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2. SUMMARY 

 
Insulin-degrading enzyme (IDE) is a zinc metalloprotease proposed as the main 

responsible for degrading insulin, in addition to degrading other peptides such as 

glucagon, amylin, and amyloid peptide. The association of genetic polymorphisms 

within the Ide locus and susceptibility to suffer type 2 diabetes (T2DM) is well 

known, but its therapeutic potential remains unclear. Some investigations have 

spurred the notion that transient and/or partial inhibition of IDE may help to develop 

a new pharmacological treatment for T2DM.  However, there is a paucity of data 

in the literature regarding IDE role in insulin producing cells (pancreatic beta-cells) 

and its potential relationship with pathophysiological conditions, such as T2DM.  

 
The aim of the present study is to understand the physiological role of IDE in 

pancreatic beta-cells. For this purpose, we have performed a wide variety of in vivo 

and in vitro studies. To determine IDE protein expression in physiological and 

pathophysiological conditions in pancreatic islets, we have performed histological 

studies and protein analysis techniques in T2DM patient’s pancreas and in several 

T2DM preclinical models. To elucidate the role of IDE in pancreatic beta-cells, we 

have performed IDE activity inhibition both in vitro, by using of pharmacological 

inhibitors and shRNA silencing; and in vivo, by generating a mouse colony with 

specific Ide ablation in pancreatic beta-cells: B-IDE-KO mouse line. In these 

models, we have analyzed beta-cell function, as well as the metabolic impact of 

IDE ablation on pancreatic beta-cells in the B-IDE-KO mouse.  

 
Our studies show that IDE is expressed in beta- and alpha-cells of the 

pancreatic islet, both in humans and rodents, with increased expression in alpha- 

than in beta-cells. Additionally, in pathophysiological conditions that are 

accompanied by hyperinsulinemia, IDE is increased in pancreatic beta-cells, 

pointing out that IDE is involved in adaptive cellular mechanisms of beta-cells to 

the hyperinsulinemic environment. 
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Regarding the role of IDE in pancreatic beta-cells, we observe that both acute 

and chronic inhibition of IDE in mature beta-cells leads to impaired glucose-

stimulated insulin secretion, revealing that IDE plays a key role in beta-cell function. 

Surprisingly, genetic ablation of Ide in beta-cells in embryonic life leads to 

constitutive insulin secretion and beta-cell immaturity, suggesting a new role of IDE 

in beta-cell development. 

 

In light of our results, we can conclude that IDE has an important role on beta-

cell function, thus, IDE inhibition is not a good therapeutic approach for the T2DM 

treatment. 
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3. INTRODUCTION 

 
3.1 GLUCOSE HOMEOSTASIS: A HIGHLY SOPHISTICATED NETWORK 

 
Glucose is the principal source of energy in all organisms, necessary to ensure 

the proper functioning of cellular metabolism. In vertebrates and other higher 

organisms, tighly regulated control of blood glucose levels (glycemia), is essential 

to maintain glucose homeostasis. Glycemic control is a highly sophisticated 

process that involves numerous organs and hormones working in concert. Among 

these, the pancreas plays a key role due to the secretion of two primary hormones: 

insulin and glucagon. These two pancreatic hormones collaborate to maintain 

blood glucose levels within a very narrow range (4-6 mM) [1].  

 

Blood glucose levels are regulated by the opposing actions of these hormones 

as illustrated schematically in Figure 1.  

 

 

Figure 1: Maintenance of glucose homeostasis by insulin and glucagon. 
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Under fasting conditions, for example during the nighttime fasting period or 

between meals, plasma glucose levels decrease. In response, pancreatic alpha-

cells to secrete glucagon, a hyperglycemic hormone which stimulates hepatic 

glycogenolysis and gluconeogenesis [2], thus restoring blood glucose levels. In 

addition, during prolonged fasting, glucagon promotes renal gluconeogenesis in 

order to raises blood glucose [3].  

 

In contrast, after a rise in blood glucose levels, as happens after meals, elevated 

glucose promotes insulin secretion by pancreatic beta-cells. This hormone 

promotes insulin-dependent glucose uptake by various tissues, mainly skeletal 

muscle, liver and white adipose tissue, thus removing exogenous glucose from the 

blood stream and restoring normoglycemia [4-6]. Moreover, insulin promotes 

anabolic processes, such as glycogenesis [7, 8], lipogenesis [9], and the 

incorporation of amino acids into proteins [10]. 

 

As is obvious, the continuous supply of glucose to the organism is 

indispensable. In this regard, the opposing action of these two hormones, insulin 

and glucagon, form the central core of glucose metabolism regulation. However, 

disturbances of this metabolic framework may lead to serious metabolic disorders 

such as diabetes mellitus, whose prevalence, comorbidities and medical costs 

have been dangerously increasing over the past few decades [11]. 
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3.2 DIABETES MELLITUS: THE EPIDEMIC OF OUR TIME 

 

According to World Health Organization, diabetes is defined as a chronic 

disease that occurs either when the pancreas does not produce enough insulin or 

when the body cannot effectively use the insulin that produces [12]. 

 

More than 20 years ago, in 1997, it was projected that in 2010 there would be 

221 million people with diabetes in the world [13]. Those expectations have been 

vastly exceeded: in 2017 more than 425 million people in the world had diabetes 

mellitus [14]. (Figure 2). 

 

 

 

Figure 2: Prevalence and worldwide distribution of diabetes in 2017 and estimated 
prevalence for the year 2045 [14]. 
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The number of people in the world with diabetes has quadrupled since 1980, 

with an alarming increase in this last century [15] as depicted in Figure 3. In Spain, 

there were 3,584,500 cases of diabetes in 2017, approximately 10% of adult 

Spanish population [14]. 

 
Figure 3: Worldwide total number of adults with diabetes (20-79 years) in XXI century 
[14]. 

 
In addition to this, it should be taken into account that approximately 30% of the 

population has prediabetes: glucose levels above the normal range and below the 

diagnostic threshold of diabetes [16]. People with prediabetes have a high risk of 

developing type 2 diabetes in the next 3 to 5 years [14]. 

 

This dramatic rise in prevalence reflects an increase in incidence of many risk 

factors associated with this disease, especially overweight and obesity [17], a 

reflection of unhealthy diets and the sedentary lifestyle of today's society.  

 

Diabetes can result in several serious consequences, including blindness, 

kidney failure, increased risk of heart attacks and stroke, as well as lower limb 

amputation [18]. In 2016, 1.6 million deaths in the world were directly caused by 

diabetes mellitus, making the disease one of the top 10 causes of death in the 

world. Moreover, impaired fasting glucose caused an additional 2.2 million deaths 
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[19]. Premature death and comorbidities due to diabetes represent a large 

economic burden to countries health systems, something often called the indirect 

cost of diabetes [20]. In 2017, the International Foundation of Diabetes estimated 

that the total healthcare expenditure on diabetes reached 637 billion euros [14]. 

 

These alarming data reveal the urgent need to mitigate risk factors, improve 

diagnosis and treatments, as well as promote high-quality research to increase 

understanding of the disease, focusing efforts on the goal of improving the quality 

of life of patients with diabetes mellitus. 

 

3.2.1 TYPES OF DIABETES AND THERAPEUTIC APPROACH 

 

There are two main types of diabetes: Type 1 and Type 2.  

 

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that causes specific 

destruction of insulin-producing cells: the pancreatic beta-cells. This destruction 

leads to low or no insulin secretion into the bloodstream, with the consequent 

increase in blood glucose levels [21, 22] (Figure 4). 

Figure 4: Pathogenesis of type 1 diabetes. Sequence of events in the development of type 
1 diabetes [23].  
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This type of diabetes represents 5-10% of the total cases of the disease [24]. 

The onset of type 1 diabetes is influenced by a combination of hereditary and 

environmental factors, but the main cause of this destructive process is still 

unknown and thus currently not preventable [25, 26]. Patients with type 1 diabetes 

need daily exogenous insulin administration to maintain stable glucose levels and 

to avoid deleterious consequences associated with elevated blood sugar. 

 

Type 2 diabetes mellitus (T2DM) is characterized by an insufficient response of 

insulin by the peripheral tissues of the body (insulin resistance). There is feedback 

between insulin-sensitive tissues and beta-cells: insulin resistance leads to 

increased insulin requirements, leading to an exaggerated response by the beta-

cells [27]. Increased demand for insulin secretion and beta-cell hyperfunction in 

turn results in a decreased functional beta-cell mass causing impaired insulin 

secretion and hyperglycemia [28] (Figure 5). 

 

Figure 5: Pathogenesis of type 2 diabetes. Proposed sequence of events in the 
development of type 2 diabetes [27].  

 
This decrease in functional beta-cell mass has a complex and multifactorial 

nature. Among multiple factors, it has been described that glucotoxicity [29, 30] 

and lipotoxicity [31], which cause increased oxidative stress [32, 33], as well as 

increased proinflammatory cytokines [34, 35], amyloid deposits [36, 37], together 
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with the stress of endoplasmic reticulum caused by beta-cell exhaustion [38, 39], 

leads to beta-cell dysfunction and death. 

 

T2DM is the most common type of diabetes, representing around 90-95% of the 

total cases of diabetes. Regarding the pathogenesis, there is a strong link between 

T2DM and obesity and physical inactivity. There are also other risk factors, such 

as increasing age, sedentary lifestyle and multiple genetic factors [40]. 

 

The first recommended therapeutic intervention for T2DM patients is the change 

of lifestyle: adoption of a healthy diet, increased physical activity and maintenance 

of a healthy body weight. If these changes in lifestyle are not enough to manage 

glucose levels, oral hypoglycemic medication is usually initiated. Metformin is 

indisputably the most commonly used oral antidiabetic agent worldwide [41]. The 

hypoglycemic effects of metformin are mainly due to decreased hepatic 

gluconeogenesis [42], and to a lesser extent, to delayed intestinal nutrient 

absorption [43]. It also induces insulin-mediated glucose uptake in the skeletal 

muscle [44]. If this drug fails, another therapeutic approach is the combination of 

different drugs, such as sulphonylureas, glucagon-like peptide 1 (GLP-1) receptor 

agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors, thiazolidinediones or sodium-

glucose cotransporter 2 (SGLT2) inhibitors [45]. When oral hypoglycemic agents 

(OHAs) are unable to maintain normoglycemia, exogenous insulin administration 

must be prescribed in order to make a good management of blood glucose and to 

avoid health complications [14, 40].  

 

There are also some less common types of diabetes:  

 

- Gestational Diabetes: Any degree of glucose intolerance that was first 

recognized during pregnancy, regardless of whether the condition may have 

predated the pregnancy or persisted after the pregnancy [46]. 
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- Latent Autoimmune Diabetes of Adults (LADA): Also called slowly progressive 

insulin-dependent diabetes, is a form of type 1 diabetes that develops later into 

adulthood characterized by patients with clinical type 2 diabetes that have 

immunogenic characteristics of type 1 diabetes [47].    

 

- Maturity-Onset Diabetes of the Young (MODY): Also known as monogenic 

diabetes, is inherited disease resulting from a single genetic mutation in an 

autosomal dominant gene. At least 13 genes involved in MODY are identified to 

date, but the most commonly reported forms are involving glucokinase gene 

(MODY2) and the transcription factors HNF1A (MODY3) and HNF4A (MODY1) 

[47, 48].  

 

- Neonatal diabetes: Monogenic diabetes occurring under 6 months of age that 

could be transient (most often due to overexpression of genes on chromosome 

6q24) or permanent (most commonly due to autosomal dominant mutations in the 

genes encoding the Kir6.2 subunit (KCNJ11) and SUR1 subunit (ABCC8) of the β-

cell KATP channel) [48, 49]. 

 

- Secondary diabetes: Diabetes arose as a complication of other diseases such 

as hormone disturbances, diseases of the pancreas or as a result of drugs [14]. 

 

Clearly, the pancreas plays a pivotal role in the regulation of glucose 

homeostasis, and therefore is one of the main organs involved in the pathogenesis 

of diabetes mellitus. 
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3.3 ENDOCRINE PANCREAS: MORPHOLOGY AND PHYSIOLOGY 

 

In humans, the pancreas is an organ that lies in the upper abdomen behind the 

stomach. It is considered a mixed gland: it has endocrine and exocrine function. 

The exocrine pancreas is composed of acinar and ductal cells whose function is to 

synthesize and release digestive enzymes (pancreatic lipase and amylase, 

phospholipase, nucleases…) and bicarbonate from ductal cells into the duodenum 

[50]. It represents 96–99% of total pancreas volume [51] (Figure 6).  

 

 

Figure 6: Overview of human pancreas localization and anatomy. The image is adapted 
from [52]. 

 

On the other hand, the endocrine pancreas has metabolic functions, secreting 

into the bloodstream different types of hormones responsible for nutrient 

metabolism and the maintenance of blood glucose homeostasis in the body. The 

functional units of the endocrine pancreas are the pancreatic islets, also called 

islets of Langerhans, which are embedded within the exocrine pancreas.  
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3.3.1 ISLETS OF LANGERHANS 

 

In 1869, Paul Langerhans, through his exhaustive histological studies, 

discovered that the pancreas was a heterogeneous organ composed of different 

structures. Some of them were small clusters of cells scattered throughout the 

organ with a well-defined structure, now called islets of Langerhans. They 

represent only 1-4 % of total pancreas volume [51, 53].  

 

Pancreatic islets are highly vascularized multicellular mini-organs composed of 

5 different cell types, each one responsible for the release of a specific hormone. 

The coordinated action of all of them guarantees a correct maintenance of glucose 

homeostasis:  

 

• Beta-cells (β): Insulin-secreting cells. Insulin is a hypoglycemic hormone, 

responsible for lowering blood glucose levels mediating glucose uptake into 

cells [54]. They comprise 50-70% of the islet cells in humans and up to 80% 

in rodents. 

 

• Alpha-cells (α): Glucagon-secreting cells. Glucagon is a hyperglycemic 

hormone, preventing low blood glucose in fasting periods promoting hepatic 

gluconeogenesis [54, 55]. They are the second largest cell population of the 

islet, around 40% in humans and 20% in rodents.  

 

• Delta-cells (δ): Somatostatin-secreting cells. Somatostatin is a hormone that 

indirectly modulates glucose homeostasis, negatively regulating in a paracrine 

way insulin, glucagon and pancreatic polypeptide secretion [56, 57]. They 

represent 3-10% of the total number of cells of the islets. 
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• PP-cells: Pancreatic polypeptide-secreting cells. Its main functions are the 

regulation of satiety, in addition to inhibiting the secretion of glucagon by alpha-

cells [58, 59]. They comprise around 3-5% of the islet. 

 

• Epsilon-cells (ε): Ghrelin-secreting cells. Ghrelin has orexigenic properties, as 

well as ability of manage insulin, glucagon, pancreatic polypeptide and 

somatostatin release [60]. They are around 1% of the total islets cells. 

 

As shown in Figure 7, there is a remarkable difference between the architecture 

of the human and mouse pancreatic islets. In rodents α, δ, PP and ε cells are found 

in the periphery and the beta-cell makes up the central body of the islet.  

 

In contrast, in humans the different cell types seem to be randomly distributed 

in the islet [51, 61, 62]. This different distribution has implications at the paracrine 

regulation and functional level. Mouse beta-cells will be surrounded mostly by other 

beta-cells meanwhile human beta-cells will be surrounded by other non-beta-cells. 

 

 

Figure 7: Architecture of human and mouse pancreatic islet. The image is adapted from 
[51]. 
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Islets are exposed to the systemic glucose concentration, since the pancreas 

receives a rich vascular supply originating from the splenic artery. Although, as 

mentioned before, the islets only represent 1-4% of the total pancreas, they receive 

up to 20% of the pancreatic blood supply [63]. This high vascularization explains 

how small fluctuations in blood glucose lead to rapid and large changes in the 

secretion of pancreatic regulatory hormones. 

 

3.4 PANCREATIC BETA-CELL AND INSULIN HOMEOSTASIS 

 
Pancreatic beta-cells are the most important cell type in the pathogenesis of 

diabetes mellitus. Its destruction leads to type 1 diabetes, and its dysfunction is 

part of the process of development of type 2 diabetes.  

 

Pancreatic beta-cells act as a glucose sensor: its main function is the secretion 

of insulin in response to high glucose in order to maintain optimal blood glucose 

levels in the body. Insulin synthesis, secretion and clearance are highly regulated 

processes, whose abnormalities are closely related to the pathogenesis of 

diabetes mellitus. 

 
3.4.1 BETA-CELL DEVELOPMENT AND IDENTITY 

 
Pancreas originates from the endodermal gut tube epithelium [64]. 

Subsequently, during pancreas development, a subset of epithelial cells starts to 

express the pro-endocrine progenitor factor Ngn3, giving rise to all types of 

pancreatic endocrine cells [65-67]. 

 
Then, activation of different patterns of transcription factors leads to the 

differentiation into distinct endocrine pancreas lineages.  Insulin expressing beta-

cells are the first endocrine cells to appear at 7.5–8 weeks of gestation in the 

human pancreas [68] (Figure 8).   
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Figure 8: Embryonic development of pancreatic endocrine cells and beta-cell maturation. 
The image is adapted from [69].  

 

After this differentiation process, the beta-cell must undergo a maturation 

process carried out by transcriptional regulators, which allows it to acquire 

physiological characteristics commonly known as beta-cell identity. Some of these 

factors include the expression of genes such as Nkx2-2, Nkx6-1, Mafa, Mafb, Pax6, 

Pdx1, Neurod1, Urocortin3 and Syt4 [70-72].  

 

Recent studies suggest that genetic deletion of key beta-cell genes, may induce 

aberrant patterns of these transcription factors, affecting its differentiation state, 

leading the beta-cell to lose its insulin secretory properties and therefore, its identity 

[73].  
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The most critical aspect of beta-cell identity is glucose-stimulated insulin 

secretion (GSIS) and the mechanism through which beta-cells control glucose 

metabolism [74, 75]. Insulin secretion is a tightly regulated mechanism, where all 

the many components of cellular machinery of the beta-cell secretory pathway, 

including intracellular mechanisms and transcription factors must be highly 

orchestrated. Some of these components, such as the glucose transporter 2 

(GLUT2), glucokinase and ATP-sensitive potassium channels (KATP) are key 

defining contributors to the establishment and maintenance of beta-cell identity.  

 

Disturbances in these critical components inevitably lead to beta-cell 

dysfunction [74, 76]. Loss of mature beta-cell identity is a common feature found 

in different forms of diabetes, from monogenic to type 2 diabetes [77]. An immature 

beta-cell is characterized, among others, by impaired GSIS accompanied by high 

basal insulin secretion at low glucose levels [71, 72, 78, 79], secretion of immature 

insulin granules with increased proinsulin content [79] and abnormal pattern of 

GLUT2 in the plasma membrane [72, 79-81]. Loss of maturation in beta-cell is due 

to both, downregulation of genes required for GSIS and upregulation of genes 

permitting activation of glycolytic flux at lower extracellular glucose thresholds 

(Hk1, Hk2, Ldha, AldoB...). These are glucose-secretion decoupling genes or beta 

cell disallowed genes [82, 83]. 

 

3.4.2 INSULIN BIOSYNTHESIS 

 

Glucose is the principal physiological regulator of insulin in beta-cells, 

generating intracellular signals that stimulate insulin secretion, insulin mRNA 

translation, and insulin transcription [84]. Humans have a single insulin gene, Ins. 

However, rodents have two, Ins1 and Ins2. Transcription of Ins is largely regulated 

by key transcription factors including Pdx1, Pax6, Mafa, and Neurod1 along with 

numerous coregulators [85].  
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These several factors also contribute to the regulation of insulin transcription in 

response to glucose and autocrine insulin signaling [76], but it is simplistic to 

assume that these are the only transcription factors contributing to this process, 

since our knowledge is currently incomplete [85]. The use of tissue-specific 

knockouts animal models will help to identify and analyze the function of candidate 

genes that may contribute in this process. 

