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RESUMEN 
 

 

Introducción 

El ácido araquidónico (cis-5,8,11,14-eicosatetraenoico; AA) es el precursor de 

los eicosanoides, una gran familia de mediadores con papeles fundamentales 

en las fases de iniciación y resolución de la inflamación. En las células el AA 

se encuentra esterificado en la posición sn-2 de los glicerofosfolípidos de 

membrana, y la participación de las fosfolipasas A2 liberando el ácido graso 

constituye un paso limitante para la síntesis de eicosanoides, un proceso que 

también depende de los niveles de expresión y actividad de las ciclooxigenasas 

y lipooxigenasas que metabolizan el AA.  

El AA es el principal ácido graso poliinsaturado presente en las membranas de 

las células del sistema inmune innato y no se encuentra distribuido de forma 

uniforme entre los glicerofosfolípidos, si no que existen diferencias en su 

distribución entre diferentes especies moleculares. Monocitos y macrófagos 

muestran una distribución característica del AA entre las clases de fosfolípidos, 

siendo los fosfolípidos de etanolamina (PE) los que más AA contienen, 

seguidos de los fosfolípidos de colina (PC) y del fosfatidilinositol (PI). 

Atendiendo a las especies moleculares dentro de las clases de fosfolípidos, los 

plasmalógenos de etanolamina están particularmente enriquecidos con AA. 

Esta distribución asimétrica del AA en las células es clave para la regulación 

de la síntesis de eicosanoides ya que, dependiendo de la fuente de fosfolípidos 

del AA, pueden producirse ciertos eicosanoides con mayor preferencia que 

otros. Por ejemplo, la producción de metabolitos a través de lipooxigenasas 

en macrófagos peritoneales de ratón estimulados con zimosán, parece estar 

asociada con la movilización de AA de PC, y no de PE o PI. Esto implicaría 

que no todas las clases de fosfolípidos que contienen AA son accesibles a las 

fosfolipasas A2 que producen la liberación del ácido graso. Por lo tanto, 

dependiendo de la compartimentalización del AA entre los distintos 

fosfolípidos de membrana puede constituir el tercer paso limitante para la 

síntesis de eicosanoides.  

La incorporación del AA en los fosfolípidos celulares tiene lugar 

principalmente por el reciclaje del ácido graso proveniente de la posición sn-2 

de los glicerofosfolípidos a través del ciclo de Lands. En esta ruta, los 
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lisofosfolípidos generados por fosfolipasas A2 constitutivamente activas, 

como la fosfolipasa A2 independiente de calcio del grupo VIA (iPLA2β), son 

utilizados por una aciltransferasa dependiente de coenzima A (CoA) para 

incorporar el AA en los fosfolípidos. La remodelación posterior a través de 

reacciones de transacilación entre los fosfolípidos, distribuye el AA en las 

clases de fosfolípidos apropiadas.  

La transacilasa independiente de CoA (CoA-IT) es la principal enzima 

implicada en la remodelación de AA en la mayoría de las células. Esta enzima 

cataliza la transferencia de AA y otros ácidos grasos poliinsaturados 

principalmente desde especies diacil-PC a especies liso-PE o liso-PC. La CoA-

IT presenta una gran afinidad por los aceptores lisofosfolipídicos que 

contienen un enlace éter en la posición sn-1 del esqueleto de glicerol, en 

particular los lisoplasmalógenos de etanolamina (1-alquenil-2-

lisoglicerofosfoetanolamina) y alquil-liso-PC (1-alquil-2-lisoglicerofosfo-

colina). Esta circunstancia podría explicar por qué el contenido de AA en 

especies de PC y PE con enlace éter es generalmente más alto que en sus 

equivalentes diacil. Aunque la secuencia de CoA-IT todavía no se ha 

identificado, su actividad ha sido caracterizada en preparaciones celulares y se 

han descrito inhibidores farmacológicos. Dado que algunas de las fosfolipasas 

A2 mejor conocidas, como la fosfolipasa A2 citosólica del grupo IVA (cPLA2α) 

o la iPLA2β, han mostrado actividad CoA-IT en ensayos in vitro, se ha 

propuesto que, in vivo, la reacción CoA-IT puede representar una función no 

identificada de otra fosfolipasa A2 descrita. Basándose en características 

bioquímicas comunes, como la unión a membranas o la independencia de 

calcio, se ha propuesto como candidata la fosfolipasa A2 citosólica del grupo 

IVC (cPLA2γ). Estudios de sobreexpresión de la cPLA2γ han proporcionado 

evidencias in vivo de que la enzima regula la composición de ácidos grasos de 

los fosfolípidos, aunque no está claro si las reacciones de remodelación 

implicadas son dependientes o independientes de CoA.  

 

Objetivos 

En trabajos previos se ha establecido como objetivo delinear los mecanismos 

moleculares que participan en la movilización del AA en células fagocíticas en 

respuesta a estímulos de la respuesta inmune innata, para elucidar las fuentes 

de AA implicadas en los procesos de liberación y reacilación, estudiar las 

fosfolipasas A2 que regulan el metabolismo del ácido graso, y descubrir nuevos 
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marcadores lipídicos específicos de estímulo cuyas rutas de síntesis pueden 

proporcionar dianas farmacológicas.  

 

Por ello, el objetivo los objetivos específicos planteados en esta tesis fueron 

los siguientes: 

 

▪ Tener un mejor conocimiento de los procesos que regulan la disponibilidad 

celular de AA, lo cual incluye estudiar la influencia de la 

compartimentalización del AA y examinar la dependencia de su 

remodelación del contenido de plasmalógenos.  

 

▪ Descubrir nuevas características reguladoras de las reacciones de 

transacilación independientes de CoA en la homeostasis del AA y revelar el 

papel de las fosfolipasas A2 en las respuestas de remodelación.  

 

▪ Estudiar el proceso del primado con LPS de macrófagos para la liberación 

de AA y caracterizar el papel de las especies plasmalógenas en los 

mecanismos implicados en la disponibilidad de AA.  

 

 

 

Métodos experimentales 

Para estudiar los procesos de remodelación del AA regulado por fosfolipasas 

A2 en macrófagos respondiendo a estímulos de la respuesta inmune innata, se 

han empleado técnicas de estudios lipidómicos basadas en espectrometría de 

masas, las cuales combinan con gran eficiencia la separación e identificación 

de metabolitos con sensibilidad. El desarrollo de las técnicas de cromatografía 

líquida (LC/MS) y cromatografía de gases (GC/MS) acopladas a 

espectrometría de masas han sido muy útiles para esclarecer los lípidos 

implicado en estos procesos a nivel de especies moleculares. Además, para 

caracterizar el papel de las especies plasmalógenas, se han empleado líneas 

celulares deficientes en plasmalógenos derivadas de células RAW (generadas 

por Dr. R. A. Zoeller). Por otro lado, se emplearon inhibidores químicos, así 

como RNA de interferencia para estudios de inhibición de distintos miembros 

de las fosfolipasas A2.  
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Resultados y discusión 

 

Metabolismo del ácido araquidónico en macrófagos. 

Los macrófagos participan en los procesos inflamatorios debido, en parte, a 

su capacidad para sintetizar y liberar grandes cantidades de mediadores 

derivados del AA, denominados eicosanoides. Mediante técnicas basadas en 

espectrometría de masas, se caracterizó y comparó la composición y 

distribución de especies de fosfolípidos en macrófagos peritoneales de ratón 

(RPMs) y en la línea celular murina macrofágica RAW264.7. Ambos tipos 

celulares presentan diferencias en el contenido y distribución de ácidos grasos 

entre las distintas especies de fosfolípidos, principalmente de ácidos grasos 

poliinsaturados (PUFAs). Las células RAW264.7 presentan un menor 

contenido de AA en comparación con los RPMs, especialmente en los 

fosfolípidos de colina (PC), mientras que el contenido de AA en fosfolípidos 

de etanolamina (PE) es similar. A pesar de esta diferencia, el proceso de 

remodelación del AA desde PC a PE presenta un perfil similar en términos 

cualitativos y se produce a mayor velocidad (tiempo de remodelación menor) 

en las células RAW264.7.   

 
Papel de los plasmalógenos de etanolamina. 

Los estudios comparativos realizados con células deficientes en plasmalógenos 

mostraron que no hay diferencias significativas en la composición de ácidos 

grasos en ausencia de especies plasmalógenas y que el contenido de AA es muy 

similar en todas las clases de fosfolípidos. Siendo las especies plasmalógenas 

de PE las que mayor contenido de AA presentan, esto puede explicarse debido 

a una elevación compensatoria del contenido de AA en las especies diacil-PC 

y PE. Además, se comprobó que la velocidad y cinética de remodelación del 

AA desde PC a PE es la misma en las células deficientes, por lo que la 

remodelación de AA no está influenciada por el contenido celular de 

plasmalógenos.  

Para estudiar si la deficiencia de plasmalógenos puede alterar la activación de 

los macrófagos, se indujo la polarización a macrófagos pro-inflamatorios (M1) 

o anti-inflamatorios (M2). Los resultados mostraron que no hay diferencias en 

los niveles de expresión de marcadores asociados a cada fenotipo. Además, el 

perfil de eicosanoides producidos tras la estimulación con zimosán es el mismo 

en presencia y ausencia de plasmalógenos, detectándose únicamente 
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productos de la ruta de las ciclooxigenasas, principalmente prostaglandina D2 

(PGD2).  

 
Papel de las fosfolipasas A2 en la remodelación. 

La actividad de la cPLA2α es fundamental en las reacciones de desacilación del 

AA de los fosfolípidos de membrana, mientras que las aciltransferasas 

dependientes de CoA reincorporan el ácido graso y son las consiguientes 

reacciones de transacilación entre los fosfolípidos las que distribuyen el AA 

entre las distintas clases y especies moleculares, lo que explica el alto contenido 

de AA en los plasmalógenos de etanolamina. La principal enzima implicada es 

la transacilasa independiente de CoA (CoA-IT), cuya secuencia no ha sido 

identificada. Sé evaluó la implicación de distintas isoformas de PLA2s, 

observándose que la cPLA2γ es la única enzima que interviene en el proceso 

de remodelación, ya que las células con la enzima silenciada exhibían defectos 

en la remodelación del AA desde PC a PE, reflejado por una disminución 

significativa del tiempo de remodelación.  

 
Incremento de la liberación de AA mediante el primado con LPS. 

El LPS posee la capacidad de primar las células del sistema inmune innato a 

través del reconocimiento por TLR4 e incrementar la liberación de AA cuando 

están expuestas a un segundo estímulo inflamatorio. Los resultados muestran 

que PC es el principal aceptor para la incorporación de AA en macrófagos 

activados y que el primado con LPS no influye en dicho proceso. Además, una 

exposición con LPS previa a la estimulación disminuye el contenido de AA en 

algunas especies de PE. De acuerdo con la implicación de CoA-IT en reponer 

AA en PE, los resultados muestran que en células sin primar disminuye el 

contenido de todas las especies de fosfolípidos excepto PE, mientras que al 

primar con LPS se produce un incremento de la liberación de AA desde PE, 

especialmente de las especies plasmalógenas. Estos resultados indican que el 

primado con LPS bloquea la ruta de la CoA-IT y, por tanto, la disminución de 

la remodelación de AA a las especies plasmalógenas de etanolamina es 

responsable del incremento de movilización del ácido graso en las células 

activadas.  

Por otro lado, el primado con LPS disminuye la remodelación de AA desde 

PC a PE, lo que resulta en una reducción de la incorporación del ácido graso 
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en las especies plasmalógenas de PE. Esta diferente compartimentalización del 

AA deriva en una mayor liberación de PE y un incremento de los niveles de 

AA libre debido a la hidrólisis de PC mediada por la cPLA2α. Por tanto, la 

disminución de la actividad de CoA-IT tras el primado con LPS constituye un 

riesgo debido al incremento de la producción de eicosanoides como 

consecuencia de una mayor liberación de AA desde PC.  

 
 

En resumen, todos estos descubrimientos enfatizan la participación de los 

plasmalógenos en la ejecución de algunas respuestas de los macrófagos y 

exponen las reacciones de desacilación/reacilación como un paso crítico para 

el aumento de la liberación del AA en macrófagos primados con LPS. Esto 

podría deberse a una inhibición de la CoA-IT, que favorece la acumulación de 

AA en PC al bloquear la transferencia del ácido graso a PE. Además, se ha 

demostrado que la cPLA2γ es la principal enzima implicada en la remodelación 

de AA mediada por CoA-IT y que los plasmalógenos están implicados en este 

proceso.  

 
 

Conclusiones 

 

En conjunto, estos resultados proporcionan nueva información para un mejor 

conocimiento de los procesos de regulación de la disponibilidad celular de AA 

y conducen a las siguientes conclusiones principales: 

 

1. El contenido celular de plasmalógenos no influye en los niveles o la 

distribución de AA en los macrófagos.  

 

1.1. Las reacciones de remodelación de AA mediadas por CoA-IT son 

independientes del contenido celular de plasmalógenos. Los enlaces 

de las especies molecular no influyen en la distribución del AA en 

células del sistema inmune innato, que parece depender 

principalmente de la composición del grupo polar de los fosfolípidos 

de membrana.  
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1.2. El contenido celular de plasmalógenos no influye ni en los niveles de 

AA ni en su distribución relativa entre las clases de fosfolípidos. 

Parece ser que son los niveles endógenos de AA y no de 

plasmalógenos lo que determina la velocidad de remodelación del AA 

entre los fosfolípidos.  

 

1.3. La implicación de los plasmalógenos es diferente en algunas, pero no 

todas, respuestas de los macrófagos. Esto refleja algún tipo de 

especificidad biológica de este tipo de fosfolípidos.    

 

1.4. Las fosfolipasas A2 citosólicas de los grupos IVA y IVC (cPLA2α and 

cPLA2γ) presentan distintos papeles en la homeostasis celular del AA: 

la primera regula la liberación de AA, pero no su remodelación, 

mientras que la segunda hace lo contrario.  

 

1.5. La cPLA2γ es la principal enzima implicada en la remodelación del AA 

en fosfolípidos.  

 

2. La hidrólisis de los plasmalógenos de etanolamina es un paso importante 

en el primado de macrófagos con LPS.  

 

2.1. El primado con LPS provoca la disminución de la incorporación de 

AA en los plasmalógenos de etanolamina y facilita la hidrólisis neta de 

dichas especies después de la estimulación con zimosán, lo cual parece 

deberse a una reducción de la remodelación de AA por una reducción 

de la activación de CoA-IT.   

 

2.2. El bloqueo de la ruta de la CoA-IT a través del primado con LPS es 

macrófagos estimulados conduce a un incremento de los niveles de 

AA libre disponibles para la síntesis de eicosanoides, probablemente 

debido a un mayor acceso de la cPLA2α a las reservas de AA presentes 

en PC.  
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ABBREVIATIONS 
 

 

AA: arachidonic acid 

AA-DHAP-R: acyl/alkyl-dihydroxyacetone reductase 

AAG3P-AT: alkyl/acyl-glycero-3-phosphate acyltransferase 

ACS: acyl-CoA synthetase 

ACSBG: bubblegum acyl-CoA synthetase 

ACSS: short-chain acyl-CoA synthetase 

ACSM: medium-chain acyl-CoA synthetase 

ACSL: long-chain acyl-CoA synthetase 

ACSVL: very long-chain acyl-CoA synthetase 

ADHAP-S: alkyl-DHAP synthetase 

AdPLA2: adipose-specific phospholipase A2 

AGPAT: 1-acyl-glycerol-3-phosphate O-acyltransferase 

AMP: adenosine monophosphate 

ATP: adenosine triphosphate 

BSA: bovine serum albumin 

CoA: coenzyme A  

CoA-AT: CoA-dependent acyltransferases  

CoA-IT: CoA-independent transacylase 

COX: cyclooxygenase 

cPLA2: cytosolic phospholipase A2 
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CYP450: cytochrome P450 

DGLA: dihomo-γ-linolenic acid 

DHAP: dihydroxyacetone phosphate 

DHAP-AT: dihydroxyacetone phosphate acyltransferase 

DHETs: dihydroxyeicosatrienoic acids  

DMEM: Dulbecco’s Modified Eagle Medium 

eCBs: endocannabinoids  

EETs: epoxyeicosatrienoic acids 

EPA: eicosapentanoic acid 

ER: endoplasmic reticulum 

ERK: extracellular signal–regulated kinase 

FAME: fatty acid methyl ester 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase  

GPCRs: G protein-coupled receptors  

GPL: glycerophospholipids 

GC/MS: gas chromatography/mass spectrometry  

HETE: hydroxyeicosatetraenoic acid 

HHT: hydroxyheptadecatrienoic acid 

HpETE: hydroperoxyeicosatetraenoic acid 

IgG: immunoglobulin G 

IL: interleukin  

IL-1R: interleukin 1 receptor 

iPLA2: calcium-independent phospholipase A2 
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IsoPs: isoprostanes 

JNK: c-Jun N-terminal kinase  

LC/MS: liquid chromatography/mass spectrometry 

LOX: lipoxygenase 

LPLA2: lysosomal phospholipase A2 

LPLAT: acyl-CoA:lysophospholipid acyltransferase 

LPS: bacterial lipopolysaccharide 

LRR: leucine-rich-repeat 

LT: leukotriene 

LX: lipoxin 

LysoPL: lysophospholipid 

LysoPC: lysophosphatidylcholine 

LysoPE: lysophosphatidylethanolamine 

LysoPI: lysophsphatidylinositol 

MAPK: mitogen-activated protein kinase 

MBOAT: O-acyltransferase membrane-bound  

NSAIDs: non-steroidal anti-inflammatory drugs  

PA: phosphatidic acid 

PAF: platelet-activating factor 

PAF-AH PLA2: PAF-acetylhydrolase A2 

PAMP: pathogen-associated molecular pattern 

PC: phosphatidylcholine 

PCR: polymerase chain reaction 
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PE: phosphatidylethanolamine 

PGs: prostaglandins 

PGE2: prostaglandin E2 

PGHS: prostaglandin H synthase 

PH: phosphohydrolase  

PI: phosphatidylinositol 

PL: phospholipid 

PLA2s: phospholipase A2 enzymes  

PLC: phospholipase C  

PRRs: pattern recognition receptors 

PS: phosphatidylserine 

PUFA: polyunsaturated fatty acid 

qPCR: quantitative polymerase chain reaction 

RPMs: resident peritoneal macrophages 

SE: standard error 

Ser: serine  

sn: stereospecifically numbered 

SPM: specialized pro-resolving lipid mediator  

sPLA2: secreted phospholipase A2  

TLC: thin-layer chromatography 

TNFα: tumor necrosis factor α   

TLR: toll-like receptor 

TX: thromboxane
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1.1. The inflammatory response: the immune system. 
 

The immune system is traditionally classified in two types: innate and adaptive. 

The first one, also known as non-specific immunity, constitutes the early line 

of host defense and it is present in almost all multicellular organisms. In 

contrast, the adaptative immune system is antigen-specific and includes 

memory that makes future responses more efficient.  

The innate immune system consists of cellular and biochemical mechanisms 

that provide a rapid response to invading pathogens, among which the 

inflammation process stands out. This represents the organism response to 

local injury caused by an external damage or aggression. It leads to the 

accumulation of blood cells and it is triggered to control the damage and begin 

the repair processes, consisting on a defense against microscopic invaders (1). 

Inflammation is classically characterized by the cardinal signs: redness, 

swelling, heat, pain and loss of function. Local damage induces an immediate 

and acute response started by the release of chemical mediators.   

The main immune innate components are physical and chemical barriers, 

phagocytic cells, dendritic cells, innate lymphoid cells and circulating plasma 

proteins. Phagocytic cells play an essential role within the innate immune 

system, cleaning tissues in a non-specific way. There are two types of 

phagocytic cells: mononuclear and polymorphonuclear (Figure 1). The 

mononuclear phagocyte system includes a population of bone marrow-derived 

myeloid cells that circulate in the blood as monocytes and populate tissues as 

macrophages during inflammation. It has long been considered that 

macrophages are derived and differentiated from blood monocytes, show 

variable morphology and have different functions consistent with the tissue in 

which they arise (2,3). However, recent studies have questioned the hypothesis 

that tissue-resident macrophages arise from circulating monocytes indicating 

that they do not originate from monocytes in a steady-state but indicating that 

some macrophage compartments are established by fetal precursors and 

maintained independently of hematopoiesis (4-7).  
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Figure 1. Innate and adaptive immune cell types. 

