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Abstract—This paper describes a new design of Reed-Solomon
(RS) codes when using composite extension fields. Our ultimate
goal is to provide codes that remain Maximum Distance Sepa-
rable (MDS), but that can be processed at higher speeds in the
encoder and decoder. This is possible by using coefficients in the
generator matrix that belong to smaller (and faster) finite fields
of the composite extension and limiting the use of the larger
(and slower) finite fields to a minimum. We provide formulae
and an algorithm to generate such constructions starting from
a Vandermonde RS generator matrix and show that even the
simplest constructions, e.g., using only processing in two finite
fields, can speed up processing by as much as two-fold compared
to a Vandermonde RS and Cauchy RS while using the same
decoding algorithm, and more than two-fold compared to other
RS Cauchy and FFT-based RS.

Index Terms—Reed-Solomon codes, coding theory, composite
extension finite fields

I. INTRODUCTION

Reed-Solomon (RS) codes were proposed for the first time
in 1960 as a class of error-correcting codes [1]. Since then,
RS codes have been used in a large number of applications
from data communication to distributed storage both as an
error-correcting code or as an erasure-correcting code and
relying on several constructions for RS code generator ma-
trices, e.g., Vandermonde, Cauchy. Although popular, these
designs have remained relatively unchanged in the last decades
and are typically associated with a significant computational
costs for encoding (decoding) as the number of symbols (k)
increases due to the finite field operation costs and the O(k2)
(O(k3)) scaling. Recent proposals focused on improving the
overall scaling of encoders/encoders to O(k log(k)) by using
constructions based on the Fast Fourier Transform (FFT) [2],
[3], [4]. However, their performance for moderate k, e.g., for
communications and storage, is yet to be studied.

Given the growing challenges and upcoming demands in
communication and distributed storage systems, the devel-
opment of efficient constructions of RS codes that can (i)
seamlessly replace older constructions without modifying the
system’s operation, and (ii) deliver higher encoding and de-

coding speeds, becomes increasingly relevant. In the context
of older CPUs, Cauchy matrices were shown to be faster
than Vandermonde matrices [5]. However, the use of hardware
acceleration, e.g., Single Instruction Multiple Data (SIMD)
operations, in Intel [6] and ARM [7] CPUs has made both
approaches faster and reduced the gap between them, i.e.,
making them essentially equivalent in processing performance
for the same implementation, e.g., consider Jerasure 2.0’s per-
formance described in [8]. Thus, novel solutions that radically
redefine the core operations of the finite fields and exploit
them are needed to provide the critical speed-ups.

This paper introduces a new design for RS codes with the
goal to reduce the computational costs in practical systems.
To achieve this, we use the fact that (i) finite fields of the
form F2s for some s can be computed faster for smaller
s [7], and that (ii) it is possible to generate efficient composite
extension fields that maintain compatibility in their operations
(i.e., product in small field has a direct bit-by-bit mapping
to the same product performed in a larger field constructed
from that smaller field) [9]. Thus, our design utilizes composite
extension finite fields and proposes a deterministic algorithm
to maximize the number of columns in the generator matrix
that are composed solely by the smallest finite field. It then
proceeds to maximize the number of columns with the second
smallest finite field (an intermediate finite field), and continues
until columns can only be of the largest finite field allowed.
We show performance gains for decoding of as much as two-
fold in SIMD capable CPUs while using the same decoding
algorithm (Gaussian Elimination) as a Vandermonde RS code.
Higher gains are expected in devices not capable of SIMD
instructions and/or by improving the decoding algorithm as
suggested in [9]. We focus on decoding performance as it
is more challenging to achieve benefits than for the case of
encoding. Encoding performance gains are expected to be the
same or higher due to the fact that the encoding of each
individual coded fragment does not depend on the encoding
of other fragments.

The paper is organized as follows. Section II describes
the fundamentals for generation of matrices for RS codes



using two composite extension fields and presents a simple,
deterministic algorithm based on the theoretical results. Sec-
tion III shows the benefits of such a construction using a C++
implementation and measuring decoding speed performance
in a real device. Section IV extends our concept to generator
matrices using more than two composite extension fields.
Section V summarizes our contributions and future work.

