
On the asymptotic balance between electric and magnetic energies for
hydromagnetic relativistic flows
Manuel Núñez 
 
Citation: Phys. Plasmas 20, 062902 (2013); doi: 10.1063/1.4812197 
View online: http://dx.doi.org/10.1063/1.4812197 
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v20/i6 
Published by the AIP Publishing LLC. 
 
Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/ 
Journal Information: http://pop.aip.org/about/about_the_journal 
Top downloads: http://pop.aip.org/features/most_downloaded 
Information for Authors: http://pop.aip.org/authors 

http://pop.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2138625709/x01/AIP-PT/PofPlasmas_CoverPg_0513/AIPAdvCancer.jpg/6c527a6a7131454a5049734141754f37?x
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Manuel N��ez&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4812197?ver=pdfcov
http://pop.aip.org/resource/1/PHPAEN/v20/i6?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://pop.aip.org/about/about_the_journal?ver=pdfcov
http://pop.aip.org/features/most_downloaded?ver=pdfcov
http://pop.aip.org/authors?ver=pdfcov


On the asymptotic balance between electric and magnetic energies for
hydromagnetic relativistic flows

Manuel N�u~neza)

Department of Algebra and Mathematical Analysis and IMUVA, Universidad de Valladolid, 47005 Valladolid,
Spain

(Received 8 March 2013; accepted 20 May 2013; published online 21 June 2013)

In the equations of classical magnetohydrodynamics, the displacement current is considered

vanishingly small due to low plasma velocities. For velocities comparable to the speed of light, the

full relativistic electromagnetic equations must be used. In the absence of gravitational forcings

and with an isotropic Ohm’s law, it is proved that for poloidal magnetic field and velocity and

toroidal electric field, the electric and magnetic energies tend to be equivalent in average for large

times. This represents a partial extension of Cowling’s theorem for axisymmetric fields. VC 2013
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4812197]

I. INTRODUCTION

Magnetohydrodynamics (MHD) represents a large scale

approach to the study of the evolution of conducting flows.

To obtain this model, a number of drastic simplifications are

performed: Electron inertia is neglected and the phase veloc-

ities within the fluid are assumed so slow that the displace-

ment current may safely be omitted from the Maxwell

equations. While this leaves out a large quantity of physics,

the success of classical magnetohydrodynamics in plasma

modeling in many areas of science and engineering, ranging

from astrophysics to metallurgy, is unquestionable.

However, when we allow the plasma velocity to be compara-

ble to the speed of light, the MHD approximation is unsatis-

factory and one must turn to the so-called General

Relativistic Magnetohydrodynamics (GRMHD). This disci-

pline starts with the studies of Lichnerowicz1 and Anile2 but

the most useful expression of the equations, the so-called

3þ1 split, was defined later. While the equations may be set

in several ways (see Refs. 3 and 4 for the hydrodynamic sys-

tem; Refs. 5 and 6 for the magnetohydrodynamic one), there

is a general consensus about perfectly conducting fluids, but

as soon as diffusivity of some kind occurs there is no univer-

sal agreement of the appropriate mathematical setting. This

holds for kinetic viscosity7,8 as well as for magnetic diffusiv-

ity, i.e., resistivity. It is not clear what terms may be ignored

in a general law: Some models are extremely complex.9,10

The simplest course is to take an isotropic conductivity as

in, e.g., Refs. 11–13, although an anisotropic one, also

depending on the magnetic field size, is probably closer to

reality.14,15 A simple deduction of the relevant magnetohy-

drodynamic equations, also taking into account possible

gravitational effects, appears in Ref. 16. Those equations are

valid for any metric, and in fact purely gravitational distor-

tions of space-time may yield growth of the electromagnetic

field even in the absence of flow;17 however, we do not wish

to use external forcings that could disguise the nature of

electromagnetic evolution, so we take a flat or Minkowski

space-time. In these conditions, the Maxwell equations may

be written as

@E

@t
�r� B ¼ �J; (1)