 

1.1.1. Pathogen recognition: Toll-like receptors. 
 

Monocytes are endowed with chemokine receptors and pattern recognition 

receptors (PRRs), which distinguish conserved molecular patterns of strange 

organisms, and can adapt to their local microenvironment and to develop into 

unique types of macrophages. Monocytes can exit the blood, adhere to 

vascular endothelial cells and migrate to tissues where they differentiate into 

macrophages, under inflammatory conditions. Macrophages, as resident 

phagocytic cells, can be involved in the tissue homeostasis via the clearance of 

pathogens and apoptotic cells, and they can directly recognize a wide variety 

of pathogens through the PRRs, also known as pathogen-associated molecular 

patterns (PAMPs), that induce production of inflammatory cytokines (8,9).  

Several classes of PRRs, including Toll-like receptors (TLRs), are known to 

play essential roles in the recognition of distinct microbial components. 

Exposure of immune cells to the ligands of these receptors activates 

intracellular signaling cascades that induce the acute inflammatory response to 

return to normal homeostasis. TLRs are type I integral membrane 
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glycoproteins characterized by the extracellular domains containing leucine-

rich-repeat (LRR) motifs in variable number, and a cytoplasmic signaling 

domain homologous to that of the interleukin 1 receptor (IL-1R).  

A total of 13 mammalian TLR paralogues have been described (Table 1), each 

responsible for the recognition of different microbial structures. Based on 

their primary sequences, TLRs can be divided into several subfamilies, namely 

from TLR1 to TLR13, of which only 10 (TLR1 to TLR10) are expressed in 

human and 12 (TLR1, 2, 3, 4, 5, 6, 7, 8, 9 and TRL11, 12, 13) in mice. The 

receptors are differentially localized within the cells, so they can mediate 

recognition of extracellular and intracellular pathogens. Based on their 

localization, TLRs are classified into two subfamilies: while TLRs 1, 2, 4, 5, 6 

and 10 are located on cell surface, TLRs 3, 7, 8, 9, 11, 12 and 13 are expressed 

almost exclusively in intracellular compartments (such as endoplasmic 

reticulum, endosome, lysosome or endolysosome), and their ligands require 

internalization to endosomes so that the signaling is possible. To signal and 

activate inflammatory responses, TLRs recognize structural components 

unique to bacteria, fungi and viruses, so that each subfamily can recognize 

related PAMPs. Cell surface TLRs mainly recognize microbial membrane 

components such as lipids, proteins and lipoproteins. TLR4 recognizes 

bacterial lipopolysaccharide (LPS) and TLR2 along with TLR1 or TLR6 

recognizes several PAMPs, including lipoproteins, peptidoglycans and 

zymosan. However, intracellular TLRs identify nucleic acids derived from 

both bacteria and viruses and can also recognize self-nucleic acids in disease 

environments such as autoimmunity. In addition, non-esterified fatty acids 

(saturated fatty acids) can signal through TLR2 and TLR4 on macrophages 

and induce pro-inflammatory gene expression (10-13).  

TLR2 has a wide diversity of ligand recognitions because it can recognize the 

ligands in association with structurally related TLRs such as TLR1 and TLR6, 

forming heterodimers: TLR2-TLR1 recognize Gram-negative bacteria-

derived triacyl lipopeptide, and TLR2-TLR6 identify diacyl lipopeptide from 

mycoplasma. In association with the structurally unrelated C-type lectin family 

(known as dectin-1), TLR2 can also recognize zymosan (β-1,3-glucan and β-

1,6-glucan). TLR4 recognizes LPS from Gram-negative bacteria and its 

activation is supported by another protein known as LBP (LPS-binding 

protein). An active component of LPS, the lipid A, forms a complex with a 

recognition subunit MD2 (myeloid differentiation protein-2), which interacts 

with TLR4 and activates signaling (14).  
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Table 1. Toll-like receptors in the innate immune response.   

TLR Ligand Location Expression 

TLR1 Triacyl lipopeptides Cell surface Human/mice 

TLR2 Peptidoglycan/Zymosan Cell surface Human/mice 

TLR3 Double-stranded RNA Intracellular compartments Human/mice 

TLR4 LPS Cell surface Human/mice 

TLR5 Flagellin Cell surface Human/mice 

TLR6 Diacyl lipopeptides/Zymosan Cell surface Human/mice 

TLR7 Single-stranded RNA Intracellular compartments Human/mice 

TLR8 Single-stranded RNA Intracellular compartments Human/mice 

TLR9 Unmethylated CpG DNA Intracellular compartments Human/mice 

TLR10 Not determined Cell surface Human 

TLR11 Profilin-like protein Intracellular compartments Mice 

TLR12 Not determined Intracellular compartments Mice 

TLR13 Not determined Intracellular compartments Mice 

 

 

 

1.1.2. Eicosanoids as mediators in the inflammatory 

response.  
 

The inflammation process is promoted by the release of chemical mediators 

that increase vascular wall permeability permitting the migration of blood cells 

into the surrounding tissue. These mediators include lipids, peptides, reactive 

oxygen species, amino acid derivatives and enzymes. The type of chemical 

mediators produced depends on the cell type, the anatomical site involved, the 

nature of the inflammatory stimulus and the stage during the inflammatory 

response. 

Along with other signaling mediators, bioactive lipids regulate many cell 

functions such as immune regulation, inflammation and maintenance of 

homeostasis. Some lipid mediators acting as second messengers are formed 

from fatty acids released from membrane phospholipids upon cellular 

activation and the fatty acid composition of cell membrane phospholipids 

influences the cell function through different mechanisms such as membrane 
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order and lipid raft assembly. This suggests that fatty acids may play an 

important role in promoting or suppressing inflammatory processes. The 

formation and functions of these molecules relies on the prevalence of omega-

6 or omega-3 polyunsaturated fatty acid (PUFA) precursors (15,16).  

Eicosanoids, phospholipids and sphingolipids, endocannabinoids (eCBs) and 

specialized pro-resolving lipid mediators (SPMs), are the main families of 

bioactive lipids. Eicosanoids constitute the most distinguishable family of 

bioactive lipids involved in innate immunity and have multiple biological 

functions in the development of diseases associated with inflammatory 

processes. Their main role consists in amplifying or reducing inflammation, 

coordinating cytokine and chemokine production, leukocyte recruitment, 

antibody formation, cell proliferation and migration, and antigen presentation.  

They are formed from the omega-3 eicosapentaenoic acid (EPA; 20:5n-3), or 

the omega-6 fatty acids dihomo-γ-linolenic acid (DGLA; 20:3n-6) and 

especially, arachidonic acid (AA; 20:4n-6). They comprise prostaglandins 

(PGs), thromboxanes (TXs), leukotrienes (LTs), lipoxins (LXs), isoprostanes 

(IsoPs), and epoxyeicosatrienoic acids (EETs). Eicosanoid biosynthesis is 

initiated by oxygen radical reactions after AA release from phospholipids 

under stimulation conditions. The AA acts as a substrate for enzymatic 

reactions catalyzed by specific oxygenases: cyclooxygenase (COX), 

lipoxygenase (LOX) and cytochrome P450 (CYP450); or can be metabolized 

by non-enzymatic reactions (Figure 2). In general, AA-derived eicosanoids 

are pro-inflammatory mediators, although it is now recognized that other 

eicosanoids derived from AA, such as lipoxin A4, have anti-inflammatory 

effects and that prostaglandin E2 (PGE2), for example, act in both pro- and 

anti-inflammatory ways (17).  
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Figure 2. Overview of the eicosanoid synthesis pathways from arachidonic acid. AA, 

arachidonic acid; COX, cyclooxygenase; CYP450, cytochrome P450 enzymes; ETE, 

epoxyeicosatrienoic acid; HETE, hydroxyeicosatetraenoic acid; HpETE, 

hydroperoxyeicosatetraenoic acid, IsoP, isoprostane; LOX, lipoxygenase; LT, 

leukotriene; PG, prostaglandin; TX, thromboxane.  

 

 

Biosynthesis of prostaglandins (PGs) and thromboxanes (TXs) 

Prostanoid synthases are mainly expressed on innate immune cells and 

prostanoid receptors are expressed on both innate and adaptive immune 

systems. During inflammation, activated innate immune cells produce 

prostanoids that will act in a paracrine manner on lymphocytes and in an 

autocrine way, modulating their own function (18,19).  

AA can be enzymatically converted to prostanoids (PGs and TXs) by COX 

enzymes. PGs are signaling molecules synthesized de novo when AA is 

metabolized by COX, also known as prostaglandin H synthase (PGHS), which 

incorporates molecular O2 and forms the intermediate endoperoxide PGG2. 

Two enzymes possessing COX activity exist: COX-1 (PGHS-1) and COX-2 
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(PGHS-2). COX-1 is constitutively expressed in most tissues, while COX-2 

expression is transiently induced in response to a variety of cell stimuli. PGG2 

is then reduced by peroxidase activity, which reduces peroxide to hydroxyl to 

form PGH2. Depending on the cell type and tissue, PGH2 is further 

metabolized into PGE2, PGD2, PGF2a, prostacyclin (PGI2), and TXA2. These 

compounds can achieve important biological functions, such as vascular 

permeability, muscle tone modulation, fever and platelet aggregation (20). The 

action of PGs and TXs is mediated through binding to G protein-coupled 

receptors (GPCRs), and the differential expression and distribution of COX 

isoforms within the inflammatory cells, will determine the profile of 

prostanoid production. PGE2 is the most abundant eicosanoid and the 

primary metabolite of AA, and it can act locally in autocrine or paracrine ways. 

PGE2 is a well-known mediator of cancer, inflammation, fever, atherosclerosis 

and other pathophysiological processes. Owing to that, non-steroidal anti-

inflammatory drugs (NSAIDs) have been developed to inhibit COX enzymes, 

being their primary therapeutic effect due to reduced PGE2 biosynthesis. 

Monocyte/macrophage-derived PGE2 plays an important physiological role 

due to these immune cells possess high PGE2 biosynthetic capacity (21).  

 

Biosynthesis of leukotrienes (LTs) 

Leukotrienes are synthesized from AA by the action of 5-lipoxygenase (5-

LOX) enzyme, which is translocated to the nuclear envelope during cell 

stimulation. 5-LOX catalyzes the first enzymatic step by adding molecular O2 

to AA. Thus, 5-hydroxperoxyeicosatetraenoic (5-HpETE) is formed and 

metabolized to LTA4, an unstable intermediate that can be hydrolyzed to 

generate LTB4 (a potent stimulus for inflammatory leukocyte function) or 

LTC4 by glutathione addition, which is subsequently converted into LTD4 and 

LTE4 (22,23). Like PGs, LTs have a short half-life and are mainly involved in 

localized signaling. They participate in defense reactions and 

pathophysiological conditions such as hypersensitivity and inflammation, and 

are synthesized in inflammatory cells including granulocytes, mast cells and 

macrophages, dendritic cells, and B lymphocytes (24,25). 
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Biosynthesis of lipoxins (LXs) 

Lipoxins were the first eicosanoids reported with both anti-inflammatory and 

pro-resolving actions (26). They are short-lived eicosanoids derived from AA 

through the activity of 12/15-LOX, which mediate the conversion of the fatty 

acid to 15-hydroxyeicosatetraenoic acid (15(S)-HETE), and the following 

action of 5-LOX, that transforms this intermediate into LXA4 and LXB4. 

LXA4 has anti-inflammatory protective actions in several pathophysiologic 

processes.  

LXs are appreciated for their ability to promote resolution by attracting 

monocyte cells. It is also known that LXs promote efferocytosis, meaning 

macrophage clearance of apoptotic polymorphonuclear leukocytes and they 

have also been assigned anticancer and neuroprotective properties (27-29).  

In addition, LOX enzymes can synthesize other products with biological 

activity, including HETEs, which can be reduced to oxoeicosatetraenoic acids 

(oxoETEs) and hepoxilins (HXA3 and HXB3), that are characterized by the 

presence of an epoxide group (20).   

 

Cytochrome P450 monooxygenase pathway 

The CYP monooxygenase family of enzymes catalyzes the oxidation of AA to 

generate eicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids 

(DHETs). The EETs have been associated with anti-inflammatory properties 

in cardiovascular diseases and low levels seem to be implicated in obesity and 

diabetes progression (30-32).   

In summary, it is clear that changes in cell activation and signaling pathways 

can alter the eicosanoid biosynthesis and the overall balance, producing 

eicosanoids with similar or opposing functions (33).  
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1.1.3. Arachidonic acid release upon cellular activation. 
 

Microbial recognition by phagocyte cells triggers the production of cytokines, 

chemokines and lipid mediators, this resulting the induction of microbial 

killing. Not all microbes induce the same responses and the nature of the 

effector response depends on the innate immune recognition receptors 

involved (34).   

 

Zymosan stimulation 

Among all the stimuli that can activate immunoinflammatory cells for AA 

mobilization, zymosan is one of the best known and has been used for over 

50 years. Zymosan is a cell wall preparation of Saccharomyces cerevisiae, primarily 

composed of glucans, mannans, mannoproteins, and chitin, compounds that 

have been implicated in recognition of yeast by the innate immune system (35). 

Like other pathogens, zymosan can be opsonized, that is, it can be covered by 

the opsonins present in serum, which include immunoglobulin G (IgG) and 

complement factors. These molecules can be recognized by membrane 

receptors and make phagocytes more efficient for to ingest bacteria (36). 

A variety of receptors have been implicated in recognition and phagocytosis 

of zymosan particles. Opsonized zymosan principally binds to Fc receptors 

(FcR), which recognize IgG particles, and to complement 3 receptors (CR3), 

that recognize opsonized particles with the C3b complement and, specifically, 

with the C3bi fragment (37). Despite CR3 has the ability to promote 

phagocytosis, it is unable to trigger AA release in murine resident peritoneal 

macrophages (38). In contrast, the predominant receptors involved in non-

opsonized zymosan recognition are the beta-glucan receptor Dectin-1 and, to 

a lesser extent, the Toll-like receptors TLR2/TLR6 (39-41).  

AA release and the subsequent eicosanoid synthesis in zymosan-stimulated 

mouse peritoneal macrophages was first described decades ago (42-44), and it 

was demonstrated that the enzyme responsible of effecting the AA release is 

a phospholipase A2 (45-47). Later it was shown that the main effector is the 

group IVA cytosolic phospholipase A2α (cPLA2α), which is regulated by 

phosphorylation and the elevation of intracellular Ca2+ concentration. During 
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zymosan phagocytosis, the c-Jun N-terminal kinase (JNK) phosphorylates 

cPLA2α, with the subsequent release of AA (48-50). It is also described that 

group V secreted phospholipase A2 (sPLA2-V) participates in this process 

(51,52).  

In addition to AA release, zymosan recognition is implicated in pro-

inflammatory cytokine production, activation by phospholipase C (PLC) 

phosphorylation and an increase in intracellular calcium (53,54). 

 

LPS stimulation 

As Gram-negative bacteria produce sepsis and septic shock, constituting a 

major cause or morbidity and mortality, bacterial lipopolysaccharide (LPS) 

plays a central role in the inflammatory response. LPS stimulates innate 

immunity cells via engagement of TLR4. It is known that, while LPS alone is 

a poor stimulus for AA release on its own, it can prime macrophages for 

enhanced release of AA triggered by a second inflammatory stimulus 

(11,55,56). In contrast to zymosan, the LPS effect on AA release is not 

observed during the first two hours of exposure to the stimulus, and it has 

been described that long incubation times are needed for AA release to occur 

(38,57). However, it has been described that one hour of LPS preincubation 

before zymosan stimulation of mouse peritoneal macrophages, is enough to 

trigger an enhanced AA release response (56).   

 

1.1.4. Arachidonic acid mobilization. 
 

Arachidonic acid (AA) is found at relatively high levels in innate immunity 

cells, such as monocytes, macrophages and dendritic cells. AA plays a central 

role in inflammatory reactions, as it is the common precursor of the 

eicosanoids, and free AA can exert pathophysiological functions on its own, 

for example, inducing apoptosis (58,59). AA is a 20-carbon fatty acid with four 

methylene-interrupted cis double bonds. It belongs to the omega-6 

polyunsaturated fatty acid family (PUFAs), being its chemical designation cis-

5,8,11,14-eicosatetraenoic acid, abbreviated as 20:4n-6 (Figure 3). 
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Figure 3. Arachidonic acid hairpin configuration. 

 

 AA can be obtained from food such as animal organs and meat, fish, seafood 

and eggs (60-63), but the major AA source is linoleic acid, an 18-carbon PUFA 

containing two cis double bonds (18:2n-6), which animals cannot synthesize. 

It is abundant in many nuts, fatty seeds and their derived vegetable oils (63). 

It is converted into AA by stepwise desaturation and chain elongation: it is 

first oxidized by Δ6-desaturase to γ-linolenic acid (18:3n-6), which is further 

elongated to dihomo-γ-linolenic acid (20:3n-6) and this is oxidized by Δ5-

desaturase (64-67) (Figure 4). 

AA exhibits high biological activity and its availability in free form constitutes 

a limiting factor for eicosanoid synthesis. While low levels of AA can render a 

protective response (68,69), the free molecule and its derivatives appear to 

induce an autotoxic response and cause metabolic disfunctions when 

produced in excessive quantities (70,71). Because of this, cells must exert an 

exhaustive control on free AA levels. For this purpose, it is required the action 

of a large group of enzymes working together to ensure low free AA levels in 

resting cells, so the eicosanoid synthesis and other biological processes are 

avoided; as well as guarantee AA availability for eicosanoid production in case 

of cell stimulation. 
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Figure 4. Arachidonic acid sources. 

 

Once AA is synthesized in vivo or obtained from the diet, it is incorporated 

into glycerophospholipids (GPLs), which are composed of a glycerol 

backbone esterified with two hydrophobic fatty tails at the sn-1 and 2 positions 

(stereospecifically numbered, sn) and a hydrophilic head-group at sn-3. In 

mammalian cells, many plasma membrane and cytoplasmic phospholipids 

contain AA in the sn-2 position of the glycerol backbone (Figure 5).  

 

 

Figure 5. Glycerophospholipid structure containing arachidonic acid in the sn-2 

position of the glycerol backbone. 
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To regulate AA availability, there are selective pathways within inflammatory 

cells that traffic the fatty acid into glycerophospholipid pools. The levels of 

free AA are modulated by two opposing reactions: on one hand, phospholipid 

deacylation, on the other hand, reacylation back into phospholipids (PLs). The 

fatty acid excision from the sn-2 position of glycerophospholipids is carried 

out by phospholipase A2 enzymes (PLA2s), and the reincorporation into 

phospholipids by the coordinated action of acyl-CoA synthetases (ACS) and 

CoA-dependent acyltransferases (CoA-AT) (72,73). This deacylation-

reacylation cycle is known as the Lands cycle (Figure 6). 

 

 

 

Figure 6. Phospholipid remodeling with arachidonic acid via the deacylation-

reacylation cycle (Lands cycle). The PLA2 releases the fatty acid from a phospholipid, 

and then the free fatty acid is incorporated into a lysophospholipid by an acyl:CoA-

lysophospholipid acyl transferase (acyl-CoA:LPLAT).  

 

Depending on the cell state, one reaction dominates over the other one. 

Considering this, in resting conditions, reacylation dominates and AA is mainly 

esterified in the sn-2 position of phospholipids. In this case, the free AA 

amount available for eicosanoid production is low. However, in stimulated 

Unstimulated Stimulated 
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cells, the deacylation reaction dominates, resulting in elevated levels of free 

AA and an enhanced eicosanoid synthesis (73). Even so, under activation 

conditions, reacylation process is still very significant, which is manifested by 

the fact that only a small fraction of the AA released is used for eicosanoid 

synthesis, being most of it reacylated back into PLs by lysophosphatidic-

acyltransferases (LPLAT) (72). The enzymes that participate in AA levels 

control are described below.  

