-
tial result. We use a second kernel on each iteration to copy the result values from the
temporary matrix to the first matrix operand. This second kernel has no computational
load, just memory accesses. Our implementation has two different parameters to play
with, the number of times that the matrix B is multiplied and the matrix sizes. Before
the main iteration, both initial matrices A and B are copied to the device memory.

*GEMVER Although this operator has been introduced as a single function in the
extensions proposed for the BLAS 2.5 standard [6], it has not yet been implemented in
the current versions of MKL, cuBLAS, or MAGMA. This algorithm takes as input a
matrix A, six vectors u1, u2, v1, v2, y, z and two scalars, � and � . It executes the follow-
ing operations with them:

Â ←A + u1v
T
1
+ u2v

T
2

x ← 𝛽ÂTy + z

w ← 𝛼Âx

1 3

Toward a BLAS library truly portable across different…

where Â and x are internal variables (matrix and vector, respectively) and w is the
output vector [19]. The version of this algorithm used to create the GEMVER refer-
ence program is included in Polybench [40]. This algorithm is suitable for several
interesting optimizations. Polybench contains two code versions, one programmed
directly and another using BLAS function calls.

Sobel operator The Sobel operator [16] is a well-known image processing algo-
rithm for edge detection. It applies two stencil operators to a grayscale input image.
Each operator obtains the derivatives in the x and y directions, denoted as Gx and Gy ,
respectively. We use 3 × 3 sized Sobel stencil matrices, called kernels or filters in
image processing literature. The use of separable filters may result in some perfor-
mance improvement [39]. Finally, the gradient magnitude is computed by squaring
each cell value on Gx and Gy , adding the two resulting matrices and computing the
square root of each cell.

This case shows how our solution allows the programming of codes that mix
generic BLAS library calls with kernels directly developed by the programmer.
These kernels can include code and optimizations which are specific to a lower-level
programming model such as CUDA. The two filter operators are implemented with
the original kernel classes in the Controller implementation. The cell-wise squaring
operation can be implemented as the Hadamard [18] product of a matrix, which can
in turn be implemented by using the *SBMV BLAS operation with a band matrix
[25]. However, this function is not implemented in MAGMA and MAGMA MIC.
In order to obtain comparable results across the different libraries, we integrate this
operation into the columns convolution kernel instead. The sum of the two resulting
matrices is done using the BLAS function *AXPY. Finally, the cell-wise square root
of the resulting matrix is implemented again using the original kernel classes.

5.2 � Implementation details

In this section, we describe how the Controller and reference versions of each prob-
lem have been implemented.

Reference implementations In order to check potential performance overheads
introduced by our abstractions, we need reference implementations of the three
problems considered. The first reference version of each problem is developed using
C with calls to MKL, targeting the Xeon Phi platform. They include specific Intel
compiler pragmas to execute the BLAS routines through Compiler Assisted Offload,
optimizing the data transfers. The second and third reference versions target NVID-
IA’s GPUs. They use C++, CUDA, and either cuBLAS or MAGMA to generate the
GPU programs. It has been verified in all cases that the BLAS functions are truly
executed on their respective coprocessors, while also checking that the compiler or
run-time system does not take the decision of running any part of the function on the
host.

Controller-based implementations The first stage of implementation is the devel-
opment of the HitCntrlBLAS library. cuBLAS and Intel MKL kernel versions are
coded in different source files, in order to compile each of them with their specific
compilers. Header files are created for each sublibrary. The second stage is the

	 E. Rodriguez‑Gutiez et al.

1 3

implementation of the case studies. We program only one Controller-based main
code for each problem. The experiments with each library or device can be done
modifying only the value of the parameter that specifies the device in the Controller
construction.

5.3 � Performance results

We conduct experiments to analyze the potential overhead introduced by the Con-
troller abstractions in our current implementation. We execute the different versions
of the codes in two different machines, with four different coprocessors. The study
considers two families of Xeon Phi coprocessors (KNC: 3120A Knights Corner, and
KNL: 7220A Knights Landing), and two different architectures of NVIDIA GPUs
(Maxwell: Titan X, and Volta: Tesla V100). The details of the machines, coproces-
sors, operating system, development tools, and versions of the BLAS libraries are
summarized in Table 2. The programs are executed using the numactl command to
set the affinity of the program threads to the NUMA node which is associated with
the PCI bus where the coprocessor is connected. This greatly reduces the stochas-
tic performance behavior of the data transfers from/to the coprocessor on different
executions.

