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Abstract. We analyze the characteristics of the global attractor of a type

of dissipative nonautonomous dynamical systems in terms of the Sacker and
Sell spectrum of its linear part. The model gives rise to a pattern of nonau-

tonomous Hopf bifurcation which can be understood as a generalization of the

classical autonomous one. We pay special attention to the dynamics at the
bifurcation point, showing the possibility of occurrence of Li-Yorke chaos in

the corresponding attractor and hence of a high degree of unpredictability.

1. Introduction

The nonautonomous bifurcation theory for ordinary or partial differential equa-
tions is a relatively new, complex, and challenging subject of study for which many
fundamental problems remain open. One of the initial questions is to determine
what kind of objects are those whose structural variation determines the occur-
rence of bifurcation, as it happens with the constant and periodic solutions in
the autonomous case. The use of the skew-product formalism in the analysis of
the solutions of nonautonomous differential equations, highly developed during the
last decades, has given several possible answers to this question: those objects we
referred to can be bounded solutions, recurrent solutions, minimal sets, local at-
tractors, or global attractors. The choice of each one of these categories defines a
different research line, and all of them have shown their relevance. The works of
Braaksma et al. [9], Alonso and Obaya [2], Johnson and Mantellini [24], Fabbri et
al. [14], Langa et al. [29, 30], Rasmussen [43, 44], Núñez and Obaya [37], Pötzsche
[41, 42], Anagnostopoulou and Jäger [3], Fuhrmann [16], and Caraballo et al. [12],
develop some of these lines, providing nonautonomous transcritical, saddle-node
and pitchfork bifurcation patterns. In some cases these nonautonomous phenom-
ena admit a dynamical description analogous to that of the autonomous case. But
in other cases they present some extremely complex dynamical phenomena, which
cannot occur in the autonomous scenery or even in the periodic one.

The question of determining what a Hopf bifurcation means in the nonau-
tonomous case is even more complex. Among the works devoted to this problem
we can mention those of Braaksma and Broer [8] and Braaksma et al. [9] (who
focus on the quasiperidic case and talk about bifurcation when there is a change of
dimension of invariant tori), Johnson and Yi [27] (where special attention is paid
to the case in which an invariant two-torus looses stability), Johnson et al. [23]
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2 C. NÚÑEZ AND R. OBAYA

(who study a two-step bifurcation pattern of Arnold type, in terms of the global
change of the local and pullback attractor) Anagnostopoulou et al. [4] (where a
Hopf bifurcation pattern for a discrete skew-product flow is analyzed, and where
the bifurcation corresponds to a global change in the global attractor), and Franca
et al. [15] (where conditions are established for nonautonomous perturbations of
a classical autonomous pattern of Andronov-Hopf bifurcation ensuring the persis-
tence of the perturbation), as well as some of the references therein.

The present work is the first of two papers devoted to the analysis of Hopf
bifurcation phenomena occurring for a one-parametric family of families of nonau-
tonomous two-dimensional systems of ODEs of the form

y′ = Aε(σ(t, ω)) y − kρ(|y|) y , ω ∈ Ω : (1.1)

each one of the systems is defined along one of the orbits of a continuous flow
(Ω, σ,R) on a compact metric space Ω, which is minimal and uniquely ergodic.
Here, Aε : Ω → M2×2(R) is a family of continuous maps for ε in a given interval;
|y| represents the Euclidean norm of y ∈ R2; and the map kρ is given by

kρ : R+→ R+, r 7→
{

0 if 0 ≤ r ≤ ρ ,
(r − ρ)2 if r ≥ ρ ,

for a fixed value of ρ ∈ (0, 1]. That is, k is C1 on R+, convex, increasing and
unbounded, and it vanishes on [0, ρ].

Frequently, this setting comes from a one-parametric system of the form

y′ = Aε0(t) y − kρ(|y|) y .

For instance, let A0 be an almost-periodic matrix-valued function on R, and Aε0 =
A0 + εI2. In this case we can take Ω as the hull A0 (that is, the closure in the
compact-open topology of the set {As | s ∈ R} with As(t) = A0(t + s)), define σ
by time translation (that is, σ(t, ω)(s) = ω(t + s)), and define A(ω) = ω(0) (so
that A(σ(t, ω)) = ω(t)) and Aε = A+ εI2. The properties of compactness of Ω, of
continuity, minimality and ergodic uniqueness of the flow σ, and of continuity of the
map A are proved in Sell [47]. Note that the almost-periodic situation includes as
particular cases those in which A0 is constant (with Ω given by a point) or periodic
(with Ω given by a circle), which are the simplest ones, as well as those in which A0

is quasiperiodic (with Ω given by a torus) or limit-periodic (in which case Ω can be
a solenoid: see [33], and observe that in this example Ω is not a locally connected
space, so that it cannot be identified with a differentiable manifold).

But we do not restrict ourselves to the almost-periodic situation, which makes
our setting more general; it is known that there exist other functions for which
the flow on the hull is minimal and uniquely ergodic, although they are not easy
to describe. The main advantage of having a family like (1.1) instead of a single
system is that the solutions of all the systems corresponding to any fixed ε allow us
to define a skew-product flow (Ω×R2, τεR,R) with (Ω, σ,R) as base component. In
addition, the boundedness of Aε combined with our particular choice for kρ ensures
the dissipativity of the family for each value of ε (as we will check in Section 4),
and hence the existence of a global attractor Aε ⊂ Ω×R2 for τεR.

The existence of this global attractor is the starting point: our bifurcation anal-
ysis is focused on the evolution of Aε as ε varies, so that a substantial change on
its structure determines a bifurcation point. We put special attention in exploring
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the possibility of occurrence of Li-Yorke chaos at the bifurcation points, which is
indeed the situation in some examples that we describe.

We will show that the occurrence of bifurcation points is determined by the
variation of the Sacker and Sell spectrum ΣAε of the systems y′ = Aε(σ(t, ω)) y,
which due to the minimality of the base flow can be defined for any fixed ω ∈ Ω: it is
the compact set of points λ ∈ R such that the translated system y′ = (Aε(σ(t, ω))−
λI2) y does not have exponential dichotomy over R. Let λ−(ε) and λ+(ε) be the
left and right edge points of ΣAε . In this first paper we will analyze the bifurcation
occurring at the value ε̃ of the parameter when:

– if ε < ε̃, then λ+(ε) < 0: every point in the spectrum is strictly negative;
– λ−(ε̃) = λ+(ε̃) = 0: 0 is the unique point in the spectrum;
– if ε > ε̃, then λ−(ε) > 0: every point in the spectrum is strictly positive.

Note that in order to construct a family Aε with these properties it suffices to take
as starting point a matrix A with ΣA = {0} and then define Aε := A+ε I2 (so that
ε̃ = 0). But many more situations may fit in our conditions. We will show that
the global attractor reduces to Ω × {0} for ε < ε̃. But, for ε > ε̃, it is given by a
set which is homeomorphic to a solid cylinder around Ω×{0}; and in addition, the
boundary of the attractor is the global attractor for the flow restricted to the set
Ω × (R2−{0}) (which is invariant, since so is Ω × {0}). We will call this pattern
nonautonomous Hopf bifurcation with zero spectrum due to the analogies of this
structure with classical autonomous Hopf bifurcation models. To understand these
analogies, just think about the classical autonomous model for Hopf bifurcation
y′ = Aεy − |y|2y with Aε =

[
ε 1
−1 ε

]
: for ε < 0 the global attractor of the induced

flow on R2 reduces to the origin of coordinates, while for ε > 0 it is given by a closed
disk centered at the origin, whose border attracts all the orbits different from the
origin.

At the bifurcation point ε̃, many possibilities arise. In the simplest one, the
attractor is again homeomorphic to a solid cylinder. Therefore even in this case
the bifurcation is discontinuous: just compare with the behavior for ε < ε̃. And
there are cases for which both the shape of the attractor and the dynamics on it
are extremely complex, with the occurrence of Li-Yorke chaos.

Note that the specific form of Aε is determined by the Sacker and Sell spectrum
of the linear part, and hence by the matrix-valued function Aε. The map kρ,
responsible of the nonlinearity of the dynamics, plays the role of guaranteing the
dissipativity, and the constant ρ determines the global size of the attractor. In
addition, the fact that kρ vanishes on [0, ρ] is fundamental to make the occurrence
of Li-Yorke chaos possible, and causes the bifurcation to be discontinuous even in
the simplest case.

The second paper of the series will include the analysis of a nonautonomous two-
step transcritical-Hopf bifurcation pattern. In this case we will assume the existence
of ε̃1 and ε̃2 such that:

– if ε < ε̃1, then λ+(ε) < 0: every point in the spectrum is strictly negative;
– λ−(ε̃1) < 0 = λ+(ε̃1): 0 is the superior of the spectrum but not its unique

element;
– if ε ∈ (ε̃1, ε̃2), then λ−(ε) < 0 < λ+(ε): there are strictly negative and

strictly positive points in the spectrum;
– λ−(ε̃2) = 0 < λ+(ε̃2): 0 is the inferior of the spectrum but not its unique

element;
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– if ε > ε̃2, then λ−(ε) > 0: every point in the spectrum is strictly positive.

The simplest example corresponding to this situation can be Aε :=
[
ε−1 0

0 ε

]
: here,

ε̃1 = 0 and ε̃2 = 1. For more complex (and always time-dependent) choices of Aε, we
will show that Li-Yorke chaos may appear at ε1 and/or ε2. And we will also describe
the possibility of persistence of the Li-Yorke chaos when ΣAε ⊂ (0,∞). This last
result is interesting for both patterns: for the second one we have ΣAε ⊂ (0,∞) if
ε > ε̃2; and for the pattern analyzed in this paper, we have ΣAε ⊂ (0,∞) if ε is
greater than the unique bifurcation point ε̃.

It is clear that the situations analyzed in these two papers are far away from
exhausting the possibilities. But they suffice to illustrate, once more, the extreme
complexity of the bifurcation phenomena in the nonautonomous case: there may
appear scenarios of dynamical unpredictability which are not possible in the au-
tonomous case.

Let us sketch briefly the structure of the paper. In Section 2 we recall the basic
notions and results on topological dynamics and measure theory which we will use.
In the rest of this Introduction, (Ω, σ,R) will always represent a continuous flow
on a compact metric space, which is assumed to be minimal and uniquely ergodic.
Also in Section 2, we pay special attention to the skew-product flows induced on
the bundles Ω×R2, Ω×S and Ω×P (where S is the unit circle in R2 and P is the
real projective line) by families of two-dimensional linear systems of ODEs given
by the evaluation of a continuous matrix along the orbits of the flow on Ω. Systems
of this type are also the object of analysis in Section 3. We prove there that the
flow given on Ω×P by a weakly elliptic family of linear systems is Li-Yorke chaotic
in the case that it admits an invariant measure which is absolutely continuous with
respect to the product measure on the bundle. Apart from the intrinsic interest of
this result, some of the properties shown in its proof will be used in Section 6.

