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Abstract

One encounters iterated elliptic integrals in the study of Hall effect devices, as a result
of conformal mappings of Schwarz—Christoffel type. Some of these double elliptic
integrals possess amazing symmetries with regard to the physical parameters of the
underlying Hall effect devices. We give a unified mathematical treatment of such
symmetric double integrals, in the context of Hall effect devices with three and four
contacts.
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1 Introduction

As one can easily demonstrate oneself, if you spin a coin, oriented perpendicular to
an inclined plane, due to the balance of gravity and the gyroscopic force, the coin will
move across the plane rather than down it as it does when it is not spinning. The speed
at which it moves is determined by various factors such as the tilt of the plane, the
rate of spin and the surface conditions. The electrical analogue is the Hall effect: if
an electron current is produced, by electrical contacts, across a conducting plate in a
perpendicular magnetic field a current Iy, and equivalently, a voltage Vy, resulting
from the balance between the strength of the current and the Lorentz force on the
electrons, will be detectable between electrodes placed perpendicular to the current.
The magnitude of this voltage will depend on the magnetic field strength, the electrical
characteristics of the plate material and its geometry.

For such a standard four-contact commercial semiconductor Hall device, having
two perpendicular reflection lines, one of us [1-3] determined the analytic form of
its geometrical factor Gy, in the expression for Vi, in terms of a double elliptic
integral whose two moduli depended on adjustable characteristics of the system. From
numerical evaluations of conformal transformations, it was found that Gy exhibited
an invariance which could be expressed as

4 dx x dy
A(p,q) =
(P.q) /(‘) «/l—pcosx/(.) 1+ gcosy
=A(p'.q), Vp.qel0, 1], (1

where p’ = /1 — p2, ¢’ = /1 — ¢? are complementary moduli.

While easily verified numerically, a proof of (1) was, after some delay, finally
presented by two of us [5] on the basis of somewhat recondite integral manipulations.
Shortly afterwards David Broadhurst and Wadim Zudilin gave a different proof [6]
for the diagonal case A(p, p) = A(y/1 — p%, /1 — p?), and discussed its arithmetic
implications.

Since then a similar investigation of the three-contact Hall devices, but still pos-
sessing mirror symmetry, to be described in Sect. 2, has been carried out. The study of
these novel Hall devices based on Schwarz—Christoffel conformal mappings has led
one of us [4] to a seemingly more complicated elliptic identity

e p /n/z de /9 d¢
0 V1—(—-asin?20Jo V1—(1—pB)sin¢
i Va( =) sin6de
_/0 \/oc(l—ﬁ)—(l—oc)ﬁcosze\/l—(l—a)sinze

o
0 V1—(1—a)sin?¢
=I(1-B,1-a), 0<B<a<l. )
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Symmetries of certain double integrals...

The aim of this article is to offer a mathematical proof of (2) which will be pre-
sented in Sect. 3. Our major analytic tool in this article is a modest extension of the
inhomogeneous differential equation studied by Broadhurst and Zudilin [6], in the
context of A(p, p). This approach not only allows us to simplify the original proof of
(1) published in [5], but also sets (1) and (2) in a unified framework.

2 Physical background

The classic Hall plates detect a magnetic field orthogonal to the surface of a
semiconductor. They have four contacts, whereby current is forced through two non-
neighboring contacts and the output voltage is tapped at the other two contacts. At zero
magnetic field the electrical behavior of the device is given by an equivalent resistor
circuit (ERC) with four terminals. At small magnetic field the change of output volt-
age is proportional to the magnetic field, the input current, the Hall mobility, the sheet
resistance, and a Hall geometry factor

fx
YO _ 1 v! _y\/ Tp

1
K(%)K(%)/‘) 1—x2\/1- 1 - —?)](1_)@)

Here, the parameters p and f are determined by the input and output resistances, and

dx. (3)

