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Abstract

We investigate how the Lax-Novikov integral in the perfectly invisible PT -
regularized zero-gap quantum conformal and superconformal mechanics systems affects
on their (super)-conformal symmetries. We show that the expansion of the conformal
symmetry with this integral results in a nonlinearly extended generalized Shrödinger
algebra. The PT -regularized superconformal mechanics systems in the phase of the
unbroken exotic nonlinear N = 4 super-Poincaré symmetry are described by nonlin-
early super-extended Schrödinger algebra with the osp(2|2) sub-superalgebra. In the
partially broken phase, the scaling dimension of all odd integrals is indefinite, and the
osp(2|2) is not contained as a sub-superalgebra.

1 Introduction and summary

Conformal mechanics model was introduced and investigated by de Alfaro, Fubini and Furlan
(AFF) [1] as a (0+1)-dimensional conformal field theory. It corresponds to the two-particle
Calogero system [2] with eliminated center of mass degree of freedom. Supersymmetric
extension of the model was considered in [3] and [4]. The geometric aspects of conformal
and superconformal mechanics were investigated in [5, 6]. The many-particle generalizations
of superconformal mechanics were studied in [7, 8, 9, 10, 11, 12, 13]. A revival of interest to
(super)conformal mechanics was induced in connection with the AdS/CFT correspondence
[14, 15, 16] when it was observed that the dynamics of a superparticle near the horizon of an
extreme Reissner-Nordström black hole is described by superconformal mechanics [17, 18, 19,
20]. In the same line of the AdS/CFT correspondence, recently superconformal mechanics
was employed in the study of physics underlying the confinement dynamics in QCD [21, 22].
For some further references and reviews on conformal and superconformal mechanics see
[23]–[63].
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The conformal mechanics model without confining potential term,

Hg = −
d2

dx2
+

g

x2
, x > 0 , (1.1)

is related at special values of the coupling constant g = n(n + 1), n = 1, 2, . . ., to the
Korteweg-de Vries (KdV) equation : at n = 1 its potential is a solution of the stationary
KdV equation, while for n > 1 it satisfies the n-th stationary equation of the KdV hierarchy.
This is related to a broader picture according to which the Calogero-Moser systems govern
the dynamics of the moving poles of rational solutions to the KdV equation [64, 65, 66]. The
conformal mechanics (1.1) with coupling constant g = n(n + 1) plays also a special role in
the bispectral problem [67] as well as in the Huygens’ principle [68].

The potential of conformal mechanics model with the indicated special values of the
coupling constant can be obtained from the potentials of the quantum reflectionless and
finite-gap systems via appropriate complex shift of the argument and subsequent application
of a certain limit procedure [62]. One-dimensional quantum reflectionless and finite-gap
systems, in turn, are the algebro-geometric solutions to equations of the KdV hierarchy via
the Lax pair representation [69, 70, 71]. Each such quantum system is characterized by
a nontrivial Lax-Novikov integral of motion which is a differential operator of odd order
2n+1 ≥ 3. There exists no classical analog for this integral having a purely quantum origin
and nature. It detects all the non-degenerate bound and edge-states by annihilating them,
and distinguishes the doubly degenerate states inside the valence and conduction/scattering
bands in the spectrum of a corresponding quantum system. In the case of reflectionless
systems the integral admits a representation in the form of a Darboux-dressed momentum
operator of the free quantum particle [44, 72, 73].

The Lax-Novikov integral also plays an important role in supersymmetric constructions.
According to the Burchnall-Chaundy theorem [74, 75], the square of the Lax-Novikov integral
of differential order 2n + 1 is equal to a (spectral) polynomial of the same order 2n + 1
in Hamiltonian operator of the corresponding quantum system. As a consequence, each
non-extended (“purely bosonic”) finite-gap or reflectionless quantum mechanical system is
characterized by a hidden nonlinear bosonized supersymmetry [72, 73]. On the other hand,
it is because of this integral that the convensional N = 2 supersymmetry of the pairs of the
Darboux-intertwined reflectionless or finite-gap quantum systems expands up to an exotic
nonlinear N = 4 supersymmetric structure which includes the matrix Lax-Novikov integral
as a bosonic central charge [76, 77].

A rather natural question is therefore if the Lax-Novikov integral can be identified for
the conformal mechanics model with special values of the coupling constant, and if so, how
such integral could influence on the conformal and superconformal symmetries.

Some time ago it was observed that the conformal mechanics model with coupling con-
stant g = n(n+1) possesses a differential operator Pn of order 2n+1, which commutes with
the Hamitlonian Hg and satisfies a Burchnall-Chaundy relation of the form (Pn)

2 = (Hg)
2n+1

[78]. There appears an obstacle, however, that the operator Pn is not physical from the point
of view of quantum mechanics : as it was shown in [79], acting on eigenstates of the conformal
mechanics model satisfying the Dirichlet boundary condition at x = 0, it transforms them
into formal, non-physical eigenstates of the Hamiltonian operator which satisfy Neumann
boundary condition at x = 0.
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In spite of a non-physical nature of the operator Pn from the point of view of the quantum
mechanical system Hg with g = n(n + 1), it is the Lax-Novikov operator which underlies
the above-mentioned relation of conformal mechanics to the KdV equation and its hierarchy.
The Burchnall-Chaundy relation means an algebraic dependence between Hg and the formal
integral Pn, and so, the presence of the latter does not influence on integrablity of one-
dimensional quantum systems (1.1), which, as any other one-dimensional quantum system
with conserved Hamiltonian, is (maximally) super-integrable. However, this relation has a
super-algebraic nature implying that the Lax-Novikov operator is a kind of a square root
operator from the odd order polynomial (monomial here) in Hamiltonian.

In a recent paper [62] it was shown that the indicated deficiency of the Lax-Novikov
operator Pn can be cured by the PT -regularization of the conformal mechanics model by
making a shift x → x+ iα, where α is a nonzero real parameter, and extending x from the
half-line x > 0 to the whole real line x ∈ R. With such a shift and extended domain, the
Hamiltonian Hn(x+iα) = − d2

dx2 +
n(n+1)
(x+iα)2

is PT -symmetric satisfying the relation [PT,Hn(x+

iα)] = 0 [80, 81]. Here P is a space reflection (parity) operator, Px = −xP, P 2 = 1, and
a complex conjugation operator T is defined by Tz = z̄T , T 2 = 1, where z ∈ C is an
arbitrary complex number 1. The obtained quantum systems Hn(x + iα) are characterized
by the property of the perfect invisibility : the transmission amplitude in them is not simply
just a phase as it happens in the case of reflectionless systems, but exactly equals one
like in the free quantum particle system. Unlike the free quantum particle, however, each
such a system has a unique quadratically integrable bound state of zero energy at the very
edge of the continuous part of the spectrum 2. The corresponding systems are identified
as perfectly invisible zero-gap systems, and they possess some other interesting properties
due to their relation to the KdV hierarchy [62]. It may be noted that the parameter α is a
constant with dimension of length, and in this aspect the PT -regularization of the conformal
mechanics model turns out to be alternative in some sense to regularization of the conformal
mechanics model considered in the original article [1], where it was realized effectively via
the introduction into the Hamiltonian (1.1) of the confining harmonic oscillator potential
term accompanied by a length parameter.

It was observed for the first time by Bender and Boettcher in the pioneering work [85]
that Hermiticity is not a necessary condition for the reality of the spectrum of a quantum
mechanical system, and that it can be substituted for the requirement of the PT -symmetry of
Hamiltonian 3. Later this type of systems was investigated in different aspects, in particular,
in the context of connection between the theories of ordinary differential equations and
integrable models [86], and supersymmetry [87]. The results on reality of the spectrum
were extended then for non-Hermitian Hamiltonians of a more general form, for reviews
see refs. [80] and [81]. The PT -regularization applied in [62] to (1.1) was employed earlier
in general context of the PT -symmetry for the AFF model with confining potential term
[88]. PT -symmetric multi-soliton solutions to the Korteweg-de Vries equation were discussed

1The peculiarity of PT -symmetry is associated with the anti-unitary character of the operator T [82].
2A similar picture appears in finite-gap systems where non-periodic defects can produce bound states at

the very edge of the valence and conduction bands [83, 84].
3Reality of spectrum in some quantum mechanical systems with non-Hermitian Hamiltonian operators

was observed earlier, but the reason of this phenomenon associated with the presence of PT -symmetry was
established for the first time in [85], see the corresponding discussion in [80].
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recently in [89], and PT -symmetric deformations of Calogero models were studied in [90, 91].
Nowadays PT -symmetry finds interesting applications in diverse areas of physics [92].

• The purpose of this article is to investigate how the Lax-Novikov integral in the PT -
regularized quantum conformal and superconformal mechanics models affects on their
(super)-conformal symmetries.

It is necessary to stress here that the PT -regularization x → x+ iα cannot be considered
as a kind of a simple analytic continuation of the models (1.1) since the domain of the latter
corresponds to the half-line, while the PT -regularized systems are defined on the whole real
line x ∈ R. As we shall see, this results in essential difference in symmetry properties of
the PT -regularized systems Hn(x+ iα) and of their supersymmetric versions in comparison
with (1.1) and its superextensions. The essential difference can also be expected a priori
if, by analogy, we compare the properties of the quantum systems described by potentials
u1 = n(n+1)

sinh2 x
and u2 = −n(n+1)

cosh2 x
. Both potentials (shifted for appropriate additive constant

terms) are solutions to the corresponding stationary equations of the KdV hierarchy, and the
second quantum system is related to the first one by a simple complex shift x → x + iπ/2.
The first quantum system, however, is singular at x = 0 being defined on the real half-line
x > 0 (or x < 0), its non-degenerate spectrum is continuous and has no ground state. The
second system is reflectionless being defined on the whole real line, its continuous spectrum
is doubly degenerate (except of the non-degenerate state with E = 0 at the lower edge), and
has n non-degenerate negative energies corresponding to bound states, with energy of the
ground state ψ0(x) = 1/ coshn x equal to E0 = −n2 [72, 44].