Figures 5 and 6 show the execution times obtained for each experiment configu-
ration and target platform. The y-axis represents the execution time in logarithmic
scale. The x-axis represents the input-data size n, where n is the cardinality of each
dimension of the square input matrices. The sizes range from very small ( 100 × 100 )
with almost negligible computational cost comparing to the data transfers, to very
large sizes ( 17000 × 17000 ), up to the point of exhausting the device memory in
some cases. The values represent the mean of ten executions for each experiment.

Figures 5 and 6 show that the Controller programs present similar perfor-
mance behavior as their equivalent reference versions in all cases, with the lines

Table 2   Hardware and software
features of the machines used in
the experiments

Feature Chimera Manticore

Operating system CentOS 7.4.1708 CentOS 7.5.1804
Processor Xeon E5-2620v3 Xeon Platinum 8160
Clock speeed 2.40GHz 2.10GHz
Main memory 32 GB DDR3 256 GB DDR4 ECC
Cache memory 15 MB 33 MB
Coprocessor
Intel Xeon Phi 3120A –
Intel Xeon Phi 7220A –
NVIDIA GTX Titan X Tesla V100 PCIe
Tools
Intel XE 2017.5.061 XE 2019.0.117
NVIDIA CUDA 9.0.102 CUDA 10.0.130
GCC​ 4.8.5 4.8.5
MAGMA 2.2.0 2.5.0

1 3

Toward a BLAS library truly portable across different…

representing the results of a Controller program and its equivalent reference version
mainly overlapped. This happens consistently across the different scenarios gener-
ated by the selected examples and input-data sizes, in terms of load balance or com-
putational vs. device management costs.

Several interesting effects related to the behavior of the different library imple-
mentations and platforms can be observed. As commented at the beginning of
Sect. 5.1, for small input-data sizes, all problems present the same scenario, where
the computational load of the kernels is really small and the device management
and data transfer between host and device are the bottleneck. The left column in
Fig. 5 presents the results using the native cuBLAS library for the two GPUs. In
these plots, for the smallest input-data sizes, the performance of both the Titan
X and the Tesla V100 are similar. However, when using the MAGMA library for
GPUs (right column of the same figure), we observe that the times of device man-
agement and data transfers is higher than when using cuBLAS, and less efficient
for the older Titan X than for the Tesla V100. Due to its low computational cost

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

C=A×Bn using cuBLAS

 GTX Titan X (Chimera) − Native
 GTX Titan X (Chimera) − Controllers
 Tesla V100 (Manticore) − Native
 Tesla V100 (Manticore) − Controllers

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

C=AxBn using MAGMA

 GTX Titan X (Chimera) − Native
 GTX Titan X (Chimera) − Controllers
 Tesla V100 (Manticore) − Native
 Tesla V100 (Manticore) − Controllers

 0.1

 1

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

Gemver using cuBLAS

 GTX Titan X (Chimera) − Native
 GTX Titan X (Chimera) − Controllers
 Tesla V100 (Manticore) − Native
 Tesla V100 (Manticore) − Controllers

 0.1

 1

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

Gemver using MAGMA

 GTX Titan X (Chimera) − Native
 GTX Titan X (Chimera) − Controllers
 Tesla V100 (Manticore) − Native
 Tesla V100 (Manticore) − Controllers

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

Sobel using cuBLAS

 GTX Titan X (Chimera) − Native
 GTX Titan X (Chimera) − Controllers
 Tesla V100 (Manticore) − Native
 Tesla V100 (Manticore) − Controllers

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

Sobel using MAGMA

 GTX Titan X (Chimera) − Native
 GTX Titan X (Chimera) − Controllers
 Tesla V100 (Manticore) − Native
 Tesla V100 (Manticore) − Controllers

Fig. 5   Experimental results for the three case study problems ( C = A × B
n , GEMVER, and Sobel), exe-

cuted on NVIDIA GPUs, using cuBLAS (left column) and MAGMA (right column). Each plot includes
the execution times of the reference versions doing direct calls to the chosen BLAS library and the Con-
troller version internally using the same library