/2
KWH) = K'(VT=7) = / % € [0, 1), @)
0

do
V1 —Asinze’

is the complete elliptic integral of the first kind. The Hall geometry factor accounts
for the shape of the Hall plate (i.e. its layout) and the size of the contacts. The quantity
Ggg) can be computed as a function of geometrical parameters of the Hall plate, but
it can also be expressed as a function of the resistances in the ERC [4]. The thermal
noise of a Hall plate at small magnetic field is also described by the ERC. Thus, the
signal-to-noise ratio (SNR) of Hall plates relates in a very general way to the ERC. A

numerical study of

GHS VK (HK(p)
VKK (p)

reveals a symmetry: for every Hall plate with small contacts there is another Hall plate
with properly chosen large contacts having the same SNR [3]. If the Hall plate has
90° symmetry like a Greek cross or an octagon, numerical evidence suggested that the
SNR remains the same for the complementary device, where contacts and isolating
boundaries are swapped. Both statements are equivalent to (1), and they can be proven
rigorously [5,6].

SNR

)
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Recently, non-classical Hall devices are getting more attention, because they can
detect magnetic fields parallel to the surface of the semiconductor—they are known
as Vertical Hall devices. The smallest ones have only three contacts as shown in Fig. 1
[2]. If current is forced to flow between any two of its contacts, the output voltage at
the third contact changes with magnetic field. This magnetic field sensitivity is similar

to the case of traditional Hall plates, only the geometry factor GSOC) is different [2].

In contrast to Ggg), the low field Hall geometry factor Ggg) of devices with three

contacts is a function of the resistances R, and Ry of the ERC plus the sheet resistance
Ry For the case of devices having single mirror symmetry it is given explicitly in [4]
that

GO _ 21(a, B)
O K (VoK (VB

where the double integral representation for I (e, 8) is given as the first equality in
(2), and the relations

(6)

K'(Ja) _ ReRq K'(V/B) _ R
K(V@) (Re+2R)Rp™ K(G/B) R

(N

define the parameters «, 8 in terms of effective resistances of the device (Fig. 1).
The corresponding SNR is proportional to / («, ﬂ)/\/K(\/&)K’(\/E)K(\/B)K’(\/B).
Hall devices with three contacts are conjectured to have the same symmetry property
as 90° symmetric Hall plates with four contacts:

Such Hall effect devices have the same SNR as their complementary devices.

In other words, numerical experiments have suggested that I («, ) = I(1 -8, 1 —
a), in the notation of (2). The rest of the paper gives a mathematical proof of this
symmetry.

Itis interesting to formulate, from a more philosophical point of view, a rationale for
the emergence of elliptic symmetries from the intrinsic properties of these Hall devices
and the possibility of predicting others. Two salient features which may be critical are

Three n* -doped contacts

(a) (b) R
€
essi! C C;
A:): Cso‘os“aw
2
% R4 Rq
gl

6))

Z m
Y \T/v X l
n”~ -doped Hall effect region

Fig. 1 a Vertical Hall effect device with three contacts and a single mirror symmetry. b The equivalent
resistor circuit of the device at zero magnetic field: C; and C3 are the outer contacts, C; is the inner contact
2 (Adapted from [2])

This period (punctuation mark) should end the last line, after the phrase "inner contact".
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Symmetries of certain double integrals...

the existence of reflection symmetry in the device geometry and the presence of the
magnetic field—a pseudo-vector—which reverses under mirror reflection. It may be
that any such structure will be fruitful in this regard.

3 Transformations of certain double integrals

Lemma 3.1 Fora, B € (0, 1), we have

/H/Z de /-0 d(b
0 V1—(—a)sin20 o V1—(1-p)sin?¢

_lf’f’ K(«/l—ﬂ)K(«ﬁ)ngl/l KWBKGT=1) dt (8a)
) Vi+ o N Vi+Ja NG
1 (Y KW1—a)KK/71) dt
=KW1 —-a)KH/1-8) — — > 4
VT— KK/ ) nfo VT
_1/1K(\/&)K(«/1—t)2_ (8b)
7 Jo Vi+JB oV
for0 < B <a < 1, we have
/”/2 VoI = ) sin6do
0 Va(l—pB)— (1 —a)pcos’y/1 — (1 —a)sin?6