 

 
 

1.2. Enzymes of arachidonic acid metabolism.  
 

1.2.1. The Phospholipase A2 (PLA2) family. 
 

The phospholipase A2 family (PLA2) is a heterogeneous group of lipolytic 

enzymes that have been classified into several subfamilies (74-79). 

Based on sequence homology criteria, the most recent classification involves 

more than 30 enzymes included in 16 groups (80). With the increased PLA2 

diversity, it has been useful to use a simplified classification which divides the 

PLA2 enzymes in 6 groups, according to biochemical and functional 

characteristics: secreted phospholipase A2s (sPLA2), calcium-dependent 

cytosolic phospholipase A2s (cPLA2), calcium-independent phospholipase A2s 

(iPLA2), PAF acetylhydrolases (PAF-AH PLA2), lysosomal phospholipase A2s 

(LPLA2), adipose-specific phospholipase A2s (AdPLA2). Within the different 

groups there can be different paralogs, namely more than one homologous 

PLA2 gene within a species. In that case, each PLA2 is assigned with a 

subgroup letter.  

The members of this family typically hydrolyze the ester bond in sn-2 position 

of glycerophospholipids, releasing a fatty acid and the corresponding 

lysophospholipid (Figure 7). By default, substrates include short fatty acid 

chain oxidized phospholipids, and long fatty acid chain phospholipids with sn-

2 acyl chains up to 20 carbons (arachidonate) and longer. However, some of 

them present low or no PLA2 activity, whereas they show phospholipase A1, 

lysophospholipase, neutral lipid lipase or transacylase/acyltransferase 

activities(80-82). 
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Figure 7. Hydrolysis reaction of arachidonic acid from the phospholipid sn-2 position 

catalyzed by phospholipase A2 enzymes.    

 
 

Cytosolic phospholipase A2s (cPLA2) 

 

The cPLA2s are cytosolic proteins with high molecular weight (61-114 kDa) 

which share a lipase common GXSXS consensus sequence and a catalytic 

serine (Ser) in their active site. As of today, 6 different cPLA2s have been 

identified in mammals and they are classified within group IV of the PLA2 

family with the suffixes A-F, although we usually refer to them as α, β, γ, δ, ε 

and ζ (Table 2) (83-87).  

 
Table 2. Group IV Cytosolic Phospholipase A2s (cPLA2s). 

 

Subgroup Alternative 

name 

           Sources Molecular mass 

(KDa) 

IVA cPLA2α Human macrophage-like U937 
cells/platelets/RAW264.7/rat 

kidney, ubiquitous 

85 

IVB cPLA2β Human 
pancreas/liver/heart/brain, 

ubiquitous 

100-114 

IVC cPLA2γ Human heart/skeletal muscle 61 

IVD cPLA2δ Murine placenta 91 

IVE cPLA2ε Murine heart/skeletal 
muscle/testis/thyroid 

95 

IVF cPLA2ζ Murine thyroid/stomach 95 

 

H2O 

+

 

AA 

Lysophospholipid 
 

Phospholipid 
 

Free AA 

PLA2 
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With the exception of the group IVC or cPLA2γ, these enzymes possess a C2 

domain of Ca2+ binding at their amino terminus, which allows them to 

translocate to intracellular membranes, for which they only require 

micromolar concentrations of Ca2+ (80,81,88). The first one that was 

discovered was the cPLA2α, which uses a Ser/Asp dyad (89-94). The cPLA2s 

β, δ, ε and ζ belong to a group of genes located on the human chromosome 

15, whereas the cPLA2s α and γ are in the chromosome 1 and 19, respectively 

(95,96). The first one that has been cloned and the one that has been more 

studied of all of them is the group IVA PLA2 or cPLA2α (87). The main reason 

is that it possesses high specificity for AA and an elevated capacity to release 

it and trigger the eicosanoid production in activated cells (78). A summary of 

the activity characteristics of each member of the group IV PLA2 family is 

provided in Table 3.  

 

Table 3. Group IV Cytosolic Phospholipase A2s (cPLA2s) activity characteristics. 
 
 

Subgroup Activation factor         Substrate      Activity 
 

IVA (cPLA2α) 

 

Ca2+, PIP2, 
phosphorylation 

 

PC, PE, PI high sn-2 AA 
specificity 

 

PLA2, PLA1, 
Lyso-PLA 

transacylase 

IVB (cPLA2β) Ca2+ PC, PE no sn-2 
specificity 

PLA1, PLA2, 
Lyso-PLA 

transacylase 

IVC (cPLA2γ)  PC low sn-2 AA 
specificity 

PLA1, PLA2, 
Lyso-PLA 

IVD (cPLA2δ) Ca2+ PC, PE PLA1, PLA2, 
Lyso-PLA 

IVE (cPLA2ε) Ca2+ PC, PE PLA1, PLA2, 
Lyso-PLA 

IVF (cPLA2ζ) Ca2+ PC, PE PLA1, PLA2, 
Lyso-PLA 
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a) Group IVA cytosolic phospholipase A2 (cPLA2α). 
 

The cPLA2α was simultaneously cloned in 1991 by Clark and collaborators 

(84) and Sharp and collaborators (87). This is the only enzyme of the PLA2 

family that shows marked preference for phospholipids with AA in the sn-2 

position. The enzyme is activated in response to a variety of extracellular 

stimuli such as antigens, cytokines, mitogens, endotoxins, hormones and 

neurotransmitters, and can be regulated by different post-translational 

mechanisms, such as the subcellular localization, phosphorylation by mitogen-

activated protein kinases (MAPKs), intracellular calcium response or the 

interaction with proteins and phospholipids (97). An important feature is its 

phosphorylation in different residues of serine (Ser505, Ser727, Ser515), reaction 

that is mediated by several kinases (98-102). It has been described in various 

cell types that cPLA2α phosphorylation in Ser505 increases the activity of the 

enzyme (103). It has been also described by using different mutants in serine 

that the phosphorylation of Ser727 modulates the activity of the enzyme, 

favoring the break with the p11 heterotetramer and annexin A2 and allowing 

its binding to the membrane for the hydrolysis of phospholipids (104). In 

numerous cell types it has been shown that there is an increase in the activity 

of cPLA2α in response to agonists that can phosphorylate ERK1/2 

(extracellular signal–regulated kinases), and this effect can be reversed using 

phosphatases. The phosphorylation of this enzyme and its translocation in 

response to intracellular calcium increases, act together to get a complete 

activation of the enzyme (105). Other studies have suggested that 

phosphorylation of cPLA2α increases the specific activity of the enzyme but 

this is not enough to release AA, and additional signals are required (106).  

In response to increases in the intracellular calcium concentration, the cPLA2α 

is translocated from cytosol to the perinuclear membranes (Golgi, 

endoplasmic reticulum and nuclear membrane), where it facilitates the AA 

conversion to eicosanoids when it is colocalizing with other enzymes (107). 

Other localization sites have also been described, such as phagosomes during 

the phagocytosis of zymosan, plasma membrane and lipid droplets, where the 

enzyme participates in different events related to the intracellular traffic of 

membranes (108). 
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Thanks to the use of cPLA2α knockout mice, it has been possible to establish 

the physiological and pathological roles of the enzyme. It has been implicated 

in arthritis, inflammatory bone resorption, autoimmune encephalomyelitis, 

intestinal polyposis, pulmonary fibrosis, acute respiratory distress syndrome, 

renal concentration, striated muscle growth, postischemic brain injury and 

fertility (107). 

 

b) Group IVC cytosolic phospholipase A2 (cPLA2γ). 
 

 

cPLA2γ (also known as group IVC PLA2 or PLA2G4C) was identified as a 

paralog of cPLA2α (85,109). It contains a lipase consensus sequence, but its 

activity was shown to be Ca2+-independent due to the absence of the C2 

domain, which is involved in Ca2+-dependent lipid binding and it is a highly 

conserved domain in other cPLA2 family enzymes. In humans, this enzyme is 

permanently membrane-bound, as it contains a prenylation motif (CAAX box) 

at its C-terminus, and a putative myristoylation motif at its N-terminus 

(Figure 8) (85,109-111). The subcellular localization of cPLA2γ also differs 

from those of other cPLA2 family members (112). It has been found in various 

membrane fractions, including the endoplasmic reticulum (ER) 

(85,109,113,114) and mitochondria (110). Previous studies by Asai et al. 

indicated that cPLA2γ is located in the ER but they did not find colocalization 

with mitochondrial markers (114). However, Tucker et al. suggested that this 

enzyme is located in mitochondria by immunofluorescence microscopy 

studies (110).  

The physiological roles of cPLA2γ remain unclear. Since its lysophospholipase 

and transacylation activities can reduce the levels of toxic lysophospholipids, 

cPLA2γ could have a protective role against arrhythmia. Similarly, it is 

predicted that it has important functions in the heart because it is highly 

expressed in this tissue (85,109). Since the enzyme and its plasmalogen 

substrate are abundant in the myocardium (115,116), it is thought to be 

involved in lysophospholipid accumulation under hypoxic conditions, and 

lysoplasmalogens have been shown to accumulate in ischemic heart tissue 

(117-119). 
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Figure 8. Schematic representation of sequence homologies among the principal 

members of cPLA2s. 

 
 

Calcium-independent phospholipase A2s (iPLA2s) 

 

This group is composed by 6 different enzymes (A-F) (Table 4). None of 

them require Ca2+ for its catalytic activity, which is carried out by a serine (Ser) 

on the active site. They have a lipase motif (GXSXG), which is a common 

feature with cPLA2s. The most studied one is group VIA iPLA2 that comprises 

5 variants, although only two of them have catalytic activity. Group VIA-1 was 

the first identified and characterized and it is classically named iPLA2 (120-

122). iPLA2-VIA is expressed in all tissues and has no preference for any fatty 

acid or PL polar head. Among its multiple functions, the most important is its 

role in PL homeostasis, participating in the deacylation/reacylation cycle. That 

is why it is a key enzyme in AA distribution within PLs (123). 

It has also been implicated in the release of fatty acids under oxidative stress 

conditions, where the role of iPLA2-VIA is not based on an activity increase 

but in a greater susceptibility of the membrane to hydrolysis as consequence 

of peroxidation (124); in apoptosis by lysoPC action (125); and other processes 

such as secretion, cell cycle, Ca2+ entry, regulation of gene expression or 

cardiac ischemia (126).  
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Table 4. Group VI Calcium-independent Phospholipase A2s (iPLA2s). 

 
Subgroup Alternative 

name 

Sources Molecular mass 

(KDa) 

GVIA - 1 iPLA2 Human/murine 85 

GVIA - 2 iPLA2β Human/murine 87 

GVIB iPLA2γ Human/murine 90 

GVIC iPLA2δ, NTE Human/murine 146 

GVID iPLA2ε, ADPN Human 52 

GVIE iPLA2ζ, ATGL Human 55 

GVIF iPLA2η, GS2 Human 27 

 
 

 
Secreted phospholipase A2s (sPLA2s) 

 

Secreted phospholipase A2s include enzymes that are secreted to the 

extracellular medium and, in general, they have low molecular weight (14-18 

kDa), except sPLA2-III (55 kDa). In addition, some of these enzymes can also 

act intracellularly (127-129) (Table 5). In addition to those identified in 

mammals, some of them are found in the venom of insects and reptiles. All of 

them have 6-8 conserved disulfide bonds, which provides a high stability in 

extracellular environments, and a catalytic histidine (His). Millimolar Ca2+ 

concentrations are required for their activity. 

These enzymes do not show selectivity for the sn-2 position fatty acid in PLs, 

although some of them have a certain preference for anionic PLs. Those 

belonging to groups IIA, V and X, play a key role in eicosanoid synthesis, 

acting together with cPLA2α in AA release (73). Their implication in 

atherosclerosis, neuronal and respiratory diseases, and anticoagulant 

properties, has also been described (130,131).  
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Table 5. Secreted Phospholipase A2s (sPLA2s). 

 

1.2.2. Acyl-CoA synthetases (ACS). 
 

When free fatty acids are incorporated into glycerophospholipids, fatty acids 

require to be activated by coenzyme A (CoA). Acyl-CoA synthetases (ACSs) 

are ligases that form carbon-sulfur bonds (132-135). ACS enzymes are 

essential for de novo lipid synthesis, fatty acid catabolism and remodeling of 

membrane phospholipids. They catalyze a two-step reaction for the fatty acid 

activation (136): first, the formation of an acyl-AMP (adenosine 

monophosphate) intermediate by consolidation of fatty acid and adenosine 

Group Sources               Molecular mass (KDa) 

IA Cobras and kraits 13-15 

IB Human/porcine pancreas 13-15 

IIA Rattlesnakes; human synovial 13-15 

IIB Gaboon viper 13-15 

IIC Rat/murine testis 15 

IID Human/murine pancreas/spleen 14-15 

IIE Human/murine brain/heart/uterus 14-15 

IIF Human/murine testis/embryo 16-17 

III Lizard/bee 

Human/murine 

15-18 

55 

V Human/murine heart/lung/macrophage 14 

IX Snail venom (conodipine-M) 14 

X Human spleen/thymus/leukocyte 14 

XIA Green rice shoots (PLA2-I) 12.4 

XIB Green rice shoots (PLA2-II) 12.9 

XIIA Human/murine 19 

XIIB Human/murine 19 

XIII Parvovirus <10 

XIV Symbiotic fungus/bacteria 13-19 
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triphosphate (ATP); and second, the exchange of AMP with CoA to produce 

activated acyl-CoA. This fatty acid activation is critical for subsequent 

metabolic reactions and, therefore, it is indispensable for AA incorporation 

into PLs.  

Based on their structures and substrate specificity (as the chain length of their 

preferred acyl groups), ACSs can be divided into five subfamilies: short-chain 

(ACSS), medium-chain (ACSM), long-chain (ACSL), very long-chain 

(ACSVL), bubblegum (ACSBG) and another group of four enzymes that do 

not belong to any subfamily (ACSF).  

ACSL and ACSVL are the most important in remodeling reactions, since long-

chain and very-long-chain fatty acids are mainly found in 

glycerophospholipids, and ACSL enzymes show preference for AA. So far five 

ACSL isoforms have been described in mammals, named ACSL1, 3, 4, 5 and 

6; and all are represented by many spliced transcript variants. Each isoform is 

located in multiple organelles including plasma membrane, endoplasmic 

reticulum, mitochondria, and cytosol (137-139). 

All ACSLs have some fatty acid preferences, with ACSL4 in particular 

preferring AA (20:4n-6) and eicosapentaenoic acid (20:5n-3) to the other long-

chain fatty acids (140,141). ACSL4 is located in peroxisomes and 

mitochondrial membrane (140) and the fatty acid preference of ACSL4 is 

important for the involvement of the enzyme in the remodeling of sn-2 AA in 

phospholipids.  

 

1.2.3. Acyl-CoA:lysophospholipid acyltransferases (LPLAT). 
 

Acyl-CoA:lysophospholipid acyltransferase (LPLAT) activities are widely 

distributed in various cells and tissues and are tightly bound to microsomal 

and plasma membranes. Their primary physiological role is to provide 

phospholipids having a saturated fatty acid at the sn-1 position and an 

unsaturated fatty acid at the sn-2 position. They play important roles in the 

regulation of free AA levels (142,143).  

LPLATs catalyze the esterification reaction of the fatty acid, previously 

activated as acyl-CoA, to a hydroxyl group of glycerolipids. Within the 
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phospholipid remodeling process, the most relevant acyltransferases are those 

using lysophospholipids (lysoPLs) as substrate. When inflammatory cells are 

activated, there is an enhanced PLA2 activity and large amounts of 

lysophospholipids and AA are generated. The released AA is converted to 

various eicosanoids and the excess is rapidly reacylated trough sequential 

reactions of acyl-CoA synthetase and acyl-CoA:lysophospholipid 

acyltransferases. Thus, these enzymes esterify the fatty acid in the sn-2 position 

of phospholipids that has become unoccupied by PLA2 action (Figure 9). The 

activity of these enzymes determines the level and duration of free AA. 

 

 

 

 

 

 

 
Figure 9. Acyl-CoA-dependent acyltransferase reaction for lysophospholipids.   
 

 

Mammalian cells contain a large number of enzymes with LPLAT activity, 

located almost exclusively at the endoplasmic reticulum. They exhibit different 

selectivity degrees for the lysoPL acceptors and for the acyl-CoA. There are 

many acyltransferases that may be involved in AA recycling, specifically or as 

part of the general function in the phospholipid homeostatic metabolism. Two 

families of LPLAT enzymes have been described: the O-acyltransferase 

membrane-bound (MBOAT), and the 1-acyl-glycerol-3-phosphate O-

acyltransferase (AGPAT) (144-146). While MBOAT members are specifically 

involved in the remodeling of fatty acids in the Lands cycle, those of the 

AGPAT family act typically in the de novo pathway, although some of them can 

also participate in remodeling reactions. Those that use lysoPLs as acceptors 

belong to the MBOAT family and contain several transmembrane domains 

and a conserved histidine (His) residue in an hydrophobic region which is 

thought to constitute the catalytic site (147). 

CoA-AA +

 

AA CoA-SH +

 

Acyl acceptor 

1-acyl lysophospholipid 
 

Phospholipid 
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Members of the AGPAT family were initially considered using lysoPA as the 

specific acceptor, so they were classified as acyltransferases acting in de novo PL 

biosynthesis pathway. Afterwards, it has been observed that their specificity is 

wider, as they can also use lysoPC and lysoPE as acceptors. They have four 

conserved domains (motifs I-IV) that are important for catalytic activity and 

the substrate binding (148,149).  

 

1.2.4. Coenzyme A-independent transacylase (CoA-IT). 
 
 

The AA transfer that takes place in the phospholipid remodeling process is 

carried out by CoA-IT, which transfers the fatty acid by a transacylation 

reaction without using CoA (150-152).  

There are different factors that determine the enzymatic activity of CoA-IT, 

such as cell stimulation, when remodeling ratio is increased (151,153). There 

is also a significant difference between cells that do not proliferate, where the 

remodeling process can take hours (151,154,155), and proliferating cells, in 

which remodeling occurs in minutes (155-157). Blocking the process trough 

CoA-IT inhibition causes cellular apoptosis (158-161). 

Although the CoA-IT activity has been studied in detail (162-167), the enzyme 

has not been purified and its gene sequence remains unknown, which has 

made it difficult to study its cellular roles in depth.  

Some of the better known phospholipase A2s, such as cPLA2α or iPLA2β, 

exhibit CoA-IT activity in in vitro assays (80). It was previously suggested that 

cPLA2γ may be responsible for CoA-independent transacylation, considering 

that membrane-bound and Ca2+-independent properties are similar to those 

of the CoA-independent transacylation system. Previous studies confirmed 

that recombinant cPLA2γ transfers AA esterified at the sn-2 position of PE 

and PC to choline- or ethanolamine-containing lysophospholipids, including 

1-O-alkyl-GPC and 1-O-alkenyl-GPE (112,168). It was also demonstrated 

that farnesylation is not essential for transacylation activity (169). 

 

However, cPLA2γ exhibits another type of transacylation reaction: fatty acid 

transfer from the sn-1 position of LPC to the hydroxyl group at the sn-2 
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position of LPC forming PC and GPC from two molecules of LPC. This 

activity is termed as lysophospholipase/transacylation activity (Figure 10). 

The main difference between lysophospholipase/transacylation and CoA-

independent transacylation activities is the acyl donor, the former uses LPC, 

whereas the latter uses PLs such as PC. 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. Lysophospholipase and transacylation activity of cPLA2γ. 
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1.3. Incorporation of arachidonic acid in lipid 

subclasses.  
 