 

In 1923, and after numerous findings by previous researchers, F. Banting and 

J.J.R. Macleod were awarded with the Nobel Prize for insulin discovery [86, 87]. 

Insulin is translated initially as preproinsulin, then transported into the secretory 

pathway via signal peptide, which is removed after entry into the lumen of the 

endoplasmic reticulum, resulting in proinsulin [88] (Figure 9). Subsequent to 

proinsulin maturation and stabilization, proinsulin is transported from the 

endoplasmic reticulum to the Golgi apparatus, where it is efficiently sorted into 

secretory immature vesicles [89]. Only 1–2% of the protein is remaining as 

proinsulin and will be secreted within mature secretory granules [90, 91].  

 

Proinsulin is processed via the prohormone convertases 1/3 (PC1/3) and 2 

(PC2), which cleave the C-peptide connections to A- and B-chain. Thereby, mature 

insulin and detached C-peptide are stored together in the same secretion granule 

until the beta-cell receives stimuli triggering exocytosis [90, 92].   
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Figure 9: Insulin biosynthesis. Insulin maturation along the granule secretory pathway. 
The image is adapted from [90]. 

 

C-peptide is secreted at a 1:1 molar ratio to insulin, thus representing a direct 

measure of endogenous insulin [93]. Mature insulin is then stored as hexameric 

insulin/Zn2+ crystals in the secretory granules and is released by regulated 

exocytosis.  

 

3.4.3 INSULIN SECRETION: STIMULUS-DEPENDENT EXOCYTOSIS 

 

Pancreatic beta-cells secrete insulin in response to elevated blood glucose 

levels. This kind of molecular process, wherein a stimulus is translated into 

hormone release, is called stimulus-secretion coupling. In particular, this process 

in beta-cells is known as glucose-stimulated insulin secretion (GSIS) [94]. 
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Pancreatic beta-cells act as a glucose sensor due to presence of glucose 

transporters in their plasma membranes. In the case of human beta-cells, the main 

glucose transporter is the glucose transporter 1 (GLUT1), while in mice it is GLUT2. 

In rodent alpha-cells, GLUT1 is the main transporter [95, 96]. Both transporters 

located on the cell surface of the beta-cells have very different Km values: GLUT1 

is operative at glucose concentrations between 1-3 mM glucose and GLUT2 is 

operative between 15 and 20 mM [97]. These differences in glucose transporters 

between rodents and humans are due to the lower threshold for glucose stimulated 

insulin secretion in human beta-cells compared to rodents, so GLUT1 properties 

are more compatible with the dose-response curve for GSIS in humans (Km 6.5 

mM) [95, 98]. Therefore, mutations in these transporters can lead to pronounced 

dysregulation of pancreatic endocrine cells function.  

 

In presence of increased glucose levels, glucose enters into the beta-cells 

through the glucose transporters, GLUT2 in rodents and GLUT1 in humans [95], 

where it is rapidly phosphorylated to glucose-6-phosphate by glucokinase (GCK) 

and incorporated into the glycolytic pathway generating downstream metabolites, 

such as pyruvate. Pyruvate is catabolized at the mitochondrial level in the 

tricarboxylic acid cycle (TCA), producing an increase in ATP levels and thus a rise 

in the ATP:ADP ratio within the cell.  

 

This increased ATP:ADP ratio in turn leads to the closure of ATP-sensitive 

potassium channels (KATP) [99].  KATP channels in beta-cell are formed by two 

subunits: Sur1 and Kir6.2. The closure of these channels causes potassium ions 

(K+) accumulation inside the cell, making the inside of the cell less negative than 

the outside. This difference leads to a depolarization of the plasma membrane 

(Figure 10). 
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Figure 10: Mechanism of glucose-stimulated insulin secretion in pancreatic beta-cell. 

 

When the membrane potential depolarizes sufficiently (approximately −50 mV), 

it causes oscillating electrical activity that leads to the opening of voltage-gated L-

type calcium channels [100], allowing calcium entry into the cell by facilitated 

diffusion. The increase of intracellular calcium then triggers the exocytosis of 

insulin granules [92, 101]. Each pancreatic beta-cell contains more than 10,000 

secretory granules of insulin, but only a small fraction is secreted: ~2% per hour at 

maximal glucose concentrations [102, 103].  

 

Secretory granules are stored within the beta-cell cytoplasm at some distance 

away from the cell membrane [102]. To reach the plasma membrane, these 

granules must travel a relatively long distance along the cell cytoskeleton from the 

site of granule synthesis in the trans-Golgi network to the cell periphery [104]. The 
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beta-cell cytoskeleton is composed of a microtubule network that occupies most of 

the cell with the exception of the region next to the plasma membrane, which is 

occupied by the cortical actin network [105, 106]. These cytoskeleton microtubules, 

polymers of α/β tubulin dimers, play an essential role in insulin granule positioning 

[107-110].  

 

In beta-cells, microtubules originate at the Golgi and form a dense non-radial 

meshwork [111]. Transport along these microtubules limits granule dwelling at the 

cell periphery, restricting granule availability for secretion. High glucose causes 

depolymerization of these microtubules, decreasing their density and thus allowing 

the movement of secretory granules to the cell periphery to promote insulin release 

[111, 112] (Figure 11).  

 

Once at the periphery, granules are retained within the actin-rich cell cortex 

adjacent to the plasma membrane. Actin reorganization is then necessary to allow 

insulin granules access to the plasma membrane for subsequent docking and 

fusion [104, 106, 113].  

 

Figure 11: Insulin granule mobilization during GSIS and the formation of SNARE proteins 
complex. The image is adapted from [110, 114]. 
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This membrane fusion process is mediated by SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) proteins [115, 116]. 

SNAREs are divided into two groups: a vesicle-attached membrane protein 

(VAMP2), and two plasma membrane proteins, syntaxin-1A and the 25-kDa 

synaptosomal-associated protein (SNAP-25) [115, 117]. The fusion of insulin 

granules with the plasma membrane requires the assembly of a complex between 

the granule membrane VAMP2 and the integral plasma membrane syntaxin-1A, 

as well as membrane-associated SNAP-25, thus creating the SNARE-complex 

[118].  

 

Actin acts as a barrier to block SNARE-complex formation. Glucose stimulation 

triggers transient actin reorganization, thereby allowing the granules access to the 

plasma membrane for subsequent interactions between VAMP2/syntaxin-

1A/SNAP-25 proteins [110]. This specific interaction docks the secretory granules 

at the correct membrane site, with subsequent membrane fusion and insulin 

release (Figure 11).  

 

Insulin from beta-cells is secreted following a characteristic biphasic pattern 

[119-121]: a rapid but transient first phase during which the readily releasable pool 

(RRP) of granules previously docked to the plasma membrane undergo exocytosis 

[102]. This first phase is followed by a slowly developing and sustained second 

phase during which secretion continues at a lower rate since newcomer granules 

must first approach the plasma membrane before being able to fuse and 

exocytose, resulting in a lower rate at which new granules can be supplied for 

release [102, 122].  (Figure 12).  
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Figure 12: Model of biphasic insulin exocytosis mechanism in pancreatic beta-cells. The 
image is adapted from [122].  

 

Once insulin leaves the beta-cell and reaches the bloodstream is ready to exert 

its actions on insulin-sensitive tissues. 

 

3.4.4 INSULIN ACTION 

 

Insulin action in glucose homeostasis is usually typified by its direct effects on 

three principal tissues: skeletal muscle, liver, and white adipocytes [123]. Insulin 

binds to the insulin receptor (INSR) on the plasma membrane of target cells [124]. 

The best studied functional effect of insulin signaling cascade is the increased 

glucose transport activity. Activated INSR initiates a downstream metabolic 

signaling, which finally stimulates the translocation of the glucose transporter 4 

(GLUT4) storage vesicles from intracellular pools to the surface cell membrane, 

thus increasing the rate of glucose uptake [125, 126].  
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- Skeletal muscle 

 
Muscle insulin action is a tightly coordinated process whereby insulin promotes 

glucose utilization and storage by increasing glucose uptake and regulating the 

rate of glycogen synthesis and glycolysis [127, 128]. Regarding to protein 

metabolism, insulin increases the rate of protein synthesis and decreases the rate 

of protein degradation [127, 129]. 

 

- Liver 

 
In liver, insulin rapidly and potently reduces hepatic glucose production [130]. It 

activates glycogen synthesis [131, 132], and decreases gluconeogenic gene 

expression, thus inhibiting the rate of hepatic glycogenolysis and gluconeogenesis 

[133, 134]. Regarding lipids, insulin promotes lipid esterification [135], 

transcriptionally regulates de novo lipogenesis [136], decreases the rate of fatty 

acid oxidation [127] and  increases very-low-density lipoprotein (VLDL) formation 

[136].  

  

- Adipocytes 

 
In white adipocyte tissue (WAT), insulin increases the rate of glucose transport 

across the cell membrane [137]. One of the most important roles of insulin in WAT 

is lipolysis suppression in order to maintain euglycemia [127, 128]. Insulin is a 

potent antilipolytic hormone capable to decrease rapidly plasma non-esterified fatty 

acid [138, 139]. It also increases the uptake of free fatty acids from blood and it 

promotes triglyceride esterification and storage [135, 139].  

 

As observed, these insulin effects encourage the synthesis of carbohydrates, 

lipids and proteins; therefore, insulin is considered to be an anabolic hormone. A 

summary of its actions in the main target tissues is shown in Figure 13. 
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Figure 13: Insulin actions in main insulin-sensitive tissues. 

 

3.4.5 INSULIN CLEARANCE 

 

Insulin from pancreas is secreted directly into the portal circulation [140, 141], 

reaching the liver, where the “first pass” of insulin clearance occurs. In this step, 

between 50-80% of the insulin released by the pancreas is degraded, so that only 

about a third of the total secreted reaches the bloodstream [142, 143]. In contrast, 

C-peptide is not degraded by liver, so it goes directly to the systemic circulation 

[144, 145]. This is the reason why C-peptide is used as a biomarker of beta-cell 

function instead of insulin circulating levels. 

 

 The liver is thus responsible for regulating the flow of insulin to the systemic 

circulation, thereby acting as a gatekeeper regulating this process [143]. In 

pathological situations, the liver can modulate the clearance ratio to attempt to 

maintain adequate plasma insulin levels [146, 147]. After this first pass, remaining 
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insulin exits the liver via the hepatic vein, reaching the heart (Figure 14). Insulin is 

then distributed to the rest of the body through the systemic circulation.  

 

After circulation, insulin returns to the liver via the hepatic artery, and the 

hormone is subject to a second round of insulin clearance (“second pass”) within 

hepatocytes. In addition to the liver, remaining circulating insulin is finally degraded 

by the kidney and other tissues to a limited extent [148, 149].  

 

 
Figure 14: Journey of insulin from synthesis to degradation in the body. 

 
Independent evidence, beginning in 1949 [150], showed that insulin is rapidly 

degraded by a protease called IDE (insulin-degrading enzyme). By virtue of its 

unusually rigid structure, being comprised of two separate chains attached by 

disulfide bonds at multiple locations, insulin is not readily degraded by most 

proteases.  Given that IDE degrades insulin so efficiently, it was widely assumed 
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that insulin clearance in vivo must involve IDE at some level, most likely at the level 

of the liver [151, 152].  However, this idea was not directly tested until recently.  A 

recent study in liver-specific IDE knockout mice showed that IDE is not the rate-

limiting factor controlling insulin clearance by the liver, since deleting it in liver 

caused no difference in the rate of exogenous insulin clearance [153]. This study 

highlights how critical it is to study the tissue-specific role of this protein, as it is an 

ubiquitous and multifunctional enzyme. 

 

3.5 INSULIN-DEGRADING ENZYME  

 

IDE (insulin-degrading enzyme) is an evolutionarily conserved 110-kDa zinc-

metalloendopeptidase (Figure 15). IDE derived its name based on its ability to 

strongly bind and degrade insulin, the property for which it was initially discovered 

more than 70 years ago [150].  

 

 

Figure 15: IDE structure: IDE-N (cyan) and IDE-C (green) terminal units of IDE form two 
halves of a catalytic chamber (grey), including the catalytic zinc ion and the door subdomain 
(red) [154]. 
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IDE is a homodimeric protein, with each monomer being composed of two ~55 

kDa homologous N- and C-terminal bowl-shaped domains (IDE-N and IDE-C) that 

are connected by a short linker to form the final 110 kDa protein [155]. Overall each 

monomer of IDE resembles a clamshell that can adopt “open” and “closed” 

conformation, with IDE-N and IDE-C forming each of the two halves. When in the 

closed conformation, the two halves form a large internal chamber that completely 

encapsulates and entraps insulin and other substrates. In the open conformation, 

substrates can enter into the catalytic chamber, and proteolyzed fragments can 

exit.  The active site of IDE is bipartite, comprised of regions within both IDE-N 

(which contains the active-site Zn atom) and IDE-C that is fully formed only when 

the protease is in the closed position [156]. As a consequence, IDE can only 

process substrates that are small enough and appropriately shaped to fit inside its 

internal chamber. These features prohibit IDE from engulfing peptides greater than 

~80 amino acids in length [154, 155].  

 

New electron microscopy data suggests IDE passes also through open-closed 

transition during its catalytic cycle allowing the unfolding of its substrates prior to 

the cleavage reaction. Therefore, IDE could be found with five different 

conformations: completely closed with substrate bound, partially closed with 

substrate bound, partially open with substrate unbound, and open without 

substrate [157, 158]. 

 

3.5.1 IDE LOCATION, SUBSTRATES AND FUNCTIONS 

 

IDE has a high affinity for insulin (Km = 10-100 nM), but processes it relatively 

slowly compared to most proteases (Kcat = 0.5-2/s-1) by virtue of its complicated 

catalytic cycle involving the opening and closing of the protease [159]. 

Nevertheless, as mentioned, insulin is an unusually rigid peptide that is highly 

resistant to proteolytic degradation by most other proteases, making IDE the most 
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efficient known insulin protease. In addition to insulin, another intermediate-sized 

peptide substrate of IDE is glucagon [155, 160]. In 1985, glucagon was reported to 

be degraded with an apparent Km of 3.46 µM and Kcat 0.641 s−1 by a semi-purified 

protease that has been inferred to be IDE [161]. Recently, these data have been 

questioned with the use of new quantitative glucagon degradation assays, pointing 

to Km values between 380-800 nM and Kcat values between 1.16 and 1.76 s-1 

[162]. IDE also degrades other small peptides such as somatostatin, amylin and 

peptide amyloid (Aβ) [149, 155] turning it into a protein of interest in the study of 

diseases such as diabetes mellitus and Alzheimer's disease [163]. Other 

substrates of IDE include various hormones, growth factors, and neuropeptides, 

including growth factors and endorphins [164, 165].  Some authors claim that IDE 

also has regulatory functions for proteasome activity, for steroid receptors, for the 

oxidation of fatty acids in peroxisomes, or for non-proteolytic processes mediating 

in growth and development [166-172].  

 

Regarding its location, IDE has a ubiquitous tissue and cell type distribution. 

Within cells, it is located principally within the cytoplasm, but it has been reported 

to localize in various subcellular compartments, including intracellular vesicles, 

plasma membrane, mitochondria, peroxisomes, as well as being secreted by a 

non-classical protein export pathway [154, 164, 173, 174]. This wide distribution 

suggests a multifunctional role of this protein. Despite decades of study, there 

remains a lack of knowledge about its presence and role in the cells responsible 

for insulin production: pancreatic beta-cells. 
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3.5.2 IDE AND DIABETES MELLITUS 

 

Several single nucleotide polymorphisms in noncoding regions of the human 

IDE gene on chromosome 10q are associated with the development of type 2 

diabetes mellitus [175-177]. Furthermore, non-sense and frameshift mutations 

have been found in the IDE gene in patients with T2DM [178]. In Goto-Kakizaki 

(GK) rats, a preclinical model of type 2 diabetes, an partial loss-of-function mutation 

in the Ide gene was found to be at least partially responsible for the diabetic 

phenotype in this rodent model [179]. These data elucidate the importance of the 

role of IDE in the pathogenesis of diabetes, and its possible therapeutic potential. 

 

The literature contains many conflicting reports on IDE´s roles in different 

tissues of diabetic patients, apparently due to diverse criteria for inclusion of 

patients in studies, and variability in the type of diabetes and the stage in which the 

disease is developed [163]. For instance, in human erythrocytes, IDE activity was 

increased in T2DM patients taking sulphonylureas, but it was unmodified in type 1 

diabetic patients under good glycemic control [180]. In a different study, an 

increase of IDE activity in plasma and erythrocytes was demonstrated both in 

insulin-dependent and in non-insulin-dependent diabetic patients [181].  

 

On the other hand, decreased IDE activity in adipocytes of pre-diabetic and 

diabetic subjects was demonstrated [182]. Regarding pancreatic tissue, Steneberg 

et al showed for the first time in human islets that IDE levels were decreased (by 

∼40%) in human T2DM islets compared with nondiabetic controls, but without 

providing information about the pharmacological therapy of such patients [183]. 

Likewise, other authors found a decrease of Ide mRNA expression in the liver of 

diabetic subjects [184]. 
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Interestingly, insulin treatment causes an increase of IDE activity in HepG2 

cells, abolished in highly glucose conditions, suggesting that insulin and glucose 

levels may provoke disturbances of IDE activity in T2DM [185]. 

 

These controversial data corroborate the idea that IDE may be a multifunctional 

enzyme, with several tissue-specific functions, highlighting the need to decipher 

the specific role that IDE plays in each tissue. In addition, they reflect the 

importance that pharmacological treatments may modulate IDE activity. 

 

3.5.3 IDE INHIBITORS AND THEIR THERAPEUTIC POTENTIAL 

 

The assumed role of IDE in insulin clearance led to the idea that transient IDE 

inhibition could be used to modulate insulin levels in patients suffering T2DM. More 

than six decades ago, it was reported that an endogenous inhibitor of IDE could 

enhance the hypoglycemic action of insulin in rats and rabbits, highlighting the 

potential use of IDE inhibitors to modulate the action of insulin [186]. Attempts to 

further confirm or refute IDE’s role in insulin degradation have been attempted 

using several very crude inhibitors of IDE in vitro, including bacitracin, N-

ethylmaleimide, and 1,10-phenanthraline [149, 187]. However, these inhibitors are 

all non-specific and of very low potency, so the relevance of these studies is difficult 

to assess. 

 

Taking advance of IDE tertiary structure, new IDE inhibitors with better potency, 

improved selectivity, and structurally defined binding sites have been developed 

[155, 165, 188-191]. Only a very limited number of in vivo studies have so far been 

conducted using these newer inhibitors with some conflicting results [165, 190, 

191], due to differences in the IDE binding site (Figure 16), pharmacokinetics and 

pharmacodynamics of the compounds, differences in selectivity for different 
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substrates, as well as preclinical models have been used to study the 

pharmacological action of these inhibitors.  

 

Figure 16: Co-crystal structures comparing the binding sites of different IDE inhibitors 
[154]. 

 

IDE inhibitor 1 (Ii1), was the first reported high-affinity inhibitor for IDE. It is a 

peptide hydroxamate designed by determining the subsite specificity of IDE, and it 

interacts with the active-site Zn atom in IDE-N, as well as with the active-site 

portion of IDE-C [188]. Ii1 was reported to effectively reduce the clearance of 

insulin in CHO-IR cultured cells.  

 
Another recently developed IDE inhibitor is BDM41367, which binds to both the 

catalytic site of IDE and to an “exosite” region distal to the active site that has an 

innate affinity to peptides [155]. This compound was found to be a partially active, 

substrate-selective modulator of IDE that inhibits Aβ degradation but promotes 

insulin degradation when tested in human recombinant IDE [189].  

