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Abstract
Scientific applications are some of the most computationally demanding software 
pieces. Their core is usually a set of linear algebra operations, which may represent 
a significant part of the overall run-time of the application. BLAS libraries aim to 
solve this problem by exposing a set of highly optimized, reusable routines. There 
are several implementations specifically tuned for different types of computing plat-
forms, including coprocessors. Some examples include the one bundled with the 
Intel MKL library, which targets Intel CPUs or Xeon Phi coprocessors, or the cuB-
LAS library, which is specifically designed for NVIDIA GPUs. Nowadays, comput-
ing nodes in many supercomputing clusters include one or more different coproces-
sor types. To fully exploit these platforms might require programs that can adapt 
at run-time to the chosen device type, hardwiring in the program the code needed 
to use a different library for each device type that can be selected. This also forces 
the programmer to deal with different interface particularities and mechanisms to 
manage the memory transfers of the data structures used as parameters. This paper 
presents a unified, performance-oriented, and portable interface for BLAS. This 
interface has been integrated into a heterogeneous programming model (Controllers) 
which supports groups of CPU cores, Xeon Phi accelerators, or NVIDIA GPUs in 
a transparent way. The contribution of this paper includes: An abstraction layer to 
hide programming differences between diverse BLAS libraries; new types of kernel 
classes to support the context manipulation of different external BLAS libraries; a 
new kernel selection policy that considers both programmer kernels and different 
external libraries; a complete new Controller library interface for the whole collec-
tion of BLAS routines. This proposal enables the creation of BLAS-based portable 
codes that can execute on top of different types of accelerators by changing a single 
initialization parameter. Our software internally exploits different preexisting and 
widely known BLAS library implementations, such as cuBLAS, MAGMA, or the 
one found in Intel MKL. It transparently uses the most appropriate library for the 
selected device. Our experimental results show that our abstraction does not intro-
duce significant performance penalties, while achieving the desired portability.

Keywords  BLAS · Parallel programming · Scientific libraries · Heterogeneous 
programming · Accelerators · Coprocessors · GPU · Xeon Phi · MIC · CUDA
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1  Introduction

The basic linear algebra subprograms (BLAS) specification [9] is widely known 
in the field of scientific computing [6, 26]. It contains the definition of three sets 
(called levels) of low-level mathematical routines. They perform vector-vector, 
matrix-vector, and matrix-matrix operations, respectively. There are several 
BLAS implementations specifically designed or tuned for different kinds of com-
puting platforms. Some examples include cuBLAS [36], whose functions are 
optimized for CUDA-enabled GPUs, and the implementation included within the 
Intel Math Kernel Library (MKL) [22], which exploits the specific features of 
Intel platforms, such as Xeon CPUs, or Xeon Phi coprocessors.

Despite the potential performance gains of using hardware accelerators, there 
are several issues associated with their use. First, each coprocessor type has its 
own programming model, and architecture features which should be taken into 
account for programming them. Second, the code and data transfers to these 
devices are costly operations. For a given sequence of calls to BLAS routines, 
a good choice of the steps where the data has to be synchronized or transferred 
between host and devices becomes key. The mechanisms available to perform 
these transfers are not the same for all the different BLAS implementations. 
Even the same implementation may allow several options with different transpar-
ency and responsibility degrees for the programmer. Intel’s Math Kernel Librar-
ies (MKL) and cuBLAS/nvBLAS from NVIDIA provide different offloading 
mechanisms [46], including fully automatic, assisted by the compiler (Compiler-
Assisted Offload, CAO), or relying on manually programmed transfers.

In addition, despite the efforts to standardize BLAS [6, 9] and create a uniform 
interface, in practice the different implementations present subtle differences that 
must be taken into account. For instance, the same parameters may have to be 
passed either by value or by reference to different libraries. Different names or 
constants should be used to indicate the same type of operations or data. Some 
libraries even have extra parameters which are specific to that implementation, 
such as a data structure to represent the library context in cuBLAS. Thus, writ-
ing a program that uses BLAS routines that target different kinds of computing 
devices needs the combined use of different libraries, different interfaces, and 
decisions in the same code.

In this work, we present a software abstraction layer on top of different BLAS 
implementations. The proposal is implemented in the Controller model [34], 
which allows the implementation of algorithms as programming units or kernels 
with a single name and interface, but several implementations. These implemen-
tations range from generic ones that use an abstraction which allows its execution 
on any platform, to those specifically optimized for a kind of platform, or even for 
a given architecture family. The Controller chooses the most adequate implemen-
tation of the invoked kernel based on the platform or device associated to it.

This paper provides the following contributions: (a) An abstraction layer to 
hide programming differences between diverse BLAS libraries; (b) a new sys-
tem to define kernel classes that support the context and device manipulation of 
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different external BLAS libraries; (c) a new kernel selection policy that considers 
both programmer kernels and different external libraries; and (d) a complete new 
Controller library interface for the whole collection of BLAS routines. Our cur-
rent implementation supports internally three different libraries: MKL, MAGMA, 
and cuBLAS.

This proposal allows the programming of portable software with sequences of 
calls to programmer-defined kernels and BLAS routines. It provides a uniform inter-
face, allowing the selection of the computational device on which the code executes, 
by simply changing a single parameter that indicates the target device in the ini-
tialization of a Controller object. In this work, we focus on the use of BLAS librar-
ies in a single device at the same time. The library chooses, among those available, 
the implementation that best suits the device type selected by the user. Internally, it 
calls preexisting BLAS libraries specifically optimized for the target platform, such 
as those provided by hardware vendors or third parties. Our proposal provides both 
code portability and performance. This approach, based on an extensible library, can 
also be used as run-time to generate portable code from more abstract programming 
models.