From this point the paper is focused on the analysis of the attractor Aε ⊂ Ω×R2

for a dissipative family of systems of the type (1.1). Let us fix a value of the
parameter ε, and omit the superscript on Aε and Aε. In Section 4 we describe this
model in detail, as well as the flows induced on Ω×R2, Ω×S×R+ and Ω×P×R+. We
show that they are dissipative, so that they admit global attractors, part of whose
basic properties we describe to complete the section.

In Section 5 we relate the global shape and characteristics of the attractor A
with the characteristics of the Sacker and Sell spectrum ΣA of the family of systems
y′ = A(ω·t) y. We do not contemplate in this paper all the possibilities: since we
are interested in the nonautonomous Hopf bifurcation with zero spectrum pattern,
the analysis will be reduced to the cases sup ΣA < 0, inf ΣA > 0, and ΣA = {0}.
As we have already mentioned, the attractor is trivial if sup ΣA < 0: A = Ω×{0}.
We have also mentioned that A takes the form of a solid cylinder around Ω with
continuous boundary if inf ΣA > 0. More precisely, for each ω ∈ Ω the section
Aω := {y ∈ R2| (ω,y) ∈ A} contains and is homeomorphic to a closed disk centered
at 0, and the set Aω varies continuously with respect to ω. And, in addition the
boundary of the “cylinder”, which is continuous and invariant, is the attractor of
the flow restricted to the invariant set Ω×(R2−{0}). The attractor A also takes
the form of a solid cylinder with continuous boundary in the case ΣA = {0} if in
addition all the solutions of all the linear systems are bounded. Therefore, even
in this simplest case there is a lack of continuity in the bifurcation. We complete
Section 5 by showing with some simple figures the evolution of the global attractor
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when Aε = A + εI2 and A is a quasiperiodic matrix-valued function fitting in
the situation just described, in order to clarify the sense of talking about a Hopf
bifurcation pattern.

Finally, here we do not say too much about the general properties of A if ΣA =
{0} and one unbounded solution exists. However, this last case is precisely the most
interesting one for the purposes of the paper. The results obtained in Section 3 are
a fundamental tool in Section 6, which is devoted to establish conditions ensuring
the occurrence of Li-Yorke chaos, in a very strong sense, on the attractor A. We
complete the section and the paper by showing that these conditions are fulfilled
in some interesting cases. For instance, when the family (1.1) is of the type

y′ =
(
Ã(σ(t, ω)) + (e(σ(t, ω)) + ε) I2

)
y − kρ(|y|) y , ω ∈ Ω ,

where Ã has null trace, all the solutions of all the linear systems of the family

y′ = Ã(ω·t) y are bounded, and e : Ω → R is a continuous function providing the
following (highly complex) dynamics for the flow induced on Ω × R by the family
of scalar equations x′ = e(σ(t, ω))x: for almost every system of the family (with
respect to the unique ergodic measure) the solutions are bounded; and there are
systems for which the solutions are not only unbounded but strongly oscillating at
−∞ and +∞. There are well known examples of quasi-periodic functions e0 : R→ R
giving rise to a hull Ω and a map e with these characteristics, as those described
by Johnson in [22] and Ortega and Tarallo in [40]. And recently Campos et al.
[10] have proved that there exist functions e : Ω → R with the required properties
whenever the (minimal and uniquely ergodic) flow on Ω is not periodic.

The conclusion is that the carried-on analysis provides a pattern of nonau-
tonomous Hopf bifurcation, in which a extremely high degree of complexity is possi-
ble. This possibility is one of the strongest differences with the classical autonomous
bifurcation theory.

2. Preliminaries

2.1. Basic concepts. We begin by recalling some basic concepts and properties
of topological dynamics and measure theory, and by fixing some notation.

Let Ω be a complete metric space, and let distΩ be the distance on Ω. A (real and
continuous) flow on Ω is given by a continuous map σ : R×Ω→ Ω, (t, ω) 7→ σ(t, ω)
such that σ0 = Id and σs+t = σt ◦ σs for each s, t ∈ R, where σt(ω) := σ(t, ω). The
flow is local if the map σ is defined, continuous, and satisfies the previous properties
on an open subset of R×Ω containing {0}×Ω.

Let the flow (Ω, σ,R) be defined on U ⊆ R×Ω. The set {σt(ω) | (t, ω) ∈ U} is
the σ-orbit of the point ω ∈ Ω. This orbit is globally defined if (t, ω) ∈ U for all
t ∈ R. Restricting the time to t ≥ 0 or t ≤ 0 provides the definition of forward or
backward σ-semiorbit. A subset C ⊆ Ω is σ-invariant if it is composed by globally
defined orbits; i.e., if σt(C) := {σ(t, ω) | ω ∈ C} is defined and agrees with C for
every t ∈ R. A σ-invariant subset M⊆ Ω is minimal if it is compact and does not
contain properly any other compact σ-invariant set; or, equivalently, if each one
of the two semiorbits of anyone of its elements is dense in it. The flow (Ω, σ,R)
is minimal if Ω itself is minimal. If the set {σt(ω0) | t ≥ 0} is well-defined and
relatively compact, the omega limit set of ω0 is given by the points ω ∈ Ω such that
ω = limm→∞ σtm(ω0) for some sequence (tm) ↑ ∞. This set is nonempty, compact,
connected and σ-invariant. By taking sequences (tm) ↓ −∞ we obtain the definition
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of the alpha limit set of ω0. A global flow is distal if inft∈R distΩ(σt(ω1), σt(ω2)) > 0
whenever ω1 6= ω2. The next definitions are less standard:

Definition 2.1. Let (Ω, σ,R) be a continuous flow on a compact metric space. Let
ω1, ω2 be two points of Ω whose forward σ-orbits are globally defined. The points
ω1, ω2 form a positively distal pair for the flow if lim inft→∞ distΩ(σt(ω1), σt(ω2)) >
0, and a positively asymptotic pair if lim supt→∞ distΩ(σt(ω1), σt(ω2)) = 0. The
points ω1, ω2 form Li-Yorke pair for the flow if the pair is neither positively distal
nor positively asymptotic. A set S ⊆ Ω such that every pair of different points of
S form a Li-Yorke pair is called a scrambled set for the flow. The flow (Ω, σ,R) is
Li-Yorke chaotic if there exists an uncountable scrambled set.

This notion was introduced in [31] in 1975. The interested reader can find in
[7] and [1] some dynamical properties associated to Li-Yorke chaos and its relation
with other notions of chaotic dynamics.

Let m be a Borel measure on Ω; i.e., a regular measure defined on the Borel sets.
The measure m is σ-invariant if m(σt(B)) = m(B) for every Borel subset B ⊆ Ω
and every t ∈ R. Suppose that m is finite and normalized; i.e., that m(Ω) = 1.
Then it is σ-ergodic if it is σ-invariant and, in addition, m(B) = 0 or m(B) = 1
for every σ-invariant subset B ⊆ Ω. If Ω is compact, the continuous flow (Ω, σ,R)
admits at least an ergodic measure. The flow is uniquely ergodic if it admits just a
normalized invariant measure, in which case this measure is ergodic.

Let (Ω, σ,R) be a global flow on a compact metric space, and let Y be a complete
metric space. Let distΩ and distY be the distances on Ω and Y. Then the map
distΩ×Y((ω1, y1), (ω2, y2)) := distΩ(ω1, ω2)+distY(y1, y2) defines a distance on Ω×Y,
and we have a new complete metric space. In what follows, this product space is
understood as a bundle over Ω. The sets Ω and Y will be referred to as the base
and the fiber of the bundle. A skew-product flow on Ω×Y projecting onto (Ω, σ,R)
is a (local or global) flow given by a continuous map τ of the form

τ : U ⊆ R×Ω×Y→ Ω×Y, (ω, y) 7→ (ω·t, τ2(t, ω, y)) .

The flow (Ω, σ,R) is the base flow of (Ω×Y, τ,R). Note that the fiber component
τ2 of τ satisfies τ2(s+ t, ω, y) = τ2(s, ω·t, τ2(t, ω, y)) whenever the right-hand term
is defined. If Y is a vector space, a global skew-product flow is linear if the map
Y→ Y, y 7→ τ2(t, ω, y) is linear for all (t, ω) ∈ R×Ω. A measurable map α : Ω→ Y
is an equilibrium for τ if τ2(t, ω, α(ω)) = α(ω·t) for all t ∈ R and ω ∈ Ω. A set
K ⊂ Ω×Y is a copy of the base for τ if it is the graph of a continuous equilibrium.

Definition 2.2. Let (Ω×Y, τ,R) be a skew-product flow over a minimal and
uniquely ergodic base (Ω, σ,R), and let K ⊆ Ω×Y be a τ -invariant compact set.
Then the restricted flow (K, τ,R) is Li-Yorke fiber-chaotic in measure if there exists
a set Ω0 ⊆ Ω with full measure such that K contains an uncountable scrambled set
of Li-Yorke pairs with first component ω for each ω ∈ Ω0.

Remark 2.3. It is clear that, in the case of skew-product flow (Ω×Y, τ,R), a
pair of points (ω, y1), (ω, y2) (with common first component) form: a positively
distal pair if and only if lim inft→∞ distY(τ2(t, ω, y1), τ2(t, ω, y2)) > 0; a positively
asymptotic pair if and only if lim supt→∞ distY(τ2(t, ω, y1), τ2(t, ω, y2)) = 0; and a
Li-Yorke pair if these two conditions fail.

Note also that the notion of Li-Yorke fiber-chaos in measure, much more exigent
than that of Li-Yorke chaos, makes only sense in the setting of skew-product flows.
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The same happens with the notion of residually Li-Yorke chaotic flow, previously
analyzed in [6] and [19]. Li-Yorke chaos for nonautonomous dynamical systems is
also the object of analysis in [11] and [12].

The Hausdorff semidistance from C1 to C2, where C1, C2 ⊂ Ω× Y, is

dist(C1, C2) := sup
(ω1,y1)∈C1

(
inf

(ω2,y2)∈C2

(
distΩ×Y((ω1, y1), (ω2, y2))

))
.