 
BDM44768 is proposed to inhibit IDE in part by locking IDE in the closed 

conformation, thus preventing substrates from accessing the catalytic chamber. 

This compound prevents insulin degradation in vitro, but when tested in preclinical 

mouse models of diabetes, BDM44768 induced glucose intolerance [190]. 
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6bK is a promising IDE inhibitor that binds a unique exosite outside both the 

catalytic cleft and N-terminal exosite [165]. 6bK was reported to improve oral 

glucose tolerance in high fat diet-induced obese mice and enhanced insulin-

induced hypoglycemia. Interestingly, the administration of 6bK induces glucose 

intolerance when glucose is injected intraperitoneally, probably to the elevated 

glucagon levels consequence of IDE inhibition.  

 
Few years ago, a research team at Eli Lilly reported the characterization of two 

novel IDE inhibitors, NTE-1 and NTE-2 [191]. These compounds binds to the N-

terminal substrate anchoring site and the 6bK-binding exosite. Consistent with 

6bK, NTE-1 improved oral glucose tolerance in diet-induced obese mice, but 

without effects on insulin-induced hypoglycemia. Interestingly, treated animals 

show normal levels of glucagon. Moreover, in insulin-tolerance tests and 

euglycemic clamping experiments, NTE-1 exerted no detectible effect on insulin 

action or plasma insulin levels. 

 
Together, these studies highlighted the controversy surrounding the potential 

therapeutic utility of IDE inhibitors, as well as the importance of identifying 

substrate-selective IDE inhibitors, so that effects on insulin, glucagon and amylin, 

among other substrates, can be separated. In the same way, it strengthens the 

need to search for IDE inhibitors specifically targeted to a cell type in order to obtain 

the desired therapeutic results. However, currently IDE´s tissue-specific role 

remains poorly defined. Hopefully, progress in knowledge of IDE´s role in specific 

tissues will promote the development of IDE-based therapies to treat T2DM. 

 

3.5.4 GENETIC ABLATION OF Ide: A COMPLEX STUDY MODEL 

 
Many authors have proposed IDE inhibition as a therapeutic treatment for 

T2DM. This reasoning is based on the assumption that IDE inhibition will lead to 

reduced insulin clearance, allowing a given amount of insulin released by the 
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pancreas to be more effective by increasing time in the bloodstream. Given that 

glucose homeostasis is dependent on a complex interplay between many 

hormones, such as insulin, amylin, and glucagon, the effects of an IDE defect in 

vivo are expected to be complex. 

 
In order to elucidate the physiological function of IDE and the pathogenesis of 

T2DM, numerous authors have described the metabolic phenotype that causes 

total IDE ablation in rodents [183, 192, 193]. All of them show a common 

phenotype: Ide ablation creates disturbances in the management of insulin, which 

causes associated deleterious comorbidities. 

 
Farris and colleagues were the first group to describe the phenotype resulting 

from global genetic deletion of IDE. At 6 months of age, IDE knockout mice, 

presented a metabolic phenotype characterized by normal baseline glucose levels, 

but pronounced glucose and insulin intolerance, together with hyperinsulinemia 

[192]. These authors proposed that hyperinsulinemia is a consequence of a 

deficiency in the capacity for insulin clearance. 

 
In 2011, Abdul-Hay and colleagues reported on a longitudinal study of IDE 

knockout mice, conducted at 2, 4 and 6 months of age to investigate the 

emergence of the metabolic phenotype. Consistent with the phenotype described 

by Farris et al., these mice showed hyperinsulinemia at 2, 4 and 6 months of age. 

Surprisingly, at 2 months of age, the mice showed a modest but significant 

improvement in glucose tolerance and insulin sensitivity. However, at 6 months of 

age, these mice showed severe glucose intolerance and insulin resistance [193]. 

 

In 2013, Steneberg et al. studied the phenotype of IDE knockout mice at 2 

months of age. They described a metabolic phenotype consisting of severe 

glucose intolerance, accompanied by a decrease in insulin secretion [183]. These 

results are in contrast to those previously observed by other authors. In addition, 
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Steneberg et al. highlight the importance of IDE in the regulation of insulin 

secretion, since they observed an increase in intracellular insulin of pancreatic 

islets, pointing to a secretory defect in beta-cells. Mechanistically, they attributed 

the observed effects to the fact that IDE can associate irreversibly with alpha-

synuclein protein, preventing the correct reorganization of the cellular 

microtubules, and therefore, the correct secretion of insulin. 

 
Since all animal models used so far are global IDE knockout mouse, it is very 

difficult to separate the mechanistic components that underlie the observed 

phenotypes. In addition, it should be noted that none of the global IDE knockout 

studies, except for Steneberg et al., have focused on islet insulin secretion. 

Moreover, it must be taken into account that in these models, IDE is knocked out 

in all cells of the pancreatic islet, so the paracrine action of the rest of cell types 

with pancreatic beta-cells could directly compromise the function of this cell type. 

 

Recently, Villa-Perez et al. reported the first tissue-specific IDE knockout 

mouse. They generated mice with liver-specific ablation of IDE (L-IDE-KO) using 

Cre-loxP system. In this technique, desired DNA segments are flanked by two loxP 

DNA motifs (often referred to as "floxed" loci) and Cre-mediated recombination 

results in excision of floxed DNA. The cell specificity of recombination is controlled 

by promoter and enhancer sequences that drive Cre expression in the cell or tissue 

type of interest, thus ablating the floxed genetic locus in the entire lineage [194]. In 

L-IDE-KO loxP sites are positioned flanking IDE gene and Cre recombinase 

expression is driven exclusively in liver using the albumin promoter [153]. L-IDE-

KO mice exhibited glucose intolerance and insulin resistance due to decreased 

insulin receptor levels in hepatocytes. However, these mice showed similar plasma 

insulin levels and hepatic insulin clearance as control mice, revealing that IDE is 

not the principal or rate-limiting hormone involved in hepatic insulin clearance, but 

that it plays a fundamental role in the etiology of hepatic insulin resistance. 
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In conclusion, these animal models of study highlight the importance of IDE in 

the regulation of glucose metabolism, and its impact on the etiology of 

hyperinsulinemia and insulin resistance. However, it is impossible to decipher from 

them the role played by IDE in insulin-producing cells. Thus, IDE needs to be 

studied in beta-cell models to unravel the specific role of IDE in pancreatic beta-

cell function. 
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4. HYPOTHESES AND AIMS 

4.1 HYPOTHESES 

 
Based on previous publications and our group´s preliminary results we hypothesize 

that: 

 
 IDE is expressed in pancreatic beta- and alpha-cells of humans and 

rodents. 

 Diabetes-related conditions can lead to changes in IDE expression levels 

in pancreatic beta- and alpha-cells. 

 IDE plays a key role in the function of the pancreatic beta-cells, and its loss-

of-function affects glucose-stimulated insulin secretion. 

 The modulation of IDE activity in pancreatic beta-cells could be a 

therapeutic approach in the treatment of type 2 diabetes mellitus. 

 
4.2 AIMS 

 
The main aim of this study is to understand the physiological role of IDE on the 

pancreatic beta-cell in vitro and in vivo. This general aim can be split in the 

following specific objectives: 

 
 To study IDE expression pattern in beta- and alpha-cells of the pancreatic 

islets. 

 To investigate IDE expression regulation in different diabetes-related 

models, both in humans and rodents. 

 To assess the effect of transient pharmacological IDE inhibition in 

pancreatic beta-cells in vitro. 

 To generate and analyze the phenotype of an in vitro model of Ide 

permanent ablation: INS1-E shRNA-IDE cells. 

 To generate and characterize a beta-cell specific Ide knockout mouse 

model (B-IDE-KO). 



 
 

 
 

   



 
 

 
 

MATERIAL AND METHODS 
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5. MATERIAL AND METHODS 

5.1 EXPERIMENTAL ANIMALS 

5.1.1 ANIMAL FACILITIES 

 
Experimental procedures were approved by University of Valladolid Research 

Animal Ethical Committee and JCyL authorities (Protocol number #5003931) in 

accordance with the European Guidelines for Care and Use of Mammals in 

Research (European Commission Directive 86/609/CEE and Spanish Royal 

Decree 1201/2005).  

 

Rodents were housed in ventilated cages on a 14-hours light, 10-hours dark 

schedule at the animal facility of the University of Valladolid (UVa, Spain). Cage 

enrichment included cotton bedding. Water and food (standard rodent chow diet) 

were available ad libitum. 

 

5.1.2 RODENT MODELS 

 
 db/db MICE 

Leptin receptor heterozygous mice BKS.Cg-+Leprdb/+ Lepr +/OlaHsd (db/+) 

were purchased (Harlan, UK) and then they were bred in our animal facility to 

obtain +/+ or db/db mice.  

 

 SD/HFD MICE 

8 week old C57Bl6/J male mice were bought (Charles River, France) and they 

were fed standard (SD) or high fat diet (HFD: 60% kcal% fat) (Research Diets, 

USA) for 18 weeks. 

 



MATERIAL AND METHODS | Role of insulin‐degrading enzyme (IDE) in pancreatic beta‐cell function 
 

56 
 

 SPRAGUE DAWLEY RATS 

Three-month-old male Sprague Dawley rats were provided by Animal Research 

and Welfare Service (SIBA) of the University of Valladolid; they were fed SD and 

water ad libitum. 

 

5.1.3 B-IDE-KO MICE 

 
5.1.3.1 BREADING STRATEGIES OF BETA-CELL SPECIFIC IDE KNOCKOUT MICE  

 
Cre – LoxP recombination system was used for generating our tissue specific 

knockout. Ideflox/flox mice were kindly provided by Dr. Malcom Leissring [193] from 

University of California, Irvine, USA. These mice have loxP sites flanking exon 3 of 

Ide gene. Exon 3 contains the catalytic site sequence, critical for the proteolytic 

activity of the enzyme. Insulin-Cre mice kindly provided by Dr. Herrera [195] from 

University of Geneva, Switzerland. This transgene expresses Cre recombinase 

under the control of the insulin promoter, which is active in pancreatic beta-cells. 

 

To generate beta-cell specific IDE knockout mice, Insulin-Cre mice were 

crossed with Ideflox/flox mice. Cre-LoxP recombination results in the deletion of exon 

3 of the IDE gene, causing a frameshift with two stop codons in exon 4 and 

therefore, an early termination of translation. Thus, we obtained our experimental 

litter Ideflox/flox;Ins-Cre/+, named hereafter B-IDE-KO, and their controls Ideflox/flox; +/+ 

or Ideflox/+; +/+. (Figure 17). 
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Figure 17. Breading strategy for generating B-IDE-KO mice colony. 

 

5.1.3.2 MOUSE GENOTYPING 

 
To genotype B-IDE-KO mice colony, PCRs were performed with genomic DNA 

extracted from mice tail snips of ~0.2 cm using QuickExtract™ DNA Extraction 

Solution (Epicentre, EEUU). Tails were incubated in 50 μL of QuickExtract™ 

solution at 65ºC for 8 min, followed by 2 min incubation at 98 ºC in a 

thermoblock.  The PCR reaction master mix components are listed in Table 1.  
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Component Volume (µl) 

Buffer Reaction Mix (Bioline, UK) 5x 8 

Primer Forward (Metabion, Germany) 100 µM 0,20 

Primer Reverse (Metabion, Germany) 100 µM 0,20 

My Taq DNA Polymerase (Bioline, UK) 5 u/µl 0,25 

Nuclease Free Water 30,35 

DNA Sample 1 

Final Volume 40 

 

Table 1. PCR reaction master mix components per reaction. 

 
Genes analyzed by PCR were: GAPDH, used as control for the quality of DNA 

extraction, Ideflox/flox and Ins-Cre. Primer sequences and the sizes of resulted 

amplicons were detailed in Table 2.  

 

Gen Sequence pb 

GAPDH 
5’-GATG GCAT GGA CTG TGG TCA T-3’ 
5’-CGT GGA GTC TAC TGG TGT CTT-3’ 

250 

IDEflox/flox 
5’-AAC TGC CAC CTG TCC AAT CC-3’ 
5’-CTC AGG GAT ACA ATG CGT GC-3’ 

WT IDE: 480 
IDEflox/flox: 650 

Ins-Cre 
5’-TAA GGC TAA GTA GAG GTG T-3’ 

5’-TCC ATG GTG ATA CAA GGG AC-3’ 
473 

 
Table 2. Primer sequences used for mice genotyping. 

 

PCR products were mixed with loading buffer for DNA (Bioline, UK), loaded into 

2% agarose gel and electrophoresed in TBE buffer (89 mM Tris-HCl, pH 7.6, 89 

mM boric acid and 2 mM EDTA). The gel was stained with RedSafe (Invitrogen, 

USA) and the bands were visualized by an ultraviolet transilluminator showing the 

three kind of genotypes obtained in our mouse colony (Figure 18). 
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Figure 18. Representative image of PCRs results for mice genotyping. WT (wild type); 
HT (heterozygous); B-IDE-KO (beta-cell specific IDE-knockout mouse) 

 
5.1.3.3 METABOLIC CHARACTERIZATION 

 
Male mice were metabolically studied at 2 months and 6 months of age.  

 

 BODY WEIGHT  

Body weight was monitored at 2 and 6 months old using a digital weight scale 

(Adam Equipment, USA). 

 

 BLOOD GLUCOSE  

Blood glucose levels were measured directly from cut tails tips using the 

Breeze2 Glucometer (Bayer, Germany). Blood glucose measurements were 

performed in mice under fasting (6 or 16 hours without food) or non-fasting 

conditions (after dark schedule), after a glucose overload (IP-GTT) and after an 

insulin tolerance test (IP-ITT). 
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 BLOOD SAMPLING AND PLASMA COLLECTION 

Plasma samples were obtained by direct blood flow from tail tip collecting the 

blood with Microvette®, a capillary tube coated with potassium-EDTA (Stardest, 

Germany). Then, blood samples were centrifuged at 1,200 X g for 10 min at 4ºC 

to obtain plasma fraction.  

 

Plasma measurements were performed in mice under fasting (6 hours without 

food) or non-fasting conditions (after dark schedule) or after a glucose challenge. 

Plasma C-peptide levels were measured using Mouse Ultrasensitive C-peptide 

ELISA (ALPCO, USA). Plasma insulin levels were measured using Mouse 

Ultrasensitive Insulin ELISA (Mercodia AB, Sweden). 

 

 INTRA-PERITONEAL GLUCOSE TOLERANCE TEST (IP-GTT) 

For the assessment of glucose tolerance, we performed intra-peritoneal glucose 

tolerance test (IP-GTT). Mice were fasted for 6 hours from 8 a.m. to 2 p.m. 2 g/kg 

Glucose body weight was injected into the intraperitoneal cavity. Blood glucose 

levels were measured at different time points: 0, 15, 30, 60 and 120 min after 

glucose injection. 

 

 INTRA-PERITONEAL INSULIN TOLERANCE TEST (IP-ITT) 

For the evaluation of insulin sensitivity tolerance, we performed intra-peritoneal 

insulin tolerance test (IP-ITT). Mice in non-fasting conditions were injected with a 

dose of 0.75 U Humulin (Lilly, USA)/kg body weight. Blood glucose levels were 

measured at different time points: 0, 5, 15 and 30 min after glucose injection. 
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5.2 HUMAN PANCREAS AND PANCREATIC ISLETS 

 
5.2.1 HUMAN PANCREAS 

 
Human pancreas samples were obtained from the biobank of the San Carlos 

Clinical Hospital in Madrid (protocol authorized by the Ethics Committee for Clinical 

Research #12/202 and accordingly to the Declaration of Helsinki). Human 

pancreas samples were obtained from cadaveric donors using ultrasound imaging 

to collect tissue samples with minimum impact on the deceased body. Human 

pancreata were classified into three groups: non-diabetic population (control), 

T2DM patients treated with oral hypoglycemic agents (T2DM+OHAs) and T2DM 

patients undergoing insulin treatment (T2DM+Insulin). Cases were categorized by 

sex and age. Controls without T2DM diagnosis were matched by age and sex. 

Control, n=9; T2DM+OHAs, n=9; T2DM+insulin, n=8. 

 

Pancreas were fixed with 4% formaldehyde for 48-72 hours and then they were 

embedded into paraffin blocks. 5 μm sections were cut with a microtome. Tissue 

samples were selected using the following inclusion criteria: 

 

-  Patients aged between 40 and 80 years. 

- Control pancreas in which morphologically normal islets are observed, with 

adequate suitable structure and without evidence of deteriorated tissue when 

observed after hematoxylin-eosine staining. 

- Samples must have a minimum number of pancreatic islets by microscopic 

examination (n ≥ 5 per slide). 

 

A description of each subject included in the study is shown in Table 12 in results 

section. 
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5.2.2 HUMAN ISLETS 

 
Human islets were obtained and isolated by Dr. Olle Körsgren lab at the 

University of Uppsala (Sweeden) through the JDRF award 31-2008-416 (ECIT Islet 

for Basic Research program). Human islets were shipped to our laboratory and 

after their arrival, islets were cultured in petri dishes in RPMI 1640 medium 

supplemented with 2 mM L-glutamine, 5.5 mM D-glucose, 10% FBS, 100 U/ml 

penicillin, and 100 μg/ml streptomycin. The islets were maintained at 37 °C with 

5% CO2 in a humidified atmosphere. Detailed information about human islet donors 

are shown in Table 3. 

 

 

Table 3. Demographic data of human islet donors included in the study. 

 

5.3 RODENT PANCREATIC ISLET ISOLATION AND CULTURE 

 
Islet isolation is a process through which pancreas is digested using 

collagenase and islets are separated out of exocrine tissue. Isolation method 

depends on the technique that islets are going to be used for: 

 

- Ficoll (Histopaque®) gradient technique allows to recover most of digested 

islets but the cells will be more stressed out. This method is mainly used for 

obtaining enough islets for western-blot and RT-qPCR. 

 

ID Sex Age BMI HbA1c 
Cause of 

death 
Cold ischaemia 

time (h) 
Isolation 
centre 

H2210 F 55 24 5.6 Unknown 05:37 
Uppsala 

University 

H2235 M 70 23.4 5.8 
Intracerebral 
hemorrhage 

07:21 
Uppsala 

University 
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- Handpicking method requires picking up islets one by one using pipets after 

collagenase digestion. Only part of the islets are recovered, but this technique is 

useful to have islets with optimal function, as for glucose-stimulated insulin 

secretion.  