	 E. Rodriguez‑Gutiez et al.

1 3

kernels, the GEMVER problem is dominated by the device management times, even
for the biggest input-data sizes (see middle row of the figure). Thus, the cuBLAS
versions consistently present a better performance than the equivalent MAGMA ver-
sions for all the range of input-data sizes tested. Nevertheless, as the computational
load grows slightly with the data sizes, the execution times of the Tesla V100 and
the Titan X consequently diverge due to the higher computational power of the Tesla
V100. In the case of the Matrix Multiplication Sequence (the two plots in the top
row of Fig. 5), and the Sobel program (the two plots in the bottom row of the same
figure), the kernel computational costs grow much faster with the input-data sizes
than in GEMVER. The execution times of the kernels quickly grow and dominate
the overall performance. Thus, when the data sizes grow, we observe that the cuB-
LAS and MAGMA versions converge to the same performance values (faster in the
matrix multiplication sequence, as expected), confirming that the MAGMA over-
heads are originated in the device and data transfer management. Figure 6 presents
the results for the Xeon Phi programs using the MKL BLAS library. The more mod-
ern KNL architecture consistently performs better in both data transfers and kernel
execution. It presents a performance improvement of approximately 2.5× comparing
with KNC.

To better analyze the potential overheads introduced by the Controller abstrac-
tions, we analyze the ratio between the execution time of each Controller program
and the execution time of the equivalent reference version (the one that uses the
same external library in the same platform). Figure 7 presents examples of the
ratio results for some representative combinations of case study problem, plat-
form, and library implementation. Other combinations present similar results.

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

C=A×Bn on Xeon Phi (Chimera)

 MKL (3120A)
 MKL + Controllers (3120A)
 MKL (7220A)
 MKL + Controllers (7220A)

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

GEMVER on Xeon Phi (Chimera)

 MKL (3120A)
 MKL + Controllers (3120A)
 MKL (7220A)
 MKL + Controllers (7220A)

 0.1

 1

 10

 100

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

T
im

e
(s

ec
on

ds
)

n: Cardinality, for each dimension, of input matrices

Sobel on Xeon Phi (Chimera)

 MKL/Native (3120A)
 MKL/Native + Controllers (3120A)
 MKL/Native (7220A)
 MKL/Native + Controllers (7220A)

Fig. 6   Experimental results for the three case study problems ( C = A × B
n , GEMVER, and Sobel), exe-

cuted on the Xeon Phi platforms using the BLAS implementation of the MKL library. Each plot includes
the execution times of the reference versions doing direct calls to the MKL library and the Controller
version internally using the same library

1 3

Toward a BLAS library truly portable across different…

The figure presents box plots, showing for each input size the minimum, maxi-
mum, and median overheads, as well as the quartiles distribution. The two plots
in the first row of Fig. 7 present the ratios for the matrix multiplication sequence
problem in the Titan X GPU using cuBLAS and MAGMA. The median overhead
is less than 8% in all cases, and for big input-data sizes it is lower than 1%. There
is much more dispersion for small data sizes, where the execution times are really
low. In these cases, the stochastic behavior of data transfers, accumulated with
the overheads introduced by the queue management, parameter conversion, and
launch procedures on the Controller model, are more noticeable. The two plots
in the second row of Fig. 7 present the ratios for the GEMVER problem in the
KNC and KNL Xeon Phi architectures, using MKL. The median of the overhead
is between 0.01 and 7%. The GEMVER program has very low total execution
times. They are dominated by the device and data transfer management, which
are more unpredictable when the host program uses several OpenMP threads as
in the Controller mode. Thus, the overheads in the KNC architecture have a high
stochastic behavior, even for big input-data sizes. In the more modern KNL archi-
tecture, data transfer times are more consistent, leading to lower overheads and

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

(T
cn

ttr
l /

 T
na

tiv
e)

 −
 1

n: Cardinality, for each dimension, of input matrices

C=A×Bn cuBLAS Time overhead ratio on GTX Titan X (Chimera)

Quartiles

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

(T
cn

ttr
l /

 T
na

tiv
e)

 −
 1

n: Cardinality, for each dimension, of input matrices

C=A×Bn MAGMA Time overhead ratio on GTX Titan X (Chimera)

Quartiles

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

(T
cn

ttr
l /

 T
na

tiv
e)

 −
 1

n: Cardinality, for each dimension, of input matrices

GEMVER MKL Time overhead ratio on Xeon Phi 3120A (Chimera)

Quartiles

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

(T
cn

ttr
l /

 T
na

tiv
e)

 −
 1

n: Cardinality, for each dimension, of input matrices

GEMVER MKL Time overhead ratio on Xeon Phi 7220A (Chimera)

Quartiles

−0.2

−0.15

−0.1

−0.05

 0

 0.05

 0.1

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

(T
cn

ttr
l /

 T
na

tiv
e)

 −
 1

n: Cardinality, for each dimension, of input matrices

Sobel cuBLAS Time overhead ratio on GTX Titan X (Chimera)