Our results can be summarized briefly as follows. We first show that the extension of the
set of generators of conformal symmetry of the PT -regularized conformal mechanics model
with coupling constant g = 2 (n = 1) by its Lax-Novikov integral generates three more dy-
namical (explicitly depending on time) integrals of motion together with a central charge. As
a result, the conformal so(2, 1) ≃ sl(2,R) Lie algebra expands up to a nonlinearly extended
Schrödinger algebra, in which the so(2, 1) generators appear quadratically in commutation
relations of the four new non-trivial (including Lax-Novikov) integrals of motion. With re-
spect to the adjoint action of the so(2, 1) generators, the complete set of integrals separates
into one-dimensional representation corresponding to the mass central charge, while the rest
of generators are eigenstates of eigenvalues (−3/2,−1,−1/2, 0, 1/2, 1, 3/2) of the dilatation
generator. The simplest supersymmetric extension of the PT -regularized g = 2 conformal
mechanics model is realized via a usual construction of N = 2 supersymmetric quantum
mechanics based on superpotential We = −1/(x + iα). In this case the PT -regularized
conformal mechanics model is paired with the free particle, and the system is described by
the exotic nonlinear N = 4 super-Poncaré algebra which corresponds to the phase of exact,
unbroken supersymmetry with a non-degenerate zero energy ground state. The matrix Lax-
Novikov integral is generated by anticommutator of the first and second order supercharges.
The extension of the set of generators of the exotic nonlinear N = 4 super-Poncaré algebra
by the matrix generators of the dilatations and special conformal symmetry transformations
gives rise to the nonlinearly extended generalized super-Schrödinger algebra. The set of
its nontrivial bosonic generators includes the matrix generalization of the above mentioned
seven integrals of motion, the generator of a u(1) R-symmetry, and two more integrals which
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are the momentum and the Galileo boost generator of the free particle subsystem. The set
of the fermionic generators includes three pairs of dynamical integrals of motion in addition
to the two pairs of the supercharges of the nonlinear N = 4 super-Poncaré sub-superalgebra.
The superconformal osp(2|2) symmetry is the Lie sub-superalgebra, whose expansion by any
other even or odd integral of motion results in generation of the whole nonlinearly super-
extended Schrödinger algebra. All the even and odd integrals form a supermultiplet with
respect to the adjoint action of the generators of the osp(2|2) superconformal symmetry, and
the structure coefficients in the (anti)commutation relations between the rest of the even
and odd integrals are linear in generators of the conformal so(2, 1) symmetry.

A general case of the PT -regularized conformal mechanics with coupling constant
g = n(n + 1) is characterized by a symmetry described by a nonlinearly extended
Schrödinger algebra generated by 2n + 5 integrals of motion whose scaling dimensions are
(−(n + 1/2),−(n − 1/2), . . . , n − 1/2, n + 1/2), plus a central charge. The N = 2 su-
persymmetric extension of this PT -regularized conformal mechanics model is realized by
the construction of supersymmetric quantum mechanical system given by a superpotential
We = −n/(x + iα). The obtained in such a way 2 × 2 matrix system is characterized by
the exotic nonlinear N = 4 super-Poincaré type symmetry, in which the anticommutator of
the supercharges, being operators of differential orders 1 and 2n, generates the matrix Lax-
Novikov integral. Extension of this nonlinear N = 4 super-Poincaré algebra by generators
of dilatations and special conformal transformations results in expansion of the superalgebra
up to a nonlinear super-extended Shrödinger symmetry, which contains the superconformal
osp(2|2) algebra as a Lie sub-superalgebra. With respect to the adjoint action of the osp(2|2)
generators, the rest of the 4n+ 2 bosonic and 4n+ 2 fermionic integrals form an irreducible
represenation. The structure coefficients in (anti)-commutation relations between additional
even and odd generators are polynomials of order 2n − 1 in generators of the conformal
so(2, 1) symmetry of the system.

We also consider supersymmetric system given by the superpotential Wb = 1/(x+ iα1)−
1/(x + iα2) + i/(α1 − α2), R ∋ αj 6= 0, j = 1, 2, α1 6= α2. It represents a matrix system
of the Darboux-paired PT -regularized conformal mechanics models with g = 2 character-
ized by different values of the shift parameters α1 and α2. This system is described by the
spontaneously partially broken phase of the exotic nonlinear N = 4 super-Poncaré symme-
try. The essential peculiarity of the system is that all its fermionic generators commute
nontrivially with the matrix dilatation generator, neither of them has a definite scaling di-
mension. The superalgebra of the system represents some nonlinear super-extension of the
Schrödinger symmetry which does not include the superconformal osp(2|2) symmetry as a
sub-superalgebra. Its generators transform nontrivially into those of the system given by
superpotential We = −1/(x+ iα) in the limit when one of the PT -regularization parameters
is sent to infinity.

The paper is organized as follows. In Section 2, we describe briefly the construction of
the perfectly invisible PT -regularized zero-gap conformal mechanics systems together with
their Lax-Novikov integrals. The nonlinearly extended Schrödinger symmetry of the PT -
regularized conformal mechanics model with coupling constant g = 2 is discussed in Section
3. Symmetries of the simplest superconformal extension of this system are investigated in
Section 4. The results of the two previous sections are generalized for the case of g =
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n(n+1) in Section 5. The case of the super-extended conformal mechanics with g = 2 in the
phase of spontaneously partially broken exotic nonlinear N = 4 super-Poincaré symmetry is
considered in Section 6. The concluding discussion is presented in Section 7.

2 PT -regularized conformal mechanics models

Let us re-denote the Hamiltonian operator of the conformal mechanics model (1.1) with
non-negative coupling constant g = ν(ν + 1), ν ≥ 0, as Hν . It admits two factorizations
Hν = AνA

#
ν = A#

ν+1Aν+1 in terms of the first order differential operators Aν = xν d
dx
x−ν =

d
dx

− ν
x
, A#

ν = A†
ν = − d

dx
− ν

x
. The Aν and A#

ν intertwine the Hamiltonian operators with
different in one values of the index : AνHν−1 = HνAν , A

#
ν Hν = Hν−1A

#
ν . The system Hν

is defined on the half-axis x > 0, and the case with ν = 0 can be considered as a limit
case ν → 0 corresponding to the quantum free particle on the half-line x > 0 subject to
the Dirichlet boundary condition ψ(0) = 0 [62]. We denote the Hamiltonian operator of
such a limit system by H+

0 . The case of integer values of the parameter ν = n is special
in the sense that the conformal mechanics model Hamiltonian Hn can be intertwined with
that of H+

0 , A
#
nHn = H+

0 A
#
n , AnH

+
0 = HnAn, by the generators of the Darboux-Crum

transformation given by the n-th order differential operators An = AnAn−1 . . . A1 and A#
n =

A†
n. In correspondence with this, the eigenstates ψ

(0)
k (x) = sin kx of H†

0 are mapped into

eigenstates of Hn, ψ
(n)
k (x) = Anψ

(0)
k (x), Hnψ

(n)
k = k2ψ

(n)
k . Unlike the quantum free particle

system H0 = − d2

dx2 , x ∈ R, the half-free particle system H+
0 is not translation invariant

and P0 = −i d
dx

is not its physical operator (observable) since acting on the states ψ
(0)
k (x)

it transforms them into the wave functions satisfying the Neumann boundary condition
ψ′(0) = 0 instead of the Dirichlet boundary condition. As a result, instead of the algebra of
Schrödinger symmetry of the free particle on a whole line given by the Hamiltonian H0, the
conformal mechanics systems Hn, including the case H+

0 , are described only by the algebra
sl(2,R) of its conformal symmetry subgroup.

By virtue of the intertwining relations between Hn and H+
0 , each of the systems Hn

possesses a formal integral of motion Pn = AnP0A#
n , [Pn, Hn] = 0, which, similarly to the

operator P0 forH
+
0 , ‘conflicts’ with the Dirichlet boundary condition, and so, is not a physical

operator. This ‘deficiency’ can be removed by the PT -symmetric regularization of conformal
mechanics systems Hn via a purely imaginary shift of the argument, x→ x+ iα, R ∋ α 6= 0,
accompanied by extension of x from the half-line to the whole real line. As it was shown in
[62], the resulting Hamiltonian

Hα
n = −

d2

dx2
+
n(n + 1)

(x+ iα)2
, x ∈ R , (2.1)

describes a perfectly invisible zero-gap PT -symmetric system, which is characterized by
a purely real spectrum in conformity with general properties of such class of the systems
[80, 81]. The peculiarity of the system (2.1), however, is that its transmission amplitude is
equal to one for all values of energy E > 0, and it has one bound state of zero energy given by
a square-integrable on R wave function ψ

(n)
0 (x) = 1/(x+ iα)n generated from the eigenstate

ψ
(0)
0 = 1 of zero energy of the free particle system: ψ

(n)
0 = Aα

nψ
(0)
0 , whereAα

n = Aα
nA

α
n−1 . . . A

α
1 ,
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Aα
l = d

dx
− l

x+iα
. The Lax-Novikov integral

P α
n = Aα

nP0A
α#
n , (2.2)

where Aα#
n = Aα#

1 . . . Aα#
n , Aα#

l = − d
dx

− l
x+iα

, detects the ground state ψ
(n)
0 (x) by an-

nihilating it, and distinguishes the deformed plane wave eigenstates ψ±k = Aα
ne

±ikx with
E = k2 > 0 in the continuous part of the spectrum, P α

n ψ
±k = ±k2n+1ψ±k.

We pass over now to investigation of the effect of the presence of the Lax-Novikov integrals
on symmetries of the PT -regularized conformal mechanics systems Hα

n and of their N = 2
super-extended versions. To this aim we first consider the case of the simplest system Hα

1 ,
and then we study its supersymmetric extension.