We present an experimental study to verify that the proposed abstraction intro-
duces portability without significantly compromising performance. We use case 
studies representing different scenarios of using BLAS routines alone, in combina-
tion with other BLAS routines, or even with other non-BLAS kernels developed 
manually. They show that our approach does not impose artificial constraints on the 
use of BLAS routines in comparison with applications directly programmed with 
the MKL, cuBLAS, or MAGMA interfaces.

The rest of the article is structured as follows. The second section discusses some 
related work. The third section is a summary of the features of the background 
tools used in this work. In the fourth section, the solutions used in our proposal are 
detailed. The fifth section describes the experimental work carried out to validate 
this proposal. Finally, the conclusions and future work are discussed in the sixth and 
last section.

2 � Related work

The idea of executing BLAS functions in parallel heterogeneous environments is not 
new. The specific hardware features of different architectures have been analyzed 
by various authors to produce libraries or routines targeting specific platforms, for 
example, IBM 3090 mainframes [29], FPGAs [42], ARM devices [3], and KNL 
Xeon Phi processors [28].

Heterogeneity has also been partially considered in distributed versions of 
BLAS. There is a BLAS library designed to exploit distributed parallel platforms 
called PBLAS, presented by Choi et al. [7]. A derived version, HeteroPBLAS [31], 
exploits HeteroMPI [27] to execute BLAS algorithms while exploiting distributed 
memory parallelism on clusters with heterogeneous CPUs. The use of this vari-
ant of MPI adds load balancing capabilities. However, HeteroPBLAS cannot take 
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advantage of the computing power of coprocessors attached to the computing nodes, 
since it just runs on CPU cores.

The portability of BLAS routines has also been considered. LAPACK [2] is a 
library of linear algebra routines of a higher level than BLAS. Internally, LAPACK 
routines are designed to perform a set of calls to a BLAS library. The MAGMA 
library [11, 44] is an implementation of the LAPACK interface designed to work 
using GPUs. MAGMA is built on top of two sets of BLAS routines, one designed 
and optimized to be executed on GPUs (MAGMABLAS) and another for CPUs 
(BLASF77). Another version, derived from the MAGMA code and thus sharing the 
same interface, is MAGMA MIC [10], which has been designed for Intel Xeon Phi 
coprocessors. Finally, clMAGMA [12] is another derivative of MAGMA, which has 
been rewritten using OpenCL.

OpenCL offers a generic interface to coordinate the execution of parallel code 
on different types of devices, including CPUs and accelerators. However, for maxi-
mum performance, the internal implementations of the BLAS kernel codes should 
be tuned differently for each type of device, taking into account its architectural 
features. Thus, the performance portability is not easily achievable. AMD is cur-
rently contributing to the development of clBLAS [24], a BLAS library written in 
OpenCL, which is part of the clMathLibraries. Another BLAS library, specifically 
designed to target the Radeon GPUs, is rocBLAS [8].

SYCL-BLAS [1] defines an encapsulated C++ template function for each BLAS 
routine. They are internally described in an abstract form. Several calls to BLAS can 
be analyzed, fused, or optimized by the compiler. The SYCL system is built on top 
of OpenCL to allow the generation of compiled versions for different architectures 
from the same single code. Thus, it cannot benefit from the performance provided 
by libraries fine-tuned by device vendors. The ArrayFire library [30, 48] presents 
an abstraction that exploits several BLAS implementations for different devices. 
However, it is restricted to predefined datatypes, a program can only work with 
one backend at the same time [13], and the arrays are not portable across devices 
which need different backends, compromising portability. On the other hand, mixing 
calls to BLAS routines with kernels manually optimized for a specific device is also 
restricted. The proposed abstractions introduce potential performance issues that 
compromise efficiency in some cases [38, 45]. Both SYCL-BLAS and ArrayFire 
lack support for Xeon Phi platforms using their native programming interfaces or by 
offloading Intel MKL functions. In this type of devices, these mechanisms perform 
better than using the OpenCL abstractions and libraries [4].

Armadillo [43] is a C++ linear algebra library based on templates and metapro-
gramming. It is built on top of BLAS and LAPACK libraries, supporting the use of 
MKL, OpenBLAS, or nvBLAS for GPUs. Armadillo has been extended by Viviani 
et al. [45] to allow run-time switching of the BLAS library used as a backend. How-
ever, their implementation relies on library routines with automatic data transfer 
between host and coprocessor. First, only a reduced set of routines available in the 
BLAS libraries are implemented with these automatic offloading mechanisms. Sec-
ond, as we will show later, this automatic transfer feature often leads to unnecessary 
data transfers and poor data reusability, which impacts on performance for chained 
BLAS calls.
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There are other solutions that build higher-level abstractions on top of BLAS 
libraries while considering heterogeneous platforms, such as [23] and [41]. These 
solutions do not expose the full BLAS interface to the programmer. The program-
mer cannot freely use several different BLAS routines in combination with other 
kernels. In some cases, such as [23], the system does not provide a single level of 
abstraction and the library programmer needs to deal with specific details of the 
device and data transfer management. In other cases, such as [41], the programs can-
not transparently adapt the BLAS implementation to the target device at run-time. 
As they focus on GPUs, the generated codes, even those that use OpenCL, are not 
performance portable to other devices and coprocessor types such as Intel Xeon Phi.

In comparison with all the previously commented approaches, our proposal is 
designed to offer both code and performance portability, using an expandable set 
of third-party BLAS libraries. Our solution allows the development of a single 
high-level code, mixing different devices and backends, abstracting the differences 
between the available libraries. To obtain the best possible performance, it internally 
uses the appropriate techniques of the native/vendor programming models for data 
transfers or for interleaving calls to BLAS with user-defined kernels.

3 � Background

In this section, we provide a summary of the features of the tools and libraries used 
as background for the development of this work.