@B

@t
þr� E ¼ 0; (2)

r � E ¼ q; (3)

r � B ¼ 0; (4)

where B is the magnetic field, E the electric one, J the

current density, and q the charge density. Since Maxwell’s

equations are in themselves special relativistic, it is logical

that Eqs. (1)–(4) have the classical form. The difference

starts when the flow is involved, i.e., in Ohm’s law,

which in the simplest isotropic case studied here may be

written as

WðE� ðE � vÞvþ v� BÞ ¼ gðJ� qvÞ; (5)

where v is the flow velocity, W ¼ ð1� v2Þ�1=2
the Lorentz

factor, and g the (assumed constant) resistivity. Notice that

we take geometric units, i.e., the speed of light c is taken as

1. Classical limits may be obtained as follows: For ideal

MHD g ¼ 0, so that the left-hand term of (5) is equal to

zero. Multiplying it by v we obtain E � v ¼ 0, so that

E ¼ �v� B. As for the slow velocity case, v� 1;W � 1

and jðE � vÞvj � jEj. For neutral plasmas (q¼ 0), this yields

the classical law of Ohm: Eþ v� B ¼ gJ.

A celebrated result of T. G. Cowling (see, e.g., Ref. 18)

shows that axisymmetric fields and velocities yield a decay-

ing magnetic field. This anti-dynamo theorem was extremely

influential in the early attempts to obtain a working model

dynamo. We intend to study if it can be adapted to relativis-

tic MHD.

It may be asked if there exist physical settings where Eqs.

(1)–(4) represent an appropriate model. An obvious choice

could be the study of accretions disks rotating around black

holes, where velocities reach an appreciable fraction of thea)Electronic address: mnjmhd@am.uva.es
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velocity of light. However, near the horizon the gravitational

terms omitted in (1)–(4) cannot be neglected, although it is

true that these terms decay at least as fast as the inverse of the

radius, while Keplerian velocities decay as the inverse of the

square root of the radius, so that at a moderate distance

(1)–(4) are a reasonably good approximation. There exists

another example where plasmas at relativistic velocities are

essentially free of gravitational constraints: jets emerging ei-

ther from compact objects or galaxies. In fact, some of these

have been studied using special relativity (see, e.g., Ref. 19).

II. EVOLUTION OF THE MAGNETIC FLUX

Our purpose is to study Eqs. (1)–(4) when both velocity

and magnetic field are axisymmetric, poloidal vectors, while

the electric field is axisymmetric and toroidal (also called az-

imuthal). The notation simplifies somewhat if instead we

take v and B as plane vectors, depending on the space varia-

bles (x,y) (plus time), while E is vertical and depends also on

(t,x,y). Our results will be valid in the cylindrical case. With

this assumption, Ohm’s law (5) simplifies to

WðEþ v� BÞ ¼ gJ; (6)

and a vector potential A¼ (0, 0, A) exists such that

B ¼ @A

@y
;� @A

@x
; 0

� �
; (7)

provided the (plane) domain X under consideration is simply

connected. This choosing represents a Coulomb gauge

(r � A ¼ 0) such that in the lateral boundary of any three-

dimensional domain with base X, X� ða; bÞ, we have

A � n ¼ 0, whereas at the upper and lower parts (which do

not exist in the periodic case, or if ða; bÞ ¼ ð�1;1Þ), we

have A� n ¼ 0.

A is determined up to a spatial constant, which however

may depend on time. We also assume that the flow is incom-

pressible, and in fact the rest mass density q0 is constant.

The continuity equation (Ref. 4, p. 241) is

@

@t
ðq0WÞ þ r � ðq0WvÞ ¼ 0; (8)

which in this case becomes simply

r � ðWvÞ ¼ 0: (9)

The uncurling of Eq. (2) yields, with our assumptions on

E¼ (0, 0, E)

@A

@t
þ E ¼ FðtÞ; (10)

F being a function of time obtained by choosing the constant

in A. If we take a fixed point ðx0; y0Þ 2 X and choose

Aðt; x0; y0Þ at this point such that (10) holds at it with

F(t)¼ 0, then the right hand side of (10) is always zero.

Taking this to (1), we obtain the scalar equation for the mag-

netic flux

@2A

@t2
� DA ¼ J: (11)

D ¼ r2 represents the Laplacian. Since

v� ðr � AÞ ¼ ð0; 0;�v � rAÞ; (12)

(1) may be written as the scalar equation

@2A

@t2
¼ DA�W

g
@A

@t
þ v � rA

� �
: (13)

This is a hyperbolic equation, as it should be; parabolic ones,

such as the classical MHD induction equation, are not admis-

sible in any relativistic framework because of the instantane-

ous propagation inherent in them.