3 Symmetries of the Hα
1 system

The generator of Galilean transformations G0 = x − 2tP0 = x + 2it d
dx

of the free quantum

particle H0 = − d2

dx2 , x ∈ R, depends explicitly on the time parameter t, and satisfies Heisen-

berg equation of motion of the form i d
dt
G0 = i∂G0

∂t
−[H0, G0] = 0. In correspondence with this

property, G0 is identified as a dynamical integral of motion. Two other dynamical integrals
of motion of H0 are generators of dilatations, D0 = 1

4
{G0, P0} = − i

2

(

x d
dx

+ 1
2

)

− tH0, and
special conformal transformations, K0 = (G0)

2 = x2 − 8tD0 − 4t2H0. The integrals G0, D0

and K0 are not translationally-invariant, G0(x+ τ) = G0(x) + τ , D0(x+ τ) = D0(x) +
1
2
τP0,

K0(x + τ) = K0(x) +
1
2
τG0(x) +

1
4
τ 2. The set of integrals H0, P0, G0, D0 and K0 and the

unit operator I generate the Schrödinger algebra

[D0, H0] = iH0 , [D0, K0] = −iK0 , [K0, H0] = 8iD0 , (3.1)

[D0, P0] =
i
2
P0 , [D0, G0] = − i

2
G0 , (3.2)

[H0, G0] = −2iP0 , [H0, P0] = 0 , (3.3)

[K0, P0] = 2iG0 , [K0, G0] = 0 , (3.4)

[G0, P0] = i I . (3.5)

This Lie algebra describes symmetry of the free particle. It is the semi-direct sum of the
conformal algebra sl(2,R) generated by H0, D0 and K0, and of the one-dimensional Heisen-
berg algebra generated by P0, G0 and I. The identity operator I (in the chosen units ~ = 1,
m = 1/2) is the mass central element of the algebra. According to Eqs. (3.2), (3.3) and
(3.4), the generators of translations, P0, and Galileo transformations, G0, form a doublet
under the adjoint action of the generators H0, K0 and D0 of the conformal sl(2,R) symme-
try. The algebra (3.1)–(3.5) is characterized by the automorphism corresponding to a spatial
reflection, ρ1 : P0 → −P0, G0 → −G0, H0 → H0, K0 → K0, D0 → D0, I → I. It also has
another automoprphism

ρ2 : H0 → K0 , K0 → H0 , D0 → −D0 , P0 → −G0 , G0 → P0 , I → I , (3.6)

which at t = 0 corresponds to a unitary (canonical) transformation x→ −i d
dx
, −i d

dx
→ −x.

Let us look now for extension and generalization of the Schrödinger Lie algebra (3.1)–
(3.5) for the case of the PT -regularized conformal mechanics model Hα

1 . For this we first
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identify formally the integrals for the conformal mechanics model H1 by Darboux-dressing
the integrals of H0 and considering their commutation relations. Only generators of the
conformal sl(2,R) symmetry identified in such a way will be true integrals of motion of
H1, while other formal integrals will be non-physical : acting on physical eigentstates of
H1 satisfying the Dirichlet boundary condition ψ(0) = 0, they produce non-physical states
satisfying the Neumann boundary condition ( d

dx
ψ)(0) = 0. The subsequent shift x → x+ iα

(accompanied by extension x > 0 → x ∈ R and omission of boundary condition for wave
functions at x = 0) transforms then all the true and formal integrals of H1 into the true
integrals of motion of the PT -regularized conformal mechanics system Hα

1 . The key point
also is that here the substitution x → x + iα, d

dx
→ d

dx
changes the operators but does not

touch the form of all the corresponding nonlinear algebraic relations they satisfy.

Similarly to a formal (non-physical) integral P1 obtained via the Darboux-dressing of the
free particle momentum, we identify the analog of G0 to be a differential operator

G1(x) ≡ A1(x)G0(x)A
#
1 (x) = x

d

dx
A#

1 (x)− 2tP1(x) . (3.7)

Here the argument in integrals P1(x) and G1(x) is shown to stress that they are obtained from
the corresponding integrals of the free particle H0 via Darboux-dressing by the intertwining
operators A1(x) = d

dx
− 1

x
and A#

1 (x) = − d
dx

− 1
x
. The analog of D0(x) for the system

H1(x) = A1(x)A
#
1 (x) is

D1(x) = − i
2

(

x d
dx

+ 1
2

)

− tH1(x) . (3.8)

It can be extracted from the Darboux-dressed form of D0(x) by using the relations
A1(x)D0(x)A

#
1 (x) =

(

D1(x)−
i
2

)

H1(x) = H1(x)
(

D1(x) +
i
2

)

, Analogously, from the re-

lations A1(x)K0(x)A
#
1 (x) = K1(x)H1(x) − 4iD1(x) − 1 = H1(x)K1(x) + 4iD1(x) − 1 we

extract a dynamical integral

K1(x) = x2 − 8tD1(x)− 4t2H1(x) . (3.9)

The operators D1, K1 and H1 generate the sl(2,R) algebra of the form (3.1) :

[D1, H1] = iH1 , [D1, K1] = −iK1 , [K1, H1] = 8iD1 . (3.10)

The commutation relations

[H1, G1] = −2iP1 , [H1, P1] = 0 ,

are a direct analog of (3.3), while relations (3.2) and the first relation from (3.4) are replaced
by

[D1, P1] =
3
2
iP1 , [D1, G1] =

i
2
G1 , (3.11)

[K1, P1] = 6iG1 . (3.12)

Instead of (3.5) we have a nonlinear commutation relation

[G1, P1] = 3i(H1)
2 . (3.13)
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The zero commutator [K0, G0] = 0 is changed for nonzero one,

[K1, G1] = −4iV1 , (3.14)

where
V1(x) = ix2A#

1 (x)− 4tG1(x)− 4t2P1(x) (3.15)

is identified as a new explicitly depending on time formal integral of motion for the system
H1. It has the following commutation relations with other integrals :

[V1, H1] = 4iG1 , [V1, D1] =
i
2
V1 , [V1, K1] = 2iR1 , (3.16)

[V1, P1] = 12iH1D1 − 6H1 , [V1, G1] = 12i(D1)
2 + 3

4
i I . (3.17)

Here the operator
R1(x) = x3 − 6tV1(x)− 12t2G1(x)− 8t3P1 (3.18)

has to be identified as yet another new formal dynamical integral of motion of H1. Its
commutation relations with the rest of the integrals are

[R1, H1] = 6iV1 , [R1, D1] =
3
2
iR1 , [R1, K1] = 0 , (3.19)

[R1, P1] = 36iD2
1 +

21
4
i I , [R1, G1] = 12iD1K1 − 6K1 , [R1, V1] = 3iK2

1 . (3.20)

It may be noted here that the commutation relations of the form similar to (3.13) are satisfied
by ladder operators in rationally deformed harmonic oscillator systems as well as in rationally
deformed conformal mechanics model of de Alfaro-Fubini-Furlan with the included confining
harmonic potential term [93, 94].

The explicitly depending on time formal integrals of H1 have been identified via the
Darboux-dressing of the corresponding integrals of the free particle with additional step of
subsequent ‘extraction’ in the case of the integrals D1 and K1. The dynamical integrals
also can be obtained via the “time-dressing” by the evolution operator U1(t) = exp(iH1t).
For this we note that the dynamical integral X1(t) = U−1

1 (t)xU1(t) is given by an infinite
series in t and d

dx
, and so, is a nonlocal in x operator. This is essentially different from

the free particle case where U0(t) = exp(iH0t) and U
−1
0 (t)xU0(t) = G0 is the local operator

G0. However, the time dressing of the operators x2, 1
4
{x,−i d

dx
}, x d

dx
A#

1 , ix
2A#

1 (x) and x3

generates the local operators to be exactly the dynamical integrals of motion K1(x), D1(x),
G1(x), V1(x) and R1(x), respectively.

The integrals P1 and G1, being Darboux-dressed free particle’s generators of translations,
P0, and Galileo transformations, G0, are the third order differential operators 4. According
to (3.2) and (3.11), the scaling dimensions −1/2 and +1/2 of P0 and G0 given by relation
i[D0, F ] = sFF , are changed here for the scaling dimensions −3/2 and −1/2 of P1 and G1

given by analogous relation with D0 changed for D1. Coherently with this, the central charge
in commutation relation (3.5) is changed in (3.13) for the operator (H1)

2 having the scaling
dimension −2. In addition, two new formal dynamical integrals V1 and R1 of the scaling
dimensions +1/2 and +3/2 are generated via the commutation of G1 with generator of the
special conformal transformations K1 having the scaling dimension +1. As a result, instead

4The not-depending explicitly on t term in (3.7) is the second order differential operator.
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of the Lie algebraic structure of the Schrödinger symmetry of the free particle we obtain
the nonlinear algebra in which the commutators (3.13), (3.17) and (3.20) are quadratic in
generators of the sl(2,R) Lie subalgebra (3.10). Instead of the doublet of integrals (G0, P0)
under the adjoint action of the operators H0, K0 and D0 in the case of the free particle, here
we have the quartet (R1, V1, G1, P1) under the adjoint action of the sl(2,R) generators H1,
K1 and D1.

The described nonlinear algebra is characterized by the automorphism corresponding to
a spatial reflection ρ1. It also has the automorphism ρ2,

ρ2 : H1 → K1 → H1 , D1 → −D1 , P1 → −R1 , R1 → P1 , V1 → −G1 , G1 → V1 . (3.21)

Till the moment we discussed the integrals of the system H1. Except the generators
H1, D1 and K1 of the sl(2,R) symmetry, the rest of them are formal integrals being non-
physical operators. By shifting the argument x → x + iα and extending x > 0 for x ∈ R,
we obtain the corresponding set of the true integrals Hα

1 , D
α
1 , K

α
1 , P

α
1 , G

α
1 , V

α
1 and Rα

1 of
the PT -regularized conformal mechanics system Hα

1 . They satisfy the nonlinearly extended
Schrödinger algebra of the same described form.