3.1 � Specialized versions of BLAS

BLAS, acronym for Basic Linear Algebra Subprograms, is the specification for a set 
of low-level linear algebra routines. BLAS supports four base datatypes for arrays. 
Every routine usually has four different versions, one for each datatype. The data-
type is noted on the function name by using an s when the function is designed 
for single-precision floating point numbers (e.g., SGEMM); a d for double-preci-
sion floating point numbers (e.g., DGEMM); a c for complex numbers stored as two 
single-precision floating point numbers (e.g., SGEMM); and finally z, for complex 
numbers stored as double-precision floating point numbers (e.g., ZGEMM). An 
asterisk (*) is usually used instead of the corresponding datatype identifier when 
speaking generally about a routine.

Several routines are defined on each BLAS level. On level 1, we can find routines 
to perform scalar-vector or vector-vector operations. One instance is the *AXPY 
routine, which multiplies every element of a vector by a scalar. Another example is 
I*AMAX, which, given a vector, returns the index of the cell that stores the high-
est value. Level 2 includes routines for matrix-vector operations, such as *GEMV, 
which returns the result of multiplying a matrix by a vector. Finally, level 3 contains 
matrix-matrix operations, such as *GEMM, which obtains the result of multiplying 
two matrices.
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On each device-specialized implementation of BLAS, we can find several off-
loading mechanisms to move data and execute code in coprocessors. For instance, 
MKL allows the Automatic Offloading (AO) [20] of specific functions to a Xeon 
Phi. This mechanism implies the automatic movement of the input data toward the 
coprocessor and the retrieval of the outputs back to the host. These data movements 
are performed transparently to the programmer. Even though the user has to explic-
itly enable this kind of mechanism, the decision of whether it is activated or not for a 
specific call to the MKL BLAS library depends exclusively on the implementation. 
The run-time takes into account the data sizes to realize whether it is worthwhile 
offloading the function call [21]. The offloading to the coprocessor is only executed 
when the library, taking into account data sizes, realizes that it is worth executing 
the BLAS function on the coprocessor, despite the overheads associated with the 
data transfers [21]. Otherwise, the routine executes on the host. This feature is only 
available for a reduced set of BLAS functions. Sequences of calls to those functions 
lead to multiple unnecessary data movements [5].

Another option is the use of the Intel Language Extensions for Offload (LEO). 
This consists of several annotations (pragmas) for the Intel compiler that allow the 
execution of explicit data communications between the host and the device when-
ever needed [35]. The interface of LEO is abstract and hides the low-level details 
and primitives for doing operations with the coprocessor, such as memory alloca-
tion, data transfers using device pointers. Invocations to one or several MKL func-
tions inside LEO blocks are automatically executed in the coprocessor. This is 
known as the Compiler-Assisted Offload (CAO) mode. The LEO pragma specifies 
the data transfers or the reuse of arrays transferred by previous LEO pragmas. This 
is a more general solution than the previous one. All BLAS functions in MKL can 
be executed using this technique and the data can be reused between routine calls, 
thus avoiding unnecessary data movements. However, the decisions become the pro-
grammer’s responsibility and the movements have to be synchronized with the start 
or end of a LEO block. This option allows a greater degree of control at the expense 
of a greater effort to determine and code the optimal movements. Another drawback 
is the lower portability of the resulting code.

NVIDIA provides cuBLAS, a library specifically tailored to run on CUDA capa-
ble devices. This vendor also provides an alternative library, named nvBLAS, with a 
solution similar to the MKL automatic offloading mechanism. It is completely com-
patible with the BLAS interface. Like AO in MKL, the run-time system may decide 
not to execute the function in the device, while the mechanism is also available only 
for a specific set of functions [37].

When the normal cuBLAS implementation is used, the memory transfers between 
host and GPU must be managed through the usual calls to the CUDA library. This is 
equivalent to the use of Intel LEO, but with a lower-level API. It gives more control, 
but requires more development effort and reduces portability.

MAGMA [11, 44] emerges as the evolution of the LAPACK library, optimized 
for GPUs. Several cuBLAS functions, such as GEMM, have incorporated some 
of the MAGMA BLAS optimizations, and therefore, MAGMA has replaced their 
own implementations by calls to cuBLAS [14, 15]. MAGMA functions use a 
hybrid automatic approach, breaking the LAPACK routines into tasks. These tasks 
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are dynamically scheduled to be executed on the GPU or on the host CPU. Subse-
quently, a MAGMA version, called MAGMA MIC [10], was designed for Xeon Phi 
coprocessors, based on offloading through the use of the Xeon Phi low-level driver 
functions (libSCIF and COI). For the programmer, and in terms of data transfers, 
the use of MAGMA or MAGMA MIC is equivalent to the use of Compiler-Assisted 
Offload.

There are several differences between MKL, cuBLAS, or MAGMA interfaces. 
The MAGMA BLAS interface for the latest version available online (2.2.0) is pretty 
similar to cuBLAS. However, the second version of the cuBLAS API requires a new 
handle parameter that is implementation specific. This is a data structure that stores 
information about the library context and should be created, passed as first param-
eter on each call to this library, and finally destroyed when no more BLAS routines 
are to be used.

Minor differences arise in the way of passing specific parameters in MKL, cuB-
LAS, MAGMA and MAGMA MIC. For instance, scalars alpha, beta, etc., have to be 
passed by reference (using pointers) on all cuBLAS calls, whereas they are passed 
by value on Intel MKL. Another problem lies in the different values that each imple-
mentation assign to the constants or enumerated datatypes used to define operations, 
such as cublasOperation_t or CBLAS_TRANSPOSE. CBLAS libraries (the C 
binding of the original BLAS) have an extra parameter to declare if the input matrix 
must be accessed in row-major order (common for programming languages like C) 
or column-major order (used by software coded in Fortran). MAGMA MIC is based 
on MAGMA. Thus, very minor differences appear between these two implementa-
tions, comparing with both MKL or cuBLAS.