Quartiles

−0.15

−0.1

−0.05

 0

 0.05

 0.1

 0.15

 0.2

0×100 2×103 4×103 6×103 8×103 10×103 12×103 14×103 16×103 18×103

(T
cn

ttr
l /

 T
na

tiv
e)

 −
 1

n: Cardinality, for each dimension, of input matrices

Sobel MKL Time overhead ratio on Xeon Phi 3120A (Chimera)

Quartiles

Fig. 7   Controller overhead: Ratio of execution time between the Controller and reference versions for
some representative combinations of application and lower-level libraries

	 E. Rodriguez‑Gutiez et al.

1 3

less stochastic behavior for big input-data sizes (see right plot in the second row
of the figure). The two plots in the third row of Fig. 7 present the ratios for the
Sobel program, comparing the ratio results in the Titan X GPU using cuBLAS
(left plot in the third row of the figure), with the ratio results in the KNC Xeon
Phi using MKL (right plot in the third row of the figure). This problem presents
a better balance between computational load and device and data transfer man-
agement costs across the range of input-data sizes. Thus, the median overhead is
small in both plots (less than 1% for any input-data size). The Xeon Phi results
present more dispersion than those of the Titan X, due to more unpredictable data
transfer times and due to higher stochastic effects introduced by the interaction
of the internal Controller thread with the Xeon Phi run-time. It is noticeable that,
in the case of the Titan X GPU, some median values of the overhead are even
less than 0%. The variability of the execution times introduced by the stochas-
tic effects in the data transfers is sometimes higher than the very small overhead
introduced by the Controller abstractions and implementation.

Taking into account the full collection of experiments, and after eliminating out-
liers, we can remark the following observations. The maximum overheads observed
for the Xeon Phi architectures are found for the KNC platform and small input-data
sizes in both the matrix multiplication sequence and the GEMVER problems. The
values of the overhead are up to 14–15%, except for a specific size in the GEMVER
problem where the overhead is up to 25%. Nevertheless, the median is less than 7%
for all the Xeon Phi experiments, with most median values between 3 and 4%. In the
case of the GPUs, the maximum overheads observed are also found for small input-
data sizes in the matrix multiplication sequence problem, with values of up to 6–7%.
The median is less than 5% for all the GPU experiments, with most median values
between 1 and 2%.

6 � Conclusion

In this work, we present a solution to build a BLAS library that is portable across
different heterogeneous devices and hardware accelerators. The solution is built
on top of the Controller model, a programming system for heterogeneous devices
that transparently manages data transfers and kernel launching on different types of
devices. We propose and introduce in the Controller model: (1) an abstraction layer
to hide programming differences between diverse BLAS libraries; (2) a new system
to define kernel classes to support the context and device manipulation of differ-
ent external BLAS libraries; (3) a new kernel selection policy that considers both
programmer kernels and different external libraries to select the most appropriate
kernel for each type of device; and (4) a library of Controller kernels, named HitC-
ntrlBLAS, that implements a unified interface for the whole set of BLAS routines,
with the same abstraction used for kernels directly developed by the programmer.
This proposal implements a multidevice and multilibrary backend. The programmer
develops a single code that can be executed on different devices, exploiting different
specifically tuned third-party libraries, by changing a single initialization parameter
of the Controller object.

1 3

Toward a BLAS library truly portable across different…

We present a case study showing that this solution allows the development of
portable codes, mixing user-defined kernels with calls to BLAS functions. The
results of the experimental study show that our abstractions lead to very small over-
heads that decrease for significant computation loads.

Future work includes the implementation of more flexible selection policies, the
use of the proposed system to develop more complex real applications, and studying
the use of the library in programs that exploit multiple devices at the same time.

Acknowledgements  This research was supported by an FPI Grant (Formación de Personal Investigador)
from the Spanish Ministry of Science and Innovation (MCINN) to E.R-G. It has been partially funded by
the Spanish Ministerio de Economía, Industria y Competitividad and by the ERDF program of the Euro-
pean Union: PCAS Project (TIN2017-88614-R), CAPAP-H6 (TIN2016-81840-REDT), and Junta de Cas-
tilla y Leon—FEDER Grant VA082P17 (PROPHET Project). We used the computing facilities of Extrem-
adura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the European Regional
Development Fund (ERDF). CETA-CIEMAT belongs to CIEMAT and the Government of Spain. Part
of this work has been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with
the support of the EC Research Innovation Action under the H2020 Programme; in particular, the author
gratefully acknowledges the support of Dr. Christophe Dubach, the School of Informatics of the Univer-
sity of Edinburgh, and the computer resources and technical support provided by EPCC. The authors
want to thank Dr. Ingo Wald for giving us the possibility of getting a KNL coprocessor.