 
 
5.3.1 ISLET ISOLATION FOR WESTERN-BLOT AND RT-QPCR 

 
Rodents were euthanized by inhaled isoflurane. The connection of the 

pancreatic duct to the intestine was clamped and their pancreata were perfused 

through the pancreatic duct with 3 mL per mouse or 10 mL per rat of a solution of 

1000 IU/ml of Collagenase P (Roche Diagnostics, USA) in cold Hanks solution 

(Sigma-Aldrich, USA). Once perfused, the pancreas was dissected and kept cold 

until digestion. The enzymatic digestion of the tissue was carried out at 37 °C for 

15 minutes in a 50 ml tube. The digestion process was stopped by the addition of 

10 mL of cold Hanks-10% FBS, followed by 3 cycles of agitations and 

centrifugations for 2 minutes at 330 X g in a centrifuge, discarding the supernatants 

with collagenase residues. The sediment was resuspended in the same solution 

and was filtered with a 500 μm steel strainer to eliminate possible remains of 

undigested tissues. The sediment was resuspended in 10 mL of Histopaque® 1077 

(Sigma Aldrich, USA). A density gradient was formed with 10 mL of Hanks solution, 

followed by a centrifugation at 1500 X g for 20 minutes at 10 °C. After this, 

pancreatic islets were located at the interface between the two densities. Islets 

were collected with a micro-pipette and mixed with 30 mL of Hanks solution. The 

remains of Histopaque® were washed by 3 cycles of 30 mL of Hanks solution 

centrifuging 2 minutes at 330 X g. Afterwards islets were cultured in RPMI 1640 

medium supplemented with 2 mM L-glutamine, 5.5 mM D-glucose, 10% FBS, 100 

U/ml penicillin, and 100 μg/ml streptomycin. The islets were maintained at 37 °C 

with 5% CO2 in a humidified atmosphere. 
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5.3.2 ISLET ISOLATION FOR GLUCOSE-STIMULATED INSULIN SECRETION 

 
Rodents were euthanized by inhaled isoflurane. The connection of the 

pancreatic duct to the intestine was clamped and their pancreata were perfused 

with 3 mL of a solution of Collagenase IV (Sigma-Aldrich, USA) in cold isolation 

medium (115 mM NaCl, 5 mM KCl, 10 mM NaHCO3, 1.1 mM MgCl2, 1.2 mM 

NaH2CO4, 2.5 mM CaCl2, 25 mM HEPES, 1% BSA and 5 mM Glucose, pH 7.4) at 

a concentration of 1000 UI / mouse through the pancreatic duct. Once perfused, 

the pancreas was dissected and kept cold until digestion. The enzymatic digestion 

of the tissue was carried out at 37 °C for 10 minutes. The digestion process was 

stopped by the addition of cold isolation medium. After this, supernatants are 

deposited in petri dishes and islets are collected under a microscope by 

handpicking method. Afterwards islets were grown in RPMI 1640 medium 

supplemented with 2 mM L-glutamine, 5.5 mM D-glucose, 10% FBS, 100 U/ml 

penicillin, and 100 μg/ml streptomycin. The islets were maintained at 37 °C with 

5% CO2 in a humidified atmosphere. 

 

5.4  CELL CULTURES 

 

5.4.1 INS-1 E CELL CULTURE 

 
The rat insulinoma cell line, INS-1E derived from the parental cell line INS-1, 

were a gift of Dr. Pierre Maechler (University of Geneva, Switzerland).  This cell 

type has the ability to secrete insulin in response to glucose overload. Cells were 

grown in RPMI 1640 Glutamax (GIBCO, USA), 11 mM Glucose, 10 mM Hepes 

(Invitrogen Ltd, Europe), 0.05 mM β-Mercaptoethanol (Sigma-Aldrich, USA) 1 mM 

Sodium Pyruvate (Invitrogen Ltd, Europe), 5% FBS and 1% Penicillin- 

Streptomycin (Invitrogen Ltd, Europe). Cells were cultured at 37 °C with 5% CO2 

in a humid atmosphere.  
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5.4.2 INS1-E SHRNA-IDE 

 
5.4.2.1 GENERATION OF INS1-E SHRNA-IDE CELL LINE 

 
To study the effect of stable IDE silencing on the cellular phenotype of 

pancreatic beta-cells, we subjected the INS1-E line to transduction with short 

hairpin RNA (shRNA) lentiviral vectors and we generated two INS1-E shRNA-IDE 

lines.  

 

The vector used was pGreenPuro™ shRNA Cloning and Expression Lentivector 

(System Biosciences, USA). The pGreenPuro™ vector is an improved third 

generation of HIV-based expression lentivector. It contains a puromycin resistance 

gene to enable drug selection of target cells stably expressing the shRNA, and a 

copGFP gene, that works as a fluorescent reporter for the transduced cells. A map 

of the pGreenPuro™ vector is shown in Figure 19. 

 

 

Figure 19. Map and features of pGreenPuro™ Vector [196]. 
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First, the design of the target sequences within the coding regions of the IDE 

gene was carried out. These sequences containing both sense and anti-sense 

strand were designed according to manufacturer´s template to form a stem-loop 

structure when transcribed. The sequences of oligonucleotides finally selected are 

shown in Table 4. Sequences were called p18 and p25 since this sequences are 

located in exon 18 and 25 of the rat Ide gen respectively. 

 

 

p25 Forward sequence 

5´- GATCCCCCTTGTGAAGCCACACATTACTTCCTGTCAGATAATGTGTGGCTTCACAAGGGTTTTTG -3´ 

p25 Reverse sequence 

5´- AATTCAAAAACCCTTGTGAAGCCACACATTATCTGACAGGAAGTAATGTGTGGCTTCACAAGGGG-3´ 

 

Table 4. Oligonucleotides sequences designed for the lentiviral vector with initiator, 
sense, loop, antisense and terminator sequences highlighted. 

 

Once oligonucleotides sequences were obtained, second step was cloning 

these sequences into the BamHI/EcoRI sites of the shRNA lentiviral vector 

pGreenPuro™ Vector and the resultant plasmids were screened for insert by PCR. 

Afterwards, we proceeded to the transfection and selection of E. coli DH10α with 

the target shRNA, followed by a purification of shRNA viral vector.  

 

At this point, our plasmids were sequenced by Sanger Sequencing Service 

(Complutense University of Madrid) in order to verify that our sequences were the 

p18 Forward sequence 

5´- GATCCCGGCTGCATATTGAAGCCCTTCTTCCTGTCAGAAAGGGCTTCAATATGCAGCCGTTTTTG-3´ 

p18 Reverse sequence 

5´- AATTCAAAAACGGCTGCATATTGAAGCCCTTTCTGACAGGAAGAAGGGCTTCAATATGCAGCCGG-3´ 



Role of insulin‐degrading enzyme (IDE) in pancreatic beta‐cell function| MATERIAL AND METHODS 
 

67 
 

desired ones. Once the sequences were verified, lentiviral stocks were produced 

by transient cotransfection into the human 293FT cell line. Afterwards, INS1-E cells 

were transduced and subsequently subjected to puromycin selection of stably 

infected cells and after that cultured as mentioned above. 

 

Gene silencing efficiency was assessed by RT-qPCR and western blotting 

procedures as previously described.  

 

5.4.2.2 ELECTRON MICROSCOPY 

 
To analyze vesicle density in INS1-E shRNA-IDE cells, cells were scraped from 

the flask with PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4) 

immediately after performing GSIS and centrifuged for 5 min at 300 X g for pellet 

formation. Pellets were fixed in 2% formaldehyde plus 2% glutaraldehyde in PBS 

for 30 min at 4ºC. Samples were then embedded in 2% agar, post-fixed with 1% 

osmium tetroxide in water, dehydrated through a graded series of ethanol and 

embedded in Epoxy EMbed-812 resin (EMS, Electron Microscopy Sciences). 

Ultrathin sections were obtained with a Leica EM UC7 ultramicrotome, contrasted 

with uranyl acetate and lead citrate, and analyzed using a Tecnai Spirit Twin 120 

kv electron microscope with a CCD Gatan Orius SC200D camera with Digital 

Micrograph™ software. Electron microscopy was performed with the assistance of 

Electron Microscopy Service-NUCLEUS (University of Salamanca). Insulin vesicle 

density was quantified using ImageJ software. 
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5.5 PANCREATIC BETA-CELL TREATMENTS 

 
5.5.1 INSULIN TREATMENT 

 
INS-1 E cells were seeded at a confluence of 200,000 cells per well in 24-well 

plates. Next day, cells were treated in serum-free medium 24 hours before the 

experiment. 24 hours later, they were treated with serum free medium containing 

500 nM human insulin (#I9278, Sigma-Aldrich, USA) at indicated time points: 0, 1, 

2 and 4 hours respectively.  

 

Rat and human islets were plated in cell culture inserts into 24-well plates at a 

density of 400 IEq (islet equivalents) in serum-free medium overnight. 24 hours 

later, islets were treated with serum-free medium containing 500 nM insulin at 

indicated time points: 0, 1, 4 and 8 hours respectively. 

 

5.5.2 1,10-PHENANTROLINE 

 
INS-1 E were treated for 30 min with 2 mM 1,10-Phenantroline (#131377, 

Sigma-Aldrich, USA) previously to the GSIS (glucose-stimulated insulin secretion). 

This product is a metalloprotease inhibitor (Figure 20) which markedly inhibits IDE 

activity [167].  

 

Figure 20. Structure of 1,10-Phenanthroline [167, 197]. 
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5.5.3 NTE-2 

 
Human and rat islets were treated with NTE-2 (0.1 µM), an IDE inhibitor 

provided by Lilly Research Laboratories (Figure 21). Islets were treated with this 

compound for 1h at 37ºC in complete medium before the GSIS [191].  

 

Figure 21. Structure of NTE-2 [191]. 

 

5.6 HISTOLOGICAL STUDIES  

 
5.6.1 PANCREAS DISSECTION, FIXATION AND PARAFFIN EMBEDDING  

 
For the extraction of pancreas, mice were euthanized by inhaled isoflurane. We 

accessed by latero-longitudinal incision to the abdominal cavity of the animal and 

proceeded to the extraction of the pancreas. Once the pancreas was dissected, it 

was washed with PBS and weighed on a precision scale. After that, it was 

introduced in a histological cassette and immersed in 10% neutral buffer formalin 

solution (Bio-Optica, Milano, Italy) overnight. After this fixation time, tissue was 

dehydrated, immersed in successive solutions of ethanol (Dávila Villalobos S.L., 

Spain) of increasing concentration from 70% to 100% dilution and finally to 

absolute xylol (PanReac AppliChem, Germany) and then embedded into paraffin 
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blocks. Once hardened, five- micrometers pancreas serial sections were obtained 

from these blocks. Sections were incubated at 56 °C overnight to favor the 

adherence of the sample to the slides. Polysine treated slides were preferably used 

to guarantee tissue adhesion. 

 

5.6.2 PANCREATIC ISLET FIXATION AND PARAFFIN EMBEDDING 

 
After specific treatments, pancreatic islets were fixed with 10% neutral buffer 

formalin for 1 h. Small blocks of islets were prepared with Histogel (Thermo 

Scientific, USA) together with small spheres of Affigel (BIO-RAD, USA) to better 

identify where the islets are in the paraffin blocks. Islets blocks were treated in a 

gradient of alcohols to be subsequently embedded in paraffin. 5 µm sections were 

obtained. Sections were incubated at 56 °C overnight to favor the adherence of the 

sample to the slide. Polysine treated slides were preferably used to guarantee 

tissue adhesion. 

 

5.6.3 IMMUNOFLUORESCENCE AND IMMUNOHISTOCHEMISTRY 

 
To study the expression of specific proteins in pancreatic cells, paraffin was 

removed from pancreas and islets paraffin slides by immersing them in xylol and 

then in a battery of ethanol solutions of decreasing concentration from 100% to 

70% in H20. After several washes with PBS, the antigen was unmasked with 

sodium citrate solution (10 mM citric acid – pH 6) in a vegetable steamer at 

maximum power for 20 min. Once they reached room temperature, they were 

washed with PBS for 5 minutes, three times. Then, to avoid non-specific binding of 

the antibody, samples were blocked for one hour with a blocking solution (PBS, 

2% normal goat serum (Dako, Germany), 1% BSA (Sigma-Aldrich, USA) and 

incubated overnight at 4 °C with the corresponding primary antibodies in blocking 

solution. Primary antibodies used are summarized in Table 5. 
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Antibody Supplier Reference Dilution Species 

Insulin Abcam #7842 1:2000 Guinea Pig 

Glucagon Abcam #10988 1:2000 Mouse 

IDE Millipore #9210 1:2000 Rabbit 

GLUT1 Millipore #07-1401 1:500 Rabbit 

GLUT2 Millipore #07-1402 1:500 Rabbit 

 

Table 5. List of primary antibodies used for immunofluorescence. 

 

The next day, after washing three times with PBS, it was blocked for 10 minutes 

at room temperature. The block was then removed and incubated for 30 minutes 

with the corresponding secondary antibodies, according to Table 6. 

 

Table 6. List of secondary antibodies used for immunofluorescence. 

 

Once washed three times with PBS, the sample was mounted with a coverslip 

and with histology mounting medium Fluoroshield with DAPI (Sigma-Aldrich, USA). 

 

Antibody Supplier Reference Dilution Species 

Anti-Guinea Pig 

Alexa 488 
Invitrogen #A11073 1:200 Goat 

Anti-Mouse 

Alexa 647 
Invitrogen #A21236 1:300 Goat 

Anti-Rabbit 

Alexa 594 
Invitrogen #A11012 1:200 Goat 

Anti-Rabbit Ig-G 

HRP 

Jackson 

Inmuno 
#711-035-152 1:12000 Rabbit 

Anti-Mouse Ig-G 

HRP 

GE 

Healthcare 
#NA9310 1:2000 Mouse 
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Fluorescence images of pancreas sections and INS1-E cells were acquired 

using a NIKON Eclipse 90i microscope associated with CCD NIKON camera 161 

(DSRi1), using a 20X or 40X objective. Fluorescence images of islets sections 

were acquired in non-saturated conditions using Confocal Leica TCS SP5 

microscope, using a 63X oil immersion objective. 

 

The number and area of pancreatic beta- or alpha-cells and/or IDE-positive 

cells; and fluorescence intensity were quantified using ImageJ software (NIH, 

USA). 

 

5.6.4 BETA- AND ALPHA-CELL AREA 

 
For the evaluation of the pancreatic beta- and alpha-cell area, paraffin-

embedded pancreas from 6 months old mice were sectioned into 5-μm-thick slices. 

Slices were collected from 4 different areas of the pancreas, separated by at least 

100 μm. All the islets located in each section of pancreas were analyzed, 

representing about 100 islets analyzed per mouse. To observe alpha and beta-

cells, immunohistochemistry was performed as mentioned above. HRP-linked 

secondary antibodies were used and diaminobenzidine (DAB) (Sigma-Aldrich, 

USA) was the reagent for antigen detection. Finally, sections were counterstained 

with hematoxylin (Bio-Optica, Italy).  Images of the sections were acquired using a 

NIKON Eclipse 90i microscope associated with CCD NIKON camera (DSRi1), 

using a 20X objective. Beta- and alpha-cell area were calculated using ImageJ 

software (NIH, USA). 
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5.7 BETA-CELL FUNCTION 

 
5.7.1 GLUCOSE-STIMULATED INSULIN SECRETION  

 
Beta-cell function from our models were evaluated in-vitro by glucose stimulated 

insulin secretion technique.  

 

- INS1-E cell line 

 

INS1-E cells were seeded on cell culture 24-well plates at a density of 200,000 

cells per well for 72 hours. Cells were changed to glucose-free culture medium 2 

hours before glucose challenge. Cells were then washed twice and preincubated 

for 30 min at 37ºC in glucose-free HEPES balanced salt solution (HBSS) (114 mM 

NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.16 mM MgSO4, 20 mM HEPES, 2.5 mM 

CaCl2, 25.5 mM NaHCO3, and 0.2% bovine serum albumin [essentially fatty acid 

free], pH 7.2). Next, cells were washed once with glucose-free HBSS and then, 

insulin secretion was stimulated by using static incubation for 30 min period in 1 ml 

of the same buffer containing 2 or 16 mM glucose respectively. These experiments 

were always performed in triplicates. 6 wells were used per condition, 3 wells were 

treated with 2 mM glucose and 3 wells treated with 16 mM glucose. Secreted 

insulin was measured by Rat Insulin ELISA (Mercodia AB, Sweden) (Table 7). 

 

- Human islets 

 

Human islets were plated on cell culture inserts (#PIXP01250, Millipore, USA) 

onto 24-well plates at a density of 20 IEq (islet equivalent: a pancreatic islet with a 

diameter of 150 μm) groups in HBSS. Islets were washed twice in 1 ml HBSS with 

2.2 mM glucose followed by 10 minutes of preincubation in 2 ml of the same buffer. 

Insulin secretion was stimulated by using static incubation for 30 minutes in 1 ml 
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of the same buffer, followed by 30 minutes of incubation in HBSS containing 22 

mM glucose. Cell culture supernatants were used to measure secreted insulin, 

proinsulin using Insulin/Proinsulin ELISA (Mercodia AB, Sweden) (Table 7). 

 

- Rodent islets 

 

Rodent islets were isolated by hand-picking method. Once isolated, islets were 

allowed to recover for 2 hours at 37 °C and 5% CO2 in a humidified atmosphere. 

To promote insulin secretion, groups of 5 IEq plated on cell culture inserts were 

incubated for one hour in 500 µl of 3 mM glucose Krebs-Ringer buffer (140 mM 

NaCl, 4.5 mM KCl, 1 mM MgCl2, 25 mM HEPES, 2.5 mM CaCl2, 0.1% BSA) for 

one hour, followed by 500 µl of 16 mM glucose Krebs-Ringer buffer for one hour. 

After this, hormone secretion in cell culture medium was analyzed by 

Insulin/Proinsulin ELISA (Mercodia AB, Sweden) (Table 7).  

 

5.7.2 INTRACELLULAR INSULIN CONTENT 

 
To analyze the INS1-E cell line intracellular insulin content, cells were treated 

with 1 ml of acid ethanol (1.5% HCl in 70% EtOH) per 200,000 cells for 1 hour at 

4ºC prior to collection. 

 

To analyze islets intracellular content, 100 µl of acid ethanol was added per IEq. 

They were incubated for 1 hour at 4 ºC prior to intracellular content collection. 

Afterwards, samples were analyzed by ELISA for the determination of 

hormones content as previously explained (Table 7). 
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5.8 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) 

 
To determine hormone levels in plasma, cell culture supernatants from GSIS or 

intracellular hormone concentration, we used enzyme-linked immunosorbent 

assay (ELISA). ELISA kits used in this study are “sandwich” type, which means 

that this assay is composed by two highly specific antibodies that recognize two 

different epitopes in the same protein, providing high effectiveness and sensitivity 

in the recognition of the desired protein.  

 
In our assays, wells are pre-coated with a first anti-antigen antibody. The 

sample containing the antigen is deposited inside these wells together with 

peroxidase-conjugated antibody and incubated between 2 and 22 hours depending 

on the kit. Thus, each molecule of antigen will be bound to an antibody in the base 

that retains it and a second antibody that label it. After that, wells are washed 

(between 3 and 6 times depending on the kit) to remove unbound sample and 

enzyme labelled antibody. Then, the bound conjugate is detected by reaction with 

3,3'-5,5'-tetramethylbenzidine (TMB) (incubation between 15 and 30 minutes 

depending on the kit). The reaction is finally stopped by the addition of an acid stop 

solution, giving a colorimetric endpoint that is read spectrophotometrically at 450 

nm (HEALES microplate reader, China). This process is summarized in Figure 22. 

Figure 22. Illustration of an ELISA sandwich technique. Retrieved from LifeSpan 
Bioscience, Inc. 
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ELISA kits used in this study have been summarized in Table 7. 

 

 

 Table 7. List of hormones analyzed and type of ELISA that was used. 

 

5.9 WESTERN-BLOTTING 

Pancreatic islets and INS1-E cells were homogenized in lysis buffer (125 mM 

Tris-Cl pH 6.8, 2% SDS, 1 mM DTT) supplemented with protease and phospathase 

cocktail inhibitors (Sigma-Aldrich, USA). Samples were briefly sonicated and 

protein content was quantified by the Micro BCA Kit (Thermo Scientific, USA). 

Protein extracts were mixed with LSB (Laemmli Sample Buffer: 60 mM Tris-Cl pH 

6.8, 2% SDS, 10% glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) and 

heated at 100 °C for 5 minutes. 20 μg of protein samples were loaded per well. 