Glycerophospholipids are main components of cell membranes (150). The 

structure comprises a glycerol backbone and a polar head. Glycerol positions 

are numbered in a stereospecific manner (sn), so that the phosphate group is 

located at the sn-3 position. According to the polar head group attached to the 

phosphate, there are different phospholipid classes: choline phospholipids 

(PC), ethanolamine phospholipids (PE), inositol phospholipids (PI), serine 

phospholipids (PS) and, when there is no polar head, phosphatidic acid (PA). 

Each phospholipid is sub-classified into the diacyl, alkyl-acyl or alkenyl-acyl 

type based on the chemical linkage of the fatty chain (i.e., acyl ester, ether and 

vinyl ether bonds) at the sn-1 position of glycerol. Figure 11 shows the 

chemical structures of different glycerophospholipid structures depending on 

the sn-1 bond. However, at the sn-2 position, the acyl-chains are linked by ester 

bond and there is usually esterified an unsaturated fatty acid. Each sub-

classified phospholipid is further grouped into distinct molecular species 

depending on the length and degree of unsaturation at the sn-1 and -2 radyl 

residues. Different combinations of head groups, fatty acyl chains and sn-1 

linkages yield many different molecular species of glycerophospholipids in 

mammalian tissues (169).  

In inflammatory cells, AA is overwhelmingly esterified in the sn-2 position 

(170), and phospholipids with ether bond in sn-1 position play important roles, 

particularly those with vinyl-ether bonds, called plasmalogen species, which 

contain both ethanolamine and choline polar heads (171). This is explained in 

section 1.5.   

AA is mainly incorporated into the diacyl-GPC subclass in macrophages. 

Incorporation into ether-linked PLs occurs at a very low rate. It is thought that 

incorporation into diacyl-GPC occurs via acyl-CoA synthetase and acyl-

CoA:1-acyl-GPC acyltransferase reactions, requiring energy for this fatty 

incorporation via the Lands pathway. The incorporation of exogenous AA 

into PI species is also very relevant, but AA in PI is not used for further 

remodeling reactions that transfer the fatty acid to other phospholipids. 
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Depending on the AA behavior and incorporation into each lipid class, cells 

can exhibit distinct roles and substrate specificities of acyl-

CoA:lysophospholipid acyltransferases and the CoA-independent 

transacylation system.  

 

  

     

 

 

 

 

Figure 11. Representative structures of 1-acyl, 1-alkyl, or 1-alkenyl 

glycerophospholipids. The glycerophospholipids (GPLs) have fatty acyl side chains 

linked to the sn-1 and sn-2 positions of the glycerol backbone (R). Depending on the 

bond at the sn-1 position, there are different GPL subclasses. Alkenyl-acyl 

phospholipids are commonly referred to as plasmalogens. The polar head group (X) 

of ether-linked PLs is usually choline or ethanolamine.  
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1.4. Glycerophospholipid fatty acid remodeling. 
 

The AA deacylation/reacylation process into membrane phospholipids is not 

the only mechanism controlling AA mobilization in inflammatory cells. AA 

recently esterified to glycerophospholipids is subjected to successive 

remodeling reactions that exchange the fatty acid between different PLs 

species.  

The remodeling process involves two different transacylation systems, CoA-

dependent and CoA-independent (Figure 12). In CoA-dependent reaction, 

esterified fatty acids in PLs are transferred to lysophospholipids (LPLs) to 

form PLs in the presence of CoA, without generating free fatty acids (167,172-

177). PC and PI are the main acyl donors and lyso-type glycerophospholipids, 

such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI), the 

principal acyl acceptors. The CoA-dependent transacylation system proceeds 

in the presence of physiological levels of CoA and it is mediated by reverse 

and forward reactions of acyl-CoA:lysophospholipid acyltransferases (178-

181). 

In contrast, the mechanisms of CoA-independent transacylation are not fully 

understood, and they are catalyzed by CoA-independent transacylases (CoA-

IT); which, as indicated above, are believed to belong to the PLA2 family. This 

reaction catalyzes fatty acid transfer from diacyl glycerophospholipids to a 

variety of LPLs without needing cofactors, and it does not require a divalent 

cation such as Ca2+.  
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Figure 12. CoA-dependent and CoA-independent transacylation reactions.  

 

Regarding donors, choline glycerophospholipids (especially diacyl-GPC) are 

the preferred substrate. Fatty acids esterified at the sn-2 but not the sn-1 

positions of diacyl glycerophospholipids, participate in CoA-independent 

transacylation. In contrast, free fatty acids and acyl-CoAs are not used as acyl 

donors. These fatty acids are limited to C20/C22 chain-length PUFAs, with 

preference for AA (166,167,173,182-185). 

In cells of the innate immune response, the most important consequence of 

the remodeling process is that, although PC is the preferred initial acceptor of 

exogenous AA, under equilibrium conditions AA is more abundant in PE 

species (186-189). (Figure 13). 
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Figure 13. Incorporation and mobilization of arachidonic acid in phospholipids. 

 

The CoA-independent transacylation reaction was first described in human 

platelets and this activity was also detected in microsomes and membrane 

fractions of several mammalian cells and tissues (166,183-185,190). 

Transacylation reactions are indispensable for a correct distribution of AA 

within PL pools, placing the fatty acid in the appropriate localization, which 

seems to be important for the correct execution of the eicosanoid biosynthesis 

during stimulation conditions (73,172). This remodeling is also important for 

platelet-activating factor (PAF) generation (191), as it has observed that 1-

alkyl-2-lyso-GPC (lysoPAF) is a typical CoA-IT activity product (162-

164,192). The AA distribution into PL pools is also implicated in cell 

membrane homeostasis and in the control of cellular responses during both 

physiological and pathophysiological activation (193,194). 
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1.5. Essential role of plasmalogens.  
 

In inflammatory cells, phospholipids with ether-bond in the sn-1 position 

represent an important group. Plasmalogens were first described by Feulgen 

and Volt in 1924 and contain both ethanolamine and choline as polar head of 

the glycerol backbone (171). Plasmalogen biosynthesis starts in peroxisomes. 

The DHAP-AT enzyme (dihydroxyacetone phosphate acyltransferase) 

triggers the binding of a fatty acid esterified with CoA to DHAP 

(dihydroxyacetone phosphate). Subsequently, the sn-1 ether bond is 

introduced by the ADHAP-S (alkyl-DHAP synthetase) by replacing the fatty 

acid with an alcohol. Next step is the ketone group reduction from the sn-2 

position of alkyl-DHAP, resulting in the generation of 1-alkyl-sn-glycero-3-

phosphate (1-alkyl-G3P), a reaction catalyze by AA-DHAP-R (acyl/alkyl-

dihydroxyacetone reductase), an enzyme found both in peroxisomes and 

endoplasmic reticulum (ER). Once in the ER, the synthesis of plasmalogen 

species is completed: the AAG3P-AT (alkyl/acyl-glycero-3-phosphate 

acyltransferase) carries out an acylation, leading to the generation of 1-alkyl-2-

acyl-sn-glycero-3-phosphate. The action of a phosphohydrolase (PH) and a 

ethanolamine-phosphotransferase, replaces the phosphate group by adding 

cytidine-diphosphate-ethanolamine (CDP-ethanolamine) to form, in presence 

of magnesium, 1-alkyl-2-acyl-sn-glycero-3-phosphoethanolamine (alkyl-acyl-

GPE) (195). The synthesis of plasmalogens is completed by a desaturation 

reaction, in which the electron transport-dependent cytochrome b5 and the 1-

alkyl desaturase are involved (196). Through successive methylations of the 

polar head, PC plasmalogens can be synthetized from PE plasmalogens (197) 

(Figure 14). 

The functions of ether-linked phospholipids have not yet been fully 

elucidated. The alkyl ether bond is more chemically stable than the ester bond, 

so it is resistant to hydrolysis by phospholipases, as well as the alkenyl ether, 

although it is susceptible to acid. The vinyl ether bonds of plasmalogens can 

protect mammalian cells against the damaging effects of reactive oxygen 

species, whereby they have been described as endogenous antioxidants (198).  
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Figure 14. Plasmalogens synthesis pathway. 

 
 

The structure and composition of plasmalogens dictates their role in cell 

membranes. As the lack of the carbonyl oxygen at the sn-1 position affects the 

hydrophilicity of the head group and allows stronger intermolecular hydrogen 

bonding, the formation of non-lamellar lipid structures by ethanolamine 

plasmalogens is favored, allowing to adopt an inverse hexagonal form (199). 

Their tendency to not form lipid bilayers make them into mediators in the 
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viscosity. Plasmalogens are also ubiquitously found within lipid rafts (200), and 

have also been found to play roles in the regulation of plasma membrane 

biophysical properties such as fusion tendency, fluidity, and thickness 

(201,202). 

Previous studies with plasmalogen-deficient cells have shown that reduction 

in plasmalogen levels leads to altered phagocytosis of zymosan particles by 

macrophages, which can be attributed to changes in the plasma membrane 

fluidity and the formation of the lipid rafts (203).   

Another striking feature of ether-linked membrane PLs is their high AA 

content, which suggests that one of their main functions is to serve as cellular 

AA stores. Large amounts of ether-linked phospholipids are detected in tissues 

such as the brain and heart, and in inflammatory cells such as neutrophils, 

macrophages, platelets, and lymphocytes. Although a high proportion of AA 

is found in sn-2 positions of ether-linked glycerophospholipids (204), 

arachidonoyl-CoA acyltransferase activity for 1-alkyl-GPC and 1-alkenyl-GPC 

is very low (205-207).  

In addition, they have been associated with different pathophysiological states. 

For example, reduced levels of brain tissue plasmalogens have been associated 

with Alzheimer’s disease (208), X-linked adrenoleukodystrophy (209), and 

defects in central nervous system myelination (210).  
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The main goals of the laboratory have been to delineate the molecular 

mechanisms underlying AA mobilization in phagocytic cells responding to 

stimuli of the innate immune response, to elucidate the sources of AA 

involved in the processes of release and reacylation, to study the 

phospholipase A2 enzymes regulating phospholipid fatty acid metabolism, and 

to uncover new stimulus-specific lipid activation markers whose metabolic 

pathways of synthesis can provide targets for pharmacological intervention. 

These mechanisms have been studied by taking advantage of advanced mass 

spectrometry-based lipidomic approaches, which combines great efficiency in 

the separation and identification of metabolites with sensitivity. The 

development of LC/MS and GC/MS-based techniques has been useful to 

elucidate, at a molecular species level, the lipids involved in these processes.  

 

Thus, the overall aim of this thesis was to characterize further the molecular 

mechanisms underlying arachidonic acid mobilization in phagocytic cells 

responding to stimuli of the innate immune response. 

  

The specific aims were: 

 

▪ To understand better the regulatory processes underlying cellular AA 

availability, which includes to study the influence of AA 

compartmentalization and to examine the dependence of AA remodeling 

on plasmalogen content.  

 

▪ To unveil new regulatory features of CoA-independent transacylation 

reactions in cellular AA homeostasis and to uncover the phospholipase A2 

enzymes mediating phospholipid remodeling responses.  

 

▪ To study the process of LPS priming of macrophages for AA release and 

to characterize further the role of plasmalogen forms in the mechanisms 

involved in AA availability.  
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3.1. Materials. 
 

3.1.1. Culture media. 
 

RPMI medium 1640 with L-Glutamin (Gibco; Paisley, UK) 

Dulbecco’s Modified Eagle Medium (DMEM) (Lonza; Walkersville, MD, USA) 

Opti-MEM medium (Lonza) 

Penicillin (Gibco) 

Streptomycin (Gibco) 

Gentamicin (Lonza) 

Fetal bovine serum (Gibco) 
 

3.1.2. Liquid reagents and solvents. 
 

Lipid extraction and separation 

 

Chloroform, Optima® LC/MS grade (Fisher Scientific; Madrid, Spain) 

Methanol, Optima® LC/MS grade (Fisher Scientific) 

n-hexane, Optima® LC/MS grade (Fisher Scientific) 

2-propanol or isopropanol, Optima® LC/MS grade (Fisher Scientific) 

Diethyl ether (Scharlab; Barcelona, Spain) 

Acetic acid (Scharlab) 

Ammonium hydroxide 28%, Optima® LC/MS grade (Scharlab) 
 

For other uses 

 

Methanol, anhydrous 99.8% (Sigma-Aldrich; Madrid, Spain) 

Hydrochloric acid 35% (Scharlab) 

Butanol (Scharlab) 

Ethanol, absolute (Scharlab) 

Dimethyl sulfoxide (DMSO), extra pure (Scharlab) 

Triton X-100 (Scharlab) 

Liquid scintillation (Beckman Coulter; Fullerton, CA, USA) 

Bradford reagent (BioRad Protein Assay Dye Reagent Concentrate)  
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3.1.3. Solid reagents and products. 
 

Bovine serum albumin (BSA), fatty acid and endotoxins free (Sigma-Aldrich) 

Ammonium acetate (Sigma-Aldrich) 

Iodine (Scharlab) 

Silicagel G thin-layer chromatography plates (Macherey-Nagel; Düren, Germany) 

Spectrophotometry cuvettes (Kartell Labware; Noviglio, Italy) 

Syringe filters (Merck Millipore; Darmstadt, Germany)  

Tris-HCl (Scharlab) 
 
 

 

3.1.4. Lipids. 
 

Standards for mass spectrometry  

 

1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (PC(17:0/17:0))   

1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (PC(15:0/15:0))   

1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (PE(14:0/14:0))   

1,2-dipalmitoyl-sn-glycero-3-phosphatidylinositol (PI(16:0/16:0))  

1,2-dimyristoyl-sn-glycero-3-phosphoserine (PS(14:0/14:0))  

1,2-dimyristoyl-sn-glycero-3-phosphate (PA(14:0/14:0))  

1,2-diheptadecanoyl-sn-glycerol (1,2-DAG(17:0/17:0))  

1,2,3-triheptadecanoyl-sn-glicerol (TAG(17:0/17:0/17:0))  

Cholesteryl erucic acid (CE(22:1n-9))  

Mix of 37 fatty acid methyl esters  

Mix of PE species, from milk  

Mix of PI species, from soy  

Mix of PS species, from bovine brain  

 

All from Avanti (Alabaster, AL, USA) and Cayman (Ann Arbor, MI, USA). 
 

 

Deuterated and radioactive lipids 

 

[5,6,8,9,11,12,14,15-2H]Arachidonic acid (Sigma-Aldrich) 

[5,6,8,9,11,12,14,15-3H]Arachidonic acid (sp. act. >180 Ci/mmol) 

(PerkinElmer; Boston, MA, USA) 
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Standards for thin-layer chromatography 

 

Mix of PC species, from soy (Sigma-Aldrich) 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidilcholine (PC(16:0/18:1))  

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidilethanolamine (PE(16:0/18:1))  

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (PS (16:0/18:1))  

Phosphatidylinositol Liver, bovine (PI)  

 

All from Avanti (Alabaster, AL, USA) and Cayman (Ann Arbor, MI, USA). 

 
 

3.1.5. Phospholipase A2 inhibitors. 
 

cPLA2α inhibitor (Pyrrophenone)1 

sPLA2 inhibitor (GK241)2  

iPLA2 inhibitor (FKGK18)2 

iPLA2 inhibitor (GK436)2 

iPLA2 inhibitor (Bromoenol lactone, BEL) (Sigma-Aldrich) 

 
1(Synthesized and provided by Dr. Alfonso Pérez; Department of Organic 

Chemistry, University of Valladolid) 

2 (Synthesized and provided by Dr. G. Kokotos; Department of Chemistry, 

National and Kapodistrian University of Athens) 

 

3.1.6. Stimuli. 
 

Arachidonic acid (AA, 20:4n-6) (Sigma-Aldrich) 

Zymosan (Sigma-Aldrich) 

LPS from Escherichia coli O111:B4 (Sigma-Aldrich) 

Interferon-γ (InmunoTools; Friesoythe, Germany) 

Interleukin-4 (InmunoTools) 

Interleukin-13(InmunoTools) 
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3.1.7. Quantitative PCR (qPCR). 
 

siRNA transfection, RNA extraction, cDNA synthesis and qPCR  

 

Lipofectamine (Invitrogen) 

Trizol ® Reagent (Invitrogen; Carlsbad, CA, USA)  

Chloroform, molecular biology degree (Scharlab) 

2-propanol, molecular biology degree (Scharlab) 

Ethanol, molecular biology degree (Scharlab) 

Verso cDNA synthesis kit (Fisher Scientific) 

Brilliant III Ultra-Fast SYBR ® Green qPCR Master Mix (Agilent 
Technologies, Santa Clara, CA, USA) 

 

Oligonucleotides and small interfering RNA 

 

Quantitative PCR oligonucleotides  

 

Gen 
 

 

PLA2GIVC 
 

 

Forward sequence 
 

5’- AGGAGCTGAAACATCGGTATGA -3’ 
 

 

Reverse sequence 
 

 

5’- CTGCAAAGATGGGATAGGGC -3’ 

 

From: Eurofins Genomics (Ebersbeg, Germany) 

 

 

Gen 
 

 

GAPDH 
 

 

Forward sequence 

 

5'-AGGTCGGTGTGAACGGATTTG-3' 
 

 

Reverse sequence 
 

 

5'-TGTAGACCATGTAGTTGAGGTCA-3' 

 

From: Eurofins Genomics 
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Macrophage polarization marker 

 

 
Sequence (F: forward/R: reverse) 

 
Cxcl1 

 
F: 5’-CTGGGATTCACCTCAAGAACATC-3’ 

R: 5’-CAGGGTCAAGGCAAGCCTC-3’ 

 
Cox2 

 

 
F: 5’-TGAGCAACTATTCCAAACCAGC-3’ 

R: 5’-GCACGTAGTCTTCGATCACTATC-3’ 

 
Il1b 

 

 
F: 5’-GCAACTGTTCCTGAACTCAACT -3’ 
R: 5’-ATCTTTTGGGGTCCGTCAACT-3’ 

 
Il6 

 

 
F: 5’-TAGTCCTTCCTACCCCAATTTCC -3’ 

R: 5’-TTGGTCCTTAGCCACTCCTTC-3’ 

 
Il12b 

 

 
F: 5’-TGGTTTGCCATCGTTTTGCTG -3’ 

R: 5’-ACAGGTGAGGTTCACTGTTTCT-3’ 

 
Nos2 

 

 
F: 5’-CCAAGCCCTCACCTACTTCC-3’ 

R: 5’-CTCTGAGGGCTGACACAAGG-3’ 

 
Tnfa 

 

 
F: 5’-ACGGCATGGATCTCAAAGAC -3’ 
R: 5’-AGATAGCAAATCGGCTGACG-3’ 

 
Fizz1 

 
F: 5’-CCAATCCAGCTAACTATCCCTCC-3’ 

R: 5’-ACCCAGTAGCAGTCATCCCA-3’ 

 
Arg1 

 
F: 5’-TGGCTTGCGAGACGTAGAC -3’ 

R: 5’-GCTCAGGTGAATCGGCCTTTT-3’ 

 
Mrc1 

 

 
F: 5’-CTCTGTTCAGCTATTGGACGC-3’ 

R: 5’-CGGAATTTCTGGGATTCAGCTTC-3’ 

 
Mrc2 

 

 
F: 5’-ATCCAGGGAAACTCACACGGA-3’ 
R: 5’-GCGCTCATCTTTGCCGTAGT-3’ 

 
Tgfb 

 
F: 5’-CTCCCGTGGCTTCTAGTGC -3’ 

R: 5’-GCCTTAGTTTGGACAGGATCTG-3’ 

 
Ym2 

 
F: 5’-CAGGTCTGGCAATTCTTCTGAA-3’ 

R: 5’-GTCTTGCTCATGTGTGTAAGTGA-3’ 

 
Cyclophilin 

 
F: 5’-TGGAAGAGCCAAGACAGACA -3’ 

R: 5’-TGCCGGAGTCGACAATGAT-3’ 
 

From: Eurofins Genomics 
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Small interfering RNA 

 

Name 
 

siPLA2GIVC 
 

 

Sequence 
 

 

5’-GGAGGAGAGAGGAAGAGAA-3’ 
 

 

From: Eurofins Genomics 

 

 

Name 
 

siRNA Scramble 
 

 

Sequence 
 

 

5’-UGGUUUACAUGUCGACUAA-3’ 
 

 

From: Dharmacon (Lafayette, CO, USA) 

 

3.1.8. Buffers and solutions. 
 

Phosphate buffered saline (PBS) buffer 1X:  

Composition: NaCl 136 mM, KCl 2.7 mM, Na2HPO4 8 mM, KH2PO4 1.5 mM 

Use: cell washing and base for other buffers 
 

Tris-Acetate-EDTA (TAE) buffer 1X: 

Composition: Tris-base 40mM, acetic acid 0.1%, EDTA 1mM pH8 

Use: agarose gels for DNA separation 
 

Detergent buffer: 

Composition: PBS, Triton X-100 0.1% 

Use: radioactivity assays 
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3.1.9. Equipment.  
 