x/9 dé
0 V1—(1—a)sin®¢

o 9/1 K(/BKG/T —1)dt
- 0 (o —1)
1 /ﬂ KWT- PR —KWAKWT-D
T Jo o —t
N 1 /ﬁ KH/1-pBK(/1) dt N 1 'K(WBKGWT —1) dt
nto JT—t+JT—aVI—t nl)g JT—t+JT—aJI—-1
©)
where &2 denotes Cauchy principal value.
Proof We note that the following differential operator
T, = ,\(1—,\)i 1 (10)
DY) ar| 4

annihilates both K(\/X), A€ (0,1)and K(+/1 — X), A € (0, 1). The Wronskian deter-
minant for these two linearly independent solutions to the homogeneous differential
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equation Z,\ f (&) = 0 assumes the form

det <K(ﬁ) K(v1- M) - (11)
ang/X) aK(P) 4n(1— 1)
It is straightforward to compute that
Z /*71/2 de /0 d¢
P Jo V1i—(1—a)sin20Jo /1 — (1= p)sin¢
1 m/2 sin @ cos 8d6
4Jo V1—(1—a)sin?0[1 — (1 — B)sin2913/2
1
- 12
TNCEN W (12
as well as
7 1//3 KWVI-pKWH dt 1 (TKWAKWT -1 di
Plehe — Vitva Vinly  JitJa i
1
- - 13
TNCEN W 4

Here, it takes only elementary differentiations and integrations to verify (12), while
one can use the Wroniskian determinant (11) to show that (13) is a special case of

—~ 1 B 1 1
iy [; /0 KW/T— AKWDg(e, 0di + /ﬁ KWAKWT=g(e, r)dz}

g p)
YR

(14)

for any suitably regular bivariate function g(c, ). Therefore, the identity (8a) must

be true, up to an additive term f1(a)K(y/B) + f2(«)K (/T — B). For fixed o € (0, 1),
the expression

A@KG/B) + fr(@)K(/1—B)

/2 do /9 do

0o V1—(=esin20Jo V1 —(1—pB)sin’¢

_[1 /ﬁ KWI—pKWD dr 1 /1 K(W/AKWT=1 g} as)
7 Jo p VitJaoo Vi

VitJoo Jooow
remains finite as 8 — 07, so we must have f>(a) = 0. By subsequent asymptotic
analysis in the 8 — 1~ regime, we can confirm f](«x) = 0, thereby arriving at (8a)

in its entirety.
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To deduce (8b) from (8a), simply notice that

/”/2 do /9 do
0 V1-—(—asin20Jo V1—(1—pB)sinZ¢

/7{/2 do /0 d¢
+
0 V1—(-pB)sin20Jo V1— (1 —a)sin¢

/71/2 de fﬂ/Z d¢
Jo Vi—(-—wsinzedo Ji—(—=pB)sinlé
=K1 —-a)KK/1 - B). (16)

Differentiating under the integral sign, and integrating by parts (with respect to 6),
we can verify that

Zﬁ /n/2 \/msnl@[fog ﬁ} do
0 Va(l—p)— (1 —a)fcos’0v1 — (1 —a)sin?0
_ VIi—« 1 1
T Aa-PVI—B Ha—P AT—a+JT-BJI—B

a7

According to our previous experience [cf. (14)], there must exist functions g1 («) and
g2 (o) such that

21 (@K (G/B) + 2@K/1 - 8)

wn  Na(T—a)sing [/09 ﬁ] do

/o Va(l = B) — (1 —a)Bcos?0v/1 — (1 —a)sin2 0

L1 /ﬂ KWT=-PKWD /1 KWAKWT-D
7 Jo o —t 8 (o —t)

_1/’3 K1 —-pBKK1) dr _1/1 KWAKWT—=1) dt
TJo Vi—t+J1—aJT—=t 7mlg JT—t+/1—aJ1—1

(18)

holds for 0 < 8 < a < 1. In view of the asymptotic behavior in the regime where
B — 07, we must have g»(«) = 0. Then, we explore another extreme scenario, where
B — o — 0T, and

g1 (@)K(va)
— 2 a — 1 _
_ K1 =a)] +@f K(v1 Ot)K(«/?)dhL@f K(Va)K(+/1 D s
2 0 (o — 1) « (o —1)