Proteins samples were separated by their molecular weight using 7.5 % 

polyacrylamide gels under denaturing conditions (SDS-PAGE). Gel 

electrophoresis was carried out at 150 V in electrophoresis buffer (Biorad 

Laboratories, USA) and then transferred to PDVF Immobilon-P membranes 

(Millipore, USA) at 30V overnight in transfer buffer (Biorad Laboratories, USA) at 

Protein Source ELISA  

Insulin 

Human islet 
supernatant/Intracellular 

MERCODIA INSULIN ELISA 
#10-1113-01 

Mouse islet 
supernatant/Intracellular 

MERCODIA MOUSE INSULIN ELISA 
#10-1247-01 

INS1-E / Rat islets 
supernatant/Intracellular 

MERCODIA RAT INSULIN ELISA  
#10-1250-01 

Mouse plasma 
MERCODIA ULTRASENSITIVE 

MOUSE INSULIN ELISA 
#10-1249-01 

C-peptide Mouse plasma 
ALPCO MOUSE C-PEPTIDE ELISA  

#80-CPTMS-E01 

Proinsulin 

Human islet 
supernatant/Intracellular 

MERCODIA PROINSULIN ELISA 
#10-1118-01 

Mouse islet 
supernatant/Intracellular 

MERCODIA RAT/MOUSE 
PROINSULIN ELISA 

#10-1232-01 
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4°C. Transferred membranes were blocked for 1 hour at room temperature with 

blocking solution (PBS-0.1% Tween 20 (Sigma-Aldrich, USA) and 5% not-fat dry 

milk). Blots were incubated subsequently for 1 hour at room temperature for the 

appropriate antibody in 1:10 diluted blocking solution. Primary antibodies used are 

summarized in Table 8. 

 
Antibody Supplier Reference Dilution Species Size 

IDE  Millipore #9210 1:15000 Rabbit 110 kDa 

Actin Ab-5 Bioscience #612656 1:8000 Mouse 42 kDa 

 

Table 8. List of primary antibodies used for Western-Blot. 

 
Afterwards, membranes were washed 3 times for 10 minutes with PBS-0.1% 

Tween and incubated with corresponding secondary antibodies conjugated with 

peroxidase in 1:10 diluted blocking solution for 30 minutes at room temperature. 

Secondary antibodies used are schematized in Table 9.  

 
Antibody Supplier Reference Dilution Species 

Anti-Rabbit Ig-G 

HRP 

Jackson 

Inmuno 
#711-035-152 1:12000 Rabbit 

Anti-Mouse Ig-G 

HRP 

GE 

Healthcare 
#NA9310 1:2000 Mouse 

 

Table 9. List of secondary antibodies used for Western-Blot. 
 

Membranes were washed 3 times with PBS-0.1% Tween and bound peroxidase 

activity was visualized by the enhanced chemiluminescence kit Immun-Star 

WesternC (Bio-Rad, EEUU) and Super RX-N X-Ray films (Fujifilm, Japan) to 

capture de signal. ImageJ software (NIH, USA) was used for processing and 

analysis of band densitometry. Results were normalized to control values on each 

membrane. 
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5.10 RNA ISOLATION, CDNA SYNTHESIS AND RT-QPCR 

 

Total RNA isolation from tissues of B-IDE-KO mice and INS1-E cells were 

obtained using Trizol reagent (Invitrogen Life Technologies, USA). Tissues and 

cells were homogenized in Trizol reagent and centrifuged 10 min at 2800 X g to 

remove undissolved samples. Next, chloroform (PanReac AppliChem, Germany) 

is added to the supernatant to extract RNA and centrifuged for 15 minutes at 2800 

X g, which causes the formation of two phases by density difference: an organic 

phenolic phase containing DNA and denatured protein residues, and the upper 

aqueous phase containing RNA. Phase containing RNA is transferred to a new 

tube and added isopropanol (PanReac AppliChem, Germany) and centrifuged 10 

min at 2800 X g to precipitate the RNA. After that, isopropanol is discarded and the 

pellet is washed in 75% ethanol and allowed to dry. Finally, the pellet containing 

RNA is resuspended in H2O DNAse RNAse free and mRNA levels were measured 

with NanoDrop™ N-D1000.  

 

Once RNA isolation was completed, DNA residues were removed by RapidOut 

DNA removal kit (Thermo-Fisher Scientific, USA) to avoid amplification out of 

genomic DNA. First strand cDNA was synthesized with iScript cDNA Synthesis Kit 

(Bio Rad, USA), which is a highly sensitive reagent optimized for reliable cDNA 

synthesis for gene expression analysis using real-time reverse transcription 

quantitative PCR (RT-qPCR).  

 

The reverse transcription reaction was incubated in a thermal cycler Applied 

Biosystems™ 2720 Thermal Cycler. mRNA levels were determined by RT-qPCR 

with SYBR Green assays or TaqMan® Probes (Applied Biosystems, USA), two 

techniques that use different detection systems schematized in Figure 23 to 

perform a quantitative measurement of the gene expression. 
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Figure 23. Comparison of detection workflows based on TaqMan and SYBR Green. 
Retrieved from Thermo Fisher Scientific. 

 

A list SYBR Green assays or TaqMan® Probes used are shown in Table 10 and 

Table 11. These reactions were performed in a Rotor-Gene 3000 thermocycler 

(Corbett Life Science, USA). Data were normalized with the housekeeping gene 

RPL18 and relative expression was quantified using the comparative 2-∆∆CT 

method. 
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Gene ID Description TaqMan® Probe 

Ide Insulin-degrading enzyme Mm00473077_m1 

Ins1 Insulin I Mm01259683_g1 

Ins2 Insulin II Mm00731595_gH 

Nkx2-2 NK2 homeobox 2 Mm00839794_m1 

Nkx6-1 NK6 homeobox 1 Mm00454961_m1 

Pax6 Paired box 6 Mm00443081_m1 

Pdx1 
Pancreatic and duodenal 

 homeobox 1 
Mm00435565_m1 

Neurod1 Neurogenic differentiation 1 Mm01280117_m1 

Mafb 
v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein B 
Mm00627481_s1 

Ucn3 Urocortin 3 Mm00453206_s1 

Syt4 Synaptotagmin IV Mm01157571_m1 

Slc2a1 
Solute carrier family 2 (facilitated glucose 

transporter), member 1 
Mm00441480_m1 

Slc2a2 
Solute carrier family 2 (facilitated glucose 

transporter), member 2 
Mm00446229_m1 

Slc2a3 
Solute carrier family 2 (facilitated glucose 

transporter), member 3 
Mm00441483_m1 

Gck Glucokinase Mm00439129_m1 

Kcnj11 
Potassium voltage-gated channel 

subfamily J member 11 
Mm00440050_s1 

Abcc8 
ATP binding cassette subfamily C 

member 8 
Mm00803450_m1 

Cacna1a 
Calcium channel, voltage-dependent, 

P/Q type, alpha 1A subunit 
Mm00432190_m1 

G6pc Glucose-6-phosphatase catalytic subunit Mm00839363_m1 

Pck1 
Phosphoenolpyruvate  

carboxykinase 1 
Mm01247058_m1 

Table 10. List of TaqMan probes used. 
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Table 11. List of SYBR Green assays used. 

 

5.11 STATISTICAL ANALYSIS 

 
Statistical analysis of data was performed using GraphPad Prism Software 6.0 

(CA, USA). Data are represented as the mean +/- the standard error of the media. 

To check the normality of distributions, we used Kolmogorov-Smirnov test. To 

analyze statistical differences between two sets of data we use Student's t-test 

(parametric data) or Mann–Whitney U test (non-parametric data). Comparisons 

between more than two sets of data were done using one-way ANOVA or two-way 

ANOVA (two independent variables) for parametric data and Kruskal-Wallis test or 

Friedman´s test (two independent variables) for non-parametric data. Post-hoc 

analyses were done using Bonferroni test (parametric data) or Durnett (non-

parametric data). Statistically differences were considered significant at p<0.05. 

 

 

 

 

Gene ID Description SYBR Green assay 

Mafa 
v-maf musculoaponeurotic fibrosarcoma 

oncogene family, protein A 

F: 5´-GAGGAGGTCATCCGACTGAAA-3´ 

R: 5´-GCACTTCTCGCTCTCCAGAAT-3´ 

Pcsk1/3 
Proprotein convertase subtilisin/kexin 

type 1 
F: 5’-CTGGCCAATGGGTCGTACTC-3’ 

R: 5’-TGGAGGCAAACCCAAATCTTAC- 3’ 

Pcsk2 
Proprotein convertase subtilisin/kexin 

type 2 

F: 5’-AGGCAGCTGGCGTGTTTG-3’ 

R: 5’-GAAGCTGGTTCCGCTTGGA-3’ 
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6. RESULTS 

Part 1. IDE expression in pancreatic islet cells 

1.1 IDE IS EXPRESSED IN RODENTS AND HUMANS PANCREATIC ALPHA- AND 

BETA-CELLS  
 

To explore whether IDE is expressed in pancreatic alpha- and beta-cells, we 

performed IDE immunofluorescence (IF) on paraffin-embedded pancreas sections 

of humans and mice. We validated our antibody for IDE immunohistochemistry 

using   Total-IDE-KO mice pancreata [193]; where no staining was observed. 

Pancreas staining revealed that IDE is expressed in both alpha- and beta-cells of 

wild type mice and human pancreata (Figure 24).  

 

Figure 24  Localization of IDE in mouse and human pancreatic islet cells. 
Representative images acquired by confocal microscopy with 20X objective from Total-
IDE-KO mice, wild-type (WT) mice and human pancreata. Insulin (green), glucagon (pink), 
IDE (red) and DAPI (blue). Scale bar: 50μm. 
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Interestingly, IDE staining in alpha-cells was more intense than in beta-cells or 

any other cell type in the pancreatic islet, indicating a higher expression of IDE in 

alpha-cells. 

 

1.2 TYPE-2 DIABETIC HUMAN ISLETS SHOW IMPAIRED BETA-CELL TO ALPHA-
CELL RATIO 

 

In order to clarify if IDE expression varies in pathophysiological conditions, we 

examined IDE expression pattern in human pancreas samples. We obtained 

paraffin-embedded sections of human cadaveric donors pancreata from three 

different populations:  

 
 Control patients 

 T2DM patients treated with oral antidiabetic agents (OHAs)  

 T2DM patients treated with exogenous insulin.  

 

These human samples were obtained from the Biobank of San Carlos Clinical 

Hospital (Madrid, Spain). Detailed information about human donors are shown in 

Table 12. 
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Table 12: Demographic data of pancreas donors included in the study. Control = non-
diabetic donor; T2DM+OHAs = type-2 diabetic donor treated with oral anti-diabetic agents; 
T2DM+Insulin = type-2 diabetic donor treated with insulin 

 

Prior to the study of IDE protein levels in these samples, we characterized 

pancreatic alpha- and beta-cell populations of control and T2DM patients. To this 

end, a histomorphometric study was conducted using two different techniques: 

quantification of positive alpha- and beta-cells per islet; and quantification of alpha- 

and beta-cell area per islet area.  

 

For detection of alpha- and beta-cell populations, an immunostaining was 

performed with antibodies against insulin and glucagon (Figure 25). 

 ID Sex Age Treatment Cause of death 
Control HC10 M 76   Respiratory insufficiency 

 HC30 M 40   Septic shock  
 HC23 M 54   Multiorgan failure 

 HC 25 M 48   Multiorgan failure 
 CM27 F 42   Unknown 
 CM15 F 75   Status epilepticus 

 CM22 F 52   Adult respiratory distress syndrome 

 CM28 F 40   Cardiogenic shock 
 CM21 F 63   Septic shock  

T2DM+OHAs HA11 M 63 OHA (Metformin) Cardiogenic shock  

 HA15 M 65 OHA (unknown) Septic shock  
 HA16 M 65 OHA (unknown) Septic shock  
 HA21 M 59 OHA (unknown) Unknown  

 HA7 M 78 OHA (Metformin) Unknown 

 MA9 F 76 OHA (Metformin) Cerebral haemorrhage 

 MA13 F 65 OHA (Metformin) Massive pulmonary embolism 

 MA19 F 58 OHA (Metformin) Post surgery shock 
 MA16 F 69 OHA (unknown) Unknown 

T2DM+Insuli
n HI2 M 77 Insulin (unknown)  

Septic shock 

 HI16 M 60 Insulin (NPH) Cardiogenic shock  

 HI15 M 67 Insulin (Mixtard 30) Acute Pulmonary Edema 

 HI18 M 44 Insulin (unknown)  Septic shock 
 MI12 F 63 Insulin (unknown)  Urological sepsis  
 MI9 F 71 Insulin (Lantus) Pulmonary aspergillosis  

 MI6 F 75 Insulin (NPH) Cardiogenic shock  
 MI5 F 72 Insulin (unknown)  Respiratory insufficiency 
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Figure 25: Beta- and alpha-cells distribution in human pancreata. Representative 
images acquired by fluorescence microscopy with 20X objective from control = non-diabetic 
donor; T2DM = type-2 diabetic donor; T2DM+OHAs = type-2 diabetic donor treated with 
oral anti-diabetic agents; T2DM+Insulin = type-2 diabetic donor treated with insulin. A. 
Insulin staining (green) and DAPI (blue). B. Glucagon staining (pink) and DAPI (blue). Scale 
bar: 50 μm 

 

Quantification of percentage of beta-cell number of cells per islet cells did not 

show any differences when comparing T2DM population to controls. Neither when 

T2DM population was together (Figure 26 A) nor when it was separated in to 

T2DM+OHAs and T2DM+Insulin groups (Figure 26 B). Pancreas from T2DM 

population showed no difference in beta-cell area when compared to control 

population when considering T2DM patients all together (Figure 26 C). In contrast, 

a significant 40% decrease was observed in beta-cell area when T2DM+OHAs and 

T2DM+Insulin data were separated and insulin-treated T2DM patients were 

compared to control patients (Figure 26 D). 
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Figure 26: Beta-cells quantification in human pancreata. Percentage of insulin-positive 
cells per total islet cell number in controls compared to (A) all T2DM patients or (B) T2DM 
patients separated by treatment condition. Beta-cell area/islet area in control compared to 
(C) all T2DM patients or (D) T2DM patients separated by treatment condition. n=9 control; 
n=9 T2DM+OHA; n=8 T2DM+Insulin.Data are presented as mean ± SEM. *p< 0.05 versus 
control by one-way ANOVA. 

 

On the other hand, regarding to alpha cell population, we observed that T2DM 

pancreata of both the T2DM+OHAs and the T2DM+Insulin groups exhibited a 

significant 30% increase in alpha-cell numbers, but they did not show differences 

in alpha-cell area (Figure 27). These results are pointing to an increased 

population of glucagon-positive cells in T2DM patients. 
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Figure 27: Alpha-cells quantification in human pancreata. Percentage of glucagon-
positive cells per total islet cell number in controls compared to (A) all T2DM patients or 
(B) T2DM patients separated by treatment condition. Alpha-cell area/islet area in controls 
compared to (C) all T2DM patients or (D) T2DM patients separated by treatment condition. 
n=9 control; n=9 T2DM+OHA; n=8 T2DM+Insulin.Data are presented as mean ± SEM. *p< 
0.05 versus control by Student´s t test or by one-way ANOVA.  

 

Additionally, we calculated the ratio of beta- to alpha-cells using both types of 

quantification (cell number and area). Pancreas from T2DM patients showed a 

50% reduction in beta-/alpha-cell ratio by both methods of quantification (Figure 

28). 
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Figure 28: Ratio beta-/alpha-cells quantification in human pancreata. Ratio of beta- 
per alpha-cell number in controls compared to (A) all T2DM patients or (B) T2DM patients 
separated by treatment condition. Ratio beta- per alpha-cell area in controls compared to 
(C) all T2DM patients or (D) T2DM patients separated by treatment condition. n=9 control; 
n=9 T2DM+OHA; n=8 T2DM+Insulin. Data are presented as mean ± SEM. *p< 0.05 versus 
control by Student´s t test or by one-way ANOVA. 

 

Taken together, these data indicate an impaired distribution of pancreatic alpha- 

and beta-cells during the course of T2DM, which has been previously described in 

the literature [27, 198]. These results emphasize the relevance of increased 

glucagon-producing cells in type 2 diabetes pathophysiology. 
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1.3 IDE PROTEIN LEVELS ARE DOWN-REGULATED IN ISLETS OF T2DM 

PATIENTS TREATED WITH OHAS AND UP-REGULATED IN T2DM PATIENTS 

TREATED WITH INSULIN 

 
In order to measure IDE expression in pathophysiological stages, we analyzed 

IDE protein levels in pancreas samples from T2DM patients treated with OHAs or 

with insulin treatment, and compared them to control individuals. 

 

For detection of IDE protein in alpha- and beta-cell populations, a double 

staining was performed using antibodies against IDE + insulin or IDE + glucagon 

as shown in Figure 29. 

 

Figure 29: IDE staining in human endocrine pancreata. Representative images 
acquired by fluorescence microscopy with 20X objective of IDE/insulin (green/pink) and 
IDE/glucagon staining (red/pink).  
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IDE integrated intensity showed a marked increase in IDE protein levels in 

alpha-area versus beta-area (Figure 30). These results are in good agreement 

with results obtained from rodents in Figure 24, demonstrating that IDE expression 

is higher in alpha- than in beta-cells.  

 

Figure 30: IDE expression in human endocrine pancreata. Comparison of IDE 
integrated density by beta-cell area and IDE integrated density by alpha-cell area. n=9 
control; n=9 T2DM+OHA; n=8 T2DM+Insulin. Data are presented as mean ± SEM. *p< 
0.05 versus beta-area; $p< 0.05 versus control by one-way ANOVA.   

 

In regard to IDE expression in diabetic pancreas, when all T2DM patients were 

compared to controls, no differences were detected (Figure 31 A). Interestingly, 

two patterns of expression were observed depending upon the specific type of 

pharmacological treatment: beta-cells from T2DM+OHAs patients showed a 

significant 40% decrease in IDE protein level compared to control subjects. 

Unexpectedly, beta-cells from T2DM+insulin subjects exhibited 40% increased 

IDE level as compared to T2DM+OHAs, reaching similar levels to control subjects. 

(Figure 31 B). 
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Figure 31: IDE expression in human beta-cell area. IDE integrated density per insulin 
area in controls compared to (A) all T2DM patients or (B) T2DM patients separated by 
treatment condition. n=9 control; n=9 T2DM+OHA; n=8 T2DM+Insulin. Data are presented 
as mean ± SEM. *p< 0.05 versus control; #p< 0.05 versus T2DM+OHA by one-way ANOVA. 

 

In contrast, no significant changes were observed in IDE expression in alpha- 

cells of T2DM groups versus the control group neither when compared as a 

whole group (T2DM) (Figure 32 A) or when separated in two populations 

(T2DM+OHAs and T2DM+Insulin) (Figure 32 B).  

 

Figure 32: IDE expression in human alpha-cell area. IDE integrated density per 
glucagon area in controls compared to (A) all T2DM patients or (B) T2DM patients 
separated by treatment condition. n=9 control; n=9 T2DM+OHA; n=8 T2DM+Insulin. Data 
are presented as mean ± SEM.  
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These results suggest that diabetes mellitus can decrease IDE protein levels in 

beta-cells, but under insulin treatment IDE is upregulated returning to control 

levels.  

 

1.4 IDE PROTEIN LEVELS ARE AUGMENTED IN ISLET-CELLS OF PRECLINICAL 

MODELS OF HYPERINSULINEMIA 

 

To clarify whether IDE expression is altered in diabetes-related models with 

increased insulin levels, we analyzed the expression pattern of this protein in two 

preclinical models of hyperinsulinemia: db/db mice (Insulin: 5.0 ng/mL vs. control 

0.5 ng/mL, *p<0.05) and HFD mice (Insulin: 16.9 ng/mL vs. SD 1.0 ng/mL, 

*p<0.05).  

 

To this end, IDE protein was detected by immunofluorescence. Co-staining with 

insulin or glucagon was used to indicate IDE localization, on pancreas sections of 

db/db and HFD mice and their respective controls. To quantify IDE expression level 

per endocrine cell type area, IDE-integrated intensity was measured, and it was 

divided by glucagon or insulin area respectively. 