 

 

Gas chromatography-mass spectrometry (GC/MS)  

Gas chromatograph (Agilent 7890A) 

Mass spectrometer (Agilent 5975C) 

Column (Agilent DB23)  

Analysis software: Agilent G1701EA MSD Productivity Chemstation 

 

Liquid chromatography-mass spectrometry (LC/MS)  

Automatic injector (Agilent G1329B) 

Quaternary pump (Agilent G1311C) 

Triple quadrupole mass spectrometer (QTRAP4500) 

Gas generator (Infinity 1033, Peak Scientific) 

HILIC Column (Fortis) 

Silica precolumn (Supelco) 

Analysis software: Analyst v.1.5.2 (AB Sciex) 

 

Quantitative PCR (qPCR)  
 

ABI7500 (Applied Biosystems; Carlsbad, CA, USA)   

Analysis software: 7500 Software v.2.3  
 

Sonication: VibracellTM 75115 (Bioblock Scientific)   

Spectrophotometry: BioPhotometer Plus (Eppendorf)   

RNA quantification: Nanodrop ND-1000 (Thermo Fisher)   

Solvent evaporation: Concentrator 5301 (Eppendorf)   

Precision scale: Explorer Pro (Ohaus)    

Thin layer chromatography: Fungicrom Separating Chambers (Fungilab)   

Radioactivity: LS 6500 (Beckman Coulter)   

Temperature-specific reactions: Thermoblock (Grant) 

Shaking water bath SW22 (Julabo) 
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3.1.10. Biological material. 
 

For the experiments carried out in this work, macrophage primary cells and 

cell lines were used.  

Part of the experiments were carried out using resident peritoneal 

macrophages from Swiss mice, raised at the University of Valladolid Animal 

House. Male and female mice with ages between 10-12 weeks were used 

equally, without mixing sexes in the same experiment. Mice were kept under 

constant temperature conditions (21-24 ºC), with a light/dark cycle of 12 h 

and were fed ad libitum with a special feed diet for laboratory animals and with 

free access to sterile water. All experimental procedures were approved by the 

Institutional Committee of Animal Care and Usage of the University of 

Valladolid and in accordance with the Spanish animal research legislation.  

Macrophage RAW264.7 cells and the ether phospholipid-deficient RAW.12 

and RAW.108 cells (generously provided by Dr. R. A. Zoeller) (211,212), and 

P388D1 macrophage-like cells (MAB clone, generously provided by Dr. E.A. 

Dennis, University of California, San Diego) were also used to perform the 

studies.  

 

3.2. Methods. 

 
 

3.2.1. Cell isolation and culture. 
 

 

Isolation of resident peritoneal macrophages 

To obtain resident peritoneal macrophages, Swiss mice were sacrificed by 

exposing them to CO2. Afterwards, abdominal skin was removed, and 

peritoneal lavage was carried out using 5 ml cold PBS. The resulting 

intraperitoneal content of two extractions, was collected and centrifuged 10 

min at 300 xg. Cells were cultured in RPMI 1640 medium with 10% (v/v) fetal 

bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin, at 37ºC in a 

humidified atmosphere of 5% CO2. After 3 h, non-adherent cells were washed 

with PBS and macrophages were used the day after the isolation.  
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Cell lines 

Macrophage RAW264.7, RAW.12 and RAW.108 cells were grown in DMEM 

(Dulbecco’s Modified Eagle Medium) supplemented with 10% (v/v) fetal 

bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-

glutamine at 37ºC with 5% CO2. Scrapers were used to detach the cells and 

cultured in 12-well plates at least 2 h before performing the experiments to get 

an 80% confluence (5x105 cells per well). For experiments, cells were placed 

in serum-free medium. 

 

3.2.2. Cellular treatments, stimulation and inhibition.  
 

Arachidonic acid treatment 

When AA enrichment was necessary, cells were preincubated for 48 h with 25 

µM fatty acid (complexed with bovine serum albumin at a 2:1 ratio).  

 

Stimulation conditions 

When experiments with activated macrophages were conducted, cells were 

incubated in serum-free medium for 1 h before stimulation. A 100 ng/ml LPS 

priming step was carried out for 1 h, conditions in which best priming effect 

on AA release happens. Afterward, yeast-derived zymosan was added for 1 or 

2 h at 150 µg/ml for macrophage activation. 

For zymosan preparation, particles were suspended in PBS and boiled for 60 

min at 100ºC, following by a 30 min centrifugation at 3220 xg and washed 

three times. The pellet was resuspended in 20 mg/ml PBS and froze until used. 

Zymosan was sonicated three times for 15 s and diluted in serum-free medium 

before addition to the cells. In vitro assays demonstrated that there was no 

endogenous phospholipase A2 activity in the zymosan batches utilized 

(213,214)  
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Phospholipase A2 inhibition 

The chemical inhibitors utilized for phospholipase A2 inhibition were: 2 µM 

pyrrophenone (pyrr) for cPLA2α, 10 µM FKGK18 and 5 µM GK436 for 

iPLA2β, 5 µM bromoenol lactone (BEL) and 10 µM GK241 for sPLA2 

enzymes. Doses were established according to previous laboratory work.  

When inhibitors were used, they were added 30 min before the addition of 

zymosan, and after priming for 10 min before stimulation if done.   

 

Macrophage polarization 

To polarize macrophages, the cells were treated with LPS (250 ng/ml) plus 

interferon-γ (500 U/ml) to generate classically macrophages (M1), or with 

interleukin-4 (20 ng/ml) plus interleukin-13 (20 ng/ml) to generate 

alternatively macrophages (M2). In both cases, incubations were carried out 

for 8 h.  

 

3.2.3. Arachidonic acid mobilization: radioactivity assays.   
 

To carry out studies of arachidonic acid mobilization, radioactive fatty acid 

was used ([3H]AA). For all experiments, cells were cultured in 12-well plates 

(5x105 cells per well) and placed in serum-free medium 1 h before the 

beginning of the experiments.   
 

 

Measurement of 3[H]AA release 

To radiolabel the cells, they were incubated overnight (16 h) with 0.25 µCi/ml 

[3H]AA. After this period, non-incorporated AA was removed by washing the 

cells four times with serum-free medium containing 0.5 mg/ml free-fatty acid 

albumin. 1 h before the addition of the stimulus, cells were placed in serum-

free medium with albumin to avoid the re-acylation of the [3H]AA released, 

which is complexed with the albumin. Supernatants were collected, 

centrifuged to clear of detached cells, mixed with 3 ml liquid and measured for 

radioactivity by liquid scintillation counting.  
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Measurement of [3H]AA incorporation 

Cells were exposed to exogenous 0.25 µCi/ml [3H]AA during the stimulation 

period. After washing with serum-free medium, supernatants were removed 

at the indicated times. Cells were scraped with 0.1% Triton X-100 for total 

lipid extraction and thin-layer chromatography separation was carried out.  

 

Measurement of [3H]AA remodeling 

For these experiments, the cells were pulse-labeled with [3H]AA (0.25 µCi/ml) 

for 15 min at 37ºC. To remove the non-incorporated label, the cells were then 

washed four times with medium containing 0.5 mg/ml bovine serum albumin 

and placed in serum-free medium. Cells were collected in 200 µl 0.1% Triton 

X-100 at the corresponding periods of time. After lipid extraction, 

phospholipid classes were separated by thin-layer chromatography and the 

radioactivity incorporated into each class was determined by liquid scintillation 

counting. The time at which the radioactivity content of PC equals that of PE 

is defined the remodeling time (215). 

 

 

 

3.2.4. Lipid analyses.  
 

Lipid extraction 

Total lipids were extracted according to Bligh and Dyer (216). Cells were 

scraped with H2O/methanol 1:1 (v/v), and internal standards were added. 

Afterwards, 3.75 volumes of chloroform/methanol 1:2 (v/v) were added, 

related to the volume of the initial aqueous phase. After shaking vigorously, 

1.25 volumes of H2O and 1.25 volumes of chloroform were incorporated. 

Samples were shacked and centrifuged for 5 min at 9300 xg at 15ºC to separate 

the phases. The lipids remained in the lower organic phase were collected, and 

a second extraction was carried out adding 2 volumes of chloroform to the 

aqueous phase. After repeating the process, the organic phase was combined 

with the previous one and evaporated by vacuum centrifugation.  
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Thin-layer chromatography 

To separate the different classes of lipids, thin-layer chromatography was 

carried out using silica plates as the stationary phase, which were previously 

activated by heat at 70ºC for at least 2 h. The lipid extracts were dissolved in 

20 µl chloroform/methanol 2:1 (v/v) and loaded on the plate next to the 

corresponding standards. Phospholipids were separated from neutral lipids 

using n-hexane/diethyl ether/acetic acid 70:30:1 (v/v/v) as the mobile phase, 

and phospholipids classes (PE, PC, PI, PS) were separated twice with 

chloroform/methanol/28% ammonium hydroxide 60:37.5:4 (v/v/v). Spots 

corresponding to the different lipid classes and sub-classes were cut out and 

re-extracted using 1 ml chloroform/methanol 1:1 (v/v) and 1 ml 

chloroform/methanol 2:1 (v/v). A 5-minute centrifugation step at 13400 xg 

was carried out after each solvent addition in order to collect the clean organic 

phase.  

 

Fatty acids analysis by gas chromatography/mass spectrometry 

(GC/MS) 

 

As fatty acids are not volatile enough to be transported by the gas phase trough 

the column, they cannot be studied directly by GC/MS, so a previous chemical 

derivatization step is required.  

The derivatization step separates the fatty acids from the glycerol backbone to 

which they are esterified.  

 

a) Fatty acid derivatization.  
 

The total or separated lipid extracts were dissolved in 50 µl 

chloroform/methanol 2:1 (v/v) and introduced in screw threaded glass tubes. 

Lipid fractions were trans-methylated with 0.5 M KOH in methanol 

anhydrous for 60 min at 37ºC. The reaction was neutralized with one volume 

0.5 M HCl and the resulting fatty acid methyl esters (FAMEs) were extracted 

twice by adding 2 ml n-hexane. The top organic phase was collected after 

vortex and centrifuge at 800 xg for 5 min at 16ºC.  
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b) Fatty acid methyl ester analysis. 
 

FAMEs were obtained from the various lipid fractions by transmethylation 

with 0.5 M KOH in methanol for 60 min at 37 ºC (215,217-220). Analysis was 

carried out using an Agilent 7890A gas chromatograph coupled to an Agilent 

5975C mass-selective detector operated in electron impact mode (EI, 70 eV), 

equipped with an Agilent 7693 autosampler and an Agilent DB23 column (60 

m length x 0.25 mm internal diameter x 0.15 µm film thickness). Data analysis 

was carried out with the Agilent G1701EA MSD Productivity Chemstation 

software, revision E.02.00 [9, 11-14] (Agilent Technologies, Santa Clara, CA, 

USA). 

 

Glycerophospholipid analysis by liquid chromatography/mass 

spectrometry (LC/MS) 

 

This technique was used to determine PC, PE and PI molecular species. Lipid 

extracts obtained by the Bligh & Dyer method (216) and internal standards 

were added. The samples were redissolved in 50 µL of hexane/2-

propanol/water (42:56:2, v/v/v), and 40 µL was injected into an Agilent 1260 

Infinity high-performance liquid chromatograph equipped with an Agilent 

G1311C quaternary pump and an Agilent G1329B autosampler (Agilent 

Technologies, Santa Clara, CA, USA). The column was a FORTIS HILIC (150 

x 3 mm, 3 µm particle size) (Fortis Technologies, Geston, UK), protected with 

a Supelguard LC-Si (20 mm x 2.1mm) cartridge (Sigma-Aldrich, Madrid, 

Spain). The mobile phase consisted of a gradient of solvent A (hexane/2-

propanol, 30:40, v/v) and solvent B (hexane/2-propanol/20 mM ammonium 

acetate in water, 30:40:7, v/v/v). The gradient started at 75% A from0 to 5min, 

then decreased from75% A to 40% A at 15min and from40% A to 5% A at 

20min, was held at 5% until 40 min, and increased to 75% at 41 min. The 

column was then re-equilibrated by holding at 75% A for an additional 14min 

before the next sample injection. The flow rate through the column was fixed 

at 400 µL/min, and this flow entered into the electrospray ionization interface 

of an AB/SciexQTRAP4500 hybrid triple quadrupole mass spectrometer 

operated in negative ion mode (Applied Biosystems, Carlsbad, CA, USA). 

Source parameters were as follows: ion spray voltage, -4500V; curtain gas, 30 
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psi; nebulizer gas, 50 psi; desolvation gas, 60 psi; and temperature, 425 ºC. 

Phospholipid species were detected as [M-H]- ions except for choline 

phospholipids, which were detected as [M+CH3CO2
-]- adducts and were 

identified by comparison with previously published data (186,217,221-224). 

For the identification of each species, the following databases were used: the 

RCM lipid calculator (http://pharmacology.ucdenver.edu/lipidcalc) and Lipid 

Maps (www.lipidmaps.org). In addition, successive fragmentations were 

carried out in MRM (Multiple Reaction Monitoring) mode for an exact 

characterization of each species.  

 
 
 
 

Lysophospholipid analysis by liquid chromatography/mass 

spectrometry (LC/MS) 
 

For these analyses, a cell extract corresponding to 107 cells was used. Before 

lysophospholipid extraction with n-butanol, 200 pmol of each internal 

standard were added: 1-tridecanoyl-sn-glycero-3-phosphocholine and 1-

miristoyl-sn-3-phosphoethanolamine. The lipids were redissolved in 100 µl 

methanol/H2O 9:1 (v/v) after evaporation of the organic solvent and injected 

into an Agilent 1260 Infinity high-performance liquid chromatograph 

equipped with an Agilent G1311C quaternary pump and an Agilent G1329B 

autosampler (Agilent Technologies, Santa Clara, CA, USA). The column was 

a FORTIS HILIC (150 x 3 mm, 3 µm particle size) (Fortis Technologies, 

Geston, UK), protected with a Supelguard LC-Si (20 mm x 2.1mm) cartridge 

(Sigma-Aldrich, Madrid, Spain). 

Mobile phase was a gradient of solvent A (chloroform/methanol/water/32% 

ammonium hydroxide, 75:24:5:0.5, by volume) and solvent B 

(chloroform/methanol/water/32% ammonium hydroxide, 55:39:5.5:0.5, by 

volume). The gradient was started at 100% solvent A, it was decreased linearly 

to 50% solvent A in 2 min, it was maintained for 8 min, and finally it was 

decreased to 0% solvent A in 2 min. Flow rate was 0.5 ml/min, and 50 μl the 

lipid extract was injected.  

The liquid chromatography system was coupled to an AB/SciexQTRAP4500 

hybrid triple quadrupole mass spectrometer operated in negative ion mode 

(Applied Biosystems, Carlsbad, CA, USA). The total flow rate into the column 

was split, and 0.2 ml/min entered into the electrospray interface of the mass 

http://pharmacology.ucdenver.edu/lipidcalc
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spectrometer. Nebulizer gas was set to 30 pounds per square inch, dry gas was 

set to 8 l/min, and dry temperature was set to 365°C.  

Ethanolamine and inositol lysophospholipids were detected in negative ion 

mode with the capillary current set at +3500 V as [M–H]− ions. Choline 

lysophospholipids (lysoPCs) were detected in positive ion mode as [M+H]+ 

ions, with the capillary current set at −4000 V. Measurements correspond to 

the intensity of each species divided by the intensity of the internal standards 

corresponding to that particular headgroup. No internal standards were 

available for the lysophosphatidylinositol (lysoPI) subclass, so the intensity of 

each species was divided by the total LPI intensity in this case. The amount 

of internal standard added to each sample was always identical. The relative 

intensity values were normalized to the measured quantity of protein present 

in each cell preparation.  

 

Eicosanoid analysis by liquid chromatography/mass 

spectrometry (LC/MS) 
 

 
 

Analysis of eicosanoids by LC/MS was carried out exactly as described 

elsewhere (222,224), using an Agilent 1260 Infinity high-performance liquid 

chromatograph equipped with an Agilent G1311C quaternary pump and an 

Agilent G1329B Autosampler, coupled to an API2000 triple quadrupole mass 

spectrometer (Applied Biosystems, Carlsbad, CA, USA). Quantification was 

carried out by integrating the chromatographic peaks of each species and by 

comparing with an external calibration curve made with analytical standards 

(222,224).  
 

 
 
 
 

3.2.5. Measurement of [2H]AA.  
 

For the identification of [2H]AA-containing species, LC/MS analysis was 

carried out by a characteristic m/z bell-shape distribution, due to the isotopic 

distribution of [2H]AA (the m/z ratio is increased 8 units from its natural 

analogous since it has 8 deuterium atoms), and the corresponding [2H]AA [M-

H]- generated fragments (225). 
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Measurement of [2H]AA incorporation into cellular phospholipids 
 
 

Macrophages were primed or not with LPS for 1 hour before their activation 

with zymosan. The stimulation was carried out in the presence of exogenous 

[2H]AA (1 µM), and levels of the deuterated fatty acid incorporated into each 

phospholipid specie was determined by liquid chromatography/mass 

spectrometry as described above (see section 3.2.4).  
 

 
Measurement of phospholipid [2H]AA remodeling 
 

 

LPS-treated and untreated cells were pulse-labeled with 1 µM [2H]AA for 30 

min, and washed four times to remove the unincorporated fatty acid with 

culture medium containing 0.5 mg/ml BSA. After washing, cells were 

incubated with zymosan for 1 h in serum-free medium. [2H]AA amount in the 

various phospholipid species was delineated by liquid chromatography/mass 

spectrometry analysis (see section 3.2.4.).  

 
 
3.2.6. Protein quantification.  
 

For lipidomic analysis, cellular homogenates were sonicated three times at 

23% for 15 s. Protein was quantified using Braddford method (226) using a 

commercial kit (BioRad Protein Assay). It is a colorimetric method based on 

the maximum absorbance change from 465 to 595 nm that blue Coomasie G-

250 undergoes when it interacts with proteins in a non-covalent way. 

Absorbance is measured at 595 nm to quantify the protein concentration by 

the Beer-Lambert Law. To calculate the sample amount of protein, a standard 

curve was made using different amounts of BSA, covering a range from 1 to 

15 µg/ml.  
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3.2.7. RNA, cDNA and qPCR.  
 

Small interfering RNA (siRNA) transfection 

Small interfering RNA (siRNA) transfection was carried out to knockdown 

group IVC phospholipase A2 (PLA2G4C), also known as cytosolic 

phospholipase A2γ (cPLA2γ). A mix of 20 nM siRNAs (5’-

GGAGGAGAGAGGAAGAGAA-3’), 5 µl/ml Lipofectamine RNAiMAX 

and 200 µl Optimem medium, was prepared per well. After vortex, the mix 

was incubated for 15 min at RT to allow the complexes generation. Afterward, 

mix was added to wells into 12-well plates and 3x105 cells dissolved in medium 

to a final volume of 500 µl/well were added. A scrambled siRNA was used as 

a negative control (5’-UGGUUUACAUGUCGACUAA-3’). Cells were 

maintained at normal culture conditions for 24 h, time at which the protein 

expression was lower. After that time, mRNA was extracted and measured by 

using qPCR.  
 