1 [*KGWT=a)K(/t) dt 1 ['K(WJ/OKKT—=1) dt

nlo =i+ —avi—it #l)e JT—i+1-a V-1
(19)
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Here, by a reflection t = 1 — s and a back reference to (8a), we obtain

l/d KW1T—-o)K(H/1) dr +l "K(VOKWT—1) dr

0 VI—t+JT—a1T—t 7)o JT—t+J/1T—aJ1—1
1 1 KWT—a)KH/T—5s) dS 1 = aK(x/_)K(\/_) ds
< F f ) iV

/2

/ _ [K/or
0 \/l—asm % \/l—asm ¢ 2

Thus, we may reduce (19) into

(20)

— 2 2 o —
21 (@K(/@) = (K1 a)] — [K(Vo)] 9/ K1 Ol)K(x/?)dt

w(ox —1t)

y/ K(«/_)K(«/l— D ar 21

(o —t)

We can prove the following identity for distinct «r, B € (0, 1):

o — 1 _
@/ K1 a)K(\/;)dt+@ K(V/a)K(/1 t)dt

(B —1) «  mB-D
BR(JI—B
+9/ K1 ﬁ)K(x/?)t

1 —
it P KWBKWT —1) dr

(o — 1) 8 m(a —1)

— K(WVa)K(/B) + KWT—a)K(,/T—-p) =0 (22)

by checking that its left-hand side extends to a smooth function of 8 € (0, 1) that is
annihilated by Zﬂ (cf. [8, (2.1.6)]), and remains finite as (1 — B) — O*. In view of
this, the expression g; (a)K(,/a) must vanish identically, as we send 8 — « in (22).
This completes the proof of (9). O

Remark An alternative formulation of (8a), namely

do 0 do
/o \/l—asin29~/0 V1= Bsin® ¢
P KT =BKKD)  dt N 1 ('KWBAHKWI—1) dt

7do Vi—i+VT—a1-1 7l JT—t+JT—avI—1
(23)

appeared in [5, (2)], as a precursor to the proof of the symmetric identity A(p, g) =
A1 — p2%, /1 — g?). Originally, [5, (2)] was built on some addition formulae of
Legendre type from [8], which involved heavier computations than the procedures
presented in the proof above. After reading [6], one of us (Y.Z.) realized that the proof
of [5, (2)] can be simplified by inhomogeneous differential equations, as exploited by

Broadhurst and Zudilin in their proof of A(p, p) = A(y/1 — p2, /1 — p?). Similarly,
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one can verify several integral identities in [8] (which are triple integral analogs of
[5, (2)]) by differential equations and elementary integrations, once their forms are
discovered.

Remark Since we have [7, (51)]

[KWT—a)]? [K(\/_)]2 (@/ K1 -0K(1)
2 (o —1t)

dr, 24)

our proof of g; (a)K (/) = 0 amounts to the following vanishing identity:

_ l/“ [K(vl—a)—K(vl—t)]K(«/?)dt

0 oa—t
1 _ —
%/ L) Ii(ii)]K(vl D4 25)

There are many more vanishing identities of similar shape in [8, §3.2], which are
relevant to the arithmetic studies of automorphic Green’s functions.

Theorem 3.2 The double integral identity in (2) holds.

Proof By now, it is clear that

I, B) = K(W1—a)K(/1 - B)
/ﬂ K(/1— )K(f D4 / K(VBKWT—1) i

w( —1t)

1 /a K(/1 —a)K(f) dt 1 ['KGoOKWT=1) dt

o —

VitvB Vi wl)e  VitvB Vi
1 (! KWT=BKKIT=s5)ds 1 ['""PKWBK(H5) ds

s s+T=a s 1)y A VT—a s

(26)
so we must have
Ia,B)—I0-8,1—a)
— KW1T-0K(/T-p) - KNOKW/B)
FKHT-pK K KH/1 -1
L1 / ( )(f)dwz/ VBK( ) s
T Jo o — (o —1)
1 /1—“ KoKW -, ' KWT—a)K(W/T - Dir—o
7 Jo I=p—1 1-a n(l—p —1) '

(27
as a consequence of (22). Although our proof above draws on the assumption that
0 < B < o < 1,its validity extends to 0 < 8 < « < 1, by continuity. O
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