 

No significant changes were detected in IDE protein level comparing db/db 

versus control mice. However, a 52% increase in IDE expression was observed in 

alpha-cells in respect to beta-cells of wild type mice (p=0.05) (Figure 33). 
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Figure 33: IDE expression in preclinical models of diabetes and obesity: db/db mice. 
A. IDE integrated density per insulin or glucagon area was measured in pancreas of wild-
type (+/+) or db/db mice. B. Representative images acquired by fluorescence microscopy 
with 20X objective from +/+ mice. Insulin/Glucagon (green) and IDE (red).  n=18 +/+; n=8 
db/db. Data are presented as mean ± SEM. 
 

 
Similarly, IDE integrated intensity of pancreas from HFD mice exhibited similar 

levels compared to control animals fed with standard diet (SD) (Figure 34). Of 

note, IDE level is clearly augmented in alpha- compared to beta-cell population. 

This result is clearly similar to what we previously reported in db/db mice (Figure 

33). 
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Figure 34: IDE expression in preclinical models of diabetes and obesity: HFD mice. 
A. IDE integrated density per insulin and glucagon area was measured in pancreas of mice 
fed with standard diet (SD) or high-fat diet (HFD). B. Representative images acquired by 
fluorescence microscopy with 20X objective from SD mice. Insulin/Glucagon (green) and 
IDE (red).  n=8 SD; n=6 HFD. Data are presented as mean ± SEM. *p< 0.05 versus beta-
area by two-way ANOVA. 
 
 

Interestingly, when pancreatic islets were isolated of HFD and SD mice and IDE 

expression analyzed by Western-Blot, we detected a significant 30% increase in 

IDE protein level in HFD isolated islets compared to SD islets (Figure 35).  
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Figure 35: IDE expression in preclinical models of diabetes and obesity. A. 
Representative IDE western-blot of SD and HFD islets. B. Quantification of IDE western-
blot. n=3 SD; n=5 HFD. Data are presented as mean ± SEM. *p< 0.05 versus SD by 
Student´s t test. 

 

These findings nicely correlate with the potential effect of insulin on IDE 

expression that we observed in T2DM patients treated with insulin (Figure 31 B).  

In summary, these data suggest that hyperinsulinemia stimulates IDE protein 

levels in pancreatic islet cells.  

 

1.5 INSULIN TREATMENT AUGMENTS IDE PROTEIN LEVELS IN INS1-E AND 

ISLET CELLS IN VITRO 

 

In view of our results, we decided to explore the potential influence of insulin 

treatment on IDE levels in pancreatic cells in vitro and ex vivo. 

 

First, we cultured INS1-E cells and treated them with 500 nM insulin for 1, 2 or 

4 hours. For detection of IDE and insulin, double-staining was performed on fixed 

cells (Figure 36). 
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Figure 36: IDE staining in INS1-E cells after insulin treatment. Representative pictures 
acquired by fluorescence microscopy with 20X objective of insulin (green) and IDE staining 
(red) in INS1-E cells stimulated with insulin. Scale bar: 50μm. 
 

Afterwards, IDE protein levels were measured by quantification of 

immunostaining intensity. IDE level in INS1-E cells was found to be significantly 

increased by 40% after 4 h of insulin treatment (Figure 37). 

Figure 37: IDE expression in INS1-E cells after insulin treatment. IDE integrated 
density per insulin area in INS1-E cells stimulated with insulin. n=3 different experiments. 
Data are presented as mean ± SEM. *p< 0.05 versus control by one-way ANOVA.   
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Likewise, isolated rat islets in culture were treated for 4 hours with 500 nM 

insulin. Islets were fixed and paraffin embedded. Sections of these preparation 

were double stained with IDE + insulin or IDE + glucagon (Figure 38). 

Figure 38: IDE staining in rat islets after insulin treatment. Representative pictures of 
insulin (green), glucagon (pink), IDE (red) and cell nuclei (blue) in rat islets treated with 500 
nM insulin (Insulin) or not (Control). Scale bar: 25μm. 

 

In the same way, quantification of IDE immunostaining intensity showed an 

increase of 60% of IDE expression in insulin-treated beta-cells compared to non-

treated control (Figure 39). 

Figure 39: IDE expression in rat islets after insulin treatment. A. IDE integrated density 
per insulin area in rat islets stimulated with insulin. n= 18-21. B. IDE integrated density per 
glucagon area in rat islets stimulated with insulin. n= 12-14. Data are presented as mean 
± SEM. *p< 0.05 versus control by Student's t test. 
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In addition, we had the opportunity to observe the influence of insulin treatment 

on IDE levels in two preparations of isolated human islets. Pancreatic islets from 

healthy human donors were treated with 500 nM insulin at different time points. In 

this case, the expression of IDE was analyzed by western-blot. As can be observed 

in Figure 40, insulin treatment triggers an increase of IDE expression at 4 hours.  

 

 
Figure 40: IDE expression in human islets after insulin treatment.  Representative 
western-blot of IDE expression in human islets no stimulated (Ctrl) or stimulated with 500 
nM insulin for 1 to 8 hours. n= 2 different human islet preparations. 
 
 

These results are in accordance with findings observed in INS1-E cell line and 

rat islets after insulin treatment. 

 

In summary, we have demonstrated that insulin increases IDE protein levels in 

pancreatic beta-cells. These results support that insulin is responsible for IDE 

upregulation observed in insulin-treated diabetic patients versus OHAs-treated 

patients (Figure 31 B). 
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Part 2. Role of IDE in pancreatic beta-cell function 

 
2.1 TRANSIENT PHARMACOLOGICAL INHIBITION OF IDE LEADS TO IMPAIRED 

BETA-CELL FUNCTION 

 
In view of our previous results, we hypothesized that IDE protein levels play a 

key role in the physiology of the beta-cell.  

 
To deepen the knowledge of IDE function, we tested the impact of 

pharmacological inhibition of IDE activity in pancreatic beta-cells. For this purpose, 

the activity of IDE was decreased by pharmacological IDE inhibitors (1,10-

Phenantroline and NTE-2) in different beta-cell study models. 1,10-Phenantroline 

is a non-specific metalloprotease inhibitor [167], meanwhile NTE-2 is an IDE-

specific inhibitor designed by Lilly Research Laboratories. NTE-2 binds to an 

exosite of IDE to inhibit its proteolytic activity [191].  

 
INS1-E cells were treated with 1,10-Phenantroline and its functionality was 

evaluated using GSIS. IDE inhibition showed impaired beta-cell function as 

measured by GSIS (Figure 41).  

Figure 41: In vitro effects of transient IDE inhibition with 1,10-Phenantroline. Glucose‐
stimulated insulin secretion (GSIS) from INS1-E cells exposed to 2 mM glucose or 16 mM 
glucose after 30 min 1,10-Phenantroline treatment. n= 3 different experiments by duplicate. 
Data are presented as mean ± SEM.*p< 0.05 versus ctrl-2mM; #p< 0.05 versus ctrl-16mM 
by two-way ANOVA.  
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In view of these surprising results, we tried to verify these results in pancreatic 

islets. For this purpose, we used NTE-2. Rat islets and human islets were NTE-2 

treated and later exposed to a glucose overload to verify the functionality of 

pancreatic beta-cells. In agreement with our previous results, islets showed a 

significant decrease in insulin secretion in response to high glucose levels, both in 

rat (Figure 42) and human islets (Figure 43 A). 

 
Figure 42. Ex vivo effects of transient IDE inhibition with NTE-2 in rat pancreatic 
islets. Glucose‐stimulated insulin secretion (GSIS) from rat islets exposed to 2.2 mM 
glucose or 22mM glucose after 1h treatment with NTE-2. n= 3 different experiments by 
quintupled. Data are presented as mean ± SEM. #p< 0.05 versus 2.2 mM condition; *p< 
0.05 versus control condition by two-way ANOVA. 

 

Furthermore, in human islets we did not observe changes in intracellular insulin 

content (Figure 43 B). In parallel, we also measured proinsulin secretion, in order 

to verify the correct maturation of insulin. 1-2% proinsulin is not maturated after 

normal GSIS [90, 91], thus, a low percentage of insulin granules contain proinsulin. 

Results observed are according to normal insulin secretion, thus, discarding the 

presence of immature granules (Figure 43 C-D). 
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Figure 43. Ex vivo effects of transient IDE inhibition with NTE-2 in human pancreatic 
islets. A. Glucose‐stimulated insulin secretion (GSIS) from human islets exposed to 2.2 
mM glucose or 22mM glucose after 1h treatment with NTE-2. B. Intracellular levels of 
insulin measured from ethanol islet extracts. C. Proinsulin secretion (GSIS) from human 
islets after 1h treatment with NTE-2. B. Intracellular levels of proinsulin measured from 
ethanol islet extracts n= 2 different human islet preparations by triplicate. Data are 
presented as mean ± SEM. #p< 0.05 versus 2.2 mM condition; *p< 0.05 versus control 
condition by two-way ANOVA or by Student's t test. 

 

In summary, these results indicate that acute pharmacological inhibition of IDE 

in pancreatic beta-cells causes an impairment of the secretion of insulin in 

response to glucose. This suggests that IDE plays a fundamental role in beta-cell 

function and it is probably involved in the mechanism of insulin secretion.  

 

This fact also demonstrates the importance of our previous results in human 

pancreas, indicating that reduced IDE levels observed in T2DM+OHAs patients 

versus healthy humans is probably a signal of beta-cell dysfunction. 
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2.2 GENERATION AND ANALYSIS OF IDE-KO BETA-CELL LINE: INS1-E SHRNA-
IDE 

 
To further investigating the role of IDE in pancreatic beta-cell insulin secretory 

machinery we generated INS1-E cells lacking IDE expression, using shRNA 

delivered by lentiviral particles as described in Material and Methods section. In 

this way, we can observe how chronic ablation of IDE affects to beta-cell function. 

We obtained 3 different cell lines named: shRNA-C (control cell line with empty 

vector), shRNA-IDE p18 and shRNA-IDE p25 (each containing different target 

sequences against IDE). 

 

We performed quantitative RT-QPCR to verify IDE expression in these cell 

lines. mRNA levels were significantly ~70% decreased in shRNA-IDE p18 cell line 

and ~85% decreased in shRNA-IDE p25 cell line (Figure 44). 

Figure 44. mRNA levels of IDE in INS1-E shRNA-IDE cells. Results of quantitative PCR 
measurements of IDE expression in shRNA-C, shRNA-IDE p18 and shRNA-IDE p25 cell 
lines. n= 3 different experiments by duplicate. Data are presented as mean ± SEM. *p < 
0.05 versus shRNA-C was by one-way ANOVA. 
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In the same way, we also verified IDE protein levels by western-blot in order to 

verify IDE ablation in these cells. Approximately ~10% less protein was observed 

in shRNA-IDE p18 and ~30% less IDE protein in shRNA-IDE p25, indicating a 

higher level of ablation in shRNA-IDE p25 cell type (Figure 45). 

 

 
 
Figure 45. IDE protein levels in INS1-E shRNA-IDE cells. A. Representative IDE/Actin 
western-blot of shRNA-C, shRNA-IDE p18 and shRNA-IDE p25 cell lines. B. Quantification 
of IDE/Actin western-blot. n= 3 different experiments. Data are presented as mean ± SEM. 
*p < 0.05 versus shRNA-C by one-way ANOVA. 

 
In summary, these results clearly show that IDE knockdown worked efficiently 

in these newly generated beta-cell lines. 

2.2.1    INSULIN SECRETION IS IMPAIRED IN SHRNA-IDE INS1-E CELL LINE  

 

To characterize theses cell lines, we first tested beta-cell function. To this end, 

we analyzed glucose-stimulated insulin secretion (GSIS). Consistent with our 

previous findings, IDE suppression in beta-cells resulted in a marked decreased 

insulin secretion in response to glucose overload (Figure 46). 
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Figure 46. In vitro effects of IDE inhibition on insulin secretion in INS1-E shRNA-IDE 
cells. Glucose‐stimulated insulin secretion (GSIS) in INS1-E cell lines exposed to 2 mM 
glucose or 16mM glucose. n= 3 different experiments by duplicates. Data are presented as 
mean ± SEM. *p< 0.05 versus 2mM condition. #p< 0.05 versus shRNA-C by two-way 
ANOVA. 

 

2.2.2 IDE ABLATION INCREASES INTRACELLULAR INSULIN CONTENT IN INS1-E 

CELLS  

 
With regard to intracellular content of insulin after performing GSIS, cell lines 

lacking IDE shRNA-IDE p18 and shRNA-IDE p25 showed higher levels of 

intracellular insulin content than control cells probably due to the chronic defect on 

insulin secretion (Figure 47). 
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Figure 47. Intracellular insulin content in INS1-E shRNA-IDE cells. Insulin was 
measured on ethanol cell extracts after glucose‐stimulated insulin secretion (GSIS) from 
shRNA-C, shRNA-IDE p18 and shRNA-IDE p25 cell lines exposed to 2 mM glucose or 
16mM glucose. n= 3 different experiments by duplicate. Data are presented as mean ± 
SEM. *p< 0.05 versus 2mM condition. #p< 0.05 versus shRNA-C by two-way ANOVA 

 

To understand the causes of insulin secretion impairment we studied INS1-E 

shRNA-IDE p25 ultrastructure by electronic microscopy, showing that there was 2-

fold density of insulin granules in shRNA-IDE p25 cells after glucose overload when 

compared to control cells, which points to a defect on insulin vesicles mobility 

across the cytoplasm (Figure 48). 

 

 
Figure 48. Intracellular insulin vesicle density in INS1-E shRNA-IDE cells. A. 
Representative images acquired by electron microscopy from shRNA INS1-E cells. B. 
Quantification of insulin vesicle density in shRNA INS1-E cells after GSIS. n=16-21 cells 
per condition. Data are presented as mean ± SEM. *p< 0.05 versus 2mM condition. #p< 
0.05 versus shRNA-C by two-way ANOVA. 
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2.3 GENERATION AND ANALYSIS OF BETA-CELL SPECIFIC IDE KNOCK-OUT 

MICE 

 

Analyzing all these previous in vitro results, we can clearly confirm that IDE 

plays a key role in the correct function of the beta-cell. Taken together, these 

results indicate that acute deletion/inhibition of IDE in vitro (INS1-E) and ex vivo 

(isolated islets) leads to impaired GSIS. However, these studies do not address 

the effect of chronic deficiency of IDE specifically in the beta-cell nor they reveal 

any insight on the role of IDE in the beta-cell in vivo. For that purpose, we 

generated an in vivo model to study the long-term effect of the ablation of this 

protein: beta-cell specific IDE knock-out mice. 

 

Pancreatic beta-cell specific IDE knock-out mice were generated by breeding 

mice homozygous for a floxed Ide allele Ideflox/flox [193] with transgenic mice that 

express Cre recombinase cDNA under the control of the insulin promoter Ins-Cre 

[195], which is active in pancreatic beta-cells. Thus, we obtained our experimental 

litter Ideflox/flox; Ins-Cre/+, named hereafter B-IDE-KO, and their controls Ideflox/flox; 

+/+ or Ideflox/+; +/+. 

 

In order to verify IDE loss of expression in beta-cells, pancreatic islets were 

obtained from WT (Ideflox/flox; +/+), HT (Ideflox/+; Ins-Cre/+), B-IDE-KO (Ideflox/flox; Ins-

Cre/+) and from Total-IDE-KO mice (Ideflox/flox; Cre/+). Islets extracts were prepared 

and IDE protein was detected by western-blot. IDE appears drastically decreased 

in B-IDE-KO islets compared to WT islets both by western-blot. There is a slight 

IDE band at 110 kDa in B-IDE-KO due to 20% non-beta-cells present in pancreatic 

islets (Figure 49). 

 

 

 

 



RESULTS | Role of insulin‐degrading enzyme (IDE) in pancreatic beta‐cell function 

110 
 

 

Figure 49. IDE expression in B-IDE-KO mice islets. Representative IDE western blot of 
isolated islets lysates from WT, HT, B-IDE-KO and Total IDE-KO mice using anti-IDE and 
anti-actin antibodies. 

 
We also checked IDE loss of expression in beta-cells by immunofluorescence, 

where we verified that IDE was ablated in beta-cells, but it was still present in the 

rest of the cell types of the islet (Figure 50). 

 

 

Figure 50. IDE expression in B-IDE-KO mice pancreas. Representative images acquired 
by fluorescence microscopy with 40X objective from WT and B-IDE-KO mice. IDE (red) 
and Insulin (green). 
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To determine whether IDE genetic ablation was tissue specific we performed 

IDE quantitative PCR of pancreatic islets, skeletal muscle, kidney, liver and 

hypothalamus (Figure 51). IDE mRNA levels were reduced by 70% in pancreatic 

islets. No differences were observed in the rest of tissues between B-IDE-KO and 

WT mice. 

Figure 51. IDE expression in B-IDE-KO mice body. Quantitative PCR measurements of 
IDE expression in isolated mRNA from different tissues of B-IDE-KO and WT mice. n=3 
WT; n=2 B-IDE-KO. All samples were normalized by L18 mRNA. Data are presented as 
mean ± SEM. *p < 0.05 versus WT by two-way ANOVA. 

 

2.4    METABOLIC CHARACTERIZATION OF B-IDE-KO MICE 

 

In order to clarify the role of IDE on pancreatic beta-cells and insulin secretion, 

we performed metabolic characterization of B-IDE-KO mice at 2 and 6 months of 

age. 
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2.4.1 BODY WEIGHT IS UNCHANGED IN B-IDE-KO MICE  

 

First, we checked if body weight of B-IDE-KO mice was altered compared to 

WT mice. We observed that body weight remains unchanged in B-IDE-KO mice 

(Figure 52). 

 

Figure 52. Body weight of B-IDE-KO mice at 2 and 6 months. A. Body weight of mice 
at 2 months. B. Weight of mice at 6 months. n=10–13 mice per genotype. Data are 
presented as mean ± SEM.  

 

2.4.2 B-IDE-KO MICE EXHIBIT MILD NON-FASTING HYPERGLYCEMIA  

 

We measured blood glucose and plasma insulin levels in fasting and non-fasting 

conditions. These measurements were done at 2 and 6 months of age (Figure 53 

and 54).  

 

Fasting glucose at 6 and 16 h were normal (Figures 53 A-B and 54 A-B), as 

well as non-fasting insulin levels (Figures 53 C and 54 C). However, B-IDE-KO 

mice showed increased non-fasting glucose levels at 6 months of age (Figure 54 

C).  
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Figure 53. Circulating levels of glucose and insulin of B-IDE-KO mice at 2 months. 
A. Blood glucose levels under 16h fasting conditions B. Blood glucose levels under 6h 
fasting conditions C. Blood glucose levels under non-fasting conditions D. Plasma insulin 
levels under non-fasting conditions. n=3–20 mice per genotype.  
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Figure 54. Circulating levels of glucose and insulin of B-IDE-KO mice at 6 months. 
A. Blood glucose levels under 16h fasting conditions B. Blood glucose levels under 6h 
fasting conditions C. Blood glucose levels under non-fasting conditions D. Plasma insulin 
levels under non-fasting conditions. n=6–18 mice per genotype. Data are presented as 
mean ± SEM. *p<0.05 versus WT by Student’s t test. 