References

	 1.	 Aliaga JI, Reyes R, Goli M (2017) SYCL-BLAS: leveraging expression trees for linear algebra. In:
Proceedings of the 5th international workshop on OpenCL, IWOCL 2017. ACM, pp 32:1–32:5.
https​://doi.org/10.1145/30781​55.30781​89

	 2.	 Anderson E, Bai Z, Bischof C, Blackford L, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Ham-
marling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3 edn. Software, Environments
and Tools. Society for Industrial and Applied Mathematics. https​://doi.org/10.1137/1.97808​98719​
604

	 3.	 Arm Ltd: Arm Performance Libraries. http://url.ie/13z15​
	 4.	 Banaś K, Krużel F (2014) OpenCL performance portability for Xeon Phi coprocessor and NVIDIA

GPUs: a case study of finite element numerical integration. In: Lopes L, Z̆ilinskas J, Costan A, Cas-
cella RG, Kecskemeti G, Jeannot E, Cannataro M, Ricci L, Benkner S, Petit S, Scarano V, Gracia
J, Hunold S, Scott SL, Lankes S, Lengauer C, Carretero J, Breitbart J, Alexander M (eds.) Euro-
Par 2014: parallel processing workshops, Lecture notes in computer science. Springer, Berlin, pp
158–169

	 5.	 Barker J, Bowden J (2013) Manycore parallelism through OpenMP. In: OpenMP in the era of low
power devices and accelerators, Lecture notes in computer science, vol 8122. Springer, Berlin, pp
45–57. https​://doi.org/10.1007/978-3-642-40698​-0_4

	 6.	 Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kauf-
man L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2002) An updated set of
basic linear algebra subprograms (BLAS). ACM Trans Math Softw 28(2):135–151. https​://doi.
org/10.1145/56780​6.56780​7

	 7.	 Choi J, Dongarra J, Ostrouchov S, Petitet A, Walker D, Whaley RC (1995) A proposal for a set of
parallel basic linear algebra subprograms. In: Applied parallel computing computations in physics,
chemistry and engineering science, Lecture notes in computer science, vol 1041. Springer, Berlin,
pp 107–114. https​://doi.org/10.1007/3-540-60902​-4_13

	 8.	 Dong T, Knox K, Chapman A, Tanner D, Liu J, Hao H (2017) rocBLAS: next generation BLAS
implementation for ROCm platform. https​://githu​b.com/ROCmS​oftwa​rePla​tform​/rocBL​AS. Origi-
nal-date: 2015-10-08T18:48:02Z

	 9.	 Dongarra J (2002) Preface: basic linear algebra subprograms technical (blast) forum standard. Int J
High Perform Comput Appl 16(2):115–115. https​://doi.org/10.1177/10943​42002​01600​20101​

https://doi.org/10.1145/3078155.3078189
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1137/1.9780898719604
http://url.ie/13z15
https://doi.org/10.1007/978-3-642-40698-0_4
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1007/3-540-60902-4_13
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://doi.org/10.1177/10943420020160020101

	 E. Rodriguez‑Gutiez et al.

1 3

	10.	 Dongarra J, Gates M, Haidar A, Jia Y, Kabir K, Luszczek P, Tomov S (2015) HPC programming on
intel many-integrated-core hardware with MAGMA port to Xeon Phi. Sci Program 2015:e502593.
https​://doi.org/10.1155/2015/50259​3

	11.	 Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S, Yamazaki I (2014) Accelerating
numerical dense linear algebra calculations with GPUs. In: Numerical computations with GPUs.
Springer, Cham, pp 3–28. https​://doi.org/10.1007/978-3-319-06548​-9_1

	12.	 Du P, Weber R, Luszczek P, Tomov S, Peterson G, Dongarra J (2012) From CUDA to OpenCL:
Towards a performance-portable solution for multi-platform GPU programming. Parallel Comput-
ing 38(8):391–407. https​://doi.org/10.1016/j.parco​.2011.10.002. http://www.scien​cedir​ect.com/
scien​ce/artic​le/pii/S0167​81911​10013​35