II. GENERATOR MATRICES FOR REED-SOLOMON CODES
WITH COMPOSITE EXTENSION FIELDS

Let Fq be a finite field with q = 2s elements. A RS code
Ck ⊂ Fnq , with dimension k, is the vector space generated
by the evaluation of the monomials 1, X, . . . ,Xk−1 at the
n = 2s − 1 points of Fq \ {0}. Namely, let α be a primitive
element of Fq and let ev : Fq[X] → Fnq , be given by
ev(f) = (f(α0), f(α1), . . . , f(αq−2)). Then, the RS code
with dimension k is

Ck = 〈{ev(Xi) : i = 0, . . . , k − 1}〉

Since the evaluation map is injective, an n×k generator matrix
is obtained by considering as columns the evaluation of a
monomial at Fq \ {0}, in this way one obtains the following
generator matrix that is a Vandermonde matrix

GVk =
(
α(i−1)(j−1)

)
1≤i≤n,1≤j≤k

.

The elements of the matrix GVk are in Fq and only the first
column has all elements in F2. Note that a row in GVk is
provides the coefficients for generating a coded fragment,
while a column is associated to the contribution of an original
fragment to the different coded fragments generated. We shall
provide a different generator matrix for the RS code Ck
such that as many columns as possible have all elements
in F2 (that is, they consist in 0’s and 1’s). Hence, we will
evaluate a different set of polynomials to obtain a different
generator matrix for the same code, or equivalently, one may
consider elementary transformations in the previous matrix.
In particular, we can evaluate k polynomials of degree lower
than k such that they are linearly independent. We consider
polynomials that evaluate to F2, i.e., f ∈ Fq[X] such that
ev(f) ∈ Fn2 , which are described by cyclotomic cosets and the
trace of a polynomial [10], [11]. For an integer 0 ≤ a < q−1,
consider the cyclotomic coset modulo q − 1 defined by

Ia = {a2i mod q − 1 : i = 0, 1, 2, . . .}

. We consider q = 24 as a toy example for this section. The
different cyclotomic cosets are I0 = {0}, I1 = {1, 2, 4, 8},
I3 = {3, 6, 12, 9}, I5 = {5, 10}, I7 = {7, 14, 13, 11}. One has
that I1 = I2 = I4 = I8 and so on. Theorem 1 provides a
basis for the polynomials evaluating to F2 (see [12, Section
1.3] and [13, Theorem III.8]).

Theorem 1: A basis for the set of polynomials in Fq[X]
evaluating to F2 is

⋃
Ia

{
fIa,βj : j ∈ {0, . . . ,#Ia − 1}

}
,

where β = α(2s−1)/(2ηa−1), with ηa = #Ia, i.e. a primitive
element of F2ηa ⊆ F2s , and fIa,β = βXa + β2X2a + · · · +
β2ηa−1

X2ηa−1a.

We consider again q = 24, we provide some of the poly-
nomials given by the previous theorem: one has a cyclotomic
coset with one element I0 = {0} and its associated polynomial
is 1 = X0, that trivially evaluates to F2. The polynomi-
als, associated to the cyclotomic coset I1 = {1, 2, 4, 8},
are {fI1,1, fI1,α, fI1,α2 , fI1,α3}. They are linearly independent
and evaluate to F2:

fI1,1 = ev(X +X2 +X4 +X8)
fI1,α = ev(αX + α2X2 + α4X4 + α8X8)
fI1,α2 = ev(α2X + α4X2 + α8X4 + αX8)
fI1,α3 = ev(α3X + α6X2 + α12X4 + α9X8).

For I5 = {5, 10}, we have that {fI5,1, fI5,α5} are its
associated polynomials that evaluate to F2, since α5 =
α((16−1)/(4−1)). Namely,

fI5,1 = X5 +X10

fI5,α5 = α5X5 + α10X10.