 

RNA extraction 

RNA was extracted from cells removing the culture medium and scraped with 

400 µl Trizol®Reagent per well (12-well plates). Cells were maintained 5 min 

at room temperature (RT) and mixed with 80 µl chloroform. After 5 min at 

RT and a centrifuged at 12000 xg at 4ºC for 15 min, the aqueous phase was 

extracted and mixed with 200 µl 2-propanol. After 10 min at RT, mix was 

centrifuged 10 min at 12000 xg at 4ºC and supernatant was removed. The 

RNA pellet was washed twice with 400 µl 75% ethanol (v/v, with H2O 

DEPC). At last, the RNA pellet was dried and resuspended in 20 µl H2O 

DEPC. RNA concentration was determined by absorbance measurement at 

260 nm with Nanodrop.             

 

cDNA synthesis (RT-PCR) 

The generation of complementary DNA (cDNA) from RNA templates was 

performed by reverse transcription and polymerase chain reaction (RT-PCR) 

using a verso cDNA synthesis kit. cDNA synthesis started from 1 µg RNA in 

a 5.5 µl final volume with H2O DEPC. All kit reagents, shown in Table 6, 

were added until a final volume of 4.5 µl.  
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Table 6. Reaction mix preparation.  

 

Reagent 
 

 

Volume 
 

 

Final concentration 
 

 

Template (RNA) 
 

 

To 5.5 µl 
 

1 µg 

 

5X cDNA synthesis buffer 
 

 

2 µl 
 

1X 

 

dNTP mix 
 

 

1 µl 
 

500 µM each 

 

RT enhancer 
 

 

0.5 µl 
 

 

Verso enzyme mix 
 

 

0.5 µl 
 

 

RNA primer  
(random hexamers/oligo dT primers) 

 

 

0.5 µl 
 

 

Total volume 
 

 

10 µl 
 

 

 

To carry out the reverse transcription, samples were heated for 30 min at 42ºC 

and, afterward, they were incubated 2 min at 95ºC for enzyme inactivation.   

 

 

RNA quantification by Quantitative-PCR (qPCR) 

To quantify gene expression levels changes, quantitative PCR (qPCR) was 

used. Starting from 20 ng cDNA previously synthetized, the commercial kit 

Brilliant III Ultra-Fast SYBR® Green qPCR Master Mix was used. The 

corresponding forward and reverse primers (see section 3.1.7.) were added 

together with the kit reagents: SYBR Green, Taq polymerase and a 

deoxynucleotide triphosphate mix. The reactions were carried out in an 

ABI7500 equipment following the conditions shown in Table 7.  

To quantify, the threshold cycle (CT) was determined, defined as the reaction 

cycle in which the amplification begins to be exponential. ΔΔCT algorithm 

was applied (227), comparing the threshold cycle of the gene of interest with 

the reference gene, glyceraldehyde-3-phosphate dehydrogenase.  
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Table 7. Temperature program for cDNA amplification by quantitative PCR.  

 

Number of cycles 
 

 

Temperature 
 

 

Time 
 

 

1 
 

 

95ºC 
 

3 min 

 

 
40 

 

 

95ºC 
 

 

15 s 
 

 

60ºC 
 

 

1 min 

 

72 ºC 
 

 

28 s 

 

 

 
 

3.2.8. Statistical analyses. 
 

All experiments were carried out at least three times with biological duplicates 

or triplicates. Data are expressed as means ± standard error (S.E.M.). In case 

of comparing statistical data, analyses were carried out by Student’s t-test, and 

differences were considered significant with p<0.05. 
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4.1. Differences between peritoneal macrophages and 

macrophage cell lines.  
 

Macrophages play a key role in inflammation and related diseases, which is due 

in part to their capacity to synthesize and release large amounts of arachidonic 

acid (AA)-derived eicosanoid mediators. Previous studies have been 

delineating the molecular mechanisms underlying AA mobilization in these 

phagocytic cells responding to stimuli of the innate immune response 

(186,221-224). All studies were carried out with resident peritoneal 

macrophages (RPMs), which have been extensively studied as a source of 

oxygenated 20:4 metabolites, and the murine macrophage cell line RAW264.7, 

which is used as a model for primary macrophages. Thus, the first goal was to 

characterize and compare both types of macrophages in terms of phospholipid 

and fatty acid composition.    

 

 

4.1.1. Lipidomic characterization of macrophages. 
 

Using gas chromatography/mass spectrometry (GC/MS) analyses, the 

glycerophospholipid fatty acid composition of RPMs and RAW264.7 cells was 

initially evaluated. Fatty acids are designated by their number of carbon atoms, 

and their number of double bonds are designated after a colon. To 

differentiate isomers, the n-x (n minus x) nomenclature is used, where n is the 

number of carbons of a given fatty acid and x is an integer which, subtracted 

from n, gives the position of the last double bond of the molecule. Figure 15 

shows that the two cell populations differed considerably regarding the 

content of 20:4n-6, which was considerably higher in RPMs compared to 

RAW264.7. This AA deficiency was somewhat offset by increased levels of 

oleic acid (18:1n-9), palmitoleic acid (16:1n-7), the isomers of the latter (16:1n-

x, mix of both 16:1n-9 or 16:1n-10 isomers), and mead acid (20:3n-9). 
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Figure 15. GC/MS analysis: total glycerophospholipid composition of RPMs versus 

RAW264.7 cells. 16:1n-x denotes a mix of the n-9 and n-10 isomers, which elute 

together.   

 

The differences in AA content between RPMs and RAW264.7 cells may affect 

the relative distribution of this fatty acid among glycerophospholipid classes. 

The percent of AA content in each phospholipid class is shown in Figure 16. 

Although the AA content is higher in RPMs, in both cell types the 

ethanolamine phospholipids (PE) constitute the richest AA-containing class. 

While the AA content in PE is similar in percentage in both cell types, AA-

containing PC species were lower in RAW264.7 cells than those observed in 

RPMs. Furthermore, AA content in phosphatidylinositol (PI) is higher than 

that of PC in RAW264.7 cells. AA percentage in phosphatidylserine (PS) was 

low and similar in both cell types.  
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Figure 16. GC/MS analysis: AA distribution between phospholipid classes in RPMs 

versus RAW264.7 cells.  

 

 

 

4.1.2. Arachidonic acid remodeling.  
 

To study AA remodeling among the different phospholipid species and 

establish a comparation between RPMs and RAW264.7, cells were labeled 

with [3H]AA for 15 min and, after removing the non-incorporated fatty acid 

by extensive washing, the distribution of label across the different 

phospholipid classes was analyzed. As shown in Figure 17, both cell types 

show qualitatively similar AA mobilization process between PC and PE 

species. Immediately after the labeling period, PC was the major [3H]AA-

containing phospholipid, and this amount underwent a decrease with time, 

which was paralleled by an increase of similar magnitude of AA in PE. To 

make comparisons between different conditions and in accordance with 

previous work (215), the “remodeling time” was defined as the time at which 

the amount of [3H]AA in PC equals that in PE. Considering this, RAW264.7 

cells present a fast remodeling, occurring in minutes. In contrast, remodeling 

in RPMs takes place in hours.  

In accordance with the results of Figure 16, levels of labeled AA in PI were 

higher in RAW264.7 cells than in RPMs, and PS levels were low. Both PI and 

PS labels remained unchanged along the time course of the remodeling.  

 

PE (56 %) 
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Figure 17. Phospholipid AA remodeling in RPMs (A) and RAW264.7 cells (B). Cells 

were pulse-labeled with [3H]AA, washed, and incubated without label for the indicated 

periods of time. Phospholipids were separated by thin-layer chromatography. The 

radioactivity incorporated into each phospholipid class was determined by liquid 

scintillation counting. Results are given as a percentage of the radioactivity present in 

phospholipids and shown as means ± S.E.M. (n=6).            
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4.2. Role of ethanolamine plasmalogen species. 
 

To study the role of plasmalogen species in phospholipase A2-regulated 

phospholipid AA metabolism (release and reincorporation mechanisms) in 

macrophages responding to stimuli of the innate immune response, studies 

using the plasmalogen-deficient cells lines RAW.12 and RAW.108 were 

carried out. These cell lines, which derive from RAW264.7 cells and were 

originally described by Zoeller and co-workers (211), exhibit reduced 

amounts of plasmalogens due to a defect in enzymes of the plasmalogen 

synthesis pathway. RAW.108 cells present a defect in the peroxisomal 

dihydroxyacetone acyltransferase (DHAP-AT); while RAW.12 cells present, 

in addition, a deficiency in Δ1’-desaturase activity.  

 

 

AA distribution in RAW264.7 cells and plasmalogen-deficient variants 

 

Comparing the phospholipid fatty acid composition of RAW264.7 cells and 

the plasmalogen-deficient variants RAW.12 and RAW.108 by GC/MS 

analyses (Figure 18A), no significant variations were detected in the fatty acid 

profile, including n-3 and n-6 PUFAs. The AA content was very similar in all 

three types and in all phospholipid classes (Figure 18B).  

 

To characterize further the AA distribution between phospholipid molecular 

species, LC/MS was used. Figure 19 shows that PE plasmalogen species 

constitute the principal pool of AA in RAW264.7 cells. Diacyl-PE species and 

the individual species PI(18:0/20:4), also contain high amounts of AA, unlike 

PC and PS species, which present lower AA content. Despite the considerable 

absence of ether phospholipids in the RAW264.7-variant cell lines (including 

ethanolamine plasmalogens and alkyl-PC species), the AA distribution among 

phospholipid classes is the same in all three types. As shown in Figure 19, 

this is due to a compensatory elevation of AA in diacyl-PC and PE species 

compared to wild type RAW264.7 cells.  
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Figure 18. Phospholipid fatty acid composition of RAW264.7 cells and plasmalogen-

deficient variants. (A) RAW264.7 cells (   ), RAW.12 (   ), and RAW.108 (   ) fatty 

acids profiles were determined by GC/MS. (B) The phospholipid classes of 

RAW264.7 cells (   ), RAW.12 (   ), and RAW.108 (   ) were separated and their AA 

content was determined by GC/MS. Results are shown as means ± S.E.M. (n=3). 
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Species (nmol/mg protein)
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Figure 19. AA-containing species in RAW264.7 cells and plasmalogen-deficient 

variants. Profile of AA-containing PC, PS (left panel), PE and PI (right panel) 

determined by LC/MS for RAW264.7 cells (   ), RAW.12 (   ), and RAW.108 (   ) fatty 

acids profiles were determined by GC/MS. Results are shown as means ± S.E.M. 

(n=3). *Significantly different (p < 0.05) from the corresponding species of 

RAW264.7 cells.  
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In inflammatory cells, AA mobilization is controlled by the 

deacylation/reacylation cycle and the successive remodeling reactions 

mediated by CoA-IT. Through this process, the fatty acid is exchanged among 

different phospholipid pools, and it is transferred primarily from AA-

containing species to lysophospholipid acceptors, which are usually the 

ethanolamine lysoplasmalogens. It is thought that, in mammalian cells, 

plasmalogen enrichment with AA occurs mainly via CoA-IT-mediated 

reactions (72,169,172,228). The rate of AA remodeling from PC to PE was 

previously examined (Figure 17B). Data revealed that the remodeling time 

and kinetics of RAW264.7 cells compared to that of the plasmalogen-

deficient variants RAW.12 and RAW.108, were the same (Figure 20). For 

comparative purposes, remodeling experiments were carried out using RPMs 

and another murine macrophage-like cell line, P388D1. The remodeling time 

of the latter cells was found to be similar to that of RAW264.7 cells and their 

variants, but all were considerably lower than that of RPMs. According to 

these results, phospholipid AA remodeling from PC to PE is not influenced 

by the cellular plasmalogen content.  
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Figure 20. Phospholipid AA remodeling times for different cell types. AA 

remodeling was analyzed, and the remodeling time was determined. Results are 

shown as means ± S.E.M. (n=3). 
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Studies utilizing AA-enriched cells 

 

According to the above results (Figures 15 and 16) and to other studies 

(229,230), cell lines exhibit diminished levels of PUFAs compared to normal 

cells. Specifically, RAW264.7 cells contain 2-3-fold less AA than RPMs (219). 

This AA deficiency in RAW264.7 cells could cause faster remodeling 

compared to normal macrophages. To test this hypothesis, cell lines were 

enriched with AA to reach the levels of the fatty acid present in RPMs. 

Culturing the cells in media supplemented with 25 µM AA (complexed with 

BSA at a 2:1 ratio) for 48 h, increased AA content by about 2-3 fold (219). 

After the incubation period, the AA distribution between phospholipid 

classes was studied by measuring all the AA-containing phospholipid classes 

by GC/MS (Figure 21A). AA incorporation was similar in plasmalogen-

deficient cell lines compared to RAW264.7 cells. The AA distribution profile 

agrees with that shown in Figure 16B: 50% of cellular AA was distributed in 

PE and PI constituted the second richest AA phospholipid, followed by PC. 

To study how this AA enrichment affects the remodeling process, cells were 

labeled with [3H]AA and radioactivity levels in PC and PE were measured by 

liquid scintillation counting. Figure 21B shows that the remodeling time 

increased to approximately 2 h (equivalent to that of RPMs) when cells were 

enriched with AA, compared to untreated cells (Figure 20), which means that 

the AA remodeling process from PC to PE was slowed. These results are 

consistent in both RAW264.7 cells and the plasmalogen-deficient RAW.12 

and RAW.108.  
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Figure 21. Phospholipid AA remodeling in AA-enriched cells. RAW264.7 cells (   ), 

RAW.12 cells (   ), and RAW.108 cells (   ) were incubated with 25 µM exogenous AA 

for 48 h. (A) Cellular AA content was analyzed by GC/MS. AA content of untreated 

RAW264.7 cells (  ) is shown. (B) AA remodeling was analyzed by radioactivity 

analyses. The time at which PC content equals that of PE (remodeling time) was 

determined. Results are shown as means ± S.E.M. (n=3). *Significantly different 

(p<0.05) from AA-untreated cells.  

 

 

  

    



Results 

 

79 
 

 

Role of plasmalogens in functional macrophage responses 

 

It has been described that macrophages could go through different activation 

processes depending on the stimuli received (231,232). Macrophage 

activation can be divided in three main modes: innate, classic, and alternative. 

Based on this differential activation, specific set of genes are expressed which 

may be involved in the release of pro- or anti-inflammatory products. The 

innate activation is mediated by ligation of receptors, such as TLRs, and it is 

associated with antimicrobial activity and proinflammatory cytokine 

production. The classic activation (M1) is associated with high microbicidal 

activity, proinflammatory cytokine, and reactive oxygen species production; 

and it can be induced by LPS and IFN-γ, which induces TNF-α production). 

The alternative activation (M2) occurs when cells are cultured with 

interleukin-4 (IL-4) and interleukin-13 (IL-13), and it is associated with tissue 

repair and tumor progression (233).  

 

To study whether the deficiency of plasmalogens could alter the different 

macrophage activations, cells were treated with LPS/IFN-γ or IL-4/IL-13 to 

induce polarization to pro-inflammatory (M1) or anti-inflammatory (M2) 

phenotypes, respectively. Figure 22 shows changes in the gene expression 

levels of markers associated to each phenotype, assessed by qPCR. There 

were no differences in the expression levels of any of the genes between 

RAW264.7 cells and the plasmalogen-deficient variants.   

 

Previous studies of the laboratory established a key role for ethanolamine 

plasmalogens in regulating the phagocytic activity (203), and in section 4.4. 

below, the importance of plasmalogens in the execution of LPS-primed 

responses is described. To extend the studies to other functional responses 

of macrophages, analysis of eicosanoids produced by zymosan-stimulated 

RAW264.7 cells and their plasmalogen-deficient variants, were carried out. 

Figure 23 shows the profile of eicosanoids produced which was similar, both 

qualitatively and quantitatively, to that previously reported by Buczynski et al. 

(234). Cells were stimulated with 150 µg/ml zymosan for 8 h. Afterward, 

extracellular media was removed and analyzed for eicosanoid level by LC/MS. 

Only products of the cyclooxygenase pathway were detected and PGD2 was 

the main eicosanoid found. By comparing the different cell types, the 

eicosanoid production was the same with or without plasmalogens.  
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Figure 22. Macrophage polarization through the classic pro-inflammatory (M1) and 

the alternative anti-inflammatory (M2) pathways. RAW264.7 cells (  ) and their 

plasmalogen-deficient variants RAW.12 (   ) and RAW.108 (   ) were treated for 8 h 

with LPS (250 ng/ml) plus IFN-γ (500 U/ml) (A) or with IL-4 (20 ng/ml) plus IL-

13 (20 ng/ml) (B) to generate classically (M1) or alternatively (M2) polarized 

macrophages, respectively. The expression of the indicated markers was measured by 

qPCR. To normalize the data, cyclophilin A was used. A representative experiment is 

shown, and the data are expressed as means ± S.E.M. of three individual replicates. 
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Figure 23. Eicosanoid production by RAW264.7 cells (   ) and plasmalogen-deficient 

variants RAW.12 (  ) and RAW.108 (  ). Cells were treated with zymosan and 

eicosanoid levels were analyzed from extracellular media by LC/MS. Production by 

untreated cells (   ) is shown. Results are shown as means ± S.E.M. (n=3).   

 

PGE2: prostaglandin E2 

PGD2: prostaglandin D2 

PGF2a: prostaglandin F2α 

15d-PGD2: 15-deoxy-Δ12,14-prostaglandin D2 

dhk-PGE2: 13,14-dihydro-15-keto-prostaglandin E2 

dhk-PGD2: 13,14-dihydro-15-keto-prostaglandin D2 

11-HETE: 11-hydroxyeicosatetraenoic acid 

12-HHT: 12-hydroxyheptadecatrienoic acid 

15-HETE: 15-hydroxyeicosatetraenoic acid 
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4.3. A role for phospholipase A2s in phospholipid 

remodeling.  

 

In phospholipid deacylation reactions, AA is excised from the sn-2 position 

by phospholipase A2 enzymes, of which group IVA cytosolic phospholipase 

A2α (cPLA2α) is the critical one. In stimulated cells, the enhanced activity of 

the enzyme results in elevated levels of free AA, which become available for 

eicosanoid synthesis.  

In the Lands pathway, the 2-lysophospholipids generated by constitutively 

active phospholipase A2 enzymes are utilized by CoA-dependent 

acyltransferases to incorporate AA into phospholipids (80,126,235,236). The 

subsequent transacylation reactions among phospholipids place the AA in the 

appropriate phospholipid pools, leading to an asymmetric distribution of AA 

between different classes and molecular species, thereby, explaining the high 

content of AA in ethanolamine plasmalogens. The major enzyme involved in 

phospholipid AA remodeling is CoA-independent transacylase (CoA-IT), 

which cleaves the sn-2 position of phospholipids but does not produce a free 

fatty acid. The gene sequence of CoA-IT has not been identified yet, but its 

activity has been characterized in broken cell preparations (237) and 

pharmacological inhibitors have been identified (238,239).  

There are some PLA2s proposed to present this CoA-IT function, such as 

cPLA2α or iPLA2β, which exhibit CoA-IT activity in in vitro assays (80). 

Another enzyme suggested as a candidate is the group IVC cytosolic 

phospholipase A2 (cPLA2γ), based on biochemical commonalities such as 

membrane-bound, Ca2+-independent and measurable CoA-independent 

transacylation activity in vitro (169).  