3.2 � The original controller model

This work aims to provide a functional and performance portable BLAS library. 
Thus, as the foundation of our implementation, we select a programming model 
designed for heterogeneous computing, which allows the development of specialized 
versions of the same kernel for different architectures or programming platforms. 
Different levels of abstraction and granularity are supported, providing a lot of ver-
satility and control to the system-software programmer. The selected programming 
model and framework is the Controller model [32–34]. In this section, we describe 
the main features that support its selection.

The Controller model for heterogeneous programming is implemented as a 
modular library, extensible and portable. It is programmed in C language, with an 
object-oriented approach in mind. It is usable and interoperable across both C and 
C++ languages. It introduces a new abstract entity, called Controller, which is asso-
ciated with a device on creation. This device can be either a GPU, an Intel Xeon Phi 
(MIC) or a group of CPU cores that are managed transparently like an accelerator. 
The Controller entity includes mechanisms to: (1) attach or detach a data structure 
to/from its context; (2) create or destroy data structures which are only allocated in 
the device context; and (3) launch kernels (computing routines) that are executed on 
the device.
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In order to achieve uniformity on the data structure management, the Control-
ler model implementation relies on the Hitmap library [17]. This library allows the 
definition of indexed data structures, such as arrays or graphs. Data structures are 
instances of a structured type named HitTile, which contains metadata and pointers 
to the memory areas containing the data. Hitmap allows the declaration and manip-
ulation of HitTiles with base types which can be either native or structured types 
declared by the programmer (see lines 2–5 in Fig. 1). The library includes a uniform 
interface to declare index spaces, the construction or destruction of HitTiles, and 
access to the data stored in a HitTile. The same interface is used to access data in 
both the host and kernel codes, with a portable row-major order view (see lines 16, 
21, and 24 in Fig. 1).

In order to define a kernel, the Controller library uses a generic interface dec-
laration where the kernel name, number and names of parameters, datatypes, and 
their Input/Output role are detailed. Kernel parameters in the Controller model are 
values of native or programmer-defined types or references to HitTiles of any base 
type. (see lines 9–13 in Fig. 1). A kernel with a unique name can be declared several 
times by using different platform identifiers. Thus, each declaration can be tuned 
for the specific architecture, even using pragmas, datatypes, or primitives which are 
specific to a programming model and the compiler that generates the code for it. For 
instance, it is possible to use CUDA syntax and primitives on kernels declared for 
GPUs in order to reserve and use shared memory, synchronize threads in a block, 
etc. There are situations where the code of a kernel is simple enough for it to be 
appropriate for any device. They can be simple prototype kernels or simple opera-
tions that do not require specific device optimizations. Some examples include the 

1 /∗ Struc tured type f o r 2D po in t s ∗/
2 typedef struct {
3 int x , y ;
4 } Point2D ;
5 hit t i l eNewType ( Point2D ) ;
6
7 /∗ Cont ro l l e r k e rne l : scopy ∗/
8 /∗ Relocate data in 1D arrays with s t r i d e s ∗/
9 CAL KERNEL GENERIC( scopy , 5 , IVAL, int , n ,

eliTtiH,NI01 Point2D ∗ , x ,
,LAVI11 int , incx ,

eliTtiH,OI21 Point2D ∗ , y ,
,LAVI31 int , incy )

14 {
15 int row = threadId . x ;
16 h i t (x , row∗ incx ) = h i t (y , row∗ incy ) ;
17 }
18
19 . . .
20 // Domain dec l a ra t i on and a l l o c a t i o n
21 HitTi le Point2D vA = h i tT i l e ( Point2D , hitShape ( s i z e ) ) ;
22
23 // I n i t i a l i z a t i o n o f one c e l l in the hos t
24 h i t ( vA, 3 ) = { 10 , 20 } ;
25 . . .

Fig. 1   Example of types and kernel declaration, and HitTile manipulation, using the Controller model
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initialization of a single matrix element, a dot product, the update of a matrix ele-
ment with the values of the neighbor cells in a stencil computation, etc. To avoid the 
declaration of several kernels with the same code, one for each device, the Control-
ler model also provides a GENERIC type of kernel. The programmer can use this to 
declare new kernels that include only neutral code that can be executed on any kind 
of platform (see an example in line 9 of Fig. 1). The Controller provides a thread-
index identifier space similar to that of CUDA or OpenCL, except that it is defined 
in row-major order for all types of devices (CPUs, Xeon Phi, GPUs). In CPU and 
Xeon Phi devices, it makes the code easier to be vectorized. For GPU devices, the 
indexes are automatically adapted to column-major order to preserve the coalescing 
property when neighbor threads access neighbor data. This improves the portability 
of the kernel codes. The thread-space and kernel definitions are done in fine grain. 
The Controller is responsible for grouping the threads into blocks (for GPUs) or 
generating coarse-grained OpenMP tasks that internally iterate with loops through 
their local index space for an efficient execution.

The HitTile real parameters in a kernel launch should have been previously 
attached to, or created in, its context. The attachment of a data structure to a Con-
troller context implies that the data in the host is transferred to the image created on 
the device context before it is used by a kernel. In the detachment operation, if the 
structure has been modified on the device (it has been used as output by any previ-
ously launched kernel), the updated data is copied back to the memory image in the 
host. Memory transfers to the device can be either eager or lazy. They are executed 
during the attachment operation or they are delayed until the data is needed by a 
launched kernel. The Controller is responsible for managing the queue of kernel 
execution requests and for handling the memory transfers transparently.

This system of kernel declarations allows the progressive development of a 
library of specialized versions of each kernel. The Controller selects the most appro-
priate version for the target architecture by prioritizing it over the generic ones.