Definition 2.4. A set B ⊂ Ω×Y is said to attract a set C ⊆ Ω under τ if τt(C)
is defined for all t ≥ 0 and, in addition, limt→∞ dist(τt(C),B) = 0. The flow τ
is bounded dissipative if there exists a bounded set B attracting all the bounded
subsets of Ω × Y under τ . And a set A ⊂ Ω × Y is a global attractor for τ if it is
compact, τ -invariant, and it attracts every bounded subset of Ω×Y under τ .

As usual, given a subset C ⊆ Ω× Y, we will represent its sections over the base
elements by Cω := {y ∈ Y | (ω, y) ∈ C}. Finally, given a normalized Borel measure
on mΩ on Ω and a regular measure mY on Y, we represent by mΩ×mY the product
measure on Ω×Y. A measure m on Ω×Y projects onto mΩ if m(B×Y) = mΩ(B) for
any Borel set B ⊆ Ω. If this is the case and m is τ -invariant, then mΩ is σ-invariant.

2.2. The flows induced by a linear family. As usual, we identify the unit
circle S of R2 and the one-dimensional real projective line P with the quotient
spaces R/(2πZ) and R/(πZ), respectively. In this way, the map

p : S→ P , θ 7→ θ(mod π)

defines a projection of S onto P. Note that S can be understood as a 2-cover of P:
if θ ∈ P, then p−1(θ) = {θ, θ + π} ⊂ S. The map p will be frequently used.

Let (Ω, σ,R) be a minimal flow on a compact metric space. (The ergodic unique-
ness is not required by now.) Given four continuous functions a, b, c, d : Ω→ R, we
consider the family of nonautonomous two-dimensional linear systems of ODEs

y′ =

[
a(ω·t) b(ω·t)
c(ω·t) d(ω·t)

]
y (2.1)

for ω ∈ Ω, with y ∈ R2. We call A :=
[
a b
c d

]
. We will use the notation (2.1)ω to

refer to the system of this family corresponding to the point ω, and will proceed
in an analogous way for the rest of the equations appearing in the paper. And we
represent by yl(t, ω,y0) the (globally defined) solution of the system (2.1)ω with
initial data yl(0, ω,y0) = y0: the subindex l makes reference to the linearity of the
systems. Then the map

τl,R : R×Ω×R2→ Ω×R2, (t, ω,y0) 7→ (ω·t,yl(t, ω,y0))

defines a linear skew-product flow with base (Ω, σ,R). It is possible to write

yl(t, ω,y0) =

[
rl(t, ω, θ, r0) sin(θ̂(t, ω, θ))

rl(t, ω, θ, r0) cos(θ̂(t, ω, θ))

]
for y0 =

[
r0 sin θ
r0 cos θ

]
: (2.2)

here t 7→ θ̂(t, ω, θ) is the solution of the equation

θ′ = f(ω·t, θ) (2.3)

for

f(ω, θ) := −c(ω) sin2θ + b(ω) cos2θ + (a(ω)− d(ω)) sin θ cos θ (2.4)
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with initial data θ̂(0, ω, θ) = θ, which we understand as an element of S; and the
map t 7→ rl(t, ω, θ, r0) solves

r′ = r g(ω·t, θ̂(t, ω, θ)) (2.5)

with rl(0, ω, θ, r0) = r0, for

g(ω, θ) := a(ω) sin2θ + d(ω) cos2θ + (b(ω) + c(ω)) sin θ cos θ . (2.6)

Note that the map

σ̂ : R×Ω×S→ Ω×S , (t, ω, θ) 7→ (ω·t, θ̂(t, ω, θ)) (2.7)

defines a skew-product flow on Ω×S. Note also that f(ω, θ) = f(ω, θ + π) and
g(ω, θ) = g(ω, θ+π): we can define them either on Ω×P or on Ω×S. Consequently,

θ̂(t, ω, θ + π) = θ̂(t, ω, θ) + π and rl(t, ω, θ, r0) = rl(t, ω, θ + π, r0) .

In particular, we can understand the solutions of (2.3) as elements P: let us write

θ̃(t, ω, θ) = p(θ̂(t, ω, θ)) = θ̂(t, ω, θ)(mod π) for (t, ω, θ) ∈ R×Ω×P, and note that

σ̃ : R×Ω×P→ Ω×P , (t, ω, θ) 7→ (ω·t, θ̃(t, ω, θ)) (2.8)

defines a global skew-product flow on Ω×P. We say that (Ω×S, σ̂,R) projects onto

(Ω×P, σ̃,R). Note also that p(θ̂(t, ω, θ)) = θ̃(t, ω, p(θ)) for (t, ω, θ) ∈ R×Ω×S.
Let U(t, ω) be the fundamental matrix solution of (2.1)ω with U(0, ω) = I2, so

that yl(ω, ω,y0) = U(t, ω) y0. For further purposes we recall that

detU(t, ω0) = exp
(∫ t

0

trA(ω0·s) ds
)
. (2.9)

Definition 2.5. The family (2.1) has exponential dichotomy over Ω if there exist
constants c ≥ 1 and γ > 0 and a splitting Ω×R2 = F+⊕F− of the bundle into the
Whitney sum of two closed subbundles such that

- F+ and F− are invariant under the flow (Ω×R2, τl,R,R) ,
- |U(t, ω) y0| ≤ c e−γt|y0| for every t ≥ 0 and (ω,y0) ∈ F+,
- |U(t, ω) y0| ≤ c eγt|y0| for every t ≤ 0 and (ω,y0) ∈ F−.

Remarks 2.6. 1. Since the base flow (Ω, σ,R) is minimal, the exponential di-
chotomy of the family (2.1) over Ω is equivalent to the exponential dichotomy of
any of its systems over R: see e.g. Theorem 2 and Section 3 of [45].

2. The family (2.1) has exponential dichotomy over Ω if and only if no one of its
systems has a nontrivial bounded solution: see e.g. Theorem 1.61 of [25].

Definition 2.7. The Sacker and Sell spectrum or dynamical spectrum of the linear
family (2.1) is the set ΣA of λ ∈ R such that the family y′ = (A(ω·t)− λI2) y does
not have exponential dichotomy over Ω.

Now we assume also that the base flow (Ω, σ,R) is uniquely ergodic, and represent
by mΩ the unique σ-invariant (ergodic) measure. The next theorem summarizes
part of the information provided by the Oseledets theorem (see Section 2 of [26])
and the Sacker and Sell spectral theorem (see Theorem 6 of [46]).

Theorem 2.8. One of the following situations holds.
Case 1. ΣA = [γ1, γ2] with γ1 < γ2. In this case there exists a σ-invariant

subset Ω0 ⊂ Ω with mΩ(Ω0) = 1 such that, for all ω ∈ Ω0,
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o.1) there exist two one-dimensional vector spaces W γ1
ω and W γ2

ω such that
lim|t|→∞(1/t) ln |U(t, ω) y0| = γj for y0 ∈W

γj
ω − {0}.

o.2) R2 = W γ1
ω ⊕W γ2

ω .

In particular, if ω ∈ Ω0 and yj =
[
yj1
yj2

]
∈ W

γj
ω − {0}, and we call θγj (ω) :=

tan−1(yj1/y
j
2) ∈ P, then θγj (ω) is uniquely determined for j = 1, 2. In addition,

o.3) the maps Ω0 → P , ω 7→ θγj (ω) are measurable and satisfy θ̃(t, ω, θγj (ω)) =
θγj (ω·t) for all t ∈ R and ω ∈ Ω0, and for j = 1, 2.

o.4) lim|t|→∞(1/t) ln detU(t, ω) = γ1 + γ2 for all ω ∈ Ω.

Consequently, the measurable subbundles

W γj := {(ω,y) ∈ Ω×R2| ω ∈ Ω0 and y ∈W γj
ω } (2.10)

are τl,R-invariant for j = 1, 2.
Case 2. ΣA = {γ1}∪{γ2}. Then all the assertions in Case 1 hold for Ω0 = Ω.

In addition: W γ1 and W γ2 are closed subbundles; θγ1 and θγ2 are continuous maps;

Ω×R2 = W γ1 ⊕ W γ2 as Whitney sum; limt→−∞ distP(θ̃(t, ω, θ), θγ1(ω·t)) = 0 if

θ 6= θγ2(ω); and limt→∞ distP(θ̃(t, ω, θ), θγ2(ω·t)) = 0 if θ 6= θγ1(ω).
Case 3. ΣA = {γ}. In this case, for all ω ∈ Ω, lim|t|→∞(1/t) ln |U(t, ω) y0| = γ

for y0 ∈ R2− {0}, and lim|t|→∞(1/t) ln detU(t, ω) = 2γ.

Definition 2.9. In cases 1 and 2, the sets W γj defined by (2.10) are the Oseledets
subbundles of the family of linear systems (2.1), and the numbers γ1 and γ2 are its
Lyapunov exponents. In case 3, the value γ is the unique Lyapunov exponent.

Remark 2.10. In the case that ΣA ⊂ (−∞, 0), F+ = Ω×R2; and, if ΣA ⊂ (0,∞),
then F− = Ω×R2. These assertions follow easily from the fact that ΣA contains
all the Lyapunov exponents of the family (see e.g. Theorem 2.3 of [26]) and from
the casuistic described in Theorem 2.8.

3. Li-Yorke chaos for weakly elliptic linear systems

As explained in the Introduction, this section provides conditions on a certain
type of linear systems which ensure the occurrence of Li-Yorke chaos for the corre-
sponding projective flow. This is done in Theorem 3.4. As a matter of fact, we will
show that for almost every point ω ∈ Ω, the scrambled set of points of the form
(ω, θ) for the flow (Ω×P, σ̃,R) contains all the points of {ω}×P excepting at most
one. Apart from the independent interest of this result, its proof includes some
arguments which will be essential in the proof of our main result, in Section 6.

For the rest of the paper, (Ω, σ,R) will be a minimal and uniquely ergodic flow
on a compact metric space. The unique σ-ergodic measure on Ω will be denoted
by mΩ; lRn will be the Lebesgue measure on Rn; and lS and lP will denote the
normalized Lebesgue measures on S and P.

We consider a family of linear (Hamiltonian) systems with zero trace,

y′ = Ã(ω·t) y (3.1)

for ω ∈ Ω, where Ã =
[
ã b
c −ã

]
. (The choice of the names for the coefficients is due to

the fact that b and c will later agree with those of (2.1).) The angular equation is

θ′ = f(ω·t, θ) (3.2)
for

f(ω, θ) := −c(ω) sin2θ + b(ω) cos2θ + 2 ã(ω) sin θ cos θ . (3.3)
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As in the previous section, we will represent by θ̂(t, ω, θ) and θ̃(t, ω, θ) the solutions
on S and P of the equation with initial datum θ, and by (Ω×S, σ̂,R) and (Ω×P, σ̃,R)
the corresponding flows, given by the expressions (2.7) and (2.8).