Continuing this way, we get from I3 four polynomials of
degree 12, as I3 = {3, 6, 9, 12}, and from I7, another four
polynomials of degree 14, as I7 = {7, 11, 13, 14}, which
evaluate to F2. With these polynomials, we can construct the
RS code C9 with dimension 9 and length 15 over F16. By
Theorem 1 we can evaluate fI1,1, fI1,α, fI1,α2 , fI1,α3 , instead
of X,X2, X4, X8, to construct the generator matrix since
{1, 2, 4, 8} ⊂ {0, . . . , 8}. In this way, a generator matrix of
the Reed-Solomon code C9 consists of the columns ev(1),
ev(fI1,1), ev(fI1,α), ev(fI1,α2), ev(fI1,α3), ev(X3), ev(X5),
ev(X6) and ev(X7). Note that these polynomials will evaluate
to codewords that are linearly independent since some of
them have different degree and the ones with the same degree
are linearly independent from each other by Theorem 1 and
linearly independent from the remaining polynomials by the
definition of fIa,αi . The elements of the first 5 columns of the



generator matrix are in F2.

G9 =



1 0 0 0 1 1 1 1 1
1 0 0 1 0 α3 α5 α6 α7

1 0 1 0 0 α6 α10 α12 α14

1 1 0 0 1 α9 1 α3 α6

1 0 0 1 1 α12 α5 α9 α13

1 0 1 1 0 1 α10 1 α5

1 1 1 0 1 α3 1 α6 α12

1 1 0 1 0 α6 α5 α12 α4

1 0 1 0 1 α9 α10 α3 α11

1 1 0 1 1 α12 1 α9 α3

1 0 1 1 1 1 α5 1 α10

1 1 1 1 1 α3 α10 α6 α2

1 1 1 1 0 α6 1 α12 α9

1 1 1 0 0 α9 α5 α3 α
1 1 0 0 0 α12 α10 α9 α8


Let C11 be the RS code with dimension 11 and length 15 over
F16. The generator matrix of this code can be obtained by
considering {ev(Xi) : i = 0, . . . , 10}. As before, by Theorem
1, we can consider fI1,1, fI1,α, fI1,α2 , fI1,α3 instead of
X,X2, X4, X8 since {1, 2, 4, 8} ⊂ {0, . . . , 10}. Furthermore,
we can now consider fI5,1, fI5,α5 instead of X5, X10. In
this way, by the same reason as before, a generator matrix
of the RS code C11 is given by ev(1), ev(fI1,1), ev(fI1,α),
ev(fI1,α2), ev(fI1,α3), fI5,1, fI5,α5 , ev(X3), ev(X6), ev(X7),
ev(X9). The elements of the first 7 columns of the generator
matrix are in F2.

G11 =



1 0 0 0 1 0 1 1 1 1 1
1 0 0 1 0 1 1 α3 α6 α7 α9

1 0 1 0 0 1 0 α6 α12 α14 α3

1 1 0 0 1 0 1 α9 α3 α6 α12

1 0 0 1 1 1 1 α12 α9 α13 α6

1 0 1 1 0 1 0 1 1 α5 1
1 1 1 0 1 0 1 α3 α6 α12 α9

1 1 0 1 0 1 1 α6 α12 α4 α3

1 0 1 0 1 1 0 α9 α3 α11 α12

1 1 0 1 1 0 1 α12 α9 α3 α6

1 0 1 1 1 1 1 1 1 α10 1
1 1 1 1 1 1 0 α3 α6 α2 α9

1 1 1 1 0 0 1 α6 α12 α9 α3

1 1 1 0 0 1 1 α9 α3 α α12

1 1 0 0 0 1 0 α12 α9 α8 α6


Analogously, for the RS code C13 with dimension 13 and
length 15 over F16, we can construct a generator matrix with
11 columns with all elements in F2. In general, for a RS code
Ck with dimension k over Fq , one can obtain a generator
matrix with ∑

Ia⊆{0,...k−1}

#Ia

columns in F2. Note that, by Theorem 1, such a number of
columns is optimal. For RS codes over F16, Table I shows
how many columns can be obtained in F2.