The Controller model includes one more which is key for the development of ker-
nel libraries. It includes the possibility of declaring a special type of kernel whose 
code is executed in the host, even if the target device is an accelerator. This allows 
the creation of kernels which execute in the host, but include calls to specialized 
libraries suited for a specific type of device. However, this type of kernel does not 
allow the generation, storage, and retrieval of the context information and device 
configuration needed by some BLAS library implementations.

4 � Solution proposal

In this section, we describe our proposal to achieve a portable and efficient BLAS 
library. In this work, we revise and extend the Controller model to implement a 
multidevice/multilibrary backend. The purpose is to transparently support the dif-
ferent BLAS versions that can be used for different types of devices with a single 
unified interface. The new proposal is based on modifying the following features 
of the original Controller model: (a) change the original library kernel structure to 
support library contexts and its device configuration; (b) introduce a new extended 
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classification of kernels to support different tagged library implementations for the 
same routine; (c) design a more sophisticated policy module for kernel selection that 
also allows the prioritization of different libraries for each device type. These new 
features provide a flexible run-time priority mechanism to select the most appropri-
ate library kernel version for the target architecture. Then, we can build a library of 
Controller kernels that works as an abstraction layer on top of any BLAS library 
(see Fig. 2), providing a full, unified and portable library interface for BLAS.

Library kernel structure modification For each type of device, the original Con-
troller model supported only one specialized kernel and one non-specific library 
kernel with the same name. The original non-specific library kernels structure did 
not support context information or accessing the device as required by some BLAS 
implementations. Thus, the original library kernel structure is redesigned to allow 
both the manipulation of the device configuration and the generation, storage, and 
retrieval of library context information when needed. With the new changes, the 
library kernels can access the device directly. The Controller internal structure is 
updated to include an extension to store generic context information and device con-
figuration for libraries. The structure of the general Xeon Phi kernels is also adapted 
in the new Controller version to support the interoperability of BLAS routines with 
manually developed kernels, avoiding performance degradation.

Kernel classes To transparently support several alternative BLAS libraries for 
the same device type, we have extended the kernel classes. The Controller library 
has an enumerated type for the names of the kernel classes that can be used by 
the programmer. It is straightforward to introduce new class names and to use 

Table 1   Kernel classes for the 
Controller model, indicating 
which classes can be matched 
with each Controller type

The new introduced or modified classes are highlighted in italics

Kernel class Controller type Content/library

GENERIC Any Generic code for any device
CPU CPU Optimized native CPU code
libCPU CPU Calls to Intel MKL
CUDA CUDA Optimized CUDA kernel code
libGPU CUDA Calls to cuBLAS
libMAGPU CUDA Calls to MAGMA
XPHI Xeon Phi Optimized Xeon Phi kernel code
libXPhi Xeon Phi Calls to Intel MKL
libMAXPhi Xeon Phi Calls to MAGMA MIC

Fig. 2   Abstraction layers and tools used in the proposed solution
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them to define kernels. We propose to use a name defining a new type of ker-
nel for each vendor-provided or third-party scientific library, on each device (see 
Table 1). With these new classes, we can define kernels with the same name and 
interface, whose code invokes functions of the desired library and device type.

Selection policy The second part is to modify the internal method of the Con-
troller that selects the version of a given kernel, which is executed for a given tar-
get device. Supporting several library implementations of the same function for 
the same device implies a decision about which version is prioritized at launching 
time. It is also possible that some functions are defined in one library implemen-
tation, but not in others. We define a selection policy module inside the Controller 
that works with an order or priority list of kernel classes for each type of device. 
In the current implementation, a fixed policy is hardcoded into the Controller 
entity code. This policy defines, for each kernel name used in a launch operation, 
which implementation is selected. It chooses one of the versions available from 
among those declared in the source file or through included header files. If no 
implementation is available at compile time, a compilation error is raised. The 
current run-time policy prioritizes the implementation that uses the specific ven-
dor library (libCPU, libXPhi, or libGPU). If this version is not present at compile 
time, it uses the kernels that use the MAGMA library version (libMAXPhi, or 
libMAGGPU). If it has still not been found, it looks for a kernel provided by the 
programmer (the original kernel classes CPU, GPU, XPhi). Finally, if no other 
implementation is found, it executes the non-optimized kernel, designed for any 
kind of device (the original GENERIC kernel class). This kernel selection stage 
does not fail at run-time. At least one eligible kernel implementation should be 
provided at compile time in order to generate the executable.

Multi-library Finally, to provide the common interface for each BLAS function 
name, we develop a collection of kernels, which are wrappers to call the actual 
functions of the corresponding library. This intermediate layer is a library named 
HitCntrlBLAS (see Fig.  2). In this library, each BLAS function is a Control-
ler kernel with the same name and five different implementations. There is one 
implementation for each new kernel class. Each one represents a combination of 
device and library type (MKL for CPUs, MKL for Xeon Phi, MAGMA MIC for 
Xeon Phi, cuBLAS for GPUs and MAGMA for GPUs). Lines 2–10 in Fig. 3 show 
an example of kernel implementation for the scopy function of BLAS, targeting 
Xeon Phi, calling the MKL implementation.

The proposed interface for each function is common and uniform. Inside each 
implementation, the details needed to perform the proper call to the correspond-
ing library are managed. The Controller internal fields have been extended to sup-
port any contextual data needed by a specific library. For example, the libGPU 
kernel implementations manage internally the handle needed for cuBLAS calls. 
See lines 14–21 in Fig.  3. This handle is created and destroyed with the Con-
troller if it is associated with a GPU during the creation operation. Other dif-
ferences regarding the APIs of the libraries used are solved within each kernel 
implementation.

Data transfer management has been previously solved inside the Controller 
library. It uses either CUDA or CAO, depending on the type of device associated 
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to the Controller. The HitTile structures from the Hitmap library also provide a uni-
form interface for data structure management before or after the third-party library 
call.