4 Symmetries of the N = 2 super-extended Hα
1 system

Consider now the extended system described by the diagonal matrix Hamiltonian operator

Hα = diag (Hα
1 , H0) (4.1)

composed from the PT -regularized conformal mechanics Hamiltonian Hα
1 and the free par-

ticle Hamiltonian H0. To simplify notations, below we omit the upper index α in the Hamil-
tonian and matrix integrals of the system (4.1). The system (4.1) is described by the super-
potential We = −1/(x+ iα), H = − d2

dx2 +W2
e −W ′

eσ3, W
′
e =

d
dx
We, and is characterized by

the supercharges

Q1 =

(

0 Aα
1

Aα#
1 0

)

, Q2 = iσ3Q1 , (4.2)

which are the matrix first order differential operators, where Aα
1 = d

dx
+ We(x), A

α#
1 =

− d
dx
+We(x). The peculiarity of the system (4.1) is that besides the generators of the N = 2

supersymmetry Qa, a = 1, 2, it also possesses two more supercharges

S1 =

(

0 −iAα
1P0

iP0A
α#
1 0

)

, S2 = iσ3S1 . (4.3)

The appearance of additional supercharges (4.3) to be matrix differential operators of the
second order, as it clear from their structure, is explained by existence of the momentum
integral P0 in the free particle system. As a consequence, the Hamiltonian operator Hα

1 can
be intertwined with the free particle Hamiltonian H0 not only by the first order operators Aα

1

and Aα#
1 but also by the second order operators from which supercharges (4.3) are composed.
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These four supercharges satisfy the relations

[H,Qa] = 0 , [H,Sa] = 0 , (4.4)

{Qa,Qb} = 2δabH , {Sa,Sb} = 2δabH
2 , (4.5)

{Qa,Sb} = 2ǫabL , (4.6)

[L,H] = [L,Qa] = [L,Sa] = 0 , (4.7)

where
L = diag (P α

1 , H0P0) (4.8)

is the bosonic integral of motion composed from the Lax-Novikov integral P α
1 of the subsys-

tem Hα
1 and the momentum operator P0 of the free particle subsystem H0. The integrals

H, Qa, Sa and L generate the exotic nonlinear N = 4 superalgebra of the system (4.1),
in which the operator L plays a role of the bosonic central charge. System (4.1) has the
unique bound state of zero energy given by a square-integrable on R wave function of the
form Ψt = ((x+ iα)−1, 0)t, which is annihilated by all the superacharges Qa and Sa as well
as by the Lax-Novikov integral L.

We note here that the extension of the N = 2 supersymmetry up to the exotic nonlinear
N = 4 supersymmetry in general case of the quantum reflectionless and finite-gap systems
also is based on existence of the two pairs of intertwiners to be differential operators of
the even and odd orders. In finite-gap systems, however, no analog of the free particle
system with its proper integral of motion P0 does appear. In another way the extension
can be related to a presentation of the Lax-Novikov integral in such systems in the form of
the product of two non-singular operators of the even and odd differential orders. For the
detailed discussion of these aspects see refs. [44, 76, 77, 83, 84, 95], where also an important
phenomenon of reduction of higher order intertwining operators to intertwining operators of
a lower order is discussed. We consider some example of the reduction below in Section 6.
Because of such a reduction mechanism, each finite-gap or reflectionless system, including
the PT -regularized conformal mechanics systems (2.1), is characterized by a corresponding
unique irreducible Lax-Novikov integral : reducible intertwining operators generate the same
Lax-Novikov integral up to multiplication by a polynomial in the system’s Hamiltonian.

The Hamiltonian (4.1) together with the matrix dynamical bosonic integrals D =
diag (Dα

1 , D
α
0 ) and K = diag (Kα

1 , K
α
0 ) generates the conformal algebra sl(2,R),

[D,H] = iH , [D,K] = −iK , [K,H] = 8iD , (4.9)

where we use the notation Dα
0 = D0(x + iα), Kα

0 = K0(x + iα). Extending this set
of the bosonic integrals with the supercharge operators Qa and Sa, and taking all the
(anti)commutators of these operators and the new integrals generated in this procedure,
we obtain a nonlinear superalgebra which corresponds to some nonlinear extension of the
super-Schrödinger algebra. It is generated by the set of the bosonic integrals H, D, K, L,
G, V, R, P−, G−, Σ = σ3, I = diag (1, 1), and by the fermionic integrals Qa, Sa, and λa, µa

and κa, a = 1, 2, where

G = diag
(

Gα
1 ,

1
2
{Gα

0 , H0}
)

, (4.10)

V = i(x+ iα)2Aα#
1 I − 4tG − 4t2L , (4.11)
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R = (x+ iα)3I − 6tV − 12t2G − 8t3L , (4.12)

P− = 1
2
(1− σ3)P0 , G− = 1

2
(1− σ3)G

α
0 , (4.13)

λ1 =

(

0 i(x+ iα)
−i(x+ iα) 0

)

− 2tQ1 , λ2 = iσ3λ1 , (4.14)

µ1 =

(

0 (x+ iα)P0

P0(x+ iα) 0

)

− 2tS1 , µ2 = iσ3µ1 , (4.15)

κ1 =

(

0 (x+ iα)2

(x+ iα)2 0

)

− 4tµ1 − 4t2S1 , κ2 = iσ3κ1 . (4.16)

The dynamical integrals represent the corresponding time-independent operators “dressed”
by the matrix evolution operator U(t) = exp(iHt) : F (t) = U−1(t)F (0)U(t). Particularly,
the dynamical integral G corresponds to a dressed form of the diagonal matrix operator

g = diag
(

(x+ iα) d
dx
Aα#

1 , (x+ iα)Aα#
1

d
dx

)

.

All the integrals are eigenstates of the operator D in the sense of its adjoint action :

[D, I] = [D,D] = [D,Σ] = [D, µa] = 0 , (4.17)

[D,H] = iH , [D,K] = −iK , (4.18)

[D,L] = 3
2
iL , [D,R] = −3

2
iR , (4.19)

[D,G] = i
2
G , [D,V] = − i

2
V , [D,P−] =

i
2
P− , [D,G−] = − i

2
G− , (4.20)

[D,Qa] =
i
2
Qa , [D,Sa] = iSa , [D, λa] = − i

2
λa [D, κa] = −iκa . (4.21)

The complete set of other (anti)-commutation relations is :

[H,K] = −8iD , [H,D] = −iH , (4.22)

[H,R] = −6iV , [H,V] = −4iG , [H,G] = −2iL , [H,L] = 0 , (4.23)

[H,G−] = −2iP− , [H,P−] = 0 , (4.24)

[H,Qa] = 0 , [H,Sa] = 0 , (4.25)

[H, κa] = −4iµa , [H, µa] = −2iSa , [H, λa] = −2iQa , (4.26)

[K,L] = 6iG , [K,G] = 4iV , [K,V] = 2iR , [K,R] = 0 , (4.27)

[K,P−] = 2iG− , [K,G−] = 0 , (4.28)

[K,Qa] = 2iλa , [K, λa] = 0 , [K,Sa] = 4iµa , [K, µa] = 2iκa , [K, κa] = 0 , (4.29)

[L,G] = −3iH2 , [L,P−] = 0 , [L,G−] = −3iΠ−H , (4.30)

[L,V] = −3 (1 + Υ+)H , [L,R] = −i
(

36D2 + 9
2
Σ+ 3

4
I
)

, (4.31)

[L,Qa] = 0 , [L,Sa] = 0 , (4.32)

[L, λa] = 3iǫabSb , [L, µa] = 3iHǫabQb , [L, κa] = 3
(

Υ+ǫab + iδab
)

Qb , (4.33)
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[G,V] = 3iHK − 12D + i
2
(7Σ− I) , [G,R] = 3(1 + Υ−)K , (4.34)

[G,P−] = iΠ−H , [G,G−] = −4iΠ−D , (4.35)

[G,Qa] = iǫabSb , [G,Sa] = −2iHǫabQb , (4.36)

[G, λa] = −2iǫabµb , (4.37)

[G, µa] =
1
2
Υ+ǫabQb , [G, κa] = −

(

2Υ−ǫab + iδab
)

λb, (4.38)

[V,R] = −3iK2 , [V,P−] = 4iΠ−D , [V,G−] = −iΠ−K , (4.39)

[V,Qa] = 2iǫabµb , [V,Sa] = −
(

2Υ+ǫab + iδab
)

Qb , (4.40)

[V, λa] = −iǫabκb , [V, µa] =
1
2
Υ−ǫabλb , [V, κa] = 4iKǫabλb , (4.41)

[R,P−] = 3iΠ−K , [R,G−] = 0 , (4.42)

[R,Qa] = −3iǫabκb , [R,Sa] = 3
(

Υ−ǫab + iδab
)

λb , (4.43)

[R, λa] = 0 , [R, µa] = −3iKǫabλb , [R, κa] = 0 , (4.44)

[P−,G−] = − i
2
(I − Σ) , [P−,Qa] = −iSa , [P−,Sa] = iHQa , (4.45)

[P−, λa] = −iµa , (4.46)

[P−, µa] =
1
2
Υ+Qa , [P−, κa] =

(

−1
2
Υ−δab + iǫab

)

λb , (4.47)

[G−,Qa] = −iµa , [G−,Sa] = −Qa + iHλa , (4.48)

[G−, λa] = −iκa , [G−, µa] = −1
2
Υ−λa , [G−, κa] = iKλa , (4.49)

[Σ,B] = 0 , B = Γ,H,L,D,K,G,V,R,P−,G− , (4.50)

[Σ,Fa] = 2iǫabFb , Fa = Qa,Sa, λa, µa, κa , (4.51)

{Qa,Qb} = 2δabH , {Qa,Sb} = 2ǫabL , (4.52)

{Qa, λb} = 4δabD + 2ǫab
(

I − 1
2
Σ
)

, (4.53)

{Qa, µb} = −2δabP− + 2ǫabG , {Qa, κb} = −4δabG− + 2ǫabV , (4.54)

{Sa,Sb} = 2δabH2 , (4.55)

{Sa, λb} = 4δabP− − 2ǫabG , {Sa, µb} =
(

− i(1 + Υ+)δab + (1− 2Σ)ǫab
)

H , (4.56)

{Sa, κb} =
(

1
2
HK− I

)

δab +
(

2iδab + 4(1− 2Σ)ǫab
)

D , (4.57)

{λa, λb} = 2δabK , {λa, µb} = 2ǫabV + 2δabG− , {λa, κb} = 2ǫabR , (4.58)

{µa, µb} = 1
2
Υ+Υ−δab , {µa, κb} =

(

i(1 + Υ−)δab + (1− 2Σ)ǫab
)

K , (4.59)

{κa, κb} = 2δabK2 . (4.60)

We use here a notation Π− = 1
2
(1 − Σ) and Υ± = 1 ± 4iD for operator-valued coefficients

appearing in some (anti)-commutation relations.
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The superalgebra (4.17)–(4.60) represents a nonlinear generalization of the super-
Schrödinger symmetry with ten even and ten odd generators plus a bosonic central charge I.