Dimension k 1 2 3 4 5 6 7 8
#Columns in F2 1 1 1 1 1 1 1 1

Dimension k 9 10 11 12 13 14 15
#Columns in F2 5 5 7 7 11 11 15

TABLE I: Optimal number of columns in F2 for various k for
RS codes over F16

We have described how to construct a generator matrix by
evaluating the polynomials given in Theorem 1. Alternatively,
one can perform elementary operations in the Vandermonde
matrix GVk : let gi be the column i of the matrix GVk , for
i = 1, . . . , k. The polynomial fIa,β = βXa + β2X2a + · · ·+
β2#Ia−1

X2#Ia−1a indicates that the column i of the matrix
Gk is given by a linear combination of columns of GVk :

#Ia−1∑
j=0

β2jg2ja+1 mod q−1

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To test the potential benefits of this approach, we use the
kodo C++ library [14] in order to implement and measure
performance of both RS Vandermonde and RS Cauchy on
two different finite fields and our new constructions with
two finite fields. We also use the longhair1 and leopard2

libraries to compare our performance against an RS Cauchy
optimized implementation (SIMD capable) and an FFT-based
RS implementation, respectively. The latter is based on the
formulation provided in [4]. For a fair comparison, we consider
non-systematic codes. This means that the RS Cauchy decod-
ing tests will be considered using only coded packets, which
limits the generation size to 128 packets. The performance
evaluation is carried out on an OSX machine (2015) with
a 2.2 GHz Intel Core i7 processor with Single Instruction
Multiple Data (SIMD) support. Specifically, the CPU provides
SSSE3, SSSE4, and AVX2 support, which allows to perform
hardware acceleration of finite field operations. We measured
the decoding speed of both approaches using the same decod-
ing algorithm in order to compare fairly. However, improved
algorithms for our construction can be developed using the
intuition proposed in [9] due to the problem’s structure.

Figure 1 shows the performance of our approach when
using a combination of finite fields F2 and F24 compared
to a RS Cauchy code and RS Vandermonde code using
F24 . Unfortunately, longhair and leopard do not provide
support for this finite field. As expected, the performance
difference between RS Vandermonde and our proposed code
starts when the number of original packets (i.e., dimension)
is k ≥ q/2 + 1 = 24/2 + 1 = 9, where q is the size of
the larger field. Our results show that gains of up to 37 %

1Longhair: https://github.com/catid/longhair
2Leopard: https://github.com/catid/leopard

https://github.com/catid/longhair
https://github.com/catid/leopard
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Fig. 2: Decoding speeds of Various RS schemes using F28 and
RS Multi-Field using F2 and F28

are attainable by simply changing the coding coefficients as
described in Section II. Note that the RS Cauchy performs
similarly to RS Vandermonde due to the use of similar SIMD
instructions for the product operations. Figure 1 also shows
that the decoding speed for a generation size (dimension) of
k ≥ 12 is kept above 1440 MB/s with our approach, while the
standard RS approach continues to decrease in decoding speed
for the same region. This is related to the increased number
of 1 and 0 coefficients introduced with our scheme.

Figure 2 shows the performance of our approach when using
a combination of finite fields F2 and F28 , similar to Figure 1.
In this case, a dimension k ≥ q/2 + 1 = 256/2 + 1 = 129
is necessary to see differences between our scheme and RS.

In this case, we compare to RS Vandermonde and Cauchy
implementations from kodo, but also longhair’s Cauchy im-
plementation and leopard’s FFT-based RS decoder. Our results
show not only that the decoding speed of our approach can
be almost twice as high than RS Cauchy or Vandermonde
from kodo and larger than the other schemes, but also that
the decoding speed increases when k > 200. The latter
means that the decoding speed is predictably never worse
than 100 MB/s for this particular device using our approach,
which provides some system design advantages at the time
of planning and allocating resources for decoding purposes,
which may rely on worst case performance of the module. The
results for the RS Vandermonde and Cauchy and our scheme
are not dependent on the loss patterns. However, Figure 2
shows that leopard’s decoder depends heavily on the generated
redundancy and losses, e.g., there is a performance gap of five
times between the performance for two losses and ten losses,
with the former being slower. This makes the performance of
the FFT-based RS less predictable than the other schemes, with
worst case scenarios being an order of magnitude slower than
other schemes. The fact that the performance is lower when
fewer losses occur, may limit its use in some applications,
e.g., distributed storage, where the system is likely to repair
damaged fragments after a few losses.