Definition 3.1. The family (3.1) is in the weakly elliptic case if its Sacker and Sell
spectrum is ΣÃ = {0} and at least one of its systems has an unbounded solution.

We will describe in the next remarks two already classical procedures which will
be used several times in what follows, and fix the corresponding notation.

Remark 3.2. Let C : Ω→M2×2(R) be continuous, with detC ≡ 1, and such that
C ′: Ω→M2×2(R) with C ′(ω) := (d/dt)C(ω·t)|t=0 is a well-defined and continuous
function. Let us consider the change of variables (ω,y) 7→ (ω, z) given by z =

C(ω) y. This change of variables takes the system y′ = Ã(ω·t) y to z′ = Ã∗(ω·t) z

with Ã∗ := (C ′+ CA)C−1. It is easy to check that tr Ã∗ = 0. In addition,

p1. y′ = Ã(ω·t) y is in the weakly elliptic case if and only if z′ = Ã∗(ω·t) z is, as
immediately deduced from z(t, ω, z0) = C(ω·t) y(t, ω, C−1(ω) z0) together
with the boundedness of C and C−1.

p2. The linear and continuous change of variables induces a homeomorphism
Φ: Ω×P→ Ω×P with Φ(ω, θ) = (ω, φω(θ)) and σ̃∗(t,Φ(ω, θ)) = Φ(σ̃(t, ω, θ)).
It follows from here that two points (ω, θ1), (ω, θ2) are a Li-Yorke pair for
(Ω×P, σ̃,R) if and only if the points (ω, φω(θ1)), (ω, φω(θ1)) are a Li-Yorke
pair for (Ω×P, σ̃∗,R). The same argument shows that the property is also
true for positively distal pairs instead of Li-Yorke pairs.

p3. If the flow (Ω×P, σ̃,R) admits an invariant measure µ which is absolutely
continuous with respect to mΩ×lP, then so does the flow (Ω×P, σ̃∗,R) defined

from the family z′ = Ã∗(ω·t) z. To prove it, we use the fact that, for all
ω ∈ Ω, the homeomorphism φω : P → P takes measures of P which are
absolutely continuous with respect to lP to measures of the same type. (In
turn, this property can be deduced from the fact that z 7→ C(ω) z preserves
the Lebesghe measure in R2, since detC(ω) = 1.) This assertion combined
with Fubini’s theorem ensures that the measure µ∗ defined over the Borel
sets by µ∗(B) := µ(Φ−1(B)) (which is σ̃∗-invariant) is absolutely continuous
with respect to mΩ×lP. (The maps Φ and φω are defined in p2.)

Remark 3.3. Let us consider the flow (Ω×S, σ̂,R). We take a σ̂-minimal set
M ⊆ Ω×S. For each (ω, θ1) ∈ M, we define ã1(ω, θ1) := ã(ω), b1(ω, θ1) := b(ω)
and c1(ω, θ1) := c(ω), and consider the family of linear systems

y′ =

[
ã1(θ̂(t, ω, θ1)) b1(θ̂(t, ω, θ1))

c1(θ̂(t, ω, θ1)) −ã1(θ̂(t, ω, θ1))

]
y (3.4)

for (ω, θ1) ∈M. Note that the angular equation

θ′ := −c1(θ̂(t, ω, θ1)) sin2θ + b1(θ̂(t, ω, θ1)) cos2θ + 2 ã1(θ̂(t, ω, θ1)) sin θ cos θ (3.5)

corresponding to (ω, θ1) agrees with (3.2)ω. Therefore, the two skew-product flows
with base M defined by the family (3.5) are

ϑ̂M : R×M× S→M× S , (t, ω, θ1, θ) 7→ (θ̂(t, ω, θ1), θ̂(t, ω, θ)) ,

ϑ̃M : R×M× P→M× P , (t, ω, θ1, θ) 7→ (θ̂(t, ω, θ1), θ̃(t, ω, θ)) . (3.6)

We list some properties relating (3.1) to (3.4), later required.
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p4. If the family (3.1) is in the weakly elliptic case, then so (3.4) is: 0 is its
unique Lyapunov exponent, and there exists an unbounded solution.

p5. Let us take (ω, θ1) ∈M and θ1, θ2 ∈ P. Then the points (ω, θ1), (ω, θ2) are
a Li-Yorke pair for (Ω×P, σ̃,R) if and only if the points (ω, θ1, θ1), (ω, θ1, θ2)

are a Li-Yorke pair for (M× P, ϑ̃M,R). This fact follows immediately

from the fact that the fiber component of ϑ̃M(t, ω, θ1, θ) agrees with that
of σ̃(t, ω, θ). And the property is also true for positively distal pairs.

p6. Let us assume that (Ω×P, σ̃,R) admits an invariant measure m which is
absolutely continuous with respect to mΩ×lP, and let mM be a σ̂-ergodic
measure on M, which projects onto mΩ. Let q ∈ L1(Ω×P,mΩ×lP) be the
density function of m, and let f be defined by (3.3). Proposition 2.2 of
[39] ensures that there exists a measurable function p : Ω×P → R+ with
p(ω, θ) = q(ω, θ) for (mΩ×lP)-a.a. (ω, θ) ∈ Ω×P such that

p(σ̃(l, ω, θ)) = p(ω, θ) exp
(
−
∫ l

0

∂f

∂θ
(σ̃(s, ω, θ)) ds

)
(3.7)

for all (ω, θ) ∈ Ω×P and l ∈ R. Let us define p1(ω, θ1, θ) := p(ω, θ) for
all (ω, θ1, θ) ∈ M×P. It is easy to check that the nonnegative function
p1 belongs to L1(M× P,mM× lP) and that it satisfies the equation (3.7)

corresponding to (M×P, ϑ̃M,R) for all (ω, θ1, θ) ∈M×P and l ∈ R. A new

application of Proposition 2.2 of [39] shows that (M×P, ϑ̃M,R) admits an
invariant measure which is absolutely continuous with respect to mM×lP.

Note also that the setM1 := {(ω, θ1, θ1) | (ω, θ1) ∈M} is a copy of the base for the

flow (M× S, ϑ̂M,R). The last property is the main achievement of this procedure:
the existence of this copy of the base (which may not be the case for (3.1)), will
allow us to define linear and continuous changes of variables taking (3.4) to families
of systems whose corresponding dynamics are easier to describe; and from this
description we will be able to derive the required conclusions for the initial family.

Theorem 3.4. Let us assume that the family (3.1) is in the weakly elliptic case.
Let us assume also that the flow (Ω×P, σ̃,R) admits an invariant measure which is
absolutely continuous with respect to mΩ×lP. Then there exists a σ-invariant subset
Ω0 ⊆ Ω with mΩ(Ω0) = 1 such that for every ω ∈ Ω0 there exists a subset Pω ⊆ P
with the next properties: P− Pω contains at most one element; and for every pair
of different points θ1, θ2 ∈ Pω, the points (ω, θ1), (ω, θ2) form a Li-Yorke pair for
(Ω×P, σ̃,R). Hence, the flow (Ω×P, σ̃,R) is Li-Yorke fiber-chaotic in measure.

Proof. The proof is carried-out in two steps: the first one contains auxiliary results
for the second one, which proves the statements.

Step 1. We will begin by assuming that the family (3.1) is triangular,

y′ =

[
ã(ω·t) 0
c(ω·t) −ã(ω·t)

]
y . (3.8)

Later on we will assume that the flow (Ω×P, σ̃,R) either does not contain a positively
distal pair, or it has two minimal sets.

The angular equation for (3.8) is θ′ = 2 ã(ω·t) sin θ cos θ − c(ω·t) sin2 θ, so that
the compact set {(ω, 0)} ⊂ Ω×P is σ̃-invariant. Therefore it concentrates a σ̃-
invariant measure, which together with the assumed existence of a σ̃-invariant
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measure absolutely continuous with respect to mΩ×lP allows us to apply Proposi-
tion 3.3 of [35] in order to conclude that: there exist a σ-invariant set Ω1 with
mΩ(Ω1) = 1 and measurable functions ma : Ω1 → R and ϕ0 : Ω1 → P (with
(d/dt)ma(ω·t) = −ã(ω·t)ma(ω·t) and such that t 7→ ϕ0(ω·t) satisfies the angu-
lar equation, in both cases for all ω ∈ Ω1) such that Ω×P decomposes into the
disjoint union of the measurable σ̃-invariant sets Sη := {(ω, ϕη(ω)) | ω ∈ Ω1} for
η ∈ (−∞,∞], where ϕη(ω) := arccot (ηm2

a(ω) + cotϕ0(ω)). (These sets are the
ergodic 1-sheets, using the language of [35]; see also [17].) Let K ⊆ Ω1 be a compact
set with mΩ(K) > 0 such that the restrictions of ma and ϕ0 to K are continuous.
Let Ω∗0 ⊆ Ω be the set of points ω for which there exists a sequence (tn) ↑ ∞
with ω·tn ∈ K. Birkhoff’s ergodic theorem ensures that mΩ(Ω∗0) = 1. Now we fix
ω ∈ Ω∗0 and choose a sequence (tn) ↑ ∞ such that ω·tn ∈ K for all n ≥ 0. We
take two different points θ1, θ2 ∈ P and write them as θi = ϕηi(ω), so that η1 6= η2.

Then distP(θ̃(tn, ω, θ1), θ̃(tn, ω, θ2)) ≥ inf ω̃∈K distP(ϕη2(ω̃), ϕη2(ω̃)) > 0 if n ≥ 0. In
particular, for ω ∈ Ω∗0 and θ1 6= θ2,

lim sup
t→∞

distP(θ̃(t, ω, θ1), θ̃(t, ω, θ2)) > 0 . (3.9)

Now we consider two different situations. The first one is simple: the flow
(Ω×P, σ̃,R) does not admit a positively distal pair. Then (3.9) ensures that the
pair (ω, θ1), (ω, θ2) is of Li-Yorke type whenever ω ∈ Ω∗0 and θ1, θ2 ∈ P with θ1 6= θ2.
To complete the proof in this case, we define Ω0 := Ω∗0 and Pω := P for each ω ∈ Ω0.