The result is a system that allows the programmer to develop a single main pro-
gram, using the Controller entity to launch generic BLAS kernels with a portable 
and uniform interface. The programmer can select the available libraries or change 
the selected devices with a single parameter value on the Controller object construc-
tion. An example for a study case is presented in the following section.

Main code example Figure 4 presents a snippet of the main coordination code of a 
Controller program to compute a sequence of matrix-matrix multiplications. It uses 
the modified Controller model and the HitCntrlBLAS library previously discussed. 
In lines 2–9, the Controller system is initialized and the data structures needed in the 
host are declared and initialized using HitTiles. Line 12 shows the construction of 
a Controller associated to the first GPU on the system. In lines 15 and 16, we show 
how an internal variable, with memory only allocated in the device, is created for 
the C matrix. The HitTile is declared as a tile with no memory allocated in the host. 
This tile structure is used to declare the array dimensions, to store the pointer to the 
device data when it is created in the Controller (line 16), and to track the HitTile use 
in the kernel launching functions. In line 19, the two input matrices are attached to 
the Controller context, implying data transfers to the device. In line 22, an object 
representing the index space of logical threads is constructed. This space is inter-
nally transformed into a grid of groups (for GPUs), or a collection of coarse-grained 
tasks (for OpenMP threads in CPUs or Xeon Phi). It is used in the kernel launch 
operations found in lines 26–31. These lines represent the main code of the algo-
rithm, launching kernels of the HitCntrlBLAS library. Line 35 detaches a matrix 

Fig. 3   Example of the declaration of two different implementations of the scopy BLAS kernel, in the 
HitCntrlBLAS library: libGPU for GPU-CUDA devices using cuBLAS, and libXPhi for Intel MIC Xeon 
Phi using MKL
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used as an output parameter during the launch operations. Thus, it implies a transfer 
of data from the device to the host. Lines 37–40 detach, destroy, and free the rest of 
the data structures in both the device and the host.

5 � Experimental study

This section presents an experimental study with two objectives. The first is to show 
the portability of the approach. The second is to show that this portability does not 
compromise efficiency. We test that the proposed abstractions do not impose a rel-
evant performance overhead when comparing with the same programs developed 
with the original BLAS libraries and manually tuning the memory transfers.

Fig. 4   Code snippet of the main program for a sequence of matrix-matrix multiplications, using Control-
lers and HitCntrlBLAS libraries. In this case, the Controller is attached to the first GPU found in the host
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The source code of both the library and the case study programs, together with 
the experimental data obtained during the performance evaluation, is available upon 
request to the authors.

5.1 � Case study: problems description

We study three different problems that present different challenges for a heterogeneous 
programming model, showing different features of the proposal and covering different 
scenarios found in a wide range of application classes. The first is a loop of calls to the 
same BLAS routine, a *GEMM matrix-matrix multiplication, which is a key kernel in 
multiple scientific applications and a classic test-bed case for high-performance pro-
gramming systems. The main kernel of this program presents a computational load that 
increases quickly with the input-data size, quickly diminishing the effect of the data 
transfers. It allows the efficiency of the kernel launching and execution procedures to be 
tested easily. The second implements a classical GEMVER algorithm using a sequence 
of calls to different BLAS libraries. This program uses kernels with a low computa-
tional load. It allows the testing of the interface and parameter passing across BLAS 
routines, as well as the efficiency of the device and data transfer management for a 
wide range of input-data sizes. The last one is a program that applies the Sobel filter to 
an image, mixing kernels developed manually by the programmer with calls to BLAS 
routines. It tests the interface across the different programming abstractions, library and 
manually developed kernels. It also presents a better balance than the previous cases 
between data transfer and computation times.

Matrix multiplication sequence The first computes C = A × Bn . It multiplies a square 
matrix A by another square matrix B several times [47]. We choose an implementation 
based on a loop that computes the recursive expression: Ck = Ck−1 × B ∶ k ∈ [1, n] , 
where C0 = A . Several BLAS libraries, such as Intel MKL, do not allow the use of the 
same variable as input and output on the same call. Therefore, the result of multiply-
ing Ck × B cannot be stored back in C in the same function call. This forces the pro-
grammer to use a third matrix, allocated only on the device memory, to store the par-
tial result. We use a second kernel on each iteration to copy the result values from the 
temporary matrix to the first matrix operand. This second kernel has no computational 
load, just memory accesses. Our implementation has two different parameters to play 
with, the number of times that the matrix B is multiplied and the matrix sizes. Before 
the main iteration, both initial matrices A and B are copied to the device memory.

*GEMVER Although this operator has been introduced as a single function in the 
extensions proposed for the BLAS 2.5 standard [6], it has not yet been implemented in 
the current versions of MKL, cuBLAS, or MAGMA. This algorithm takes as input a 
matrix A, six vectors u1, u2, v1, v2, y, z and two scalars, � and � . It executes the follow-
ing operations with them:

Â ←A + u1v
T
1
+ u2v

T
2

x ← 𝛽ÂTy + z

w ← 𝛼Âx
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where Â and x are internal variables (matrix and vector, respectively) and w is the 
output vector [19]. The version of this algorithm used to create the GEMVER refer-
ence program is included in Polybench [40]. This algorithm is suitable for several 
interesting optimizations. Polybench contains two code versions, one programmed 
directly and another using BLAS function calls.

Sobel operator The Sobel operator [16] is a well-known image processing algo-
rithm for edge detection. It applies two stencil operators to a grayscale input image. 
Each operator obtains the derivatives in the x and y directions, denoted as Gx and Gy , 
respectively. We use 3 × 3 sized Sobel stencil matrices, called kernels or filters in 
image processing literature. The use of separable filters may result in some perfor-
mance improvement [39]. Finally, the gradient magnitude is computed by squaring 
each cell value on Gx and Gy , adding the two resulting matrices and computing the 
square root of each cell.