 

2.4.3    PLASMA C-PEPTIDE LEVELS ARE INCREASED IN B-IDE-KO MICE  

 

To understand the role of IDE in insulin metabolism, we checked circulating C-

peptide levels both in fasting and not fasting conditions, as after intraperitoneal 

glucose overload (IP-GTT). B-IDE-KO exhibited a slight tendency toward higher 

levels at 2 months (Figure 55) and increased plasma C-peptide levels when 

compared to WT mice at 6 months of age (Figure 56).  
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Figure 55. Circulating C-peptide levels after a glucose challenge at 2 months in B-
IDE-KO mice. A. Plasma C-peptide levels under fasting conditions. B. Plasma C-peptide 
levels under non-fasting conditions. C. Plasma C-peptide levels at 0, 5, 15 and 30 min after 
intraperitoneal injection of glucose (2g/kg) n=2-5 WT; n=3-7 B-IDE-KO. D. Area under the 
curve of figure A. Data are presented as mean ± SEM. *p<0.05 by Student’s t test. 
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Figure 56. Circulating C-peptide levels after glucose challenge at 6 months in B-IDE-
KO mice. A. Plasma C-peptide levels under fasting conditions. B. Plasma C-peptide levels 
under non-fasting conditions. C. Plasma C-peptide levels at 0, 5, 15 and 30’min after 
intraperitoneal injection of glucose (2g/kg) n=4-8 WT; n=3-8 B-IDE-KO. D. Area under the 
curve of figure C. Data are presented as mean ± SEM. *p<0.05 versus WT by Student’s t 
test. 

 

This data is pointing that beta-cells in our B-IDE-KO mice could be secreting 

higher insulin levels than WT mice 

 

2.4.4 MILD GLUCOSE INTOLERANCE AND INSULIN RESISTANCE IN B-IDE-KO 

 

Glucose homeostasis was analyzed in B-IDE-KO mice by IP-GTT at 2 and 6 

months of age. Intraperitoneal glucose tolerance test revealed normal glucose 

tolerance in B-IDE-KO mice at 2 months (Figure 57), and significant hyperglycemic 

levels at 15 minutes after glucose overload at 6 months of age (Figure 58 A). 
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Figure 57. Intraperitoneal Glucose Tolerance Test at 2 months in B-IDE-KO mice. A. 
IP-GTT: Blood glucose levels after glucose challenge (2g/kg). B. Area under the curve of 
figure A. n=7 WT; n=7 B-IDE-KO. Data are presented as mean ± SEM. 

 

 

Figure 58. Intraperitoneal Glucose Tolerance Test at 6 months in B-IDE-KO mice. A. 
IP-GTT: Blood glucose levels after glucose challenge (2g/kg). B. Area under the curve of 
figure A. n=11 WT; n=14 B-IDE-KO. Data are presented as mean ± SEM. *p<0.05 versus 
WT by Student’s t test.  

 

Taking into account that C-peptide levels were increased in circulation, these 

results point out to a possible insulin resistance state. 
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To demonstrate this end, we obtained livers from WT and B-IDE-KO mice. 

mRNA and cDNA were obtained and levels of Pck1 (phosphoenolpyruvate 

carboxykinase 1) and G6pc (glucose-6-phosphatase) were quantified to study the 

expression of the main enzymes implicated in hepatic gluconeogenesis. As shown 

in Figure 59, mRNA levels of both enzymes are significantly elevated, confirming 

an increase in hepatic gluconeogenesis in B-IDE-KO mice. 

 
Figure 59. Analysis of B-IDE-KO mouse liver genes involved in hepatic 
gluconeogenesis by qPCR. Results of quantitative PCR experiments showing expression 
of Pck1 and G6pc genes normalized to L18 expression as housekeeping gene in B-IDE-
KO and WT mouse livers at 6 months of age. Each bar is the mean of liver extracts from 
4-5 different mice per group in triplicate for each condition. Data are expressed using the 
(2−∆∆Ct) formula ± SEM. *p < 0.05 vs. WT by Student’s t test. 

 

Furthermore, we investigated insulin sensitivity in B-IDE-KO and WT mice using 

intraperitoneal insulin tolerance test (IP-ITT).  

 

At 2 months of age, B-IDE-KO mice showed the same insulin sensitivity as WT 

mice (Figure 60). 
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Figure 60. Insulin Tolerance Test at 2 months in B-IDE-KO mice. A. ITT: Blood glucose 
levels after insulin injection (0.75 U/kg). B. Area under the curve of figure A. n=6 WT; n=10 
B-IDE-KO. Data are presented as mean ± SEM. 

 

Likewise, insulin sensitivity of 6-month old B-IDE-KO mice remained unchanged 

compared to WT mice (Figure 61). 

 
Figure 61. Insulin Tolerance Test at 6 months in B-IDE-KO mice. A. ITT: Blood glucose 
levels after insulin injection (1.5 U/kg). B. Area under the curve of figure A. n=4 WT; n=5 
B-IDE-KO. Data are presented as mean ± SEM.  

 

Although IP-ITT shows normal curves for B-IDE-KO mice, increased 

gluconeogenesis enzymes points to dysregulated hepatic metabolism that is 

compatible with hepatic insulin resistance. 
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2.5 FUNCTIONAL CHARACTERIZATION OF B-IDE-KO MOUSE ISLETS  

 

After the metabolic characterization, both whole pancreas and pancreatic islets 

were extracted. Morphometric, functional and genetic studies were carried out to 

clarify the effect of IDE ablation on beta-cells ex vivo. 

 

2.5.1 IDE ABLATION IN PANCREATIC BETA-CELLS ALTERS NEITHER PANCREATIC 

ALPHA- NOR BETA-CELL AREA 

 

Beta- and alpha-cell area were analyzed trying to understand if a defect in beta- 

and/or alpha-cell area may be responsible for altered C-peptide levels. Beta- and 

alpha-cell area were unchanged in B-IDE-KO mice compared with WT mice 

(Figure 62 and Figure 63). 

 

 

 

Figure 62. Quantification of beta-cell area in B-IDE-KO mice. A. Beta-cell area of 6 
months old B-IDE-KO mice. n=7 WT; n=10 B-IDE-KO. B. Representative images of insulin 
staining. Data are presented as mean ± SEM.  
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Figure 63. Quantification of alpha-cell area in B-IDE-KO mice. A. Alpha-cell area of 6 
months old B-IDE-KO mice. n=7 WT; n=10 B-IDE-KO. B. Representative images of 
glucagon staining. Data are presented as mean ± SEM.  

 

Therefore, changes in endocrine cell mass were not responsible of altered C-

peptide levels observed in these mice. 

 

2.5.2 IDE ABLATION IN PANCREATIC BETA-CELLS LEADS TO CONSTITUTIVE AND 

DYSREGULATED INSULIN SECRETION  

 

After observing the dysregulated plasma C-peptide levels of the B-IDE-KO 

mouse, pancreatic islets were extracted to analyze insulin secretion of these cells 

ex-vivo. In this way, we would not have any interference from the rest of tissues 

and we could observe directly how IDE ablation affects to the insulin release from 

beta-cells in response to glucose. 

 

Therefore, we analyzed glucose-stimulated insulin secretion (GSIS) from B-

IDE-KO islets. As expected, B-IDE-KO islets showed a 70-50% decreased insulin 

release in response to a glucose challenge compared to WT mice. Surprisingly, B-

IDE-KO islets showed constitutive insulin secretion independently of glucose 

concentrations, which is a typical characteristic of immature beta-cells [72, 79, 
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199]. These phenotypes are maintained over time, as we can see in islets of mice 

at 2 and 6 months of age (Figures 64 and 65). 

 

 

Figure 64. In vivo effects of genetic ablation of IDE in pancreatic beta-cells on GSIS 
at 2 months. A. Glucose‐stimulated insulin secretion (GSIS) from B-IDE-KO mice islets 
exposed to 3 mM glucose or 16 mM glucose. B. Fold change of insulin release. n=3 WT; 
n=3 B-IDE-KO islets preparations by triplicate. Data are presented as mean ± SEM. 
#p<0.05 versus 3mM condition; *p<0.05 versus WT condition by two-way ANOVA or by 
Student's t test. 

 

 

Figure 65. In vivo effects of genetic ablation of IDE in pancreatic beta-cells on GSIS 
at 6 months. A. Glucose‐stimulated insulin secretion (GSIS) from B-IDE-KO mice islets 
exposed to 3 mM glucose or 16 mM glucose. B. Fold change of insulin release. n=3 WT; 
n=4 B-IDE-KO islets preparations by triplicate. Data are presented as mean ± SEM. 
#p<0.05 versus 3mM condition; *p<0.05 versus WT condition by two-way ANOVA or by 
Student's t test. 
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Intracellular insulin content of islets was analyzed, without observing any 

significant change (Figure 66). These results points out to normal insulin 

production but a failure in insulin secretion. 

 

 
Figure 66. Intracellular insulin content of B-IDE-KO mice islets. A. Intracellular insulin 
content of B-IDE-KO mice islets at 2 months. n=3 WT; n=3 B-IDE-KO islets preparations 
by triplicate. B. Intracellular insulin content of B-IDE-KO mice islets at 6 months. n=3 WT; 
n=4 B-IDE-KO islets preparations in triplicate. 

 

2.5.3 IDE ABLATION IN PANCREATIC BETA-CELLS LEADS TO INCREASED 

PROINSULIN SECRETION 

 

In the same way, we analyzed proinsulin secretion in response to GSIS. We 

observed that islets from B-IDE-KO mice, there is a higher secretion of proinsulin 

than in those from WT mice, mostly at 2 months old (Figure 67).  
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Figure 67. Proinsulin release of B-IDE-KO mice islets. A. Proinsulin release after GSIS 
from B-IDE-KO mice islets at 2 months. n=3 WT; n=3 B-IDE-KO islets preparations by 
triplicate. B. Proinsulin release GSIS from B-IDE-KO mice islets at 6 months. n=3 WT; n=4 
B-IDE-KO islets preparations by triplicate. #p<0.05 versus 3mM condition; *p<0.05 versus 
WT condition by two-way ANOVA. 

 
This over-secretion of proinsulin indicates poor insulin processing. This is 

another characteristic process that is related to the immaturity of the pancreatic 

beta-cell [79].  

 

These results are supported by lower levels in B-IDE-KO mouse islets of 

Pcsk1/3 and Pcsk2, genes encoding enzymes in charge of proinsulin processing 

to generate mature insulin (Figure 68). 

Figure 68. Analysis of B-IDE-KO mice islets genes involved in insulin processing by 
qPCR. Results of quantitative PCR experiments showing expression of Pcsk1/3 and Pcsk2 
genes normalized to L18 expression as housekeeping gene in B-IDE-KO and WT mice 
islets. Each bar is the mean of islets from 3-5 different mice per group in duplicate for each 
condition. Data are expressed using the (2−∆∆Ct) formula ± SEM. *p < 0.05 vs. WT by 
Student's t test. 
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In summary, the phenotype of B-IDE-KO beta-cells has similarities to that 

observed in previous in vitro studies. In both cases, the secretion of insulin is 

dysregulated. However, in the in vivo situation, we also observed disturbances, 

such as constitutive insulin release in parallel with augmented proinsulin secretion. 

These results support a potential phenotype of beta-cell immaturity [71, 72, 78, 79]. 

 

2.5.4 IDE ABLATION IN PANCREATIC BETA-CELL ALTERS THE EXPRESSION OF 

GENES INVOLVED IN THE INSULIN SECRETORY PATHWAY AND BETA-CELL 

DEVELOPMENT 

 
In an attempt to elucidate the molecular mechanisms underlying this loss-of-

mature beta-cell phenotype, we analyzed islets mRNA levels by RT-qPCR of 

several transcription factors that are thought to be required for beta-cell maturity: 

Ins1, Ins2, NKx2-2, NKx6-1, Pax6, Pdx1, Neurod1, Mafa, Mafb, UCN3 and Syt4 

(Figure 69) These genes are described in Table 10 and 11 of the Material and 

Methods section, above.  

 
Among genes checked for beta-cell maturity, Ins2 gene was decreased ~60% 

in B-IDE-KO mice; as well as Ucn3 gene, with a ~40% decrease observed (Figure 

69).  
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Figure 69. Analysis of B-IDE-KO mice islets genes involved in beta-cell maturity by 
qPCR. Results of quantitative PCR experiments showing expression of different genes 
normalized to L18 expression as housekeeping gene in B-IDE-KO and WT mice islets at 6 
months old. Each bar is the mean of islets from 3-6 different mice per group in duplicate for 
each condition. Data are expressed using the (2−∆∆Ct) formula ± SEM. *p < 0.05 versus 
WT by Student's t test. 

 

We also used RT-qPCR to quantify the expression of key proteins for insulin 

secretory machinery: GLUT2 (Slc2a2), GLUT1 (Slc2a1), GLUT3 (Slc2a3), 

glucokinase (Gck), ATP-sensitive potassium channel subunits Kir6.2 (Kcnj11) and 

Sur1 (Abcc8), and calcium voltage-gated channel Cav2.1 (Cacna1a) (Figure 70). 

These genes are described in Table 10 and 11 of the Material and Methods 

section, above. 
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Interestingly, we found that most of the genes involved in the secretory 

machinery of the beta-cell were upregulated significantly with respect to WT mice 

(GLUT1, glucokinase, Sur1 and calcium channel), which nicely correlates with 

activation of cell metabolism and constitutive insulin secretion observed in B-IDE-

KO islets (Figure 70). The increase in Scl2a1 levels is particularly notable, as it 

points to an increase in GLUT1 transporter; meanwhile, GLUT2, which is the main 

glucose transporter in mouse beta-cells, remains unchanged.  

Figure 70. Analysis of B-IDE-KO mice islets beta-cell secretory machinery by qPCR. 
Results of quantitative PCR experiments showing expression of different genes normalized 
to L18 expression as housekeeping gene in B-IDE-KO mice islets. Each bar is the mean of 
islets from 3-6 different mice per group in duplicate for each condition. Data are expressed 
using the (2−∆∆Ct) formula ± SEM. *p < 0.05 versus WT was by Student's t test. 

 

The Km values of GLUT1 for glucose is 1-3 mM [200, 201] which indicates high 

affinity for glucose and can perfectly explain glucose transport at 3 mM and 

constitutive insulin release. GLUT1 is normally the minority glucose transporter in 

mouse beta-cells, with GLUT2 being the main glucose transporter in rodents [95].  
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2.5.5 B-IDE-KO ISLETS SHOW INCREASED LEVELS OF GLUT1 AND DECREASED 

LEVELS OF GLUT2 IN THE PLASMA MEMBRANE 

 

After observing increased GLUT1 mRNA, we decided further explore this by 

checking the protein levels of this transporter. For this purpose, we performed 

GLUT1 immunofluorescence in pancreata of WT and B-IDE-KO mice.  

 

As predicted by qPCR, GLUT1 expression was highly increased in B-IDE-KO 

beta-cells, as shown by quantification of the fluorescence intensity in this cell type 

(Figure 71).  This 50% increase in GLUT1 expression in B-IDE-KO might be 

responsible of the increase in insulin secretion at low glucose concentrations.  

 

 

Figure 71: GLUT1 expression in B-IDE-KO mice islets. A. Representative images of 
GLUT1 immunofluorescence acquired by fluorescence microscopy with 40X objective in 
pancreas of WT and B-IDE-KO mice. B. Quantification of fluorescence intensity of GLUT1 
measured in pancreatic beta-cells.   n=6 WT; n=6 B-IDE-KO. Data are presented as mean 
± SEM. *p< 0.05 versus WT by Student´s t test. 
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Impaired GSIS can be explained by an impairment in GLUT2 [29, 202-204], 

thus, we have detected GLUT2 in pancreas of WT and B-IDE-KO mice. These 

results show decreased GLUT2 levels in the plasma membrane of B-IDE-KO mice 

as can be observed in Figure 72.  

 

 

Figure 72: GLUT2 expression in B-IDE-KO mice islets. A. Representative images of 
GLUT2 immunofluorescence acquired by fluorescence microscopy with 40X objective in 
pancreas of WT and B-IDE-KO mice. n=6 WT; n=6 B-IDE-KO.  

 

 

These results reinforce the idea that IDE may have a key role in the maturity of 

the beta-cell, since B-IDE-KO beta-cells showing several characteristics of beta-

cell immaturity, such as the increase of GLUT1 [205] and decreased GLUT2 levels 

[72, 79-81]. This fact is of great relevance since it would suggest a new function 

never described for IDE in the regulation of glucose transport on beta-cells. 
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7. DISCUSSION 

 
Diabetes mellitus is one of the most impactful pandemics of the 21st century. 

The global prevalence of diabetes among adults has risen from 4.7% in 1980 to 

8.5% in 2014 [18]. Alarmingly, in 2016 it was estimated that diabetes was 7th 

leading cause of death in the world [19]. These disturbing statistics highlight the 

need to halt the spread of this pandemic, which is only possible by improving our 

knowledge of the disease at cellular and molecular levels.  

 

Despite the great advances achieved in the last decades, there is still much to 

know about the complex mechanisms that underlie the development of diabetes 

mellitus. Moreover, much remains to be investigated about the molecular 

mechanisms that occur during the development of diabetes in the leading cells 

involved in this pathology: pancreatic beta-cells. In spite of being a cell type whose 

physiology has been extensively studied, there are still many unknowns about 

certain behaviors that it acquires in pathophysiological situations. One of the great 

current challenges is to modify beta-cell dysfunction developed in 

pathophysiological situations, such as T2DM. 

 

Recent hypotheses have been proposed to explain beta-cell dysfunction in 

T2DM, like cell death [206, 207], de-differentiation [208, 209], trans-differentiation 

[210, 211] and loss of identity [73, 212]. Understanding molecular mechanisms 

underlying each of these processes will help to develop new strategies to recover 

beta-cell function. 

 

According to the World Health Organization, there are three fundamental pillars 

for reducing the burden of T2DM: prevention, diagnosis and treatment. In this 

regard, insulin-degrading enzyme (IDE) has awakened a great level of interest as 

a potential therapeutic target in the treatment of T2DM patients. However, the 
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expression and role of IDE in beta-cells remains largely unknown. In this work, we 

have analyzed, for the first time, the expression of IDE in pancreatic islets, as well 

as the specific function of IDE in beta-cells, conducting studies in a wide range of 

rodent and human models and conditions. We have shed light on the importance 

of IDE in this cell type, raising the basic knowledge on beta-cell biology and 

highlighting its potential as a therapeutic target. 

 

Differential IDE expression in pancreatic islet cells 

 

As mentioned before, from many decades IDE was considered to be an 

attractive therapeutic target for the treatment of diabetes. This interest lies largely 

in the genetic associations observed between the IDE locus and the susceptibility 

to suffer T2DM and hyperglycemia [175-179] and in other hand because of the 

proteolytic activity of IDE on circulating insulin. Thus, many researchers have tried 

to inhibit IDE looking to prolong the levels of insulin after its secretion from the 

pancreas. Despite widespread interest in this topic, almost nothing was known 

about IDE expression levels in the cells most centrally involved in the pathogenesis 

of DM: endocrine pancreatic cells. Thanks to imaging techniques, we observed 

how IDE was expressed in all cells types of the pancreatic islet, both human and 

murine models, corroborating its ubiquitous distribution that has been previously 

described [154]. Nevertheless, we observe an unexpected fact: IDE is expressed 

in higher levels in alpha- than in beta-cells or in any other islet cell type. This could 

indicate that IDE plays a major role in alpha cells, since it is also described that 

IDE is able to degrade glucagon [151] although with less affinity than for insulin 

[150]. Glucagon release is decompensated in T2DM, where patients frequently 

present hyperglucagonemia [213, 214], so it is reasonable to think that IDE can 

play an important role in this cell type function. This discovery opens new avenues 

to the investigation of IDE in other pancreatic cell types, which also play 

fundamental roles in the regulation of glucose homeostasis.   
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Once the presence of IDE in the pancreatic beta-cell was established, we 

decided to observe if this expression was modulated in pathological conditions. 