It is characterized by the quadratic Casimir operator C0 = {K,H}−8D2+2
(

I − 1
2
Σ
)2
−3I2,

which takes zero value C0 = 0 for the system (4.1). The set of operators H, K, D, (I − 1
2
Σ),

Qa and λa generates the Lie sub-superalgebra osp(2|2) of superconformal symmetry of the
system. The extension of the indicated set of operators by the Lax integral L or by any
other integral not appearing in the list produces all the rest of the generators and expands
the superalgebra osp(2|2) up to the described nonlinear (quadratic) superalgebra. As an ex-
ample, one such a chain of the (anti)commutation relations can be presented schematically
as

L
K
−→ G

K
−→ V

K
−→ R , L

λa−→ Sa
λa−→ P−

λa−→ µa
λa−→ G−

λa−→ κa , G−

P−

−→ I,Σ ,

where L
K
−→ G corresponds to the first commutation relation in (4.27), etc.

The peculiarity of the obtained nonlinear superalegbra is that the (anti)-commutators
of the generators of the osp(2|2) sub-superalgebra with any other generator is linear in
generators; at the same time, in the (anti)-commutators of the rest of the integrals, the
generators H, K, D and Σ of the sl(2,R) ⊕ u(1) sub-algebra appear as operator-valued
coefficients.

The superalgebra has the automorphism corresponding to a spatial reflection ρ1, under
which the integrals L, G, V, R, P−, G−, Qa, and λa are odd (change the sign), while the rest
of generators is even. Another set of transformations

ρ2 : H → K , K → H , D → −D , R → L , L → −R ,

V → −G , G → V , G− → P− , P− → −G− , Σ → Σ , I → I ,

Qa → −λa , λa → Qa , Sa → κa , κa → Sa , µa → −µa ,

corresponds to automorphism of the superalgebra that unifies and generalizes relations (3.6)
and (3.21) for the superextended system (4.1).

5 Symmetries of Hα
n and of its super-extended version

In this section we generalize the analysis of the previous two sections for the case of the
PT -regularized conformal mechanics system Hα

n and its super-extended version.
System (2.1) has the dynamical integrals of motion

Dα
n = − i

2

(

(x+ iα) d
dx

+ 1
2

)

− tHα
n , Kα

n = (x+ iα)2 − 8tDα
n − 4t2Hα

n , (5.1)

which together with Hamiltonian Hα
n generate the conformal sl(2,R) symmetry. It also has

the Lax-Novikov integral of motion P α
n , [P

α
n , H

α
n ] = 0, being the Darboux-dressed momentum

integral P0 of the free particle. Its scale dimension is −(n + 1
2
), i[Dα

n , P
α
n ] = −(n + 1

2
)P α

n .
Repeated commutation of P α

n with Kα
n , [P

α
n , K

α
n ], [[P

α
n , K

α
n ], K

α
n ], . . ., generates in addition to

Dα
n and Kα

n , the 2n dynamical integrals of the half-integer scale dimensions −(n− 1
2
), . . . , (n+

1
2
). These are the operators which together with the integral P α

n can be presented in the
form

X α
n,ℓ = U−1

n (t)Xα
n,ℓUn(t) = Xα

n,ℓ + . . . , ℓ = 0, 1, . . . , 2n+ 1 , (5.2)
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where Un(t) = exp(itHα
n ), the ellipsis corresponds to a polynomial of order ℓ in t,

Xα
n,ℓ = (x+ iα)ℓAα

n,ℓ , (5.3)

Aα
n,ℓ = A♦

ℓ−nA
♦
ℓ+1−n . . . A

♦
n , ℓ = 0, 1, . . . , 2n , Aα

n,2n+1 = 1 , (5.4)

and we denote A♦
−k = Aα

k for k > 0, A♦
0 = d

dx
, and A♦

k = Aα#
k for k > 0. In particular

cases of ℓ = 0 and ℓ = 2n + 1 the integrals (5.2) are reduced to Xn,0 = iP α
n and Xn,2n+1 =

U−1
n (t)(x+ iα)2n+1Un(t). The integrals (5.2) form a 2(n+1)-dimensional representation with

respect to the adjoint action of the sl(2,R) generators,

[Dα
n ,X

α
n,ℓ] = i(n− ℓ+ 1

2
)X α

n,ℓ , (5.5)

[Hα
n ,X

α
n,ℓ] = 2ℓX α

n,ℓ−1 , [Kα
n ,X

α
n,ℓ] = 2(2n+ 1− ℓ)X α

n,ℓ+1 . (5.6)

The commutation relations of X α
n,ℓ between themselves are reduced to the form

[X α
n,ℓ,X

α
n,ℓ′] = P(2n)

ℓ,ℓ′ (H
α
n , K

α
n , D

α
n) , (5.7)

where P(2n)
ℓ,ℓ′ are some polynomials of order 2n in the sl(2,R) generators.

The supersymmetric system given by the superpotential We = −n/(x+ iα) is described
by the matrix Hamiltonian

Hn = diag (Hα
n , H

α
n−1) . (5.8)

System (5.8) is characterized by nonlinear extension of the Schrödinger superalgebra, which
in this case is generated by 4n + 6 bosonic integrals and the same number of fermionic
integrals, and by the bosonic central charge I. The set of bosonic generators is given by
Hn, Dn = diag (Dα

n , D
α
n−1), Kn = diag (Kα

n , K
α
n−1), Σ, X

+
n,ℓ = X α

n,ℓΠ+, ℓ = 0, . . . , 2n+ 1, and

X−
n,k = X α

n−1,kΠ−, k = 0, . . . , 2n− 1, where Π± = 1
2
(1± σ3). The set of fermionic generators

is Qn,a, λn,a, Sn,a, and µn,k,a, k = 0, . . . , 2n− 1. The explicit form of these generators with
index a = 1 is given by

Qn,1 =

(

0 A−
n

A#
n 0

)

, λn,1 =

(

0 i(x+ iα)
−i(x+ iα) 0

)

− 2tQn,1 , (5.9)

Sn,1 =

(

0 −iAα
nP

α
n−1

iP α
n−1A

α#
n 0

)

, (5.10)

µn,k,1 = U−1
n (t)

(

0 (x+ iα)Xα
n−1,k

(−1)k+1Xα
n−1,k(x+ iα) 0

)

Un(t) . (5.11)

The generators with index a = 2 are obtained by multiplication with iσ3,Qn,2 = iσ3Qn,1, etc.,
and here Un(t) = exp(iHnt) is the evolution operator. The operators µn,k,a with k = 2n− 1
and k = n−1 correspond, respectively, to the fermionic dynamical integrals (4.16) and (4.15)
in the case of n = 1.

The operators Hn, Kn, Dn, (I − 1
2
Σ), Qn,a and λn,a are generators of the Lie sub-

superalgebra osp(2|2) of superconformal symmetry of the system (5.8). Extension of this set
by any other integral (different from the central charge I) results in expansion of the osp(2|2)
up to the whole nonlinearly extended super-Schrödinger algebra. As in the n = 1 case, the
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(anti)-commutators of all the integrals with the osp(2|2) generators are linear in the genera-
tors of the extended super-Schrödinger algebra. Particularly, the operators X+

n,ℓ and X−
n,k have

the scaling dimensions −(n−ℓ+ 1
2
) and −(n−k− 1

2
), respectively, given by the adjoint action

of iDn, while the pairs of fermionic operators Sn,a and µn,k,a, a = 1, 2, have the scaling dimen-
sions −n and (k+1−n). In the (anti)-commutators of additional generators with generators
of the osp(2|2) superconformal symmetry, the structure coefficients are certain polynomials of
order 2n−1 in generators H, K, D and Σ of the sl(2,R)⊕u(1) sub-algebra. The Hamiltonian
Hn, the supercharges Qn,a and Sn,a, and the bosonic Lax-Novikov matrix integral taken in the
form Ln = X+

n,0+HnX
−
n,0 = diag (P α

n , H
α
n−1P

α
n−1) generate the exotic nonlinear N = 4 super-

Poincaré algebra of the form (4.4), (4.5), (4.6), (4.7) with the unique difference in the anti-
commutation relation between the higher order supercharges Sn,a : {Sn,a,Sn,b} = 2δab(Hn)

2n.
As in the particular case of n = 1, the exotic nonlinear N = 4 supersymmetry of the system
(5.8) is unbroken : its unique ground state of zero energy Ψt = ((x+ iα)−n, 0)t is annihilated
by all the supercharges Qn,a and Sn,a as well as by the Lax-Novikov integral [62]. Here, the
operator Gn = X+

n,1+
1
2
{Hn,X

−
n,1} = diag (X α

n,1,
1
2
{Hn−1,X

α
n−1,1}) is the analog of the integral

(4.10) of the case n = 1.

6 Spontaneoulsy broken phase of the exotic SUSY

We study here the case of the PT -regularized g = 2 superconformal mechanics model in
the phase of the partially broken exotic nonlinear N = 4 super-Poincaré symmetry. The
symmetry of the system we investigate is described by the same number of bosonic and
fermionic generators as in the system from Section 4, but the structure of nonlinear super-
algebra they generate is essentially different from that of the model (4.1). Nevertheless, its
symmetry is shown may be related to the nonlinearly extended super-Schrödinger symmetry
of the system (4.1) in the limit of the transition to the phase of the unbroken exotic nonlinear
N = 4 supersymmetry.