	13.	 Garigipati P, Brehler M (2017) Unified backend. https​://goo.gl/fJ3JC​j
	14.	 Gates M (2012) MAGMA Forum: sgemm confusion. https​://goo.gl/hKKSf​L
	15.	 Gates M (2016) MAGMA forum: performance issue. http://goo.gl/HdXap​r
	16.	 Gonzalez RC, Woods RE (2007) Digital image processing, 3rd edn. Pearson, Upper Saddle River
	17.	 Gonzalez-Escribano A, Torres Y, Fresno J, Llanos D (2014) An extensible system for multilevel

automatic data partition and mapping. IEEE Trans Parallel Distrib Syst 25(5):1145–1154. https​://
doi.org/10.1109/TPDS.2013.83

	18.	 Horn RA, Johnson CR (1991) The hadamard product. Topics in matrix analysis. Cambridge Univer-
sity Press, Cambridge, pp 298–381. https​://doi.org/10.1017/CBO97​80511​84037​1.006

	19.	 Howell, G W, Demmel J W, Fulton C T, Hammarling S, Marmol K (2008) Cache efficient bidi-
agonalization using BLAS 2.5 operators. ACM Trans Math Softw. 34(3), 1–33 . https​://doi.
org/10.1145/13560​52.13560​55. http://porta​l.acm.org/citat​ion.cfm?doid=13560​52.13560​55

	20.	 Intel Corporation (2011) Using intel®MKL automatic offload on intel®Xeon PhiTM coprocessors.
https​://goo.gl/1kq8G​B

	21.	 Intel Corporation (2013). Intel®MKL automatic offload enabled functions for Intel Xeon Phi
coprocessorshttps​://goo.gl/9jV7P​Y

	22.	 Intel Corporation (2017) Intel®Math kernel library (Intel® MKL). https​://goo.gl/6tuzE​i
	23.	 Khaleghzadeh H, Zhong Z, Reddy R, Lastovetsky A (2018) Out-of-core implementation for acceler-

ator kernels on heterogeneous clouds. J Supercomput 74(2):551–568. https​://doi.org/10.1007/s1122​
7-017-2141-4

	24.	 Knox K, Liu J, Tanner D, Yalamanchili P, Kellner C, Perkins H, Dong T, Lehmann G, Nugteren C,
Coquelle B (2017) clBLAS: a software library containing BLAS functions written in OpenCL. https​
://githu​b.com/clMat​hLibr​aries​/clBLA​S. Original-date: 2013-08-13T15:05:53Z

	25.	 Kovalev M, Kroeker M, Köhler M, Aoshima T (2017) Hadamard product?. Issue #1083 .xianyi/
OpenBLAS (2017). https​://goo.gl/veigL​c

	26.	 Kurzak J, Bader DA, Dongarra J (2010) Scientific computing with multicore and accelerators, 1st
edn. CRC Press, Boca Raton

	27.	 Lastovetsky A, Reddy R (2006) HeteroMPI: towards a message-passing library for heterogene-
ous networks of computers. J Parallel Distrib Comput 66(2):197–220. https​://doi.org/10.1016/j.
jpdc.2005.08.002. http://www.scien​cedir​ect.com/scien​ce/artic​le/pii/S0743​73150​50020​42

	28.	 Lim R, Lee Y, Kim R, Choi J, Lee M (2018) Auto-tuning GEMM kernels on the Intel KNL and
Intel Skylake-SP processors. J. Supercomput. https​://doi.org/10.1007/s1122​7-018-2702-1

	29.	 Ling P (1993) A set of high-performance level 3 BLAS structured and tuned for the IBM 3090 VF
and implemented in Fortran 77. J Supercomput 7(3):323–355. https​://doi.org/10.1007/BF012​06242​

	30.	 Malcolm J, Yalamanchili P, McClanahan C, Venugopalakrishnan V, Patel K, Melonakos J (2012)
ArrayFire: a GPU acceleration platform. In: Modeling and simulation for defense systems and
applications VII, vol 8403. International Society for Optics and Photonics, p 84030A. https​
://doi.org/10.1117/12.92112​2. https​://www.spied​igita​llibr​ary.org/confe​rence​-proce​eding​s-of-
spie/8403/84030​A/Array​Fire-a-GPU-accel​erati​on-platf​orm/10.1117/12.92112​2.short​

	31.	 Manumachu RR, Lastovetsky A, Alonso P (2008) Heterogeneous PBLAS: optimization of PBLAS
for heterogeneous computational clusters. In: 2008 International symposium on parallel and dis-
tributed computing. IEEE Computer Society, Krakow, pp 73–80. https​://doi.org/10.1109/ISPDC​
.2008.9. http://ieeex​plore​.ieee.org/docum​ent/47242​32/