To obtain the evolution of the flux energy, we multiply

(13) by A and integrate in X. In order to do this, we use the

following identities:

@2A

@t2
� A ¼ 1

2

@2A2

@t2
� @A

@t

� �2

¼ 1

2

@2A2

@t2
� E2; (14)

DA � A ¼ r � ðArAÞ � jrAj2 ¼ r � ðArAÞ � B2; (15)

ðWv � rAÞA ¼ 1

2
r � ðWvrA2Þ: (16)

Using the divergence theorem, we obtain the main equation

d2

dt2

ð
X

A2 dV þ 1

g

ð
X

W
@A2

@t
dV

¼ 2

ð
X
ðE2 � B2Þ dV þ

ð
@X

@A2

@n
dr� 1

g

ð
@X

A2Wv � n dr:

(17)

It will be convenient to write (17) in the form

d2

dt2

ð
X

A2 dV þ 1

g
d

dt

ð
X

WA2 dV � 1

g

ð
X

A2 @W

@t
dV

¼ 2

ð
X
ðE2 � B2Þ dV þ

ð
@X

@A2

@n
dr� 1

g

ð
@X

A2Wv � n dr:

(18)

Notice that E2 � B2 is a Maxwell-Lorentz invariant, and in-

dependent of the observer. Its value will determine the evo-

lution of the quadratic mean of the magnetic flux. Integrating

in time (18) once, we obtain

d

dt

ð
X

A2 dVþ1

g

ð
X

WA2 dV�1

g

ðt

0

dr

ð
X

A2@W

@t
dV

¼ 2

ðt

0

dr

ð
X
ðE2�B2ÞdVþ

ðt

0

dr

ð
@X

@A2

@n
�1

g
A2Wv �n

 !
dr

þ 1

g

ð
X

WA2þ@A2

@t
dV

 !
t¼0

: (19)

We will denote the right hand side of (19) by f(t). It has three

terms: the Maxwell-Lorentz invariant, the boundary integral,
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and a constant due to the initial conditions. The boundary in-

tegral itself is the sum of two terms: The first one, involving

the normal derivative of A2, measures the diffusive input (or

output) of flux density through the boundary. The second

one involves the incoming or outgoing flux transported by

the flow; it vanishes, e.g., if the velocity is parallel to the

boundary, so that X is closed for the flow. These boundary

integrals may be dragged throughout the subsequent analy-

sis, but they tend to obscure the role played by the difference

between the electric and the magnetic energies. Therefore,

we will assume that X is closed by the flow and there is no

input of magnetic flux. Then (19) becomes

d

dt

ð
X

A2 dV þ 1

g

ð
X

WA2 dV � 1

g

ðt

0

dr

ð
X

A2 @W

@t
dV

¼ 2

ðt

0

dr

ð
X
ðE2 � B2Þ dV þ 1

g

ð
X

WA2 þ @A2

@t
dV

 !
t¼0

:

(20)

We will denote by D and k the following values:

DðtÞ ¼ 2

ðt

0

dr

ð
X
ðE2 � B2Þ dV; (21)

k ¼ 1

g

ð
X

WA2 þ @A2

@t
dV

 !
t¼0

; (22)

so that f(t)¼ kþD(t).
We close this section by asking if this simple geometry

could represent some realistic physical setting. There exist

cases of jets created by a Schwarzschild black hole where ve-

locity is mostly radial and the magnetic field dipolar, i.e.,

both of them poloidal.20 However, in most cases the mag-

netic field in a jet is helical in the large scale, so that our

model does not apply. The reason of our choice is none other

than simplicity: It is one of the few instances where the evo-

lution of electric and magnetic fields is governed by a single

scalar equation, and it is eminently reasonable to start the

study of a complex problem by considering a tractable

example.