The second case we consider is that the flow (Ω×P, σ̃,R) admits two different
minimal sets. The proof of Proposition 4.4 in [21] (which does not require the
almost-periodicity of the base flow, there assumed) shows that these minimal sets
are the unique ones: otherwise all the solutions of the systems of the family (3.8)
would be bounded, which is not the case. We already know that one of these
minimal sets is {(ω, 0) | ω ∈ Ω}. Therefore there exists δ > 0 such that any (ω, θ1)
in the second minimal set satisfies δ ≤ θ1 ≤ π − δ. Let us take a σ̂-minimal set
M ⊂ Ω×S projecting onto the second minimal set of Ω×P, and perform the
procedure described in Remark 3.3, taking now (3.8) as starting point. Note that
the obtained system (3.4) is now also triangular: b1 ≡ 0. In addition, the set

M1 := {(ω, θ1, θ1) | (ω, θ1) ∈M} is a copy of the base for the flow (M× S, ϑ̂M,R),
and it is contained either in Ω×S× [δ, π− δ] or in [π+ δ, 2π− δ]. A straightforward
computation shows that the bounded and continuous change of variables onM×R2

given by (ω, θ1,y) 7→ (ω, θ1,w) for w :=
[

1 0
− cot θ1 1

]
y takes the (now triangular)

family (3.4) to a new family of the form

w′ =

[
â 1(θ̂(t, ω, θ1)) 0

0 −â 1(θ̂(t, ω, θ1))

]
w . (3.10)

Let mM be a σ̂-ergodic measure concentrated on M. Property p1 in Remark 3.2
combined with property p4 in Remark 3.3 ensures that the family (3.10) is also in
the weakly elliptic case; and properties p3 and p6 ensure that the new flow (M×
P, ϑ̃∗M,R) given by the family of angular equations θ′ = 2 â 1(θ̂(t, ω, θ1)) sin θ cos θ
(corresponding to (3.10)), admits an invariant measure absolutely continuous with

respect to mM×lP. Clearly, the set {(ω, θ1, 0) | (ω, θ1) ∈M} ⊂M×P is ϑ̃∗M-minimal
(as {(ω, θ1, π/2) | (ω, θ1) ∈ M}). Proposition 3.3 of [35] allows us to ensure that
there exists a σ̂-invariant subset M1 of M with mM(M1) = 1 and a measurable
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function m∗a : M1 → R+ with (d/dt)m∗a(θ̂(t, ω, θ1)) = −â(θ̂(t, ω, θ1))m∗a(θ̂(t, ω, θ1))
for all (ω, θ1) ∈ M1 such that M×P decomposes into the disjoint union of the

measurable ϑ̃∗M-invariant sets (ergodic 1-sheets) S∗η := {(ω, θ1, ϕ∗η(ω, θ1)) | (ω, θ1) ∈
M1} for η ∈ (−∞,∞], where ϕ∗η(ω, θ1) := arccot (η (m∗a)2(ω, θ1)).

Let us call Ω0 to the intersection of the projection of M1 onto Ω with the set
Ω∗0 for which (3.9) holds, and note that there Ω0 is σ-invariant with mΩ(Ω0) = 1.
We fix ω0 ∈ Ω0 and choose θ1

0 ∈ S with (ω0, θ
1
0) ∈ M1. Given two different

points θ1, θ2 ∈ P, we write θi = ϕ∗ηi(ω0, θ
1
0) for i = 1, 2, so that η1, η2 ∈ (−∞,∞]

and η1 6= η2. Note that the fiber component of ϑ̃∗M satisfies θ̃∗M(t, ω0, θ
1
0, θi) =

ϕ∗ηi(σ̂(t, ω0, θ
1
0)). Note also that there cannot exist κ1, κ2 ∈ R such that 0 <

κ1 ≤ m∗a(σ̂(t, ω0, θ
1
0)) ≤ κ2 < ∞ for all t ≥ 0: otherwise all the solutions of

all the systems of the family (3.4) would be bounded (see e.g. Proposition A.1
in [28]), which is not the case. Assume that there exists a sequence (sn) ↑ ∞
such that limn→∞m∗a(σ̂(sn, ω0, θ

1
0)) = 0. Then limn→∞ θ̃∗M(sn, ω0, θ

1
0, θi) = π/2

if θi 6= 0 (since ηi 6= ∞). In this case we set P∗ω0
:= P − {0}. If the previ-

ous property does not hold, then limn→∞m∗a(σ̂(sn, ω0, θ
1
0)) = ∞ for a sequence

(sn) ↑ ∞, which in turn ensures that limn→∞ θ̃∗M(sn, ω0, θ
1
0, θi) = 0 if θi 6= π/2

(since ηi 6= 0). In this case we take P∗ω0
:= P − {π/2}. In both cases we conclude

that lim inft→∞ distP(θ̃∗M(t, ω0, θ
1
0, θ1), θ̃∗M(t, ω0, θ

1
0, θ2)) = 0 if θ1, θ2 ∈ P∗ω0

.
The performed change of variables induces a flow homeomorphism from (M×

P, ϑ̃M,R) to (M× P, ϑ̃∗M,R), given by Φ∗(ω, θ1, θ) := (ω, arccot (cot θ − cot θ1)).
Let us define Pω0 := {θ ∈ P | Φ∗(ω, θ1, θ) ∈ P∗ω0

}. Then P − Pω0 contains

one element; and, since the fiber component of ϑ̃M is θ̃ (see (3.6)), we have

lim inft→∞ distP(θ̃(t, ω0, θ1), θ̃(t, ω0, θ2)) = 0 if θ1, θ2 ∈ Pω0
. Combining this prop-

erty with (3.9) we conclude that for all ω0 ∈ Ω0 and all θ1, θ2 ∈ Pω0 with θ1 6= θ2,
the points (ω0, θ1), (ω0, θ2) form a Li-Yorke pair for (Ω×P, σ̃,R). This completes
the proof in this case, and step 1. We point out that the ergodic uniqueness of
(Ω, σ,R) has not been required, which will be fundamental in step 2.

Step 2. We will now prove the statement in the general case. The idea is: to
reformulate the family in a new base on which we can find a continuous change of
variables taking it to a new family with triangular form for which the hypotheses
remain true and which fits in one of the two situations analyzed in step 1; to apply
the results of that step; and to show that the conclusions for the new base suffice
to our purposes.

We follow again the procedure described in Remark 3.3: we fix a σ̂-minimal set
M ⊆ Ω×S and a σ̂-ergodic measure mM concentrated on M, and consider the

family of systems (3.4) and the flows (M×S, ϑ̂M,R) and (M×P, ϑ̃M,R). (For
the moment being M is any set with these properties; later on we will need to
be more precise with its choice.) Recall that M1 := {(ω, θ1, θ1) | (ω, θ1) ∈ M}
is a copy of the base for ϑ̂M. Let us now consider the change of variables given

on M× R2 by (ω, θ1,y) 7→ (ω, θ1, z) with z :=
[

cos θ1 − sin θ1

sin θ1 cos θ1

]
y, which induces the

rotation (ω, θ1, θ) 7→ (ω, θ1, θ − θ1) on M× S. Clearly, the minimal set M1 is taken
to {(ω, θ1, 0) | (ω, θ1) ∈ M}, which ensures that the solutions of (3.1) are taken to
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those of a new family of the form

z′ =

[
â 1(θ̂(t, ω, θ1)) 0

ĉ 1(θ̂(t, ω, θ1)) −â 1(θ̂(t, ω, θ1))

]
z : (3.11)

the coefficient b̂1 is 0 since the function 0 solves the corresponding equation (3.5);
and the trace of the new matrix is zero, as explained in Remark 3.2.

Let us now consider the new flow (M×P, ϑ̃∗M,R) given by the family of angular

equations θ′ = −ĉ 1(θ̂(t, ω, θ1)) sin2θ + 2 â 1(θ̂(t, ω, θ1)) sin θ cos θ (corresponding to
(3.11)). As in step 1, we can ensure that the family (3.11) is in the weakly

elliptic case, and that the flow (M× P, ϑ̃∗M,R) admits an invariant measure which
is absolutely continuous with respect to mM×lP. In other words, the family (3.11)
satisfies the hypotheses of the theorem, and it is triangular. We will see that a
suitable choice if M makes it fit in one of the two situations analyzed in step 1.

Assume first that the flow (Ω×P, σ̂,R) does not admit a positively distal pair.
Then, according to the last assertion in p5 (in Remark 3.3) and p2 (in Remark 3.2),

the flow (M×P, ϑ̃∗M,R) does not admit a positively distal pair, and hence it fits in
the first situation of step 1 (no matter the choice of M).

Now let us assume that the flow (Ω×P, σ̂,R) admits a positively distal pair. We

will check that M can be chosen in such a way that (M× P, ϑ̃M,R) admits two

different minimal sets. Hence so does (M× P, ϑ̃∗M,R), and consequently this flow
fits in the second situation analyzed in step 1.

Let the points (ω, θ1), (ω, θ2) form a positively distal pair for (Ω×P, σ̃,R). Let

us take a σ̃-minimal set M̃ ⊆ Ω×P contained in the omega limit set of (ω, θ1),

and a point (ω∗, θ
1
∗) ∈ M̃. Then we can choose a sequence (tn) ↑ ∞ and a point

(ω∗, θ
2
∗) ∈ Ω×P such that (ω∗, θ

i
∗) = limn→∞ θ̃(tn, ω, θi) for i = 1, 2. Is is clear

that (ω∗, θ
1
∗), (ω∗, θ

2
∗) form a positively distal pair. Let us take a σ̂-minimal set

M ⊆ Ω×S projecting onto M̃ such that (ω∗, θ
1
∗) ∈ M, consider the flow (M×

P, ϑ̃M,R) defined by (3.6), and note that (ω∗, θ
1
∗, θ

1
∗), (ω∗, θ

1
∗, θ

2
∗) form a positively

distal pair for this flow. Note also that (ω∗, θ
1
∗, θ

1
∗) belongs to the minimal set

M1 := {(ω, θ1, p(θ1)) | (ω, θ1) ∈ M}, which is a copy of the base. Now we take a

minimal setM2 contained in the omega limit set of (ω∗, θ
1
∗, θ

2
∗) for the flow ϑ̃M. It is

easy to deduce from inft≥0 distP(θ̃(t, ω∗, θ
1
∗), θ̃(t, ω∗, θ

2
∗)) > 0 that (ω∗, θ

1
∗, θ

1
∗) /∈M2,

so that M1 6=M2. This proves our assertion.
In both cases, we have checked in step 1 that there exists a σ̂-invariant subset