	32.	 Moreton-Fernandez A, Gonzalez-Escribano A, Llanos DR (2017) Multi-device controllers: a library
to simplify parallel heterogeneous programming. Int J Parallel Program. https​://doi.org/10.1007/
s1076​6-017-0542-x

	33.	 Moreton-Fernandez A, Rodriguez-Gutiez E, Gonzalez-Escribano A, Llanos DR (2017) Support-
ing the Xeon Phi coprocessor in a heterogeneous programming model. In: Euro-Par 2017: parallel

https://doi.org/10.1155/2015/502593
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1016/j.parco.2011.10.002
http://www.sciencedirect.com/science/article/pii/S0167819111001335
http://www.sciencedirect.com/science/article/pii/S0167819111001335
https://goo.gl/fJ3JCj
https://goo.gl/hKKSfL
http://goo.gl/HdXapr
https://doi.org/10.1109/TPDS.2013.83
https://doi.org/10.1109/TPDS.2013.83
https://doi.org/10.1017/CBO9780511840371.006
https://doi.org/10.1145/1356052.1356055
https://doi.org/10.1145/1356052.1356055
http://portal.acm.org/citation.cfm?doid=1356052.1356055
https://goo.gl/1kq8GB
https://goo.gl/9jV7PY
https://goo.gl/6tuzEi
https://doi.org/10.1007/s11227-017-2141-4
https://doi.org/10.1007/s11227-017-2141-4
https://github.com/clMathLibraries/clBLAS
https://github.com/clMathLibraries/clBLAS
https://goo.gl/veigLc
https://doi.org/10.1016/j.jpdc.2005.08.002
https://doi.org/10.1016/j.jpdc.2005.08.002
http://www.sciencedirect.com/science/article/pii/S0743731505002042
https://doi.org/10.1007/s11227-018-2702-1
https://doi.org/10.1007/BF01206242
https://doi.org/10.1117/12.921122
https://doi.org/10.1117/12.921122
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8403/84030A/ArrayFire-a-GPU-acceleration-platform/10.1117/12.921122.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8403/84030A/ArrayFire-a-GPU-acceleration-platform/10.1117/12.921122.short
https://doi.org/10.1109/ISPDC.2008.9
https://doi.org/10.1109/ISPDC.2008.9
http://ieeexplore.ieee.org/document/4724232/
https://doi.org/10.1007/s10766-017-0542-x
https://doi.org/10.1007/s10766-017-0542-x

1 3

Toward a BLAS library truly portable across different…

processing, Lecture notes in computer science, vol 10417. Springer, Cham, pp 457–469. https​://doi.
org/10.1007/978-3-319-64203​-1_33

	34.	 Moreton-Fernandez A, Ortega-Arranz H, Gonzalez-Escribano A (2017) Controllers: an abstraction
to ease the use of hardware accelerators. Int J High Perform Comput Appl, p 109434201770296 .
https​://doi.org/10.1177/10943​42017​70296​2

	35.	 Newburn CJ, Dmitriev S, Narayanaswamy R, Wiegert J, Murty R, Chinchilla F, Deodhar R,
McGuire R (2013) Offload compiler runtime for the intel ®xeon phi coprocessor. In: 2013 IEEE
international symposium on parallel distributed processing, workshops and Phd forum, pp 1213–
1225. https​://doi.org/10.1109/IPDPS​W.2013.251

	36.	 NVIDIA Corporation (2017) cuBLAS library: user guide. https​://goo.gl/Ryg2g​p
	37.	 NVIDIA Corporation (2017) NVBLAS. https​://goo.gl/GHdLh​m
	38.	 Perrot G, Domas S, Couturier R (2016) An optimized GPU-based 2D convolution implementation.

Concurr Comput: Pract Exp 28(16):4291–4304. https​://doi.org/10.1002/cpe.3752
	39.	 Podlozhnyuk V (2007) Image convolution with CUDA. Technical report, NVIDIA Corporation.

http://goo.gl/n5oa5​p
	40.	 Pouchet LN PolyBench/C (2015) The polyhedral benchmark suite. https​://goo.gl/NhNR6​n
	41.	 Rasch A, Bigge J, Wrodarczyk M, Schulze R, Gorlatch S (2019) dOCAL: high-level distributed pro-

gramming with OpenCL and CUDA. J Supercomput. https​://doi.org/10.1007/s1122​7-019-02829​-2
	42.	 Rousseaux S, Hubaux D, Guisset P, Legat JD (2007) A high performance FPGA-based accelera-

tor for BLAS library implementation. In: Proceedings of reconfigurable systems summer institute
(RSSI’07). Urbana. http://rssi.ncsa.illin​ois.edu/2007/proce​eding​s/paper​s/rssi0​7_02_paper​.pdf