III. EVOLUTION OF THE MAGNETIC FLUX WITH
MAGNETIC ENERGY LARGER THAN THE ELECTRIC
ONE

Take W0 such that W � W0 for all points in X and all

times. (Recall that always W � 1, but conceivably 1 is not

the best, i.e., largest constant.) Also let c be another constant

such that @W=@t � c; then (20) implies

d

dt

ð
X

A2 dV þW0

g

ð
X

A2 dV � c
g

ðt

0

ds

ð
X

A2 dV ¼ hðtÞ � f ðtÞ:

(23)

Let

xðtÞ ¼
ð

X
A2ðtÞ dV: (24)

(23) may be written as

x0ðtÞ þW0

g
xðtÞ � c

g

ðt

0

xðrÞ dr ¼ hðtÞ � f ðtÞ: (25)

This integro-differential equation is easy to solve, e.g., by

using the Laplace transform. Take first the worst case sce-

nario c > 0, and consider the polynomial

PðsÞ ¼ s2 þW0

g
s� c

g
; (26)

whose roots are

s1 ¼ �
W0

2g
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0

g2
þ 4c

g

s
< 0;

s2 ¼ �
W0

2g
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0

g2
þ 4c

g

s
> 0:

(27)

Then

1

PðzÞ ¼
�s1

s2 � s1

1

z� s1

þ s2

s2 � s1

1

z� s2

; (28)

so that the solution to (25) is

xðtÞ ¼ s2es2t � s1es1t

s2 � s1

xð0Þ

þ 1

s2 � s1

ðt

0

½s2es2ðt�rÞ � s1es1ðt�rÞ	hðrÞ dr: (29)

Notice that all the coefficients s2, �s1; s2 � s1 are positive.

Since h � f

xðtÞ � s2es2t � s1es1t

s2 � s1

xð0Þ

þ 1

s2 � s1

ðt

0

½s2es2ðt�rÞ � s1es1ðt�rÞ	f ðrÞ dr: (30)

If we integrate by parts the last term, we obtain

xðtÞ � s2es2t � s1es1t

s2 � s1

xð0Þ þ es2t � es1t

s2 � s1

f ð0Þ

þ 1

s2 � s1

ðt

0

½es2ðt�rÞ � es1ðt�rÞ	 f 0ðrÞ dr: (31)

We have

f ð0Þ ¼ k; f 0ðtÞ ¼ D0ðtÞ ¼ 2

ð
X
ðE2 � B2ÞðtÞ dt: (32)

If we assume that this amount is bounded in time (which cer-

tainly occurs if the total energy is bounded), also the integral

1

s2 � s1

ðt

0

es1ðt�rÞf 0ðrÞ dr (33)

is bounded. Since es1t ! 0 as t!1, all the terms in

(31) multiplied by es1t are bounded in time. The remaining

quantity is
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es2t

s2 � s1

s2xð0Þ þ k þ
ðt

0

e�s2rD0ðrÞ dr

� �
: (34)

Since es2t !1 as t!1, if the term between brackets

becomes less than a fixed negative constant �d for all t � t0,

we find

xðtÞ � constant� des2t

s2 � s1

! �1; (35)

whereas xðtÞ � 0. This contradiction occurs if

s2

ð
X

Að0Þ2 dV þ k þ
ð1

0

e�s2r dr

ð
X
ðE2 � B2ÞðrÞ dV < 0:

(36)

This shows that the magnetic energy cannot be consistently

larger than the electric one. The precise meaning of

“consistently larger” is somewhat diffuse, but some exam-

ples are clear. Thus, ifð
X
ðE2 � B2Þ dV < �q < 0; (37)

and

s2

ð
X

Að0Þ2 dV þ k � q
s2

� 0; (38)

(36) holds. This certainly occurs if q is large enough or s2

small enough (the latter condition meaning that c is near

enough to zero). In fact, a contradiction may be found even

if the difference between electric and magnetic energies

tends to zero. Explicitly, assumeð
X
ðE2 � B2Þ dV < �qt�a < 0; (39)

with a < 1. Then (36) becomes

s2

ð
X

Að0Þ2 dV þ k � q
Cð1� aÞ

s1�a
2

< 0; (40)

which again occurs if q is large enough or s2 small enough.