M0 ⊆M with mM(M0) = 1 such that for every (ω, θ1) ∈M0 there exists a subset
P(ω,θ1) ⊆ P with the next properties: P − P(ω,θ1) contains at most one element;

and for every pair of different points θ1, θ2 ∈ P(ω,θ1), the points (ω, θ1, θ1), (ω, θ1, θ2)

form a Li-Yorke pair for (M×P, ϑ̃∗,R). We define Ω0 as the projection ofM0 on Ω
and note that it is σ-invariant. In addition, since mM projects onto mΩ, we have
mΩ(Ω0) = 1. Given ω ∈ Ω0 we look for (ω, θ1) ∈ M0 and define Pω := P(ω,θ1).
Finally, we use the information provided by p2 and p5 to conclude that Ω0 and
{Pω |ω ∈ Ω0} satisfy all the assertions of the theorem. The proof is complete. �

Remark 3.5. Let us consider the family (3.11) appearing in step 2 of the previous
proof, and a σ̂-ergodic measure mM concentrated onM. As seen at the beginning

of the proof of step 1, the associated flow (M×P, ϑ̃∗M,R) decomposes into ergodic
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1-sheets: we can write M× P =
⋃
η∈(−∞,∞] S∗η , where S∗η is a ϑ̃∗-invariant set of

the form {(ω, θ1, ϕ∗η(ω, θ1)) | (ω, θ1) ∈M} for a measurable map ϕ∗η : M→ P. And,

in addition, due to the expression of ϕ∗η (namely, ϕ∗η(ω, θ1) = arccot (ηm2
a(ω, θ1) +

cotϕ0(ω, θ1)) for certain measurable functions ma and ϕ0), Lusin’s theorem pro-
vides a compact set K ⊆ M with measure mM(K) > 1/2 such that the re-
strictions of all the maps ϕ∗η to K are continuous. On the other hand, the map

M×P→M×P, (ω, θ1, θ) 7→ (ω, θ1, θ+θ1) takes (M×P, ϑ̃∗M,R) to (M×P, ϑ̃M,R).
We define now ϕη(ω, θ1) := ϕ∗η(ω, θ1) + θ1 and note: that the restrictions of all

the maps ϕη to K are continuous; and that the associated flow (M× P, ϑ̃M,R)
decomposes into the ergodic 1-sheets Sη := {(ω, θ1, ϕη(ω, θ1)) | (ω, θ1) ∈ M} for
η ∈ (−∞,∞]. This information will be used in the proof of Theorem 6.8.

4. The boundaries of the global attractors for the flows induced
by a family of dissipative systems

Recall that (Ω, σ,R) is a continuous global flow on a compact metric space,
minimal and uniquely ergodic, that mΩ is its only ergodic measure, and that l2R,
lS and lP represent the Lebesgue measures on R2, S and P (normalized in the last
two cases). In the rest of the paper we will work with a particular type of family of
nonlinear systems defined along the σ-orbits, which we now describe. Given a real
value ρ ∈ (0, 1] and the C1-map

kρ : R+→ R+, r 7→

{
0 if 0 ≤ r ≤ ρ ,
(r − ρ)2 if r ≥ ρ ,

(4.1)

we consider the family of nonautonomous two-dimensional systems of ODEs

y′ = A(ω·t) y − kρ(|y|) y (4.2)

for ω ∈ Ω, whose linear part

y′ = A(ω·t) y (4.3)

agrees with (2.1). A discrete version of this continuous model has been studied in [4].
The main difference in our approach is that we put the focus on the unpredictability
of the dynamics on the attractor at the bifurcation point.

We will use the notation established in Section 2 for the flows (Ω×R2, τl,R,R),
(Ω×S, σ̂,R) and (Ω×P, σ̃,R) induced by (4.3). The value of ρ will be fixed throughout
the paper, so that we will not include it in the notation. The family (4.2) also
induces a (now local) skew-product flow with base (Ω, σ,R) on Ω×R2, defined by

τR : U ⊆ R×Ω×R2→ Ω×R2, (t, ω,y0) 7→ (ω·t,y(t, ω,y0)) , (4.4)

where y(t, ω,y0) represents the solution of the system (4.2)ω with initial data
y(0, ω,y0) = y0. Note that y(t, ω,−y0) = −y(t, ω,y0). Note also that (4.2) and
(4.3) agree as long as y belongs to the Euclidean closed disk centered at the origin
and with radius ρ; but not outside this disk, where (4.2) is no longer linear. In par-
ticular, y(t, ω,y0) may not be globally defined; and if |y0| ≤ ρ then y(t, ω,y0) =
yl(t, ω,y0) at the interval of points containing 0 at which |y(t, ω,y0)| ≤ ρ.

Now we take coordinates y1 = r sin θ and y2 = r cos θ and obtain the equations

θ′ = f(ω·t, θ) ,
r′ = r

(
g(ω·t, θ)− kρ(r)

)
,

(4.5)
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where f : Ω×S → R and g : Ω×S → R are given by (2.4) and (2.6). Recall that
f(ω, θ) = f(ω, θ+π) and g(ω, θ) = g(ω, θ+π). Observe that the family of equations
given by the first line in (4.5) depends neither on ρ nor on r. In fact, it coincides
with the family (2.3), so that its solutions define the global flows (Ω×S, σ̂,R) and
(Ω×P, σ̃,R) given by (2.7) and (2.8). Note also that the r component of the solution
of (4.5)ω with initial data (θ, r0) agrees with the solution of the equation

r′ = r
(
g(ω·t, θ̂(t, ω, θ))− kρ(r)

)
(4.6)

with initial data r0. We can consider this family varying either on Ω×S or on

Ω×P, since g(ω·t, θ̂(t, ω, θ)) = g(ω·t, θ̃(t, ω, θ)). Let r(t, ω, θ, r0) be the solution of
(4.6)(ω,θ) with r(t, ω, θ, r0) = r0 ≥ 0, and note that if r0 ≤ ρ then r(t, ω, θ, r0) =
rl(t, ω, θ, r0) at the interval containing 0 at which r(t, ω, θ, r0) ≤ ρ. We can define
two new local skew-product flows with bases (Ω×S, σ̂,R) and (Ω×P, σ̃,R), given by

τ̂ : V̂ ⊆ R×Ω×S×R+→ Ω×S×R+, (t, ω, θ, r0) 7→ (ω·t, θ̂(t, ω, θ), r(t, ω, θ, r0))

and

τ̃ : Ṽ ⊆ R×Ω×P×R+→ Ω×P×R+, (t, ω, θ, r0) 7→ (ω·t, θ̃(t, ω, θ), r(t, ω, θ, r0)) .

Recall that

p(θ̂(t, ω, θ)) = θ̃(t, ω, p(θ)) and r(t, ω, θ, r0) = r(t, ω, p(θ), r0) . (4.7)

It is clear that

y(t, ω,y0) =

[
r(t, ω, θ, r0) sin(θ̂(t, ω, θ))

r(t, ω, θ, r0) cos(θ̂(t, ω, θ))

]
if y0 =

[
r0 sin θ
r0 cos θ

]
.

Therefore the flows τR and τ̂ are closely related. As a matter of fact, they can be
identified outside the (respectively invariant) sets Ω×{0} ⊂ Ω×R2 and Ω×S×{0} ⊂
Ω×S×R+. In addition, (Ω×S×R+, τ̂ ,R) projects onto (Ω×P×R+, τ̃ ,R).

Remark 4.1. For further purposes, we point out that the skew-product semiflow
τ̃ is concave; that is, its fiber component satisfies

r(t, ω, θ, η r1 + (1− η) r2) ≥ η r(t, ω, θ, r1) + (1− η) r(t, ω, θ, r2)

for all η ∈ [0, 1], (ω, θ) ∈ Ω×P, r1, r2 ∈ R+, and all the values of t ≥ 0 such
that all the involved terms are defined. This assertion follows from the fact that
kρ(ηr1 + (1 − η) r2) ≤ η kρ(r1) + (1 − η) kρ(r2) for all η ∈ [0, 1] and r1, r2 ∈ R+

combined with a standard argument of comparison of solutions. And, of course,
it is also monotone: 0 ≤ r(t, ω, θ, r1) ≤ r(t, ω, θ, r2) whenever 0 ≤ r1 ≤ r2. The
monotonicity will be often used without further reference.

Since the function g of (4.6) (given by (2.6)) is bounded, the definition (4.1) of
kρ shows that, if we fix any δ > 0, we can find a rρ such that

g(ω, θ)− kρ(r) < −δ for all (ω, θ) ∈ Ω×S and r ≥ rρ . (4.8)

This constant rρ plays a fundamental role in the statement of the next result: it
will bound the zones of the phase spaces in which the attractors lie. Note also that
the minimal choice of rρ satisfying (4.8) increases as ρ increases. This is the only
point in which the choice of a particular ρ ∈ (0, 1] has influence.

Theorem 4.2. Let the constant rρ > 0 satisfy (4.8).
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(i) The flow (Ω×R2, τR,R) is bounded dissipative, and it has a global attractor
A ⊂ Ω×R2 which contains Ω×{0}. In addition,

A = {(ω,y0) ∈ Ω×R2| sup
t∈R
|y(t, ω,y0)| <∞}

= {(ω,y0) ∈ Ω×R2| sup
t∈R−

|y(t, ω,y0)| <∞} ;

A ⊆ Ω× {y ∈ R2| |y| ≤ rρ}; and (ω,y0) ∈ A if and only if (ω,−y0) ∈ A.
(ii) The flow (Ω×S×R+, τ̂ ,R) is bounded dissipative, and it has a global attractor

B̂ ⊂ Ω×S×R+ which contains Ω×S×{0}. In addition,

B̂ = {(ω, θ, r0) ∈ Ω×S×R+| sup
t∈R

r(t, ω, θ, r0) <∞}

= {(ω, θ, r0) ∈ Ω×S×R+| sup
t∈R−

r(t, ω, θ, r0) <∞} ;

B̂ ⊆ Ω×S× [0, rρ]; and (ω, θ) ∈ B̂ for θ ∈ [0, π) if and only if (ω, θ+π) ∈ B̂.
(iii) The set

B̃ := {(ω, p(θ), r0) | (ω, θ, r0) ∈ B̂} ⊆ Ω×P× [0, rρ]

is a global attractor for the bounded dissipative flow (Ω×P×R+, τ̃ ,R).

(iv) If r0 > 0, then
(
ω,
[
r0 sin θ
r0 cos θ

] )
∈ A if and only if (ω, θ, r0) ∈ B̂. In addition,

the dynamics of τ̂ on B̂ − (Ω×S×{0}) can be recovered from that of τR on
A− (Ω×{0}), and the converse is also true.