Studies were performed to unveil novel regulatory features of CoA-IT-

mediated phospholipid remodeling responses in macrophages. To evaluate 

the involvement of PLA2 isoforms, selective PLA2 inhibitors were used: 

pyrrophenone for cPLA2α (at least 3 orders of magnitude more potent for 

cPLA2α than for iPLA2β or sPLA2 enzymes) (240); FKGK18 for iPLA2β (at 

least 200 and 400 times more potent for iPLA2β than for cPLA2α and sPLA2s, 

respectively) (241); GK436, also for iPLA2β (at least 1000-fold more potent 
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for iPLA2β than for cPLA2α, and no appreciable effect on sPLA2 enzymes) 

(242); and GK241 for sPLA2 (inhibits IIA and V forms, with no appreciable 

inhibition against cPLA2α, iPLA2β, or any other sPLA2 form) (243). For 

comparative purposes with previous data (212,244), bromoenol lactone 

(BEL), an irreversible inhibitor of calcium-independent phospholipase A2s 

with little or no effect on calcium-dependent enzymes (245,246), was also 

used. Figure 24 shows that neither of these inhibitors had any effect on the 

remodeling time of RAW264.7 cells, suggesting that cPLA2α, iPLA2β and 

sPLA2-IIA/V are not involved in phospholipid AA remodeling.  
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Figure 24. Phospholipase A2 role in phospholipid AA remodeling. RAW264.7 were 

pulse-labeled with [3H]AA, washed and incubated without label in the absence or 

presence of the following inhibitors: 2 µM pyrrophenone (pyrr), 10 µM GK241, 5 

µM BEL, 5 µM GK436. The radioactivity incorporated into each phospholipid class 

was measured by scintillation counting and the remodeling time was determined. 

Results are shown as means ± S.E.M. (n=3). 

 

To address the possibility that cPLA2γ could be involved in phospholipid AA 

remodeling, conditions were established to achieve silencing of cPLA2γ by 

siRNA technology. Since no reliable antibodies against murine cPLA2γ could 

be found, siRNA knockdown was measured by qPCR, obtaining as much as 

a 70-75% decrease in cPLA2γ mRNA levels (Figure 25).  
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To study the contribution of cPLA2γ in transacylation reactions, phospholipid 

AA remodeling was analyzed in cPLA2γ-silenced RAW264.7 cells. Figure 25 

shows that, even though the enzyme absence is not absolute, cells exhibit 

defects in AA remodeling from PC to PE, reflected by a significant increase 

of their remodeling time.  

In a different set of experiments, RAW264.7 cells were stimulated with 

zymosan in the presence of the PLA2s inhibitors and cPLA2γ silencing. As 

shown in Figure 26A, cells deficient in cPLA2γ released similar amounts of 

AA as control cells, indicating that the enzyme is not a regulator of the AA 

release response. Regarding to the inhibition of other PLA2 enzymes (Figure 

26B), the role of cPLA2α but not of iPLA2β or sPLA2 in AA release, was 

confirmed, as only inhibition of cPLA2α results in blockade of the response. 

These results evidence the separated roles of both cytosolic phospholipase 

A2s in cellular AA homeostasis: cPLA2α regulates AA release but not 

phospholipid AA remodeling, while cPLA2γ does the opposite. 

 

 

 

Figure 25. Phospholipid AA remodeling in RAW264.7 cells. The cells were treated 

with a scrambled siRNA (control) or siRNA targeting cPLA2γ (cPLA2γ silenced). 

Results are shown as means ± S.E.M. (n=5). *Remodeling time of cPLA2γ-silenced 

cells significantly different from that of control cells (p < 0.05).  
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Figure 26. Stimulated AA mobilization in RAW264.7 cells. (A) Cells were labeled 

with [3H]AA, treated with a scrambled siRNA (control) or siRNA cPLA2γ (cPLA2γ 

silenced), and then untreated (   ) or treated with 150 µg/ml zymosan (   ) for 1 h. (B) 

[3H]AA-labeled cells were preincubated with either 2 µM pyrrophenone, 10 µM 

GK241, 5 µM BEL, 10 µM FKGK18, 5 µM GK436, or neither (no inhibitor) for 30 

min. Afterward, they were untreated (Ctrl) or treated with 150 µg/ml zymosan for 1 

h. Results are shown as means ± S.E.M. (n=3). *Significantly different (p < 0.05) 

from zymosan-stimulated cells in the absence of inhibitors.  
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4.4. LPS priming of macrophages for enhanced AA release. 
 

LPS plays a central role in the inflammatory response, stimulating innate 

immune cells via TLR4 engagement. While LPS is a poor stimulus for AA 

release on its own, previous studies have demonstrated that pretreatment of 

phagocytic cells with LPS increases AA mobilization in response to a second 

stimulus (35,55,247). For these previous studies, radioactively labeled AA was 

utilized, but radioactive precursors do not always distribute homogeneously 

among the various phospholipid pools, thus, the subsequent AA release may 

lead to inaccurate estimation of the contribution of phospholipid sources with 

higher turnover rates (222). Considering this, gas chromatography (GC) and 

liquid chromatography (LC) coupled to mass spectrometry (MS) were used to 

obtain accurate estimates of AA phospholipid sources.  

 

In accordance with previous studies (55,56,247), both in RPMs (Figure 27A) 

and RAW264.7 cells (Figure 27B), no appreciable amounts of AA were 

released in response to LPS alone. However, AA mobilization was remarkably 

stimulated upon macrophage activation with zymosan. A previous priming 

step increased the AA mobilization response when cells were stimulated with 

zymosan (Figure 28A). 1 ng/ml LPS preincubation is enough to enhanced 

AA release, with a maximum at 10-100 ng/ml. Zymosan concentration was 

established within a broad range of zymosan concentrations, being at 1 

mg/ml when maximum AA release occurs (Figure 28B). LPS priming was 

observed over all range. At least a 60-minute LPS preincubation period is 

required to enhanced AA release (Figure 28C).  
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Figure 27. LPS priming or RPMs (A) and RAW264.7 cells (B) for enhanced AA 

release in response to zymosan. Kinetics of AA release by control (unstimulated,    ), 

LPS-primed unstimulated (100 ng/ml LPS for 1 h prior to t = 0,   ), unprimed 

zymosan-stimulated (1 mg/ml,   ), and LPS-primed zymosan-stimulated (100 ng/ml 

LPS for 1 h prior to t = 0 followed by 1 mg/ml zymosan for the indicated times,    ). 

Results are shown as means ± S.E.M. (n=3). 
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Figure 28. LPS priming of mouse peritoneal macrophages. (A) Effect of LPS 

concentration. Cells were primed with the indicated LPS concentration for 1 h and 

the stimulated (   ) or not (   ) with 1 mg/ml zymosan for 2 h. (B) effect of zymosan 

concentration. Cells were either primed (   ) with 100 ng/ml LPS or not (   ) for 1 h 

before the addition of the indicated amounts of zymosan for 2 h. (C) Effect of 

preincubation times with LPS. Cells were preincubated with 100 ng/ml LPS for the 

indicated times and, afterward, they were untreated (   ) or treated (   ) with 1 mg/ml 

zymosan for 2 h. The amount of AA released is expressed as % mass of fatty acid 

initially present in cells. Results are shown as means ± S.E.M. (n=3). 
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4.4.1. Phospholipid sources for AA mobilization during LPS 

priming.   

 

To determine the phospholipid sources for AA mobilization in activated 

macrophages, liquid chromatography/mass spectrometry analyses (LC/MS) 

were carried out. Fatty chains within phospholipids are designated by their 

number of carbon atoms, and their number of double bonds are designated 

after a colon. A designation of O- before the first fatty acid chain indicates 

that the sn-1 position is ether-linked, whereas a P- designation indicates a 

plasmalogen form (sn-1 vinyl ether linkage) (248). Figure 29 shows the profile 

of AA-containing phospholipids in unstimulated macrophages, which is 

consistent with previous results (221-223,249). In resting cells (  ), the major 

AA-containing species were the ethanolamine plasmalogen species, diacyl PC 

species, and PI (18:0/20:4). When cells were treated with LPS, there was no 

change in the content or species distribution of AA (  ). Stimulation with 

zymosan without previous LPS treatment, produced a marked decrease in the 

content of cellular AA-containing phospholipids (   ). All major AA-containing 

PC species plus PI (18:0/20:4) contributed to this release, but no PE species 

significantly changed its AA content. Striking changes were appreciated when 

the LPS-primed cells stimulated with zymosan (  ) were analyzed. The more 

noticeable decrease of AA was from PC and PI species, but decreases were 

also appreciated in PE, resulting primarily from plasmalogen species.  

Once the phospholipid sources of AA were analyzed, it was necessary to 

determine the profile of lysophospholipids formed in activated cells after 

zymosan treatment to complete the study of changes occurring via 

phospholipid deacylation reactions. Analyses of both LPS-primed and 

unprimed cells (Figure 30) showed significant increases in several lysoPC and 

lysoPI species, and their levels were further increased in the LPS-primed cells. 

Significant increases of ethanolamine lysophospholipids were observed, but 

only when cells were primed with LPS before zymosan stimulation, and only 

the plasmalogen forms (labeled in green in the abscissa) were involved.  
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Figure 29. AA-containing phospholipid species in macrophages. Cells were 

untreated (   /   ) or treated (   /   ) with 100 ng/ml LPS for 1 h. Afterward, they were 

stimulated (   /   ) or not (   /   ) with 1 mg/ml zymosan for 2 h. The cellular content 

of AA-containing PC (A), PE (B, where ethanolamine plasmalogen species are 

labeled in green in the abscissa) or PI (C) molecular species, was determined by liquid 

chromatography/mass spectrometry. Results are shown as means ± S.E.M. (n=4). 

*Incubations with zymosan but without LPS were significantly different when 

(p<0.05).  
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Figure 30. Lysophospholipid molecular species generated by activated macrophages. 

Cells were untreated (   /   ) or treated (   /   ) with 100 ng/ml LPS for 1 h. Afterward, 

they were stimulated (   /   ) or not (   /   ) with 1 mg/ml zymosan for 2 h. The cellular 

content of lysophospholipid molecular species (A, where ethanolamine plasmalogen 

species are labeled in green in the abscissa) or total lysophospholipids formed by class 

(B) was determined by liquid chromatography/mass spectrometry. Results are shown 

as means ± S.E.M. (n=4). *Incubations with zymosan but without LPS were 

significantly different when (p < 0.05).  
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4.4.2. AA reacylation and remodeling into phospholipids 

after LPS priming.   

 

AA release from phospholipids in activated cells results from the 

phospholipase A2 activity. To regulate AA availability and modulate free fatty 

acid levels, AA is reacylated back into phospholipids by CoA-dependent 

acyltransferases. Keeping this in mind, once phospholipid sources for AA 

release have been analyzed, it is important to evaluate if LPS priming has any 

effect on the reacylation pathway. For this purpose, metabolipidomic 

approaches by LC/MS were carried out. Using [2H]AA, cells were incubated 

at the time they were stimulated with zymosan, thus labeling the initial 

acceptors involved in CoA-dependent acylation. The species that contained 

[2H]AA after the stimulation were analyzed. Figure 31 shows that most of 

the [2H]AA was incorporated into PC species, and minor amounts were 

incorporated into PI species. In addition, the profile of [2H]AA incorporation 

into PC and PI was the same both in LPS-primed or unprimed cells. No PE 

species incorporated significant amounts of label.  

To provide a correct distribution of AA among membrane phospholipids, 

transacylation reactions catalyzed by CoA-independent transacylase (CoA-IT) 

are necessary in addition to the deacylation/reacylation cycle. As indicated 

above, this enzyme transfers AA between phospholipids primarily from 

diacyl-PC species to ethanolamine plasmalogens. This pathway was studied 

labeling cells with [2H]AA for 30 min. As shown in Figure 32, most of the 

fatty acid was present into PC and lesser amounts into PI, but no PE species 

contained measurable amounts of [2H]AA (   ). Once cells were labeled, they 

were extensively washed to remove the non-esterified [2H]AA. After 1 h of 

zymosan stimulation (  ) the movement of [2H]AA from PC to PE species 

was measured. A low but significant amount of label was found in the 

plasmalogen species PE(P-16:0/[2H]AA). The ether phospholipid species 

PC(O-16:0/[2H]AA) also accumulated label, as it is a preferred acceptor for 

CoA-IT-dependent transacylation reactions, like plasmalogen species. When 

cells were primed with LPS (   ), neither of these species present [2H]AA, 

which indicates that the CoA-IT pathway is blunted by LPS priming.  
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Figure 31. [2H]AA incorporation into phospholipid molecular species. Cells were 

untreated (   /   ) or treated (   /   ) with 100 ng/ml LPS for 1 h. Afterward, they were 

incubated with 1 µM [2H]AA at the time that they were treated without (  /  ) 

or with 1 mg/ml zymosan (  /  ) for 2 h. The [2H]AA incorporated into 

different phospholipid molecular species was determined by liquid 

chromatography/mass spectrometry, and it is expressed as % mass of fatty acid 

initially added to the cells. Results are shown as means ± S.E.M. (n=3).  *Incubations 

with zymosan but without LPS were significantly different when (p < 0.05). 
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Figure 32. Phospholipid AA remodeling in macrophages. Cells were untreated (  /  ) 

or treated (  /  ) with 100 ng/ml LPS for 1 h. Afterward, they were incubated with 1 

µM [2H]AA for 30 min. After washing to remove the non-esterified [2H]AA, cells 

were treated without (  /  ) or with 1 mg/ml zymosan (  /  ). The distribution of 

[2H]AA among phospholipids species was determined by liquid 

chromatography/mass spectrometry, and it is expressed as % mass of esterified fatty 

acid. Results are shown as means ± S.E.M. (n=3).  *Incubations with zymosan but 

without LPS were significantly different when (p < 0.05). 
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4.4.3. Importance of plasmalogen content for AA 

mobilization.  
 

To assess the role of plasmalogen species in maintaining AA homeostasis in 

activated macrophages, AA release was first measured under stimulation 

conditions. As shown in Figure 33, unprimed RAW264.7 cells released 

abundant AA when stimulated by zymosan, and the plasmalogen-deficient 

variant RAW.12 released less AA than the parent strain. However, when the 

cells were primed with LPS before zymosan stimulation, AA release was 

greatly increased in RAW264.7 but not in RAW.12 cells, where it was the 

same as with zymosan alone. According to the lipid characterization of 

RAW.12 cells shown in Figure 19, the distribution of AA between 

phospholipid classes was preserved compared to RAW264.7, but there are no 

plasmalogen species. Thus, the data provide evidence that AA deacylation 

from plasmalogen species is important for LPS priming of macrophages for 

an increased AA release upon a second stimulus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. AA release by RAW264.7 (  ) cells and plasmalogen-deficient variant 

RAW.12 cells (   ). Cells were untreated (control) or treated with 1 ng/ml LPS for 1 

h. Afterward, they were stimulated with 150 µg/ml zymosan for 2 h. Results are 

shown as means ± S.E.M. (n=3).  *Significant difference (p < 0.05) between RAW.12 

versus RAW264.7.           
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AA mobilization in activated cells was also assessed by mass analysis. Also, to 

confirm the role of cPLA2α in macrophage AA release under stimulation 

conditions, experiments with its inhibitor pyrrophenone were carried out. 

AA-containing phospholipids were analyzed by GC/MS. As shown in Figure 

34, the decreases in the AA content of PC and PI species in LPS-primed 

macrophages, were prevented if the zymosan incubations included the 

inhibitor, which confirmed the role of cPLA2α in AA release.  

 

Figure 34. Effect of pyrrophenone on phospholipid deacylation. Macrophages were 

either untreated or treated with 100 ng/ml LPS for 1 h. Afterward, they were treated 

(color bars) or not (open bars) with 1 µM pyrrophenone for 10 min. Finally, cells 

were stimulated with 1 mg/ml zymosan for 2 h. AA-containing PC (A), PE (B), PI 

(C), and total AA-containing PLs (D) was determined by GC/MS. Results are shown 

as means ± S.E.M. (n=3).  *Significantly different (p < 0.05) from incubations with 

zymosan but without.  
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5.1. Arachidonic acid metabolism in macrophages as innate 

immune cells. 

 

The availability of mass spectrometry-based lipid profiling techniques 

provides a reliable method to characterize the glycerophospholipid 

composition and distribution of the species within cells and to identify species 

that change in response to cellular functions. This technology was used in this 

work to compare both mouse peritoneal macrophages (RPMs) and the 

macrophage-like cell line RAW264.7, as a model for subsequent studies. Here, 

in accordance with previous data (229), it has been demonstrated that 

RAW264.7 cells and RPMs show differences in phospholipid fatty acid 

content and the distribution of fatty acids among glycerophospholipid species. 

The major difference exists in the content of PUFAs in the membranes of the 

two cell types, with a markedly lower AA content in RAW264.7 cells as 

compared to RPMs, although the richest AA-containing class is PE and it is 

similar in both cell types. Despite AA-containing PC species is lower in 

RAW264.7 cells, the AA phospholipid remodeling process from PC to PE 

presents a similar profile, in qualitative terms, as in RPMs, although the 

remodeling time is much lower in RAW264.7 cells. This suggests that 

RAW264.7 cells incorporate AA into pools which are not as metabolically 

stable as those in RPMs.  

 

5.2. Role of ethanolamine plasmalogens. 

 

AA is thought to incorporate into PE molecular species via transacylation 

reactions regulated by CoA-IT, which transfers AA primarily from diacyl PC 

species to ether-linked species, particularly the ethanolamine plasmalogens, 

which are strikingly enriched in AA in innate immune cells. This is thought to 

be due to the fact that PE plasmalogens are major acceptors for fatty acid 

transfer reactions (72,169,172,228). The AA-enrichment of ether 

phospholipids suggests that they play key role in AA homeostasis. As shown 

in results, receptor stimulation of AA mobilization in plasmalogen-deficient 

cells is similar to that of normal cells and, to date, none of the major AA-

releasing PLA2s have been found to exhibit any preference for substrates 

containing ether bonds (80). In cells of the innate immune system, 
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phospholipid AA remodeling is necessary to distribute the fatty acid within 

the appropriate cellular pools for its subsequent mobilization by PLA2 

enzymes. Attending to the distribution of AA among phospholipid classes, it 

was found that the amount of fatty acid in PE, PC and PI species was 

maintained in the plasmalogen-deficient cells (Figure 18), which is due to a 

compensatory elevation of AA levels in diacyl species (Figure 19). Results 

showed no difference between plasmalogen-deficient and normal cells, thus 

suggesting that plasmalogens do not influence phospholipid AA remodeling. 

These data suggest that it is not the nature of the sn-1 bond (acyl, alkyl or 

alkenyl) but the substituent at the sn-3 position (ethanolamine, choline or 

inositol), that determines the AA distribution. Additionally, another fact that 

supports the concept that there is a sn-3 substituent specificity, is that AA 

transacylation reactions involve only ethanolamine- and choline-containing 

phospholipids.  

Considering that the nature of the substituent at sn-1 does not influence the 

AA transacylation reaction, CoA-IT, the enzyme catalyzing these reactions 

may use 1-acyl-PE just as well as 1-alkenyl-PE (72,169,172,228). This could 

explain why the plasmalogen-deficient variants are able to compensate their 

deficiency by accumulating the AA into diacyl phospholipids. Since the 

population of lipids within cell membrane is very dynamic due to remodeling 

reactions, even an exact composition and concentrations of lipid species 

present in resting cells is continuously changing. Thus, despite their molecular 

species composition being so different, both plasmalogen-deficient and 

normal cells mobilize AA similarly, hence supporting the idea that cells can 

carry out reactions with many different phospholipid compositions rather than 

a single composition (250).   

Results of the enrichment of plasmalogens with AA (Figure 21) raise the 

possibility that this might not be related to regulatory features of AA 

homeostasis and eicosanoid metabolism but associated to biophysical effects 

and to different biological responses by the interaction of the phospholipid 

with other membrane components.  

AA-containing ethanolamine plasmalogens are usually found as components 

of lipid rafts, specific membrane microdomains whose relative plasmalogen 

content may affect key properties such as fluidity, packing, thickness, density, 

and tendency to fusion. It is reported that the vinyl ether linkage at the sn-1 

position of plasmalogen diminishes the distance between the carbons of the 
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sn-1 and sn-2 chains by allowing their proximal regions to become parallel 

(251,252). The vinyl ether bond increases the thickness, membrane packing 

and density, which results in decreased membrane fluidity. Due to their 

tendency to form non-bilayer structures, it has been found that ethanolamine 

plasmalogens facilitate membrane fusion and fission processes by reducing 

surface tension. Thus, plasmalogens influence the biological behavior of 

membrane rafts in transmembrane signaling and membrane transport 

(202,253,254).  