	43.	 Sanderson C, Curtin R (2016) Armadillo: a template-based C++ library for linear algebra. J Open
Source Softw 1: 26. https​://doi.org/10.21105​/joss.00026​. http://joss.theoj​.org/paper​s/10.21105​/
joss.00026​

	44.	 Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for hybrid GPU accelerated
manycore systems. Parallel Comput 36(5):232–240. https​://doi.org/10.1016/j.parco​.2009.12.005.
http://www.scien​cedir​ect.com/scien​ce/artic​le/pii/S0167​81910​90012​76

	45.	 Viviani P, Aldinucci M, Torquati M, d’lppolito R (2017) Multiple back-end support for the arma-
dillo linear algebra interface. In: Proceedings of the symposium on applied computing, SAC ’17.
ACM, pp 1566–1573. https​://doi.org/10.1145/30196​12.30197​43

	46.	 Wang E, Zhang Q, Shen B, Zhang G, Lu X, Wu Q, Wang Y (2014) High-performance computing
on the Intel®Xeon Phi TM : how to fully exploit mic architectures. Springer, Berlin. https​://www.
sprin​ger.com/gp/book/97833​19064​857

	47.	 Wende F, Klemm M, Steinke T, Reinefeld A (2015) Concurrent kernel offloading. In: High perfor-
mance parallelism pearls, vol 1, 1 edn. Elsevier, pp 201–223. https​://doi.org/10.1016/B978-0-12-
80211​8-7.00012​-1. https​://linki​nghub​.elsev​ier.com/retri​eve/pii/B9780​12802​11870​00121​

	48.	 Yalamanchili P, Arshad U, Mohammed Z, Garigipati P, Entschev P, Kloppenborg B, Malcolm J,
Melonakos J (2015) ArrayFire—a high performance software library for parallel computing with an
easy-to-use API. https​://githu​b.com/array​fire/array​fire

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Eduardo Rodriguez‑Gutiez1 · Ana Moreton‑Fernandez1 ·
Arturo Gonzalez‑Escribano1  · Diego R. Llanos1

 *	 Arturo Gonzalez‑Escribano
	 arturo@infor.uva.es

	 Eduardo Rodriguez‑Gutiez
	 eduardo@infor.uva.es

https://doi.org/10.1007/978-3-319-64203-1_33
https://doi.org/10.1007/978-3-319-64203-1_33
https://doi.org/10.1177/1094342017702962
https://doi.org/10.1109/IPDPSW.2013.251
https://goo.gl/Ryg2gp
https://goo.gl/GHdLhm
https://doi.org/10.1002/cpe.3752
http://goo.gl/n5oa5p
https://goo.gl/NhNR6n
https://doi.org/10.1007/s11227-019-02829-2
http://rssi.ncsa.illinois.edu/2007/proceedings/papers/rssi07_02_paper.pdf
https://doi.org/10.21105/joss.00026
http://joss.theoj.org/papers/10.21105/joss.00026
http://joss.theoj.org/papers/10.21105/joss.00026
https://doi.org/10.1016/j.parco.2009.12.005
http://www.sciencedirect.com/science/article/pii/S0167819109001276
https://doi.org/10.1145/3019612.3019743
https://www.springer.com/gp/book/9783319064857
https://www.springer.com/gp/book/9783319064857
https://doi.org/10.1016/B978-0-12-802118-7.00012-1
https://doi.org/10.1016/B978-0-12-802118-7.00012-1
https://linkinghub.elsevier.com/retrieve/pii/B9780128021187000121
https://github.com/arrayfire/arrayfire
http://orcid.org/0000-0003-1309-9321

	 E. Rodriguez‑Gutiez et al.

1 3

	 Ana Moreton‑Fernandez
	 ana@infor.uva.es

	 Diego R. Llanos
	 diego@infor.uva.es

1	 Dpto. de Informática, Universidad de Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain

	Toward a BLAS library truly portable across different accelerator types
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Specialized versions of BLAS
	3.2 The original controller model

	4 Solution proposal
	5 Experimental study
	5.1 Case study: problems description
	5.2 Implementation details
	5.3 Performance results

	6 Conclusion
	Acknowledgements
	References