Proof. It is easy to deduce from (4.8) that the maximal interval of definition of
y(t, ω,y0) contains [0,∞) for all (ω,y0) ∈ Ω×R2, and that the set Cρ := Ω ×
{y ∈ R2 | |y| ≤ rρ} attracts any bounded set under τR. Or, equivalently, that
r(t, ω, θ, r0) is defined at least on [0,∞) for all (ω, θ, r0) ∈ Ω×S× R+ and that

the set Ĉρ := Ω×S × [0, rρ] attracts any bounded set under τ̂ . Therefore both
flows are bounded dissipative, and the classical theory ensures that the sets A and

B̂ of (i) and (ii) are the respective global attractors: see e.g. Section 2.4 of [18]
and Section 1.2 of [13]. Relation (4.8) also guarantees that any globally bounded
solution y(t, ω,y0) of (4.2) satisfies |y(t, ω,y0)| ≤ rρ for all t ∈ R: if |y0| > rρ, then
(4.8) would force |y(t, ω,y0)| to tend to∞ as t tends to the left edge of the maximal
interval of definition. so that it is not bounded; therefore |y0| ≤ rρ, and hence we

can use again (4.8) to prove the assertion. Consequently, A ⊆ Cρ and B̂ ⊆ Ĉρ. And
obviously y(t, ω,y0) is globally bounded if and only if y(t, ω,−y0) = −y(t, ω,y0)
is globally bounded, which completes the proof of (i) and (ii). The assertions in
(iii) follows from (ii) and (4.7). Finally, the properties sated in (iv) follow from (i)
and (ii) and from the relation between τR and τ̂ explained before. �

Theorem 4.3. Let A ⊂ Ω×R2, B̂ ⊂ Ω×S×R+ and B̃ ⊂ Ω×P×R+ be the global
attractors of the flows (Ω×R2, τR,R), (Ω×S× R+, τ̂ ,R) and (Ω×P× R+, τ̃ ,R), and
let rρ satisfy (4.8). Then, there exists an upper semicontinuous map

β̃ : Ω×P→ [0, rρ]

such that
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(i) the attractors are given by

A =
⋃
ω∈Ω

{(ω,y) | y =
[
r sin θ
r cos θ

]
for θ ∈ S and r ∈ [0, β̃(ω, p(θ))]} ,

B̂ =
⋃

(ω,θ)∈Ω×S

(
{(ω, θ)} × [0, β̃(ω, p(θ))]

)
,

B̃ =
⋃

(ω,θ)∈Ω×P

(
{(ω, θ)} × [0, β̃(ω, θ))]

)
.

(ii) β̃(σ̃(t, ω, θ)) = r(t, ω, θ, β̃(ω, θ)) for all (t, ω, θ) ∈ R×Ω×P; that is, β̃ is an
equilibrium for σ̃.

(iii) If there exists β0 > 0 such that β̃(ω, θ) ≥ β0 for all (ω, θ) ∈ Ω×P, then β̃
defines a uniformly stable equilibrium: for each ε > 0 there exists δ(ε) > 0

such that if (ω, θ) ∈ Ω×P and 0 ≤ |β̃(ω, θ)− r0| ≤ δ(ε) then

|β̃(σ̃(t, ω, θ))− r(t, ω, θ, r0)| ≤ ε for all t ≥ 0 . (4.9)

Proof. Recall that the flow (Ω×P×R+, τ̃ ,R) is induced by the family of equations

r′ = r
(
g(ω·t, θ̃(t, ω, θ))−kρ(r)

)
, which agree with (4.6). Relation (4.8) ensures that

0 > rρ
(
g(θ̂(t, ω, θ)) − kρ(rρ)

)
, so that the function r(t) ≡ rρ is an upper solution

for all these equations. In addition, the set {r(t, ω, θ, rρ) | t ≥ 0, (ω, θ) ∈ Ω×P}
is bounded, since (Ω×P×R+, τ̃ ,R) is bounded dissipative. In these conditions,
Theorem 3.6 of [34] (see also its proof, which does not require the minimality of
the base flow, in our case (Ω×P, σ̃,R)) shows that

β̃(ω, θ) := lim
t→∞

r(t, σ̃(−t, ω, θ), rρ)

defines an upper semicontinuous function satisfying β̃(ω, θ) ≤ rρ and property (ii).
In addition, if r(t, ω0, θ0, r0) is globally bounded, then Theorem 4.2(i) ensures that
r(−t, ω0, θ0, r0) ≤ rρ for all t ≥ 0, so that r0 = r(t, σ̃(−t, ω0, θ0), r(−t, ω0, θ0, r0)) ≤
r(t, σ̃(−t, ω0, θ0), rρ) and hence r0 ≤ β̃(ω0, θ0). And conversely, since (ii) holds,

any solution r(t, ω0, θ0, r0) with r0 ≤ β̃(ω0, θ0) is globally bounded. This and the

descriptions of A, B̂ and B̃ made in Theorem 4.2 complete the proof of (i) and (ii).
Let us prove (iii). Since kρ(η r) is smaller than η kρ(r) for r ≥ 0 and η ∈ [0, 1]

and greater for r ≥ 0 and η ≥ 1, a standard argument of comparison of solutions
and property (ii) ensure that

η β̃(σ̃(t, ω, θ)) ≤ r(t, ω, η β̃(ω, θ)) for all t ≥ 0 and (ω, θ) ∈ Ω×P if η ∈ [0, 1] ,

η β̃(σ̃(t, ω, θ)) ≥ r(t, ω, η β̃(ω, θ)) for all t ≥ 0 and (ω, θ) ∈ Ω×P if η ≥ 1 .

Given ε > 0 we take δ(ε) = ε β0/rρ, where β0 satisfies the assumption in (iii). Then,

if |β̃(ω, θ)− r0| ≤ δ(ε) for a point (ω, θ) ∈ Ω×P, we have (1− ε/rρ) β̃(ω, θ) ≤ r0 ≤
(1 + ε/rρ) β̃(ω, θ). Combining this fact, the previous properties, and (ii), we get

(1− ε/rρ) β̃(σ̃(t, ω, θ)) ≤ r(t, ω, θ, r0) ≤ (1 + ε/rρ) β̃(σ̃(t, ω, θ)) for all t ≥ 0, which

together with 0 ≤ β̃(σ̃(t, ω, θ)) ≤ rρ yields (4.9). �

It is clear that the properties of the semicontinuous map β̃ of Theorem 4.3

determine the shapes of the three global attractors. Let us see that β̃(ω, θ) > 0
if and only if the solutions rl(t, ω, θ, r0) of (2.5)(ω,θ) with initial data r0 > 0 are
bounded. By linearity, it is enough to consider the solutions rl(t, ω, θ, 1).
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Proposition 4.4. Let us fix (ω, θ) ∈ Ω×P, and let β̃ be defined in Theorem 4.3.

Then β̃(ω, θ) > 0 if and only if supt≤0 rl(t, ω, θ, 1) <∞.

Proof. Recall that ρ ∈ (0, 1] is fixed from the beginning, and that β̃ takes values in

[0, rρ] with rρ satisfying (4.8). We fix (ω, θ) ∈ Ω×P and assume that β0 := β̃(ω, θ) >
0. Since kρ ≥ 0, a standard arguments of comparison of solutions for scalar ODEs
applied to (2.5) and (4.6), and Theorem 4.3(ii), guarantee

β0 rl(t, ω, θ, 1) = rl(t, ω, θ, β0) ≤ r(t, ω, θ, β0) = β̃(σ̃(t, ω, θ)) ≤ rρ for all t ≤ 0 .

Therefore supt≤0 rl(t, ω, θ, 1) <∞, as asserted.
Assume now that κ := supt≤0 rl(t, ω, θ, 1) < ∞, so that supt≤0 rl(t, ω, θ, ρ/κ) ≤

ρ. Hence r(t, ω, θ, ρ/κ) = rl(t, ω, θ, ρ/κ) ≤ κ for all t ≤ 0, which together with the
dissipativity of the flows ensures that r(t, ω, θ, ρ/κ) is globally defined and bounded.

Theorem 4.2(ii)&(iii) ensure that (ω, θ, ρ/κ) ∈ B̃, and hence Theorem 4.3(ii) guar-

antees that β̃(ω, θ) ≥ ρ/κ. This completes the proof. �

The previous result shows that the sets

(Ω×P)+ := {(ω, θ) ∈ Ω×P | β̃(ω, θ) > 0} ,

(Ω×P)0 := {(ω, θ) ∈ Ω×P | β̃(ω, θ) = 0}

can be characterized in terms of the existence of bounded solutions on R− for the
family of equations (2.5); or, equivalently, of the family of systems (4.3). Note also
that both sets are σ̃-invariant, as Theorem 4.3(ii) guarantees.

Remarks 4.5. 1. Since two different points in P determine two linearly independent
solutions of (4.3)ω, Proposition 4.4 shows that there are three possibilities for the
sections (Ω×P)+

ω and (Ω×P)0
ω: (Ω×P)+

ω = P and (Ω×P)0
ω is empty; (Ω×P)+

ω

is empty and (Ω×P)0
ω = P; and (Ω×P)+

ω = {θ0} and (Ω×P)0
ω = P − {θ0}. In

addition, if a point ω is in one of these cases, the same happens with all the points
ω·t of its σ-orbit: for all θ0 ∈ P and all t ∈ R there exists a unique θ−t ∈ P with

(ω·t, θ0) = σ̃(t, ω, θ−t), namely θ−t := θ̃(−t, ω·t, θ0).

2. The upper semicontinuity of β̃ ensures that it is continuous at every point

of a residual set C ⊆ Ω×P. In addition, since β̃ ≥ 0, (Ω×P)0 ⊆ C. Assume now

that (Ω×P)0 contains a set D which is dense in Ω×P. It is easy to deduce that β̃
vanishes at any point of C. So that, in this case, the set (Ω×P)0 is residual in Ω×P.

We also define the set

Ω+ := {ω ∈ Ω | (Ω×P)+
ω = P} = {ω ∈ Ω | β̃(ω, θ) > 0 for all θ ∈ P} , (4.10)

which is σ̃-invariant: see Remark 4.5.1. Proposition 4.4 shows that Ω+ = Ω if and
only if all the solutions of all the systems (4.3) are bounded on R−. Let us check
that, if this is not the case, then Ω+ is of the first Baire category.

Proposition 4.6. Suppose that Ω+ 6= Ω. Then β̃ vanishes exactly at the residual
σ̃-invariant set of points of Ω×P at which it is continuous. In particular, the set
Ω+ is of the first Baire category.