Previous laboratory results (203) showed that plasmalogen deficiency in 

macrophages is associated with reduced phagocytosis. Importantly, 

phagocytosis reduction was significantly reversed when plasmalogen-deficient 

cells were exposed to lysoplasmenylethanolamine (lysoPlsEtn). AA-containing 

ethanolamine plasmalogens are the major species found in primary 

macrophages and RAW264.7 cells. This cell line also contains ethanolamine 

plasmalogens carrying oleic acid, dihomo-γ-linolenic acid, and several omega-

3 fatty acids, although most of the lipid formed from exogenous lysoPlsEtn 

contained AA. The marked AA preference for acylation of lysoPlsEtn in these 

cells might be a consequence of an elevated CoA-IT activity. Thus, exposure 

to lysoPlsEtn restored cellular plasmalogen levels, especially the fraction 

containing AA and it was accompanied by an increase in the number and size 

of lipid raft domains. These results suggest that membrane plasmalogens 

influence the plasma membrane characteristics such as the formation of 

microdomains that are necessary for efficient signal transduction leading to 

optimal phagocytosis by macrophages.  

In addition, previous laboratory results (224) also had determined that the 

increased expression of sPLA2-V in interleukin-4-treated macrophages is 

linked to increased levels of cellular ethanolamine lysophospholipids (lysoPE), 

which are necessary to support the elevated phagocytic response during 

zymosan stimulation. Overexpression of the enzyme produces a significant 

increase of the phagocytic capacity and the addition of exogenous lysoPE fully 

restores phagocytosis in sPLA2-V-defient cells.  

 

Increasing cellular levels of AA showed that CoA-mediated phospholipid AA 

remodeling rates were decreased. This raises the possibility that an AA-

containing phospholipid that is only present in AA-enriched cells may act to 

regulate CoA-IT-mediated transacylation reactions by affecting substrate 
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availability and/or by directly affecting the enzyme. Related to this, it was 

previously described a short-lived AA-containing phospholipid produced by 

activated cells, namely 1,2-diarachidonoyl-glycerophosphoinositol, which is 

able to regulate macrophage responses to innate immune stimuli (221).  

The generation of lipid mediators during the innate immune response is 

controlled by phospholipase A2 enzymes; thus, the type of lipid mediators 

generated will be determined by the phospholipid substrates that these 

enzymes use. Macrophages express the two major cytosolic PLA2 forms: 

cPLA2α and iPLA2β (73,80,255). Both enzymes act on different phospholipid 

substrates during macrophage stimulation. cPLA2α manifests a marked 

selectivity for phospholipids that contain AA at the sn-2 position, so it is the 

rate-limiting provider of free AA for eicosanoid synthesis; while iPLA2β 

appears to specifically target phospholipids containing palmitic acid in the sn-

1 position, generating lysoPC(16:0), which is the main acceptor for AA 

incorporation (222). This hydrolytic pathway operating on phospholipid pools 

that do not contain AA, serves to generate palmitate-containing lysoPC, which 

can be used to reincorporate part of the free AA. AA mobilization involves 

the participation of cPLA2α and CoA-independent transacylation reactions 

that remodel the various AA pools. AA is mainly released from PC and PI, 

but also from PE species, where the amount of AA is restored by the action 

of transacylation mechanisms that use PC species as donors. The loss of AA 

from PC during macrophage activation is due to the cPLA2α-mediated 

hydrolysis and the AA transfer to PE molecules. Therefore, cellular 

compartmentalization is essential in the phospholipid fatty acid composition 

of the membrane to which the enzyme translocates during cell activation.  

When CoA-IT is inhibited, cellular levels of AA-containing PE species 

decrease, and AA-containing PC species are increased. It was previously 

demonstrated (222) that the inhibition of AA transfer from PC to PE leads to 

a strong increase in lipoxygenase metabolite formation (such as 5-, 12-, and 

15-HpETEs) in response to zymosan, which is consistent with the fact that 

AA-containing PC molecules are the major precursors of lipoxygenase 

metabolites (72,228). This can be explained because blunting Co-IT-mediated 

transacylation favors the cPLA2α-mediated hydrolysis of AA-containing PC 

species over the AA transfer from PC to PE. Thus, the formation of 

eicosanoid products of the lipoxygenase pathway can be limited by AA 

transfer from PC to PE species by Co-IT inhibition. Therefore, it would be 

interesting to thoroughly explore whether the synthesis of different eicosanoid 
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molecules is regulated by the cPLA2α-mediated AA hydrolysis on different 

phospholipid pools due to a different accessibility of enzyme to such pools, 

and if it can modify the progression of the inflammatory response.  

 
Phospholipid AA remodeling is a key aspect in eicosanoid regulation because 

the nature and the amount of eicosanoids produced under activation 

conditions may depend on the composition and subcellular localization of the 

phospholipid pool where the AA-hydrolyzing phospholipase A2 acts. In vitro 

studies suggest that cPLA2α does not show preference for the sn-3 position 

headgroup, whereas recent studies proposed a minor preference for PC and 

PE species (256). As discussed in preceding paragraphs, during stimulation 

conditions AA is hydrolyzed from PE and the pools are replenished with AA 

from PC via CoA-IT-mediated transacylation reactions. As the production of 

lipoxygenase metabolites increased under these inhibitory conditions, it was 

suggested that the AA transfer among phospholipid classes regulate the 

production of specific eicosanoids. On this matter, results of the present work 

established that the eicosanoid production under stimulation conditions is not 

influenced by the plasmalogen deficiency (Figure 23).  

Moreover, cPLA2α has been implicated in the selective production of lipid 

mediators during macrophage polarization to pro-inflammatory (M1) or anti-

inflammatory (M2) states. It has been recently found (257) that both types of 

macrophages generate pro-resolving lipid mediators in a similar manner under 

stimulation conditions, while, upon cell stimulation, M2 macrophages 

mobilize higher amounts of AA by increasing cPLA2α activation, and generate 

more 5-lipoxygenase products, particularly LTC4. Other studies (258) have 

also emphasized the different lipid mediator profiles of macrophages under 

inflammatory conditions, depending on the polarization state. These 

differences may be due to the compartmentalized regulation of AA-

metabolizing enzymes participating in the synthesis of these lipid mediators. 

Preliminary studies in this work, have shown that the plasmalogen deficiency 

does not alter the different polarization states (Figure 22). 

The continuous generation of lysophospholipids by PLA2 enzymes is a key 

step in phospholipid AA remodeling, since they act as fatty acid acceptors for 

the subsequent CoA-IT-mediated transacylation reaction. Macrophage 

activation by receptor-directed agonists, such as zymosan, results in an 

increase of lysophospholipid levels compared to unstimulated cells 
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(45,46,222,224). For this work, experiments were carried out to investigate if 

the activation state of the cells, with this elevation of cellular lysophospholipid 

levels, presented any influence on their phospholipid remodeling rate. These 

experiments were carried out also in exogenous AA-treated cells, and both 

wild type and plasmalogen-deficient variants were used. There was no effect 

of cell activation on phospholipid AA remodeling under any of these 

conditions. The remodeling time of zymosan-activated cells was the same as 

that of resting cells, either in wild-type cells, plasmalogen-deficient cells, or 

exogenous AA-preloaded cells. Thus, another outcome of this work is that 

phospholipid AA remodeling rate is independent of the activation state of the 

cells, at least in RAW264.7 cells.  This was unexpected since zymosan-

activated macrophages increase their intracellular lysophospholipid content as 

a consequence of cPLA2α activation and it is exactly the lysophospholipid 

availability which initiates phospholipid AA remodeling in cells. In contrast 

with previous results in phorbol ester-stimulated platelets (259), tumor 

necrosis factor α-stimulated neutrophils (153), and antigen-stimulated mast 

cells (151), this lack of an effect of cell stimulation on CoA-IT-mediated 

phospholipid remodeling, is consistent with work in neutrophils on the 

regulation of platelet-activating factor synthesis via transacylation reactions, 

where it was found that CoA-IT activity did not increase as a consequence of 

cell activation but that regulation succeed at the level of increased substrate 

availability (260). 

 

5.3. A role for phospholipase A2s in phospholipid remodeling. 

 

CoA-IT is not a PLA2 enzyme in a strict sense because, although it cleaves the 

sn-2 position of a phospholipid, it does not generate a free fatty acid as a 

product. Some well characterized PLA2s, such as cPLA2α or iPLA2β, exhibit 

Ca2+-independent transacylase activity in vitro (80), but so far no studies 

utilizing inhibitors of these characterized PLA2s, had abolished CoA-IT 

activity (261). More recent studies have considered the possibility that CoA-

IT activity may belong to group IVC PLA2 (cPLA2γ) (112,168,169). It is not 

known if this enzyme is responsible of AA transfer from PC to PE in cells 

since, despite of being Ca2+-independent, lysophospholipase activity of 

cPLA2γ is significantly higher than its CoA-independent transacylation 

activity.   
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Several lipid signaling enzymes, including mammalian Mg2+-dependent 

phosphatidate phosphatases (262), platelet-activating factor acyltransferases 

(263), and lysophospholipid acyltransferases (264), have been cloned over the 

last decade. The determination of their sequences has enabled the applications 

of genetic approaches to unravel their pathophysiological roles. At present, 

CoA-IT is one major enzyme of lipid signaling whose sequence is not yet 

identified, being the only approach to study it the use of activity assays 

(215,223).  

CoA-IT has been defined as a membrane-bound, calcium-independent 

enzyme. Yamashita and coworkers suggested that CoA-independent 

transacylation reactions are catalyzed by (an) enzyme(s) of the PLA2 family 

and proposed cPLA2γ (group IVC cytosolic phospholipase A2) as a possible 

candidate (112,168,169). They also found that the cPLA2γ-catalyzed 

transacylase reaction works better when lysoPC is used as AA donor instead 

of AA-containing diacyl-PC. Furthermore, Stewart et al. (265) noted that the 

enzyme has higher lysophospholipase activity than phospholipase A2 activity. 

However, conditions of in vitro specificity assays are not necessarily the same 

as in vivo, due to the compartmentalization of substrates and products in the 

latter situation, and because of the presence of competing enzymes that may 

drastically change the specificities reported.   

To experimentally test the proposed involvement of cPLA2γ in regulating 

phospholipid AA remodeling, siRNA technology was used to specifically 

knock down cellular expression levels of cPLA2γ. Results of these experiments 

indicate that cPLA2γ-deficient cells transfer AA from PC to PE significantly 

more slowly than control cells (Figure 27). This finding is significant because 

it makes now possible to apply molecular approaches, such as overexpression 

or deletion, to study the cellular and molecular regulation of phospholipid AA 

remodeling reactions. It is necessary to expand the knowledge because, despite 

of these findings, it is not possible to indicate if cPLA2γ participates in the 

CoA-independent transacylation reaction by directly catalyzing the fatty acid 

transacylation, by providing the lysophospholipid acceptors that initiate the 

reaction, or by acting at both levels. Also, cPLA2γ inhibition by siRNA slows 

but does not eliminate phospholipid AA remodeling, so it is possible that 

additional enzymes operate as CoA-IT in cells. Additional work should be 

conducted to understand these mechanisms and if the enzyme is constitutively 

active or it is activated by agonist stimulation (114).  
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Moreover, previous studies have demonstrated that cPLA2γ overexpression 

increases PUFAs in PE species, suggesting that this enzyme can modulate the 

phospholipid composition of the cells (114). Other studies established that 

cPLA2γ is involved in monocyte/macrophage differentiation and macrophage 

polarization, as its inhibition led to M1 polarization, while M2 polarization was 

suppressed (266). Since the differentiation of monocytes into macrophages 

and the types of macrophages is important to develop inflammatory diseases, 

cPLA2γ may be a good candidate for inflammatory disease therapies.  

 

5.4. LPS priming of macrophages for enhanced AA release. 

 

LPS promotes an inflammatory response by stimulating cells of innate 

immunity through TLR4 recognition (11). When macrophages are stimulated 

with agonists, they release large quantities of AA. LPS possesses the capacity 

to prime the cells for an increased released of AA when they are exposed to a 

second inflammatory stimulus, but this mechanism is not fully understood.  

To study this response, cPLA2α activation has been characterized, as this is 

the key enzyme mediating the AA deacylation step (156,244,267,268). 

Previous studies have demonstrated that cPLA2α-mediated response could be 

intensified by the participation of an sPLA2 enzyme in some conditions 

(73,255), and also that LPS priming enhances the basal phosphorylation state 

of cPLA2α in macrophages and neutrophils (106,247,269).  

However, the increase in enzyme activity is low, so the elevation of basal 

cPLA2α phosphorylation is not enough to explain the enhanced AA 

mobilization. Considering that, in addition to the phospholipase A2-mediated 

deacylation step, other factors should be taken into consideration to explain 

it, as the mechanisms regulating the AA reacylation and its subsequent re-

distribution among phospholipids. To further understand these processes, 

several genes encoding for lysophospholipid acyltransferases have been cloned 

(264), revealing that the remodeling cycle contributes to the generation of 

membrane glycerophospholipid diversity due to a polar headgroup selectivity 

of the enzymes. Lysophosphatidylcholine acyltransferase 3 (LPCAT3) is the 

major enzyme controlling AA incorporation in stimulated cells, which limits 

free fatty acid availability for eicosanoid production by acylating acyl-PC (270-
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272). Results in the present work agree with this finding in that PC is the major 

acceptor for AA incorporation in activated macrophages. In addition, results 

showed that LPS priming does not influence AA incorporation, as there were 

no differences between different phospholipid species neither in primed nor 

not primed macrophages.  

PE constitutes a major reservoir of AA in unstimulated macrophages, but it is 

not a significant acceptor for direct fatty acid reacylation reactions 

(72,73,172,273). Consistent with this, in this work it was clearly appreciated a 

decreased content of AA in some PE species in the LPS-primed zymosan 

stimulated cells. Moreover, when metabolipidomic studies with deuterated AA 

were carried out to analyze direct incorporation of the fatty acid into 

phospholipids, there was appreciated no significant incorporation into PE 

species (Figure 32).  

In the present study, AA mobilization was measured by mass in activated cells 

and no changes were observed in the AA content of PE molecular species, 

which is thought to be due to this remodeling process. This could be an 

explanation for the false impression that PE species do not contribute to 

zymosan-stimulated AA release, since their contribution is exposed when 

CoA-IT inhibitors are used (222). The cellular amount of PE was not declined 

during cellular stimulation due to the fast transfer of AA from PC to lysoPE 

by CoA-IT.  

In accordance with this involvement of CoA-IT in replenishing PE species 

with AA, results showed that there were no changes in the mass amounts of 

PE in unprimed zymosan-stimulated macrophages, whereas all other 

phospholipid species experienced decreases. However, in LPS-primed cells it 

was observed an abundant release of AA from PE, particularly the 

plasmalogen species but not the diacyl forms. The elevated levels of 

lysoplasmenyl PE species observed in LPS-primed zymosan-stimulated cells, 

confirm these findings (Figure 31). These results confirm the involvement of 

CoA-IT in stimulated macrophages and strongly indicate that the CoA-IT 

pathway is blunted by LPS priming. Thus, suggesting that diminished recycling 

of AA into ethanolamine plasmalogens is responsible for the enhanced AA 

mobilization response of the LPS-primed zymosan-activated cells, and that 

alterations in CoA-IT-mediated remodeling are central to LPS priming. 

Moreover, they are relevant to uncover a role for LPS priming in innate 

immunity and inflammation processes, since LPS-primed macrophages appear 
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to remodel AA from PC to PE more slowly compared with unprimed cells, 

which results in significantly reduced incorporation of AA into PE 

plasmalogens and therefore, lower levels of these species. This different 

compartmentalization of the fatty acid results in higher losses of AA from PE 

and higher free AA levels due to cPLA2α-mediated hydrolysis of PC. Thus, 

the subsequent diminution of CoA-IT activity after LPS priming constitutes a 

risk because of the intensified production of eicosanoids as a consequence of 

the increased release of free AA from PC (274).  

Further, LPS priming of macrophages is associated with an increased 

hydrolysis of ethanolamine plasmalogens by cPLA2α, which is not 

counteracted by CoA-IT, as this enzyme activity is reduced during LPS 

priming. Preliminary cellular assays did not detect significant decreases of 

CoA-IT activity in the LPS-primed cells. That is why it is not clear whether 

LPS priming affects CoA-IT-driven remodeling reactions by acting directly on 

the enzyme itself, or by altering an unidentified upstream effector that could 

decrease the availability of the enzyme to its substrates. This possibility is 

similar to that described for the activity of CoA-IT in platelet-activating factor 

synthesis by human neutrophils, which is suggested to be regulated by 

substrate availability rather than by an increased (260). Moreover, macrophage 

priming with LPS is strikingly sensitive to transcription and translation 

inhibitors, indicating the involvement of rapidly turning-over proteins (55).  

 

In summary, all these findings underline that plasmalogens participate in the 

execution of some responses of macrophages but not in others, thus reflecting 

some kind of biological specificity of these phospholipids. These works have 

exposed plasmalogen deacylation/reacylation reactions as critical biochemical 

events in LPS priming of macrophages for enhanced AA release. This could 

be due to a CoA-IT inhibition effect of LPS priming, which favors the AA 

accumulation on PC species by blocking the fatty acid transfer to PE species. 

Furthermore, it has been revealed the cPLA2γ implication as a major enzyme 

in CoA-IT-mediated phospholipid AA remodeling, and the role of 

plasmalogens in this process. All these findings are summarized in Figure 35.  
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Figure 35. Interaction between CoA-dependent acyltransferases, CoA-independent transacylase, and 

phospholipase A2 in regulating phospholipid AA remodeling and AA release in unstimulated (A), zymosan-

stimulated (B) or LPS-primed zymosan-stimulated (C) macrophages. AA, arachidonic acid; CoA-IT, CoA-

independent transacylase; LPLAT, lysophospholipid:acyl-CoA acyltransferase; cPLA2α, cytosolic 

phospholipase A2 α.
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Taken together, the results of this work provide new information for a better 

understanding of the regulatory processes underlying cellular AA availability, 

and lead to the following major conclusions: 

 

 

1. Cellular plasmalogen content does not influence AA levels or distribution 

in macrophages. 

 

1.1. CoA-IT-mediated phospholipid AA remodeling reactions are 

independent of the plasmalogen content of cells. Specific molecular 

species linkages do not influence AA distribution in innate immune 

cells, which appears to depend primarily on headgroup composition 

of membrane phospholipids. 

 

1.2. Cellular plasmalogen content influences neither cellular AA levels nor 

the relative distribution of the fatty acid among phospholipid classes. 

It seems that it is the endogenous cellular level of AA, not the 

plasmalogen status, which determines the rate of remodeling of AA 

among phospholipids.  

 

1.3. There is a differential involvement of plasmalogens in some, but not 

all, responses of macrophages. Hence, this reflects some sort of 

biological specificity of this kind of phospholipids.  

 

1.4. Group IVA and IVC cytosolic family members (cPLA2α and cPLA2γ) 

play separate roles in cellular AA homeostasis: the former regulates 

AA release but not phospholipid AA remodeling, while the latter does 

the opposite.  

 

1.5. Group IVC cytosolic phospholipase A2 (cPLA2γ) is a major enzyme 

involved in phospholipid AA remodeling.  
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2. Ethanolamine plasmalogen hydrolysis is an important step in bacterial 

lipopolysaccharide priming of macrophages.  

 

2.1. LPS priming causes a marked decrease in the entry of AA into the 

ethanolamine plasmalogens and facilitates the net hydrolysis of 

ethanolamine plasmalogen species after zymosan stimulation, which 

seems to be due to a reduction in phospholipid AA remodeling 

because of a diminished activation of CoA-IT. 

 

2.2. Blunting of the CoA-IT pathway by LPS priming in stimulated 

macrophages leads to an increase of free AA available for eicosanoid 

synthesis, probably due to the enhanced access of cPLA2α to AA 

moieties present in PC pools.  
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