The system we consider is generated via the N = 2 supersymmetric quantum mechanics
construction based on the superpotential Wb(x) = 1/ξ1 − 1/ξ2 + iδ−1, where ξj = x + iαj ,
j = 1, 2, R ∋ αj 6= 0, δ = α1 − α2 6= 0. In the limit when the parameter α1 (or α2) is
sent to infinity, the superpotential transforms into the superpotential We(x) (or −We(x)) of
the system (4.1). We have W2

b −W ′
b = 2/ξ21 − δ−2, W2

b +W ′
b = 2/ξ22 − δ−2, that allows us

to introduce the first order differential operators Ab =
d
dx

+Wb(x) and A
#
b = − d

dx
+Wb(x)

satisfying the factorization, A#
b Ab = Hα1

1 − δ−2, AbA
#
b = Hα2

1 − δ−2, and the intertwining,

AbH
α1

1 = Hα2

1 Ab, A
#
b H

α2

1 = Hα1

1 A#
b , relations, where H

αj

1 = − d2

dx2 + 2/ξ2j . Define now the
extended system described by the matrix Hamiltonian

H = diag (Hα2

1 , Hα1

1 ) . (6.1)

Operators

Q1 =

(

0 Ab

A#
b 0

)

, Q2 = iσ3Q1 , (6.2)

are the supercharges of the system (6.1). They satisfy the relations

[H,Qa] = 0, {Qa,Qb} = 2δab(H− δ−2) . (6.3)
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The partner Hamiltonians can also be intertwined by the second order operators Aα2

1 A
α1#
1

and Aα1

1 A
α2#
1 via the Hamiltonian of the intermediate (‘virtual’ here) free particle system :

Aα2

1 A
α1#
1 Hα1

1 = Aα2

1 H0A
α1#
1 = Hα2

1 Aα2

1 A
α1#
1 , Aα1

1 A
α2#
1 Hα2

1 = Aα1

1 H0A
α2#
1 = Hα1

1 Aα1

1 A
α2#
1 .

Hence, system (6.1) is characterized additionally by the second order supercharges

S1 =

(

0 Aα2

1 A
α1#
1

Aα1

1 A
α2#
1 0

)

, S2 = iσ3S1 , (6.4)

[H,Sa] = 0, {Sa,Sb} = 2δabH
2 . (6.5)

We note here that the first order intertwining operators from which supercharges (6.2) are
composed can be obtained by employing the reduction of intertwining operators mentioned
in Section 4. Indeed, the Hamiltonians Hα1

1 and Hα2

1 can be intertwined by the third
order differential operator Aα2

1 P0A
α1#
1 by using the chain of equalities Aα2

1 P0A
α1#
1 Hα1

1 =
Aα2P0H0A

α1#
1 = Aα2

1 H0P0A
α1#
1 = Hα2

1 Aα2

1 P0A
α1#
1 . However, using equation (4.18) from ref.

[62], or by a direct computation, one finds the relation Aα2

1 P0A
α1#
1 = Hα2

1 Ab − iδ−1Aα2

1 A
α1#
1

that shows that the indicated third order intertwining operator reduces to the intertwining
operators appearing in the right-upper corners of the supercharges Q1 and S1 multiplied,
respectively, by the second order operator Hα2

1 and the constant −iδ−1.
The anti-commutator of the first and second order supercharges generates the matrix

Lax-Novikov integral L1 = diag (P α2

1 , P α1

1 ),

{Qa,Sb} = 2
(

ǫabL1 + iδabδ
−1H

)

. (6.6)

This operator satisfies relations [L1,H] = [L1,Qa] = [L1,Sa] = 0, and plays the role of
the central charge of the exotic nonlinear N = 4 supersymmetry generated by H, Qa, Sa

and L1. Unlike (4.1), system (6.1) is in the phase of the partially broken exotic nonlinear
N = 4 supersymmetry. Its two zero energy eigenstates Ψt

α2
= ((x+ iα2)

−1, 0)t and Ψt
α1

=
(0, (x+ iα1)

−1)t are zero modes of both second order supercharges Sa, but neither of them
is annihilated by the first order supercharges Qa [62].

System (6.1) is also characterized by the dynamical integrals D = diag (Dα2

1 , D
α1

1 ) and
K = diag (Kα2

1 , Kα1

1 ). Commuting the Lax-Novikov integral repeatedly with the dynamical
integral K, we generate three more bosonic dynamical integrals of motion,

[L1,K] = −6iG1 , [G1,K] = −4iV , [V,K] = −2iR , [R,K] = 0 , (6.7)

G1 = (ΞH +A#)− 2tL1 , V = iΞ2A# − 4tG1 − 4t2L1 , (6.8)

R = Ξ3 − 6tV − 12t2G1 − 8t3L1 , (6.9)

where Ξ = diag (ξ2, ξ1), A# = diag (Aα2#
1 , Aα1#

1 ). All these bosonic integrals have the same
scaling dimensions as their analogs in the system from Section 3. The peculiarity of the
system (6.1), however, is that its supercharges Qa and Sa are not eigenstates of the dilatation
generator under its adjoint action :

[D,Qa] =
1
2
δSa , [D,Sa] =

3
2
iSa −

1
2
δHQa . (6.10)

Coherently with this, the way in which the odd dynamical integrals for the system (6.1)
are generated is also different in comparison with that for the system from Section 4. The
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commutation of the dynamical integral K with the first and second order supercharges Qa

and Sa generates the unique pair of the odd dynamical integrals µa :

[K,Qa] = δ2Qa + 2δµa , [K,Sa] = δ2Sa + 3iδQa − 4δDQa + 6iµa , (6.11)

µ1 = iΞσ1A
# − 2tS1 , µ2 = iσ3µ1 . (6.12)

Commutation of K with µa produces a new pair of fermionic integrals Γa,

[K, µa] = 4iΓa + δ2µa − 2δKQa , (6.13)

Γ1 = (Ξ2σ1 − δΞσ2)− (4µ1 + 2δQ1)t− 4t2S1 , Γ2 = iσ3Γ1 . (6.14)

The time-independent term in (6.14) is presented equivalently in the form ξ1ξ2σ1. Finally,
commutation of K with Γa generates dynamical odd integrals Ωa,

[K,Γa] = Ωa , (6.15)

Ω1 = (3δ2Ξ2σ1 + (2δΞ3 − δ3Ξ)σ2) + t (−2δ3Q1 − 12δ2µ1 + 12δKQ1 − 12iΓ1)

+t2 (−12δ2S1 + 48δDQ1 − 24iµ1) + t3 (−16iS1 + 16δHQ1) , (6.16)

Ω2 = iσ3Ω1. The commutation relation

[K,Ωa] = δ2
(

4Ωa − 2δ2Γa −
1
2
KΓa

)

(6.17)

then signals that the process of generation of odd dynamical integrals terminates. Commu-
tation relations

[D, µa] =
i
2
µa − δ

(

D − i
4

)

Qa , [D,Γa] = − i
2
Γa −

1
2
δKQa +

1
2
δ2µa , (6.18)

[D,Ωa] = −3
2
iΩa −

3
2
δ3KQa + 2iδ2Γa + δ2

(

1
2
δ2 −K

)

µa (6.19)

show that, like Qa and Sa, neither of the odd dynamical integrals is eigenstate under the
adjoint action of the dilation generator. The commutation relations of the odd dynamical
integrals with the Hamiltonian operator are

[H, µa] = −2iSa , [H,Γa] = −2i(2µa + δQa) , (6.20)

[H,Ωa] = 12Γa − iδ2(10µa + 3δQa) + 4δ2D(µa + δQa) + 12iKQa . (6.21)

The anti-commutation relations of dynamical integrals µa with µb, Qb and Sb are

{µa, µb} = 8δab (D2 − 4iD + 2iδG2 − 9I) , (6.22)

{Qa, µb} = δab (−δH + 4iδ−1D + δ−1I) + ǫab (2G1 + iδΣH) , (6.23)

{Sa, µb} = δab (−3iH + 4DH + iδL2) + ǫab (−2ΣH + δL1) , (6.24)

where L2 = σ3L1 and G2 = σ3G1 are two additional bosonic integrals. Instead of them, one
can take their linear combinations with L1 and G1 to obtain L− = Π−L1 and G− = Π−G1,
which could be considered as analogs of the integrals (4.13) of the system (4.1). Finally, the
system under consideration is described by ten bosonic integrals H, D, K, Σ, L1, G1, V, R,
L2 and G2 (or by L− and G− instead of the two last integrals), the same number of fermionic
integrals Qa, Sa, µa, Γa and Ωa, and by the central charge I.
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Essential peculiarity here is that the PT -regularization parameter α of the dimension
of length does not appear in the superalgebra of the system (4.1), while in the (anti)-
commutation relations for the system (6.1) there appears the parameter δ = α1 − α2.