Despite the knowledge and controversy generated by the role of IDE in T2DM, 

there is no publication that quantified IDE expression by immunostaining in any 

study model (animal or human tissue), neither under physiological nor 

pathophysiological conditions. In this work, we conducted the first comparative 

study of IDE protein levels in human pancreas from T2DM patients and control 

subjects, and even more relevant, comparing the type of antidiabetic treatment 

used, on OHAs treatment versus insulin-treated T2DM patients. 

 

Initially, we corroborated several observations about the pancreata of diabetic 

patients: first, a decrease in the beta-cell area, which indicates that beta-cells have 

already passed the compensatory phase that occurs in early T2DM [206, 215], 

pointing to an advanced stage of the disease. Second, a significant increase in the 

number of alpha cells in the diabetic population. Some studies show that in 

advanced stages of T2DM in which there is a clear dysfunction of the beta-cell, 

both the mass and the function of the alpha-cells are increased [216]. And third, 

we observed a decrease in the beta- / alpha-cell ratio, characteristic of patients 

with T2DM [216, 217]. 

 

Once the morphology of the pancreas was characterized, we asked if IDE 

protein levels were differentially expressed in diabetic versus healthy humans. 

Surprisingly, we observed that IDE was decreased in patients treated with oral 

antidiabetics, and that this decrease was recovered at control levels in patients 

treated with insulin. There are many other papers that show contradictory IDE 

patterns in different tissues of diabetic patients. Some of these authors report 

increased IDE levels in plasma and human erythrocytes of T2DM patients, both in 

insulin- and non-insulin dependent patients [180] and [181]. In contrast, other 
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studies reported low IDE expression in other tissues from diabetic patients, such 

as adipocytes [182] and liver [184]. There is a single study in the literature that 

reports IDE levels in pancreatic islets of diabetic patients. Steneberg et al. showed 

decreased IDE levels in islets of T2DM patients [183]. However, it is difficult to 

compare these results with the data obtained in our research, since they do not 

provide information about the pharmacological therapy of these patients, which 

makes it difficult to interpret them. These controversial results are due to the 

differences between the tissues studied and the multifactorial role of IDE in each 

one, thus reflecting the need to deepen into cell-specific studies 

It is important to highlight the fact that this study has been carried out in human 

pancreas which is a high valued tissue since it can only be obtained out of 

cadaveric donors. Steneberg et al. had previously shown data on IDE expression 

in T2DM islets. They showed by western-blot that IDE protein levels are decreased 

by 40% in whole islets of T2DM patients compared to controls [183]. These data 

would agree with our data in T2DM+OHAs population, but this study did not report 

the age, sex or treatment of these patients. Furthermore, their study was done in 

complete islet and not in beta-cells, which makes their results difficult to interpret. 

The most commonly used drug in this T2DM+OHAs population is metformin. 

Although main metformin target is liver insulin resistance [218], there is evidence 

that treatment with metformin positively affects the beta-cells, increasing their 

insulin content [219] and improving GSIS [220]. At this point we were wondering if 

it was metformin´s effect the one causing IDE expression reduction and then, 

impairing beta-cell function. This hypothesis was clarified with a different set of 

experiments in the second part of the thesis. 

  

Regarding the data of patients treated with insulin, IDE levels are increased in 

respect to diabetic treated with OHAs, suggesting that insulin treatment could 

increase IDE expression. This finding is in agreement with the work of Pivorarova 

et al., showing in hepatocytes that insulin increases IDE activity [185]. 
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Pursuing the hypothesis that hyperinsulinemia in patients treated with insulin is 

promoting upregulation of IDE levels in beta-cells, we confirmed this issue with two 

preclinical murine models of hyperinsulinemia, such as db/db mice and mice fed 

with high fat diet. Our studies support our previous hypothesis, since they showed 

that in both models IDE protein is significantly increased compared to controls. The 

results observed both in humans and in murine models suggested that insulin 

treatment stimulates elevated IDE protein levels. 

 

In order to clearly attribute the effect of increasing IDE levels to insulin and not 

to other environmental factors, insulin was administered to immortalized beta-cells 

and pancreatic islets isolated from both rats and humans. In all these models it was 

confirmed that insulin exposure significantly increased the levels of IDE in 

pancreatic beta-cells, without affecting IDE levels in alpha-cells. These results are 

in agreement with those previously shown by Zhao and colleagues, where they 

reported that treatment of primary hippocampal neurons with insulin increased IDE 

protein levels by approximately 25% [221].  

 

These facts reveal that IDE upregulation by high insulin may be part of a 

counter-regulatory islet adaptation to clear insulin in order to avoid this 

hyperinsulinemic microenvironment. This could be possible because insulin that is 

not cleared by liver and kidney is ultimately removed by other insulin-sensitive cells 

[152].  

 

In conclusion, these findings confirm the modulation of IDE expression in 

pancreatic beta-cells in response to different stimuli, potentially in order to modify 

their function in a way that best preserves glycemic control. Our results suggest 

that the use of regulators of the expression or activity of IDE in the beta-cell are 

possible mechanisms to control insulin secretion. 
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Modulation of IDE activity in the beta-pancreatic cell: a new therapeutic target? 

 

There are numerous published studies about the effect of IDE inhibition in 

animal models [149, 153, 165, 183, 186-193]. However, the ubiquity of this protein 

and its multifactorial role makes the analysis of these results a complicated task. 

Although the published literature about IDE and the associations described by 

several studies between IDE and the pathogenesis of T2DM [175-177, 179], its 

role in glucose homeostasis remains unresolved.  

 

Some authors have proposed the transient inhibition of IDE as a possible 

treatment for T2DM, based on the assumption that these inhibitors would lengthen 

the half-life of insulin in circulation, enhancing their hypoglycemic action. This 

assumption, however, focuses only on the ability of IDE to degrade insulin, 

neglecting other potential functions for IDE in different tissues of the body. 

 

More than six decades ago, the first IDE pharmacological inhibitor was reported 

[186]. Since then, new, more specific inhibitors of IDE activity with well-

characterized molecular binding sites have been developed [149, 165, 187-191]. 

To the extent that we can generalize about experimental compounds with very 

different mechanisms of inhibition and varying or undetermined pharmacokinetic 

properties, most of these IDE inhibitors elicit changes in insulinemia, which over 

time leads to a deterioration in glucose tolerance. Another common feature is the 

assumption that changes in plasma insulin levels are only due to changes in 

clearance, and not in insulin production or secretion. None of the manuscripts 

describing these inhibitors investigated how IDE inhibition affects beta-cell 

function. That is why it was critical for us to assess how pharmacological inhibition 

of IDE affect the function of pancreatic beta-cells, including insulin production and 

secretion. 
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The primary function and key identity of pancreatic beta-cells is characterized 

by the secretion of insulin in response to glucose stimulus. Our investigations 

showed that IDE plays a key role on the function of beta-pancreatic cells, since we 

observed a common pattern in all our models both in vitro and in vivo: IDE inhibition 

leads to an abolishment of the glucose-stimulated insulin secretion. 

 

We tested two different inhibitors for the action of IDE: 1,10-phenanthroline, a 

general inhibitor of metalloproteases [187]; and NTE-2, one of the most recent 

published IDE specific inhibitors [191]. The use of both in the INS1-E beta-cell line, 

and in rodent and human islets showed the same result: pharmacological inhibition 

of IDE resulted in GSIS impairment. It should be noted that this effect was 

reproducible both within an immortalized cell line and within freshly prepared 

pancreatic islets. Moreover, we showed for the first time, how IDE modulation 

affects human islets cell functions. 

 

In these models, we are dealing with transient IDE inhibition, which led us to 

become interested in the question of what consequences would follow from stable 

reduction in IDE in beta-cells. Thus, we generated shRNA-IDE INS1-E cells. 

Interestingly, these cells also did not secrete insulin in response to glucose, 

notably, even though IDE protein levels were only partially decreased. This fact 

confirms our hypothesis that IDE plays a fundamental role in the pancreatic beta-

cell, regulating insulin secretion. This finding is consistent with the decrease in 

insulin secretion associated with gene variations of the HHEX/IDE loci in humans 

[175, 222] and with the study of Steneberg et al., which described deficient GSIS 

in mice lacking globally IDE gene [183]. Of note, in the shRNA-IDE INS1-E cells 

we observed an increase in the intracellular insulin content after GSIS. Electron 

microscopy images showed that there was an increase in the amount of insulin 

granules in the cytoplasm, pointing to a delayed movement of the granules through 

the cytoplasm. This fact is consistent with previous data showing that impaired 
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GSIS caused by IDE ablation is associated with the polymerization of alpha-

synuclein, a protein involved in the reorganization of cellular microtubules [183]. 

Depolymerization of microtubules is a limiting step for the GSIS, since its correct 

organization allows the transport of the insulin granules through the cytoplasm to 

reach the plasma membrane and be secreted [111] (Figure 73). 

 

 

 

Figure 73: Proposed effect of IDE inhibition/deletion on an adult beta-cell. 

 

Another plausible theory of this increased intracellular insulin in beta-cells due 

to IDE ablation is its possible proteolytic action in the degradation of intracellular 

insulin. To maintain a constant number of insulin-containing granules in β-cells, it 

has been reported that beta-cells are capable of degrading insulin granules that 

did not undergo exocytosis from intracellular space through processes of 

autophagy and/or crinophagy [223-225], introducing the secretory granules into the 

lysosomal compartment. It has been described that IDE has little proteolytic activity 

in the acidic environment [226], as is the case with the lysosomal compartment, 
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but its role in this process is unclear. More studies are needed in this regard to 

clarify the role of IDE in intracellular insulin degradation. 

 

All these data support the idea that IDE is a key piece in the regulation of insulin 

secretion. Moreover, these results would seem to argue against the use of IDE 

inhibitors as a potential treatment for diabetes. However, to confirm these results, 

there is a need to check them in an intact animal, where beta-cells are in 

physiological conditions and interconnected with the rest of the tissues and organs. 

 

The controversy of genetic ablation of insulin-degrading enzyme 

 

Some authors have pursued, as we do, the hypothesis that a decrease in IDE 

levels or activity could represent a plausible treatment for T2DM. To investigate 

that hypothesis, some authors have previously published the metabolic phenotype 

resulting from whole-body Ide genetic ablation. Analyzing the literature on Total-

IDE-KO model, the results are highly contradictory, even reaching opposite 

conclusions. Some authors showed that the total IDE ablation induces glucose 

intolerance, hyperinsulinemia and insulin resistance, attributed mainly to the role 

of IDE in the hepatic insulin clearance [192, 193]. On the other hand, other authors 

reported an opposite phenotype: Total-IDE-KO mice showed glucose intolerance 

but decreased plasma insulin levels [183]. These contradictory results observed in 

germ-line Total-IDE-KO mice make difficult to understand the precise role of IDE 

in vivo. In addition, since IDE is a ubiquitous protein, total knock-out models can 

only reveal overall metabolic results, potentially obscuring complex interactions 

and limiting the understanding of IDE's tissue-specific roles in glucose 

homeostasis.  

 

Recently, Villa-Perez et al. reported the first tissue-specific IDE knockout 

mouse, the liver specific IDE-KO mice (L-IDE-KO) [153]. These mice showed 
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glucose intolerance and insulin resistance. Surprisingly, mice showed unchanged 

plasma insulin levels and intact hepatic insulin clearance as control mice, pointing 

out that IDE is not the main protein involved in hepatic insulin clearance, 

challenging the claims of previous studies. This study also reveals a new role for 

IDE in the etiology of hepatic insulin resistance, demonstrating the pleiotropic 

nature of IDE, beyond its degradative role, and revealing the importance of 

performing tissue-specific studies on IDE. For this reason, the generation of mice 

with beta-cell specific Ide deletion (B-IDE-KO mice) was necessary to accurately 

investigate its role in vivo in this cell type. By utilizing Cre-LoxP System, we have 

developed an ideal model to elucidate the role of IDE in beta-cell function. 

 

Since IDE was discovered in 1949 [150], the function of IDE has been widely 

suggested to be limited to its proteolytic activity. The first reports on total genetic 

ablation of IDE confirmed this view [192, 193], since the animals showed 

hyperinsulinemia, hypothetically associated with the reduction of hepatic insulin 

clearance. Interestingly, beta-cell function was not examined. However, in recent 

years, subsequent studies have repealed this simplistic idea about the action of 

IDE. The pioneering study by Villa-Pérez et al. questioned the previous 

assumptions about hepatic function of IDE. Using a liver-specific model of IDE 

ablation (L-IDE-KO mouse), they concluded that IDE is not the main enzyme 

involved in hepatic insulin clearance, but it may be involved in the regulation of 

intracellular insulin receptor trafficking. [4]. Similarly, Steneberg et al. uncovered 

evidence that impaired insulin secretion observed from Total-IDE-KO was not 

caused by a proteolytic mechanism, if not by the relationship of IDE with scaffold 

proteins of the cytoplasm, which worsened vesicular trafficking [183]. These in vivo 

data unravel how IDE may be involved in many other cellular processes, 

independent of their proteolytic action. 
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Despite the controversy, all these previous models of Ide genetic ablation have 

in common that all mice exhibit impaired glucose homeostasis at some point. In 

contrast, B-IDE-KO mice do not fully recapitulate a deregulation in glucose 

homeostasis. This finding clearly demonstrates that the effects of IDE deletion on 

glucose homeostasis are not explained by its role in beta-cells on insulin secretion 

exclusively. Thus, our study reinforces the idea that IDE role in glucose 

homeostasis may be highly multifactorial in nature, hardly attributable to a single 

tissue, which deserve to be explored further. 

 

In agreement with Steneberg and colleagues, and with all our previous in vitro 

results, B-IDE-KO mice show that IDE ablation in beta-cells causes a failure in the 

regulation of GSIS in pancreatic islets. Surprisingly, isolated islets of our model 

showed an effect never observed before in IDE ablation models: beta-cells present 

constitutive insulin secretion independently of glucose concentrations. This 

significant finding made us to reconsider the role of IDE in the beta-cells. These 

observations suggest a plausible explanation for the hyperinsulinemia reported in 

some studies of Total IDE-KO mice [192, 193]. These studies hypothesized that 

hyperinsulinemia is due to decreased hepatic catabolism of insulin, however, 

subsequently L-IDE-KO mice showed normal insulin levels [153], leaving 

unexplained the hyperinsulinemia of these models. 

 
In our model, increased plasma C-peptide levels and sustained constitutive 

insulin secretion in B-IDE-KO islets led to hepatic insulin resistance, as we see 

reflected in the increased expression of gluconeogenic genes Pck1 and G6pc. This 

increased hepatic gluconeogenesis may be the origin of mild glucose intolerance 

observed in B-IDE-KO.  

 
After investigating potential mechanisms involved in this constitutive insulin 

secretion, we uncovered the novel finding that beta-cells from B-IDE-KO mice have 

decreased levels of the glucose transporter GLUT2 in the plasma membrane and 



Role of insulin‐degrading enzyme (IDE) in pancreatic beta‐cell function| DISCUSSION 
 

143 
 

increased levels of GLUT1, a fact observed both by RT-qPCR and by IF. This 

unexpected result perfectly explains the secretion pattern observed in the islets of 

B-IDE-KO: GLUT1 is a high-affinity transporter that is operative at low glucose 

concentrations (between 1 and 3 mM glucose) [97]. This means that in the beta-

cells of the B-IDE-KO mouse, GLUT1 transporter would be transporting glucose 

into the cell at low glucose concentrations and then stimulating insulin secretion 

(Figure 74). In addition, an impairment is observed in GSIS at high glucose levels. 

This fact is supported by the observation of decreased levels of the GLUT2 in the 

plasma membrane [29, 202-204], which is operative at high concentrations of 

glucose (15-20 mM glucose) [97].  

 

Figure 74: Proposed effect of IDE ablation since embryonic life on a beta-cell. 

 

To this, we must add that many elements of the insulin secretory machinery are 

upregulated. There is an increased expression of glucokinase, potassium channel 

and calcium channel. This hyperactive secretory machinery could be an adaptive 
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mechanism of the beta-cell in order to increase insulin secretion in response to 

glucose stimulus. 

 

Constitutive insulin secretion has been reported as a hallmark of beta-cell 

dysfunction and immaturity [71, 72, 79, 199]. It is well established that beta-cells in 

embryonic and neonatal stages secrete insulin constitutively [71, 72, 78, 79]. 

Curiously, it has been described that embryonic tissues have more GLUT1 than 

any other glucose transporter in their membrane. This is attributed to the fact that 

fetal cells present rapid growth, which requires high supply of energy, with glucose 

being one of the most important nutrients required to obtain ATP [205]. These 

results would also support the abnormal pattern of GLUT2 observed in the plasma 

membrane of our mice, which is described to be altered in immature and 

dysfunctional beta-cells [72, 79-81].   

 

In the islets of B-IDE-KO mice, not only is the secretion of insulin affected, but 

there is also an increase in the secretion of proinsulin, as well as decreases in the 

Pcsk1/3 and Pcsk2 genes encoding proteases responsible for processing insulin 

from proinsulin. This situation results in the secretion of immature insulin granules 

into the intracellular space, another characteristic of immature beta-cells [79]. In 

addition, genetic analysis performed in the pancreatic islets of the B-IDE-KO 

mouse showed other markers that support beta-cell immaturity, such as decreased 

levels of Ins2 and Ucn3, which are required to achieve mature beta-cells [71].  

 
Looking at these results together, they seem to point to the conclusion that IDE 

could have a relevant role in the maturation process of the beta-cell. This would 

also explain the differences we observed between in vitro and in vivo studies. It is 

not the first time that IDE has been suggested to have a role in cell maturation. 

Kayalar and colleagues already showed how IDE inhibition prevented the correct 

differentiation of myoblasts [171]. In addition, Kuo et al. described how the IDE 

levels were developmentally regulated in various rat tissues [172]. Therefore, our 
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study reinforces the idea that IDE has multiple functions in addition to its proteolytic 

activity, which deserve to be further explored, especially in those tissues closely 

related to the pathogenesis of T2DM, such as pancreatic islet cells. 

 
In summary, this study has helped to shed light on a largely unexplored topic: 

the relationship between IDE and the pancreatic beta-cell. We have confirmed that 

IDE is present in beta-cells and that its expression can be modulated by the effect 

of external pathophysiological stimuli. This work has clarified the importance of the 

role of IDE in pancreatic beta-cells: its inhibition both acute and chronic at a mature 

stage of adult beta-cells leads to impaired glucose-stimulated insulin secretion. 

However, its chronic ablation of beta-cells since embryonic life leads to immaturity, 

pointing to a new role of IDE in beta-cell development. These discoveries should 

encourage the broader scientific community to study proteins linked to T2DM in 

tissue-specific models. In light of this, we can also conclude that the inhibition of 

IDE in pancreatic beta-cells is not a good therapeutic approach for the treatment 

of T2DM, since acute and chronic deletion has several detrimental effects on their 

function. 
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8. CONCLUSIONS 

 
1. IDE is expressed in beta- and alpha-cells of the pancreatic islet, both in 

humans and rodents, with increased expression in alpha- than in beta-cells. 

This result suggests a major role of IDE in alpha-cell function. 

 

2. Pathophysiological conditions that are accompanied by hyperinsulinemia 

show increased IDE expression in pancreatic beta-cells, pointing out that 

IDE is involved in adaptive cellular mechanisms of beta-cells to the 

hyperinsulinemic environment. 

 

3. Both acute and chronic inhibition of IDE in mature beta-cells leads to 

impaired glucose-stimulated insulin secretion, revealing that IDE plays a 

key role in beta-cell function. 

 

4. Genetic ablation of Ide in pancreatic beta-cells in embryonic life leads to 

constitutive insulin secretion and beta-cell immaturity, pointing to a new role 

of IDE in beta-cell development. 

 

5. IDE inhibition in pancreatic beta-cells is not a good therapeutic approach 

for the treatment of T2DM.  
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