When c � 0 (i.e., the plasma velocity does not grow),

the previous estimates may be improved. We simply ignore

the (positive) term involving c in (25), and find

x0ðtÞ þW0

g
xðtÞ � f ðtÞ; (41)

i.e.

xðtÞ � e�ðW0=gÞtxð0Þ þ e�ðW0=gÞt
ðt

0

eðW0=gÞsf ðsÞ ds: (42)

Since e�ðW0=gÞt ! 0 as t!1, if f ðtÞ � �q < 0 for t � t0
we find that x(t) becomes eventually negative, which is

absurd. This in particular occurs if

f 0ðtÞ ¼ D0ðtÞ ¼ 2

ð
X
ðE2 � B2ÞðtÞ dV < 0; (43)

no matter how small, i.e., if the magnetic energy always

exceeds the electric one, even if the difference tends to

disappear.

We may therefore conclude that the magnetic energy

cannot exceed always the electric one, although the precise

meaning of this statement depends on the initial conditions

and the evolution of the Lorentz factor.

IV. EVOLUTION OF THE MAGNETIC FLUX WITH
ELECTRIC ENERGY LARGER THAN THE MAGNETIC
ONE

The second case is not a mirror image of the first one.

Assume now that there exists constants W00; c
0
0 such that

W � W00;
@W

@t
� c0: (44)

The first hypothesis means that the fluid velocity is always

less than a fixed fraction of the speed of light, whereas the

second implies that the plasma velocity cannot decay too

rapidly. c0 may be negative, but in this case we take W00 large

enough for the following condition to hold:

If c0 is negative; then jc0j < ðW
0
0Þ

2

4g
: (45)

Then the analogous equation to (23) holds, but now the sign

of the inequality is reversed

d

dt

ð
X

A2 dV þW00
g

ð
X

A2 dV � c0

g

ðt

0

ds

ð
X

A2 dV ¼ hðtÞ � f ðtÞ:

(46)

With the same notation as in (24), we get

x0ðtÞ þW00
g

xðtÞ � c0

g

ðt

0

xðrÞ dr ¼ hðtÞ � f ðtÞ: (47)

We take now the roots of the polynomial analogous to the

one in (26)

s01 ¼ �
W00
2g
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW00Þ

2

g2
þ 4c0

g

s
;

s02 ¼ �
W00
2g
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW00Þ

2

g2
þ 4c0

g

s
:

(48)

Let us consider the worst case scenario c0 < 0. With our

assumption (44), we have s01 < s02 < 0. The solution to (47)

may be written

xðtÞ ¼ s02es0
2
t � s01es0

1
t

s02 � s01
xð0Þ

þ 1

s02 � s01

ðt

0

½s02es0
2
ðt�rÞ � s01es0

1
ðt�rÞ	hðrÞ dr: (49)

It is convenient to take positive coefficients. Since

js0ij ¼ �s0i,
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xðtÞ ¼ js
0
1je�js

0
1
jt � js02je�js

0
2
jt

js02 � s01j
xð0Þ

þ 1

js02 � s01j

ðt

0

½js01je�js
0
1
jðt�rÞ � js02je�js

0
2
jðt�rÞ	hðrÞ dr:

(50)

Recall that hðrÞ � f ðrÞ ¼ k þ DðrÞ, so that hðrÞ � k � DðrÞ
� 0. Also

1

js02 � s01j

ðt

0

½js01je�js
0
1
jðt�rÞ � js02je�js

0
2
jðt�rÞ	k dr

¼ k

js02 � s01j
ðe�js02jt � e�js

0
1
jtÞ: (51)

Let

�ðtÞ ¼ js
0
1je�js

0
1
jt � js02je�js

0
2
jt

js02 � s01j
xð0Þ þ k

js02 � s01j
ðe�js02jt � e�js

0
1
jtÞ;

(52)

which tends exponentially to zero. Then

xðtÞ ¼ �ðtÞ þ js01j
js02 � s01j

ðt

0

e�js
0
1
jðt�rÞðhðrÞ � kÞ dr

� js02j
js02 � s01j

ðt

0

e�js
0
2
jðt�rÞðhðrÞ � kÞ dr: (53)

Since the exponent �js01jðt� rÞ is smaller than �js02jðt� rÞ,
and hðrÞ � k � 0,

xðtÞ � �ðtÞ þ js
0
1j � js02j
js02 � s01j

ðt

0

e�js
0
2
jðt�rÞðhðrÞ � kÞ dr

� �ðtÞ þ js
0
1j � js02j
js02 � s01j

ðt

0

e�js
0
2
jðt�rÞDðrÞ dr: (54)

Recalling the definition of D(r) in (21), we may see that the

last term tends to infinity in several important cases.