As an important remark, these results are for a computer
that exploits hardware acceleration (SIMD instructions). As
measured in [7], the gap between a hardware-accelerated
implementation and an implementation without it is an order
of magnitude. This means that the gains are expected to be
much larger in devices without these capabilities, e.g., lower
end smart phones, IoT devices, as the cost of processing large
fields is significantly higher without SIMD functionalities with
respect to processing smaller finite fields.

IV. GENERATOR MATRICES WITH COLUMNS IN AN
INTERMEDIATE FIELD

We considered in Section II generator matrices for RS codes
with as many columns with all elements in F2 as possible.
Although we did not consider it in our experimental results
yet, one may modify the matrices obtained in Section II to
construct generator matrices where some of the columns, that
do not have all elements in F2, have all their elements in an
intermediate field, F2r , with r | s, since F2 ⊂ F2r ⊂ F2s . This
modification will allow the encoders and decoders to operate
in an intermediate field that is faster than the largest field, thus
increasing further the encoding/decoding speeds in the system.
We proceed as in Section II, considering 2r-cyclotomic cosets
modulo 2s − 1:

I2
r

a = {a2ri mod 2s − 1 : i = 0, 1, 2, . . .}

and rewrite Theorem 1 as follows.
Theorem 2: A basis for the set of polynomials in Fq[X]

evaluating to F2r , with r | s, is⋃
I2ra

{
fI2ra ,βj : j ∈ {0, . . . ,#I2

r

a − 1}
}
,



Dim. k 1 2 3 4 5 6 7 8
#Cols. in Fn

2 1 1 1 1 1 1 1 1
#Cols. in Fn

4 \ Fn
2 0 0 0 0 2 2 2 2

Dim. k 9 10 11 12 13 14 15
#Cols. in Fn

2 5 5 7 7 11 11 15
#Cols. in Fn

4 \ Fn
2 0 2 2 2 0 2 0

TABLE II: Optimal number of columns in F2 and F4 for
various k for RS codes over F16

where β = α(2s−1)/(2ηa−1), with ηa = #I2
r

a , i.e. a primitive
element of F2ηa ⊆ F2s , and fI2ra ,β = βXa+β2rX2ra+ · · ·+
β2rηa−1

X2rηa−1a.

For example, for q = 24, we have that F2 ⊂ F4 ⊂ F16. The
different 4-cyclotomic cosets are I40 = {0}, I41 = {1, 4}, I42 =
{2, 8}, I43 = {3, 12}, I45 = {5, 10}, I46 = {6, 9}, I47 = {7, 13},
I411 = {11, 14}. Hence, one can obtain generator matrices for
RS codes with the following number of columns in Fn2 and
Fn4 \ Fn2 , as in Table II.

V. CONCLUSION

This paper presented a novel construction for RS codes
that is compatible with multiple composite extension fields,
e.g., [9], and that has a shown potential to reduce practical
computation costs in real devices. Our measurement results
showed that up to twice the speed in decoding is possible in
hardware-accelerated devices. This is possible even limiting
our approach to the use of two finite fields, which can be
deployed in current systems by simply changing the coding co-
efficients of the coding matrix and without modifications of the
underlying finite field constructions. Further gains are expected
when using our constructions for multiple composite fields
and for computationally limited devices without hardware-
acceleration capabilities, i.e., devices that require significantly
more effort to compute larger finite fields. Future work will
consider an extensive measurement campaign to understand
the benefits to different classes of commercial devices. In
particular, we expect lower end devices without hardware
optimization (e.g., SIMD instructions) to benefit further from
our new RS constructions. Future work will consider the
design of systematic RS codes using composite extension
fields, which is of interest in distributed storage applications.
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