This case shows how our solution allows the programming of codes that mix 
generic BLAS library calls with kernels directly developed by the programmer. 
These kernels can include code and optimizations which are specific to a lower-level 
programming model such as CUDA. The two filter operators are implemented with 
the original kernel classes in the Controller implementation. The cell-wise squaring 
operation can be implemented as the Hadamard [18] product of a matrix, which can 
in turn be implemented by using the *SBMV BLAS operation with a band matrix 
[25]. However, this function is not implemented in MAGMA and MAGMA MIC. 
In order to obtain comparable results across the different libraries, we integrate this 
operation into the columns convolution kernel instead. The sum of the two resulting 
matrices is done using the BLAS function *AXPY. Finally, the cell-wise square root 
of the resulting matrix is implemented again using the original kernel classes.

5.2 � Implementation details

In this section, we describe how the Controller and reference versions of each prob-
lem have been implemented.

Reference implementations In order to check potential performance overheads 
introduced by our abstractions, we need reference implementations of the three 
problems considered. The first reference version of each problem is developed using 
C with calls to MKL, targeting the Xeon Phi platform. They include specific Intel 
compiler pragmas to execute the BLAS routines through Compiler Assisted Offload, 
optimizing the data transfers. The second and third reference versions target NVID-
IA’s GPUs. They use C++, CUDA, and either cuBLAS or MAGMA to generate the 
GPU programs. It has been verified in all cases that the BLAS functions are truly 
executed on their respective coprocessors, while also checking that the compiler or 
run-time system does not take the decision of running any part of the function on the 
host.

Controller-based implementations The first stage of implementation is the devel-
opment of the HitCntrlBLAS library. cuBLAS and Intel MKL kernel versions are 
coded in different source files, in order to compile each of them with their specific 
compilers. Header files are created for each sublibrary. The second stage is the 
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implementation of the case studies. We program only one Controller-based main 
code for each problem. The experiments with each library or device can be done 
modifying only the value of the parameter that specifies the device in the Controller 
construction.

5.3 � Performance results

We conduct experiments to analyze the potential overhead introduced by the Con-
troller abstractions in our current implementation. We execute the different versions 
of the codes in two different machines, with four different coprocessors. The study 
considers two families of Xeon Phi coprocessors (KNC: 3120A Knights Corner, and 
KNL: 7220A Knights Landing), and two different architectures of NVIDIA GPUs 
(Maxwell: Titan X, and Volta: Tesla V100). The details of the machines, coproces-
sors, operating system, development tools, and versions of the BLAS libraries are 
summarized in Table 2. The programs are executed using the numactl command to 
set the affinity of the program threads to the NUMA node which is associated with 
the PCI bus where the coprocessor is connected. This greatly reduces the stochas-
tic performance behavior of the data transfers from/to the coprocessor on different 
executions.

Figures 5 and 6 show the execution times obtained for each experiment configu-
ration and target platform. The y-axis represents the execution time in logarithmic 
scale. The x-axis represents the input-data size n, where n is the cardinality of each 
dimension of the square input matrices. The sizes range from very small ( 100 × 100 ) 
with almost negligible computational cost comparing to the data transfers, to very 
large sizes ( 17000 × 17000 ), up to the point of exhausting the device memory in 
some cases. The values represent the mean of ten executions for each experiment.

Figures  5 and  6 show that the Controller programs present similar perfor-
mance behavior as their equivalent reference versions in all cases, with the lines 

Table 2   Hardware and software 
features of the machines used in 
the experiments

Feature Chimera Manticore

Operating system CentOS 7.4.1708 CentOS 7.5.1804
Processor Xeon E5-2620v3 Xeon Platinum 8160
Clock speeed 2.40GHz 2.10GHz
Main memory 32 GB DDR3 256 GB DDR4 ECC
Cache memory 15 MB 33 MB
Coprocessor
Intel Xeon Phi 3120A –
Intel Xeon Phi 7220A –
NVIDIA GTX Titan X Tesla V100 PCIe
Tools
Intel XE 2017.5.061 XE 2019.0.117
NVIDIA CUDA 9.0.102 CUDA 10.0.130
GCC​ 4.8.5 4.8.5
MAGMA 2.2.0 2.5.0
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representing the results of a Controller program and its equivalent reference version 
mainly overlapped. This happens consistently across the different scenarios gener-
ated by the selected examples and input-data sizes, in terms of load balance or com-
putational vs. device management costs.

Several interesting effects related to the behavior of the different library imple-
mentations and platforms can be observed. As commented at the beginning of 
Sect. 5.1, for small input-data sizes, all problems present the same scenario, where 
the computational load of the kernels is really small and the device management 
and data transfer between host and device are the bottleneck. The left column in 
Fig.  5 presents the results using the native cuBLAS library for the two GPUs. In 
these plots, for the smallest input-data sizes, the performance of both the Titan 
X and the Tesla V100 are similar. However, when using the MAGMA library for 
GPUs (right column of the same figure), we observe that the times of device man-
agement and data transfers is higher than when using cuBLAS, and less efficient 
for the older Titan X than for the Tesla V100. Due to its low computational cost 
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Fig. 5   Experimental results for the three case study problems ( C = A × B
n , GEMVER, and Sobel), exe-

cuted on NVIDIA GPUs, using cuBLAS (left column) and MAGMA (right column). Each plot includes 
the execution times of the reference versions doing direct calls to the chosen BLAS library and the Con-
troller version internally using the same library
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kernels, the GEMVER problem is dominated by the device management times, even 
for the biggest input-data sizes (see middle row of the figure). Thus, the cuBLAS 
versions consistently present a better performance than the equivalent MAGMA ver-
sions for all the range of input-data sizes tested. Nevertheless, as the computational 
load grows slightly with the data sizes, the execution times of the Tesla V100 and 
the Titan X consequently diverge due to the higher computational power of the Tesla 
V100. In the case of the Matrix Multiplication Sequence (the two plots in the top 
row of Fig. 5), and the Sobel program (the two plots in the bottom row of the same 
figure), the kernel computational costs grow much faster with the input-data sizes 
than in GEMVER. The execution times of the kernels quickly grow and dominate 
the overall performance. Thus, when the data sizes grow, we observe that the cuB-
LAS and MAGMA versions converge to the same performance values (faster in the 
matrix multiplication sequence, as expected), confirming that the MAGMA over-
heads are originated in the device and data transfer management. Figure 6 presents 
the results for the Xeon Phi programs using the MKL BLAS library. The more mod-
ern KNL architecture consistently performs better in both data transfers and kernel 
execution. It presents a performance improvement of approximately 2.5× comparing 
with KNC.