We will not write down the missing (anti)-commutation relations of the integrals, but
examine the relation between the systems (4.1) and (6.1) in the light of their nonlinearly
supersymmetrically extended and deformed conformal symmetries. First of all, we observe
that the nonlinear extensions of the conformal sl(2,R) symmetry generated by their sets of
the bosonic integrals are very similar. The only difference appears in commutation relations
of the corresponding pairs of the operators (P−, G−) and (L−, G−). More essential difference
is that system (4.1) contains the algebra of the superconformal osp(2|2) symmetry as a sub-
superalgebra, whereas system (6.1) does not have such a sub-superalgebra. This is reflected,
particularly, in the peculiarity of the latter system encoded in relations (6.10), (6.18) and
(6.19), cf. (4.21). Since in the limit α1 → ∞ with identification α2 = α the superpotential
Wb(x) of the system (6.1) transforms into superpotential We(x) of the system (4.1), and
the Hamiltonian (6.1) transforms into (4.1), the essential difference between two systems at
first glance may seem to be rather surprising. To clarify this point, let us see what happens
in the indicated limit with other operators. We have Ab → Aα

1 , A
#
b → Aα#

1 , Aα1

1 → d
dx

and Aα1#
1 → − d

dx
. As a result, we find that the generators Qa, Sa and L1 of the system

(6.1) transform into the corresponding integrals Qa, Sa and L of the system (4.1), while L−

transforms into the integral P− multiplied with the Hamiltonian (4.1). The limit applied
to other integrals is more delicate, however. The dilatation generator of the system (6.1)
with α2 = α is represented equivalently in the form D = D(x + iα) + i

2
(α1 − α)P−, where

by D(x + iα) we indicate the dilatation generator for the system (4.1). So, the integral
D transforms into D(x + iα) if the limit α1 → ∞ is accompanied by a ‘renormalization’
which consists in omitting the integral i

2
P− multiplied with the factor δ = (α1 − α) → ∞.

A similar picture is valid for relation between other bosonic dynamical integrals of both
systems in the indicated limit. Particularly, we have K = K(x+ iα)+2iδJ−(x+ iα)− δ2Π−,
and this integral transforms into K(x + iα) by making the same kind of ‘renormalization’.
For fermionic dynamical integral µ1 the relation µ1 = µ1(x + α) − δΠ−Q1 is valid when
α1 → ∞, and, as a result, a ‘renormalized’ form of the integrals (6.12) will correspond to
the dynamical integrals (4.15) of the system (4.1). For the integral Γ1 with α1 → ∞ we have
Γ1 = κ1(x+ iα)− iδλ2(x+ iα), and the ‘renormalized’ form of the integrals (6.14) gives us
the integrals (4.16) for the system (4.1). This also means that the limit α1 → ∞ applied
to the rescaled integrals δ−1Γa reproduces the dynamical integrals (5.10). Analogously, the
appropriately rescaled integrals (6.16) in the limit α1 → ∞ reproduce the integrals (5.10) :
δ−3Ωa → λa(x+ iα).

All this shows that in the limit when one of the two parameters α1 or α2 is sent to infinity,
the system (6.1) in the phase of the partially broken exotic nonlinear N = 4 super-Poincaré
symmetry transforms into the system (4.1) in the unbroken phase, and all the integrals of
the latter system can be reproduced from those of the former system. The relation between
the integrals, however, is rather non-trivial, that is behind the essential difference between
the nonlinear super-extended versions of the conformal symmetry generated in two cases.
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7 Discussion and outlook

The AFF model [1] is obtained from the model (1.1) by adding into the Hamiltonian op-
erator the confining harmonic potential term x2 that effectively results in introduction of
another boundary condition ψ(+∞) = 0 at another edge of the interval x ∈ (0,+∞) in
addition to the Dirichlet boundary condition ψ(0) = 0. This procedure does not change the
symmetry: the system described by the “regularized” AFF Hamiltonian has the same con-
formal symmetry as the initial system (1.1), but it changes radically the spectrum. Instead
of continuous non-degenerate spectrum of the system (1.1) with E > 0, the AFF model has
the equidistant discrete spectrum which, up to a constant shift, coincides with the spectrum
of the half-harmonic oscillator [94]. This is not surprising as at particular values of the cou-
pling constant g = n(n + 1), the AFF model is generated from the half-harmonic oscillator
by the appropriate nonsingular on the half-line Darboux-Crum transformation [94]. From
this point of view the AFF model with confining harmonic potential term is rather a rational
deformation of the half-harmonic oscillator than the deformation (by adding the harmonic
term) of the two-particle Calogero system (1.1) with the omitted center of mass coordinate.
Nevertheless, in this way the “regularization” recipe accepted in [1] solves the problem of the
absence of the ground state in the initial system (1.1). One could not restrict the values of
x to the half-line in the system (1.1) as well as in the “regularized” AFF model and consider
both systems on the whole real line x ∈ R. Potential with the inverse squared term is not
penetrable at x = 0, and the probability flux between regions x < 0 and x > 0 will be
equal to zero, i.e. in this case we effectively will have two copies of the system with doubly
degenerate either continuous spectrum with E > 0 in the case of (1.1) or the discrete spec-
trum in the AFF model [1]. Besides the conformal symmetry, system (1.1) has another very
important peculiarity. As we noted, it’s potential with g = n(n+ 1) is an algebro-geometric
solution to the stationary KdV equation or the higher equation of its hierarchy, which is
characterized by the existence of the differential operator of order 2n + 1, related with a
higher order Novikov equation [96]. This higher order Lax-Novikov operator commutes with
the Hamiltonian operator (1.1) [71]. In this picture, a free particle on the whole real line can
be treated as a zero-gap (n = 0) system for which the corresponding first order Lax-Novikov
differential operator is just the momentum integral −i d

dx
. But unlike the free particle case

with x ∈ R, the Lax-Novikov differential operator of order 2n + 1 for the quantum system
(1.1) with g = n(n+1) is not a true integral of motion since it takes out the wave functions
from the domain of the Hamiltonian operator (1.1), as it also happens for the operator −i d

dx

for the free particle on the half-line. The PT -regularization of the system (1.1) we apply,
x → x+ iα, R ∋ α 6= 0, x > 0 → x ∈ R, allows us to transform the Lax-Novikov operator
of the algebro-geometric method of solution of the KdV equation and higher equations of its
hierarchy, into the true integral for the quantum system Hα

n = − d2

dx2 + n(n+1)
(x+iα)2

, which turns
out to be a Darboux-dressed momentum of the free particle on the whole line. As a result,
the symmetry of the PT -regularized system is described by nonlinearly extended generalized
Shrödinger algebra which includes conformal sl(2,R) algebra as the subalgebra, and there
appears a non-degenerate bound state ψ0 = 1/(x + iα)n of zero energy at the very edge
of its doubly degenerate continuous spectrum, which is nothing else as the Darboux-Crum
transformed zero energy free particle’s state ψ0 = 1. As we showed, such extension of sym-
metry also has very profound consequences for supersymmetric PT -regularized conformal
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mechanics systems in comparison with the superconformal osp(2|2) symmetry of the su-
perextended version of the system (1.1). Particularly, in the PT -regularized superconformal
mechanics system in the partially broken phase of the exotic nonlinear N = 4 super-Poincaré
symmetry we considered in the previous section, the osp(2|2) is not contained at all as a
sub-superalgebra in the corresponding nonlinearly super-extended Schrödinger algebra.

As it was shown in [62], the systems we considered here are the simplest representatives
of a broader class of the systems which can be generated by applying the chains of Darboux
transformations to the quantum free particle. The interesting question is what happens with
the conformal symmmetry for more complicated systems from the indicated class, particu-
larly, in the systems related to solutions of the equations of the KdV hierarchy which reveal
the properties of the extreme waves [62].

Since conformal mechanics (1.1) with special values of the coupling constant g = n(n+1)
plays a special role in the Huygens’ principle [68], the interesting question that deserves
a separate investigation corresponds to the treatment of the considered systems as (1+1)-
dimensional field theories from the perspective of the associated time-dependent Schrödinger
equation. An a priori complication which may appear in this direction is that due to the
higher-derivative nature of the Lax-Novikov operators, it is impossible, at least directly, to
associate them with Noether integrals of the corresponding field systems. The indicated
field-theoretical generalization is also interesting bearing in mind that the considered PT -
symmetric quantum mechanical systems are also related to the singular kinks arising as
traveling waves in the Liouville and SU(3) conformal Toda systems [62].

The obtained results could be generalized for the case of the AFF conformal mechanics
model with the confining harmonic potential term. The essential difference in such a case
is that the corresponding systems do not have Lax-Novikov integrals. However, in the
case of rational deformations of such systems with special values of the coupling constant
g = n(n+1), instead of the Lax-Novikov integrals they are characterized by higher-derivative
spectrum-generating ladder operators [93, 94]. As a result, in that case also there appear
nonlinear extensions of the (super)-Schrödinger symmetry of the structure similar to that
investigated here [97].

It would be interesting to generalize our results for the case of appropriately PT -
regularized many-particle superconformal mechanics [7]–[13]. There, additional integrals also
can be constructed in the form of higher-order Lax-Novikov type integrals via the Darboux-
dressing procedure [98]. It is necessary to stress that the formal Lax-Novikov type integrals
in n-particle Calogero-Moser systems with n > 2 also have a pure quantum nature, and they
are not related to (maximal) super-integrability of the systems which takes place already at
the classical level [99, 100, 101, 102]. Similarly to the present case of n = 2, the square of the
indicated formal integrals also reduces there to a polynomial in the Liouville charges [98].
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Annals Phys. 324, 1078 (2009) [arXiv:0809.2854 [hep-th]].

[45] P. D. Alvarez, J. L. Cortes, P. A. Horvathy and M. S. Plyushchay, “Super-extended
noncommutative Landau problem and conformal symmetry,” JHEP 0903, 034 (2009)
[arXiv:0901.1021 [hep-th]].

24

http://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0005/0005/a003/
https://arxiv.org/abs/hep-th/0109005
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.90.031302
https://arxiv.org/abs/hep-th/0209044
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.68.125013
https://arxiv.org/abs/hep-th/0303166
https://www.sciencedirect.com/science/article/pii/S0003491603001180?via%3Dihub
https://arxiv.org/abs/hep-th/0301244
https://link.springer.com/chapter/10.1007%2F978-3-540-30308-4_7
https://arxiv.org/abs/hep-th/0312068
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.71.044023
https://arxiv.org/abs/hep-th/0411232
http://iopscience.iop.org/article/10.1088/1126-6708/2005/11/017/meta
https://arxiv.org/abs/hep-th/0412322
https://www.sciencedirect.com/science/article/pii/S0370269305004004?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0370269305008567?via%3Dihub
https://arxiv.org/abs/hep-th/0503174
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.43.3907
https://arxiv.org/abs/hep-th/0512188
http://iopscience.iop.org/article/10.1088/1126-6708/2006/10/068/meta
https://arxiv.org/abs/hep-th/0607124
http://iopscience.iop.org/article/10.1088/1126-6708/2007/09/056/meta
https://arxiv.org/abs/0707.0267
https://www.sciencedirect.com/science/article/pii/S0375960109000930?via%3Dihub
https://arxiv.org/abs/0803.1293
http://iopscience.iop.org/article/10.1088/1126-6708/2008/10/072/meta
https://arxiv.org/abs/0807.1100
https://www.sciencedirect.com/science/article/pii/S000349160900044X?via%3Dihub
https://arxiv.org/abs/0809.2854
http://iopscience.iop.org/article/10.1088/1126-6708/2009/03/034/meta
https://arxiv.org/abs/0901.1021


[46] A. Bagchi and R. Gopakumar, “Galilean conformal algebras and AdS/CFT,”
JHEP 0907, 037 (2009) [arXiv:0902.1385 [hep-th]].