Certainly if

2

ð
X
ðE2 � B2Þ dV � q > 0; (55)

because in this case DðrÞ � qr; even if

2

ð
X
ðE2 � B2Þ dV � qt�a; q > 0; 0 � a < 1: (56)

Then, DðrÞ � qt�aþ1=ð�aþ 1Þ. This implies, according to

(54)

xðtÞ � �ðtÞ þ q
js01j � js02j
js02 � s01j

t1�a

1� a

� q
js01j � js02j
js02 � s01j

ðt

0

e�js
0
1
jðt�rÞr�a dr; (57)

and all the terms are bounded except for t1�a, which tends

to1.

The reasoning is simplified when c0 � 0, although not as

much as in the previous instance. In that case we may omit

the corresponding term in (47), obtaining

x0ðtÞ þW00
g

xðtÞ ¼ hðtÞ � f ðtÞ; (58)

so that

xðtÞ � e�ðW
0
0
=gÞtxð0Þ þ e�ðW

0
0
=gÞt
ðt

0

eðW
0
0
=gÞsf ðsÞ ds

¼ e�ðW
0
0
=gÞtxð0Þ þ g

W00
kð1� e�ðW

0
0
=gÞtÞ

þ e�ðW
0
0
=gÞt
ðt

0

eðW
0
0
=gÞrDðrÞ dr: (59)

This tends to infinity if D tends to infinity fast enough, cer-

tainly in the conditions of (56).

The difference with the previous case is that there is no

obvious contradiction as before, where we obtained xðtÞ < 0;

instead we obtain xðtÞ ! 1, i.e.ð
X

A2ðtÞ dV !1: (60)

Recall that A was chosen so that

@A

@t
ðt; x0; y0Þ þ Eðt; x0; y0Þ ¼ 0: (61)

Therefore, if we assume that
Ð t

0
Eðs; x0; y0Þ ds is bounded in

time, either by the electric field decreasing to zero fast

enough there, or oscillating between positive and negative

values in a way such that the previous integral remains

bounded, then also Aðt; x0; y0Þ remains bounded. In these

conditions, the growth of the magnetic flux implies the one

of the magnetic energies. This follows from a result of Deny

and Lions;21 see also Ref. 22, pp. 49-50. For X bounded and

Lipschitz (i.e., rather smooth), there exists a constant cðXÞ
such that

jjAðtÞjjL2ðXÞ � cðXÞðjjrAðtÞjjL2ðXÞ þ jAðt; x0; y0ÞjÞ: (62)

(In fact this is a particular case of a more general theorem.)

Since jrAj ¼ jBj, the result follows. With our assumption

that the electric energy exceeds the magnetic one, this would

imply that both tend to infinity, and a fortiori the total energy

(kinetic plus electromagnetic) does the same. General con-

siderations state that this demands an external forcing of

some sort. In the absence of such forcing, we must conclude

that with reasonable estimates on the Lorentz factor and the

assumption that the electric field remains oscillating at some

fixed point of the domain, the electric energy cannot be con-

sistently larger than the magnetic one.

V. COWLING’S THEOREM AS THE CLASSICAL LIMIT

It is surprisingly hard to obtain the theorem of Cowling

as the limit of these estimates for small velocity. This is

because the displacement current in (1) is not multiplied by
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any small parameter which we may make tend conveniently

to zero. In dimensional units, (1) should be written as

�
@E

@t
� 1

l0

r� B ¼ �J: (63)

The formal MHD limit may be reached by making � tend to

zero; it must be clear, however, that the dielectric constant

cannot be lower than the vacuum one and the reason why the

displacement current is neglected is the assumed low fre-

quency of the plasma motions. Nevertheless, it is useful to

admit �! 0 to study the mathematics of this singular limit

process. Keeping � and taking for simplicity l0 ¼ 1, for low

velocities we may assume W ¼ 1. Then Eq. (13) becomes

�
@2A

@t2
¼ DA� 1

g
@A

@t
þ v � rA

� �
: (64)