To better analyze the potential overheads introduced by the Controller abstrac-
tions, we analyze the ratio between the execution time of each Controller program 
and the execution time of the equivalent reference version (the one that uses the 
same external library in the same platform). Figure  7 presents examples of the 
ratio results for some representative combinations of case study problem, plat-
form, and library implementation. Other combinations present similar results. 
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Fig. 6   Experimental results for the three case study problems ( C = A × B
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cuted on the Xeon Phi platforms using the BLAS implementation of the MKL library. Each plot includes 
the execution times of the reference versions doing direct calls to the MKL library and the Controller 
version internally using the same library
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The figure presents box plots, showing for each input size the minimum, maxi-
mum, and median overheads, as well as the quartiles distribution. The two plots 
in the first row of Fig. 7 present the ratios for the matrix multiplication sequence 
problem in the Titan X GPU using cuBLAS and MAGMA. The median overhead 
is less than 8% in all cases, and for big input-data sizes it is lower than 1%. There 
is much more dispersion for small data sizes, where the execution times are really 
low. In these cases, the stochastic behavior of data transfers, accumulated with 
the overheads introduced by the queue management, parameter conversion, and 
launch procedures on the Controller model, are more noticeable. The two plots 
in the second row of Fig. 7 present the ratios for the GEMVER problem in the 
KNC and KNL Xeon Phi architectures, using MKL. The median of the overhead 
is between 0.01 and 7%. The GEMVER program has very low total execution 
times. They are dominated by the device and data transfer management, which 
are more unpredictable when the host program uses several OpenMP threads as 
in the Controller mode. Thus, the overheads in the KNC architecture have a high 
stochastic behavior, even for big input-data sizes. In the more modern KNL archi-
tecture, data transfer times are more consistent, leading to lower overheads and 
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Fig. 7   Controller overhead: Ratio of execution time between the Controller and reference versions for 
some representative combinations of application and lower-level libraries
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less stochastic behavior for big input-data sizes (see right plot in the second row 
of the figure). The two plots in the third row of Fig. 7 present the ratios for the 
Sobel program, comparing the ratio results in the Titan X GPU using cuBLAS 
(left plot in the third row of the figure), with the ratio results in the KNC Xeon 
Phi using MKL (right plot in the third row of the figure). This problem presents 
a better balance between computational load and device and data transfer man-
agement costs across the range of input-data sizes. Thus, the median overhead is 
small in both plots (less than 1% for any input-data size). The Xeon Phi results 
present more dispersion than those of the Titan X, due to more unpredictable data 
transfer times and due to higher stochastic effects introduced by the interaction 
of the internal Controller thread with the Xeon Phi run-time. It is noticeable that, 
in the case of the Titan X GPU, some median values of the overhead are even 
less than 0%. The variability of the execution times introduced by the stochas-
tic effects in the data transfers is sometimes higher than the very small overhead 
introduced by the Controller abstractions and implementation.

Taking into account the full collection of experiments, and after eliminating out-
liers, we can remark the following observations. The maximum overheads observed 
for the Xeon Phi architectures are found for the KNC platform and small input-data 
sizes in both the matrix multiplication sequence and the GEMVER problems. The 
values of the overhead are up to 14–15%, except for a specific size in the GEMVER 
problem where the overhead is up to 25%. Nevertheless, the median is less than 7% 
for all the Xeon Phi experiments, with most median values between 3 and 4%. In the 
case of the GPUs, the maximum overheads observed are also found for small input-
data sizes in the matrix multiplication sequence problem, with values of up to 6–7%. 
The median is less than 5% for all the GPU experiments, with most median values 
between 1 and 2%.

6 � Conclusion

In this work, we present a solution to build a BLAS library that is portable across 
different heterogeneous devices and hardware accelerators. The solution is built 
on top of the Controller model, a programming system for heterogeneous devices 
that transparently manages data transfers and kernel launching on different types of 
devices. We propose and introduce in the Controller model: (1) an abstraction layer 
to hide programming differences between diverse BLAS libraries; (2) a new system 
to define kernel classes to support the context and device manipulation of differ-
ent external BLAS libraries; (3) a new kernel selection policy that considers both 
programmer kernels and different external libraries to select the most appropriate 
kernel for each type of device; and (4) a library of Controller kernels, named HitC-
ntrlBLAS, that implements a unified interface for the whole set of BLAS routines, 
with the same abstraction used for kernels directly developed by the programmer. 
This proposal implements a multidevice and multilibrary backend. The programmer 
develops a single code that can be executed on different devices, exploiting different 
specifically tuned third-party libraries, by changing a single initialization parameter 
of the Controller object.
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We present a case study showing that this solution allows the development of 
portable codes, mixing user-defined kernels with calls to BLAS functions. The 
results of the experimental study show that our abstractions lead to very small over-
heads that decrease for significant computation loads.

Future work includes the implementation of more flexible selection policies, the 
use of the proposed system to develop more complex real applications, and studying 
the use of the library in programs that exploit multiple devices at the same time.
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