[47] F. Correa, H. Falomir, V. Jakubsky and M. S. Plyushchay, “Hidden supercon-
formal symmetry of spinless Aharonov-Bohm system,” J. Phys. A 43, 075202 (2010)
[arXiv:0906.4055 [hep-th]].

[48] T. Hakobyan, S. Krivonos, O. Lechtenfeld and A. Nersessian, “Hidden symme-
tries of integrable conformal mechanical systems,” Phys. Lett. A 374, 801 (2010)
[arXiv:0908.3290 [hep-th]].

[49] C. Chamon, R. Jackiw, S. Y. Pi and L. Santos, “Conformal quantum mechanics as the
CFT1 dual to AdS2,” Phys. Lett. B 701, 503 (2011) [arXiv:1106.0726 [hep-th]].

[50] Z. Kuznetsova and F. Toppan, “D-module representations of N=2,4,8 superconfor-
mal algebras and their superconformal mechanics,” J. Math. Phys. 53, 043513 (2012)
[arXiv:1112.0995 [hep-th]].

[51] S. Fedoruk, E. Ivanov and O. Lechtenfeld, “Superconformal mechanics,”
J. Phys. A 45, 173001 (2012) [arXiv:1112.1947 [hep-th]].

[52] K. Andrzejewski, J. Gonera and P. Maslanka, “Nonrelativistic conformal
groups and their dynamical realizations,” Phys. Rev. D 86, 065009 (2012)
[arXiv:1204.5950 [math-ph]].

[53] J. Gonera, “Conformal mechanics,” Annals Phys. 335, 61 (2013)
[arXiv:1211.4403 [hep-th]].

[54] J. Molina-Vilaplana and G. Sierra, “An xp model on AdS2 spacetime,”
Nucl. Phys. B 877, 107 (2013) [arXiv:1212.2436 [hep-th]].

[55] M. S. Plyushchay and A. Wipf, “Particle in a self-dual dyon background: hidden free
nature, and exotic superconformal symmetry,” Phys. Rev. D 89, no. 4, 045017 (2014)
[arXiv:1311.2195 [hep-th]].

[56] S. J. Brodsky, G. F. de Teramond, H. G. Dosch and J. Erlich, “Light-
front holographic QCD and emerging confinement,” Phys. Rept. 584, 1 (2015)
[arXiv:1407.8131 [hep-ph]].

[57] K. Andrzejewski, J. Gonera, P. Kosinski and P. Maslanka, “On dynamical realizations of
l-conformal Galilei groups,” Nucl. Phys. B 876, 309 (2013) [arXiv:1305.6805 [hep-th]].

[58] M. Masuku and J. P. Rodrigues, “De Alfaro, Fubini and Furlan from multi matrix
systems,” JHEP 1512, 175 (2015) [arXiv:1509.06719 [hep-th]].

[59] I. Masterov, “Remark on higher-derivative mechanics with l-conformal Galilei symme-
try,” J. Math. Phys. 57, no. 9, 092901 (2016) [arXiv:1607.02693 [hep-th]].

[60] K. Andrzejewski, “Quantum conformal mechanics emerging from unitary representa-
tions of SL(2,R),” Annals Phys. 367, 227 (2016) [arXiv:1506.05596 [hep-th]].

25

http://iopscience.iop.org/article/10.1088/1126-6708/2009/07/037/meta
https://arxiv.org/abs/0902.1385
http://iopscience.iop.org/article/10.1088/1751-8113/43/7/075202/meta
https://arxiv.org/abs/0906.4055
https://www.sciencedirect.com/science/article/pii/S0375960109015254?via%3Dihub
https://arxiv.org/abs/0908.3290
https://www.sciencedirect.com/science/article/pii/S0370269311006447?via%3Dihub
https://arxiv.org/abs/1106.0726
https://aip.scitation.org/doi/10.1063/1.4705270
https://arxiv.org/abs/1112.0995
http://iopscience.iop.org/article/10.1088/1751-8113/45/17/173001/meta
https://arxiv.org/abs/1112.1947
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.86.065009
https://arxiv.org/abs/1204.5950
https://www.sciencedirect.com/science/article/pii/S0003491613000912?via%3Dihub
https://arxiv.org/abs/1211.4403
https://www.sciencedirect.com/science/article/pii/S0550321313004847?via%3Dihub
https://arxiv.org/abs/1212.2436
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.045017
https://arxiv.org/abs/1311.2195
https://www.sciencedirect.com/science/article/pii/S0370157315002306?via%3Dihub
https://arxiv.org/abs/1407.8131
https://www.sciencedirect.com/science/article/pii/S0550321313004069?via%3Dihub
https://arxiv.org/abs/1305.6805
https://link.springer.com/article/10.1007%2FJHEP12%282015%29175
https://arxiv.org/abs/1509.06719
https://aip.scitation.org/doi/10.1063/1.4963169
https://arxiv.org/abs/1607.02693
https://www.sciencedirect.com/science/article/pii/S0003491616000312?via%3Dihub
https://arxiv.org/abs/1506.05596


[61] R. Bonezzi, O. Corradini, E. Latini and A. Waldron, “Quantum mechan-
ics and hidden superconformal symmetry,” Phys. Rev. D 96, no. 12, 126005 (2017)
[arXiv:1709.10135 [hep-th]].

[62] J. Mateos Guilarte and M. S. Plyushchay, “Perfectly invisible PT -symmetric zero-
gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry,”
JHEP 1712, 061 (2017) [arXiv:1710.00356 [hep-th]].

[63] L. Inzunza and M. S. Plyushchay, “Hidden superconformal symmetry: Where does it
come from?,” Phys. Rev. D 97, no. 4, 045002 (2018) [arXiv:1711.00616 [hep-th]].

[64] H. Airault, H. P. McKean, and J. Moser, “Rational and elliptic solu-
tions of the Korteweg-de Vries equation and a related many-body problem,”
Comm. Pure Appl. Math. 30, 95 (1977).

[65] M. Adler and J. Moser, “On a Class of Polynomials Connected with the Korteweg-
deVries Equation,” Commun. Math. Phys. 61, 1 (1978).

[66] A. Gorsky and N. Nekrasov, “Hamiltonian systems of Calogero type and two-dimensional
Yang-Mills theory,” Nucl. Phys. B 414, 213 (1994) [hep-th/9304047].
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[83] A. Arancibia, F. Correa, V. Jakubský, J. Mateos Guilarte and M. S. Plyushchay,
“Soliton defects in one-gap periodic system and exotic supersymmetry,”
Phys. Rev. D 90, no. 12, 125041 (2014) [arXiv:1410.3565 [hep-th]].

[84] A. Arancibia and M. S. Plyushchay, “Chiral asymmetry in propagation of
soliton defects in crystalline backgrounds,” Phys. Rev. D 92, no. 10, 105009 (2015)
[arXiv:1507.07060 [hep-th]].

[85] C.M. Bender, S. Boettcher, “Real spectra in non-hermitian Hamiltonians having PT
symmetry,” Phys. Rev. Lett. 80, 5243 (1998) [arXiv:physics/9712001].

[86] P. Dorey, C. Dunning and R. Tateo, “Spectral equivalences, Bethe Ansatz equations, and
reality properties in PT -symmetric quantum mechanics,” J. Phys. A 34, 5679 (2001)
[arXiv:hep-th/0103051].

[87] P. Dorey, C. Dunning and R. Tateo, “Supersymmetry and the spontaneous breakdown
of PT symmetry,” J. Phys. A 34, L391 (2001) [hep-th/0104119].

[88] M. Znojil, “PT -symmetric harmonic oscillators,” Phys. Lett. A 259, 220 (1999)
[quant-ph/9905020].

[89] F. Correa and A. Fring, “Regularized degenerate multi-solitons,” JHEP 1609, 008 (2016)
[arXiv:1605.06371 [nlin.SI]].

[90] A. Fring and M. Znojil, “PT -symmetric deformations of Calogero models,”
J. Phys. A 41, 194010 (2008) [arXive:0802.0624 [quant-ph]].

27

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.030403
https://arxiv.org/abs/0801.1671
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.045009
https://arxiv.org/abs/1210.3666
http://iopscience.iop.org/article/10.1088/1126-6708/2003/10/069/meta
https://arxiv.org/abs/hep-th/0304257
https://www.sciencedirect.com/science/article/pii/S0370269305013821?via%3Dihub
https://arxiv.org/abs/hep-th/0508223
http://iopscience.iop.org/article/10.1088/0034-4885/70/6/R03/meta
https://arxiv.org/abs/hep-th/0703096
https://www.worldscientific.com/doi/abs/10.1142/S0219887810004816
https://arxiv.org/abs/0810.5643
https://aip.scitation.org/doi/abs/10.1063/1.1703672?journalCode=jmp
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.90.125041
https://arxiv.org/abs/1410.3565
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.105009
https://arxiv.org/abs/1507.07060
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.5243
https://arxiv.org/abs/physics/9712001
http://iopscience.iop.org/article/10.1088/0305-4470/34/28/305/meta
https://arxiv.org/abs/hep-th/0103051
http://iopscience.iop.org/article/10.1088/0305-4470/34/28/102/meta
https://arxiv.org/abs/hep-th/0104119
https://www.sciencedirect.com/science/article/pii/S0375960199004296?via
https://arxiv.org/abs/quant-ph/9905020
http://iopscience.iop.org/article/10.1088/1751-8113/41/19/194010/meta
https://arxiv.org/abs/0802.0624


[91] F. Correa and O. Lechtenfeld, “PT deformation of angular Calogero models,” JHEP
1711, 122 (2017) [arXiv:1705.05425 [hep-th]].

[92] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rot-
ter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,”
Nature Physics 14, 11 (2018).
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