For � ¼ 0, this becomes the MHD induction equation in

terms of the magnetic potential. The scaled version of (18) is

�
d2

dt2

ð
X

A2 dV þ 1

g
d

dt

ð
X

A2 dV

¼ 2

ð
X
ð�E2 � B2Þ dV þ

ð
@X

@A2

@n
dr� 1

g

ð
@X

A2v � n dr:

(65)

If we ignore the boundary terms as before and integrate (65)

one in time, with our previous notation

�x0ðtÞ þ 1

g
xðtÞ ¼ �x0ð0Þ þ 1

g
xð0Þ þ

ðt

0

dr

ð
X
ð�E2 � B2ÞðrÞ dV;

(66)

whose solution is

xðtÞ ¼ xð0Þ þ g�x0ð0Þð1� e�t=ðg�ÞÞ

þ g
ðt

0

ð1� e�ðt�rÞ=ðg�ÞÞ
ð

X
ð�E2 � B2ÞðrÞ dV: (67)

The second term is of order �. The last term, for small epsi-

lon, is dominated by

�g
ðt

0

ð1� e�ðt�rÞ=ðg�ÞÞ
ð

X
B2ðrÞ dV; (68)

which is negative (and moreover depends mostly on the val-

ues of B2 near the time t). We conclude that x(t) decays for

small �, and continues decaying until B2 ¼ 0 and therefore A
¼ const. This is Cowling’s theorem for a plane (or poloidal)

magnetic configuration.

VI. CONCLUSIONS

The assumptions of classical magnetohydrodynamics

fail when the plasma velocity is comparable to the speed of

light; this fact occurs in several astrophysical situations, such

as accretions disks around black holes and galactic jets. In

this case, the relativistic electromagnetic evolution equations

must be used. While the Maxwell component of these equa-

tions is well established, Ohm’s law remains a difficult sub-

ject, with several proposals in the literature. The simplest

one involves a constant resistivity, isotropic and independent

of the size of the magnetic field. While range of this law is

limited, it may be useful to study how classical results trans-

late to relativistic ones. To avoid the distortions caused by

gravitational deformations of space-time, we consider the

equations in a Minkowski metric and study if Cowling’s the-

orem (axisymmetric velocities and fields yield a decaying

magnetic field) may be generalized. We consider the simple

case where the velocity and magnetic field are poloidal while

the electric field is toroidal, all of them axisymmetric. With

reasonable assumptions on the size and evolution of the

Lorentz factor, we find that the magnetic energy cannot be

always larger than the electric one, even if the difference

tends to zero as an inverse power of time; if we assume also

that the electric field oscillates around zero at some fixed

point of the domain, we reach the analogous conclusion that

the electric energy cannot be consistently larger than the

magnetic one. This equipartion result is far less precise than

Cowling’s theorem, as it allows in principle for both energies

to oscillate around each other, but on the other hand it allows

for a wider range of physical situations where it is certain

that the approximations of classical MHD do not hold. It is

also shown that if we approach formally the classical MHD

equation by multiplying the displacement current by a small

parameter, the same results hold with the magnetic energy

divided by this parameter. Thus, it becomes dominant and

we recover the decay of magnetic field intensity as predicted

by Cowling’s theorem.

ACKNOWLEDGMENTS

Partially supported by the Ministry of Economy and

Innovation of Spain under Contract No. MTM200912561.

1A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics
(Benjamin, New York, 1967).

2A. M. Anile, Relativistic Fluids and Magneto-Fluids (Cambridge

University Press, Cambridge, 1989).
3J. R. Wilson and G. J. Matthews, Relativistic Numerical Hydrodynamics
(Cambridge University Press, Cambridge, 2003).

4M. Alcubierre, Introduction to 3þ1 Numerical Relativity (Oxford Science

Publications, Oxford, 2008).
5T. W. Baumgarte and S. L. Shapiro, “General relativistic magnetohydro-

dynamics for the numerical construction of dynamical spacetimes,”

Astrophys. J. 585, 921–929 (2003).
6L. Del Zanna, O. Zanotti, N. Bucciantini, and P. Londrillo, “ECHO: A

Eulerian conservative high-order scheme for general relativistic magneto-

hydrodynamics and magnetodynamics,” Astron. Astrophys. 473, 11–30

(2007).
7A. Muronga, “Causal theories of dissipative relativistic fluid dynamics for

nuclear collisions,” Phys. Rev. C 69, 034903 (2004).
8T. Koide, G. S. Denicol, Ph. Mota, and T. Kodama, “Relativistic dissipa-

tive hydrodynamics: A minimal causal theory,” Phys. Rev. C 75, 034909

(2007).
9D. L. Meier, “Ohm’s law in the fast lane: General relativistic charge

dynamics,” Astrophys. J. 605, 340–349 (2004).
10M. Marklund and C. Clarkson, “The general relativistic MHD dynamo

equation,” Mon. Not. R. Astron. Soc. 358, 892–900 (2005).
11S. S. Komissarov, “Multidimensional numerical scheme for resistive rela-

tivistic magnetohydrodynamics,” Mon. Not. R. Astron. Soc. 382,

995–1004 (2007).

062902-6 Manuel N�u~nez Phys. Plasmas 20, 062902 (2013)

http://dx.doi.org/10.1086/346103
http://dx.doi.org/10.1051/0004-6361:20077093
http://dx.doi.org/10.1103/PhysRevC.69.034903
http://dx.doi.org/10.1103/PhysRevC.75.034909
http://dx.doi.org/10.1086/382201
http://dx.doi.org/10.1111/j.1365-2966.2005.08814.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12448.x


12C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, “Beyond ideal MHD:

Towards a more realistic modelling of relativistic ideal plasmas,” Mon.

Not. R. Astron. Soc. 394, 1727–1740 (2009).
13M. Takamoto and T. Inoue, “A new numerical scheme for resistive relativ-

istic MHD using method of characteristics,” Astrophys. J. 735, 113–127

(2011).
14S. S. Komissarov, “Electrodynamics of black hole magnetospheres,” Mon.

Not. R. Astron. Soc. 350, 427–448 (2004).
15C. Palenzuela, “Modeling magnetized neutron stars using resistive MHD,”

Mon. Not. R. Astron. Soc. 431(2), 1853–1865 (2013).
16N. Bucciantini and L. del Zanna, “A fully covariant mean-field dynamo

closure for resistive 3þ1 GRMHD,” Mon. Not. R. Astron. Soc. (to be

published); e-print arXiv:1205.2951v3.

17M. N�u~nez, “Dynamo effect of spacetime curvature in force-free magneto-

spheres,” Phys. Rev. D 85, 104038 (2012).
18M. N�u~nez, “The decay of axisymmetric magnetic fields: A review of

Cowling’s theorem,” SIAM Rev. 38, 553–564 (1996).
19R. Keppens, Z. Meliani, B. van der Holst, and F. Casse, “Extragalactic jets

with helical magnetic fields: Relativistic MHD simulations,” Astron.

Astrophys. 486, 663–678 (2008).
20K. Becwith, J. F. Hawley, and J. H. Krolik, “Transport of large-scale

poloidal flux in black hole accretion,” Astrophys. J. 707, 428–445 (2009).
21J. Deny and J. L. Lions, “Les espaces du type de Beppo-Levi,” Ann. Inst.

Fourier (Grenoble) 5, 305–370 (1954).
22R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and

Physics (Springer, New York, 1988).

062902-7 Manuel N�u~nez Phys. Plasmas 20, 062902 (2013)

http://dx.doi.org/10.1111/j.1365-2966.2009.14454.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14454.x
http://dx.doi.org/10.1088/0004-637X/735/2/113
http://dx.doi.org/10.1111/j.1365-2966.2004.07598.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07598.x
http://dx.doi.org/10.1093/mnras/stt311
http://arxiv.org/abs/1205.2951v3
http://dx.doi.org/10.1103/PhysRevD.85.104038
http://dx.doi.org/10.1137/S0036144594261578
http://dx.doi.org/10.1051/0004-6361:20079174
http://dx.doi.org/10.1051/0004-6361:20079174
http://dx.doi.org/10.1088/0004-637X/707/1/428
http://dx.doi.org/10.5802/aif.55
http://dx.doi.org/10.5802/aif.55