Proof. We will check below that β̃ vanishes at a dense set of points of Ω×P, which
according to Remark 4.5.2 ensures that the σ̃-invariant set (Ω×P)0 is the residual

set of continuity points of β̃. Since (Ω×P)0 projects onto Ω − Ω+, this set is also
residual (see Proposition 3.1 of [49]), which proves the second assertion.
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Let us take ω0 /∈ Ω+ and note that (Ω×P)0
ω0
⊇ P − {θ0} for a point θ0 ∈ P

(see Remark 4.5.1). It follows easily from the minimality of (Ω, σ,R) that the set
D := {σ̃(t, ω0, θ) | t ∈ R , θ 6= θ0} is dense in Ω×P. Finally, the σ̃-invariance of

(Ω×P)0 ensures that β̃ vanishes at the points of D. �

We finish this section by relating the measure of Ω+ to those of the attractors.

Proposition 4.7. The attractor B̃ of the flow (Ω×P×R+, τ̃ ,R) has positive measure
mΩ×lP×lR on Ω×P×R+ if and only if mΩ(Ω+) = 1, where Ω+ is the σ-invariant
set defined by (4.10).

Proof. It is clear that the measure of B̃ is given by
∫

Ω×P β̃(ω, θ) d(mΩ× lP), which

agrees with
∫

(Ω×P)+
β̃(ω, θ) d(mΩ×lP); so that this measure is positive if and only if

(mΩ×lP)((Ω×P)+) > 0. In turn, (mΩ×lP)((Ω×P)+) =
∫

Ω
lP((Ω×P)+

ω) dmΩ, so that it is

positive if and only if the set of points ω with lP((Ω×P)+
ω) > 0 has positive measure

mΩ. It follows from Remark 4.5.1 that this set agrees with Ω+. And, since Ω+ is
σ-invariant and mΩ is σ-ergodic, mΩ(Ω+) > 0 is equivalent to mΩ(Ω+) = 1. �

Remark 4.8. Note that (mΩ×lP×lR)(B̃) > 0 is equivalent to (mΩ×lS×lR)(B̂) > 0
and to (mΩ×lR2)(A) > 0: see Theorems 4.2 and 4.3.

5. The shape of the global attractors in terms of the Sacker and
Sell spectrum of the associated linear system

We continue in this section with the analysis of the shape and properties of the

global attractor A (and hence of B̂ and B̃) associated to the family of systems (4.2)
described at the beginning of Section 4. As explained in the Introduction, we will
relate these properties to the characteristics of the Sacker and Sell spectrum ΣA of
the linear family (4.3) (or of any one of its systems: see Definitions 2.5 and 2.7, and
Remark 2.6.1). We have also explained there that in this paper we will consider just
three cases: ΣA ⊂ (−∞, 0), ΣA ⊂ (0,∞), and ΣA = {0}, and that this casuistic
can be understood as a bifurcation pattern.

Recall that the boundaries of the attractors are determined by the function

β̃ : Ω×P→ [0, rρ] of Theorem 4.3.

A. The case ΣA ⊂ (−∞, 0). This first case is the simplest one. We will check

that the attractors A, B̂ and B̃ are trivial. Note that the conclusion is irrespective of
the fact that ΣA reduces to a point, it is a nondegenerate interval, or it is composed
by two negative points, which are the three possibilities: see Theorem 2.8.

Theorem 5.1. Suppose that ΣA ⊂ (−∞, 0). Then A = {(ω,0) | ω ∈ Ω}, B̂ =

{(ω, θ, 0) | (ω, θ) ∈ Ω×S}, and B̃ = {(ω, θ, 0) | (ω, θ) ∈ Ω×P}.

Proof. It is enough to prove the assertion for B̃: see Theorem 4.2. Note that the
family (4.3) has exponential dichotomy with F+ = Ω×R2: see Remark 2.10. This
and Remark 2.6.2 ensure that lim supt→−∞ rl(t, ω, θ, r0) =∞ for all (ω, θ) ∈ Ω×P
and r0 > 0. Hence, Proposition 4.4 proves the assertion. �

B. The case ΣA ⊂ (0,∞). Now we will show that, in the three cases of ΣA ⊂
(0,∞) (see Theorem 2.8), the map β̃ is continuous and strictly positive on Ω×P,
which means that A can be identified with a “solid cylinder” which has Ω as axis.
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Theorem 5.2. Suppose that ΣA ⊂ (0,∞). Then,

(i) the map β̃ : Ω×P→ R+ of Theorem 4.3 is continuous and strictly positive.

(ii) The compact set {(ω, θ, β̃(ω, θ)) | (ω, θ) ∈ Ω×P} is the global attractor for
the flow τ̃ restricted to Ω×P× (0,∞). More precisely,

lim
t→∞

(β̃(σ̃(t, ω, θ))− r(t, ω, θ, r0)) = 0 for all (ω, θ) ∈ Ω×P and r0 > 0 .

(iii) The compact set
{(
ω,
[
β̃(ω,θ) sin θ

β̃(ω,θ) cos θ

] )
| (ω, θ) ∈ Ω×P

}
is the global attractor

for the flow τR restricted to Ω× (R2 − {0}).

Proof. (i) The property ΣA ⊂ (0,∞) ensures that the family of linear systems (4.3)
has exponential dichotomy, with F− = Ω×R2: see Remark 2.10. More precisely,
there exist c ≥ 1 and γ > 0 such that

rl(t, ω, θ, r0) ≤ c eγ tr0 for all (ω, θ) ∈ Ω×P, r0 ≥ 0, and t ≤ 0 .

We take δρ = ρ/c > 0. Then rl(t, ω, θ, r0) ≤ ρ for t ≤ 0 if r0 ≤ δρ, so that

r(t, ω, θ, r0) = rl(t, ω, θ, r0) ≤ c eγ tr0 for all (ω, θ) ∈ Ω×P and t ≤ 0 .

We will deduce from this fact that there exists tρ > 0 such that

r(t, ω, θ, δρ) ≥ δρ for all (ω, θ) ∈ Ω×P and t ≥ tρ . (5.1)

Assume for contradiction the existence of sequences (tn) ↑ ∞ in R+ and ((ωn, θn))
in Ω×P such that r(tn, ωn, θn, δρ) =: rn < δρ. Then, on the one hand,

r(−tn, σ̃(tn, ωn, θn)), δρ) > r(−tn, σ̃(tn, ωn, θn)), rn) = δρ

for all n ∈ N; and, on the other hand, 0 < r(−tn, σ̃(tn, ωn, θn)), δρ) ≤ c e−γ tnδρ,
which tends to 0 as n increases. This contradiction proves (5.1). And the same
argument proves that, given any r0 > 0, there exists tr0,ρ such that

r(t, ω, θ, r0) ≥ δρ for all (ω, θ) ∈ Ω×P and t ≥ tr0,ρ . (5.2)

A fundamental consequence derives from (5.1). Let us define the sequence of
continuous functions (αn) by

αn : Ω×P→ R+, (ω, θ) 7→ r(ntρ, σ̃(−ntρ, ω, θ), δρ) .
Note that all these functions are bounded from below by δρ and from above by ρ.
We can reason as in the proof of Theorem 3.6 of [34] in order to prove: that

r(tρ, ω, θ, αn(ω, θ)) ≥ αn(σ̃(tρ, ω, θ)) for all (ω, θ) ∈ Ω×P and n ≥ 1 ;

that the sequence (αn(ω, θ))n increases with n for all (ω, θ) ∈ Ω×P; that the limit

α(ω, θ) := lim
n→∞

αn(ω, θ)

satisfies

α(σ̃(mtρ, ω, θ)) = rl(mtρ, ω, θ, α(ω, θ)) for all m ∈ N and (ω, θ) ∈ Ω×P ; (5.3)

and that α is a lower semicontinuous map: if (ω, θ) = limn→∞(ωn, θn), then
α(ω, θ) ≤ lim infn→∞ α(ωn, θn). Note also that δρ ≤ α ≤ rρ.

On the other hand, β̃(ω, θ) = limn→∞ r(ntρ, σ̃(−ntρ, ω, θ), rρ) (see the proof of

Theorem 4.3), so that β̃ ≥ α ≥ δρ > 0. We will check that, as a matter of fact,

they agree, which together with the semicontinuity properties of β̃ and α shows the

continuity of β̃ and completes the proof.
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We will make this in two steps. In the first one we assume that (Ω×P, σ̃,R) is

minimal. Let (ω0, θ0) be a continuity point of β̃. Theorem 3.6 of [34] proves that

K : = closureΩ×P×R+{τ̃(t, ω0, θ0, β̃(ω0, θ0)) | t ≥ 0}

= closureΩ×P×R+{(σ̃(t, ω0, θ0), β̃(σ̃(t, ω0, θ0))) | t ≥ 0}

is a τ̃ -minimal set. The upper semicontinuity of β̃ ensures that r0 ≥ r ≥ δρ
for all (ω, θ, r) ∈ K. In the words of [38], the minimal K is strongly above the
equilibrium 0. In addition, (5.2) also ensures that any τ̃ -minimal different from
that given by 0 is contained in {(ω, θ, r) | r ≥ δρ} ⊂ Ω×P×R+. Recall that the
flow τ̃ is monotone and concave: see Remark 4.1. In these conditions, Theorem
3.8 of [38] ensures that K is a uniformly exponentially stable copy of the base
which attracts all the forward semiorbits starting above zero. That is, we can write
K = {(ω, θ, c(ω, θ)) | (ω, θ) ∈ Ω×P} for a continuous map c : Ω×P → R+; and
given ε > 0 there exists η(ε) > 0 such that if r0 > 0 and |r0 − c(ω, θ)| ≤ η(ε),
then |r(t, ω, θ, r0) − c(σ̃(t, ω, θ))| ≤ ε for all t ≥ 0. It is very easy to deduce from

the definition of K that c and β̃ agree at the continuity points of β̃. Now we

will check that β̃ and c agree everywhere: we fix (ω, θ) ∈ Ω×P and any ε > 0;
choose a sequence (sn) ↓ −∞ such that (ω0, θ0) = limn→∞ σ̃(sn, ω, θ); deduce from

β̃(ω0, θ0) = c(ω0, θ0) that there exists sn with |β̃(σ̃(sn, ω, θ))−c(σ̃(sn, ω, θ))| ≤ η(ε);
and conclude that

|β̃(ω, θ)− c(ω, θ)| = |r(−sn, ω·sn, β̃(σ̃(sn, ω, θ)))− c(σ̃(−sn, σ̃(sn, ω, θ)))| ≤ ε ,

which means that β̃(ω, θ) = c(ω, θ). Note that this proves that β̃ is continuous
in the minimal case; but our goal is to prove that it agrees with α, which will be
required in the general case.

The continuity and positiveness of β̃ allows us to find η ∈ (0, 1) such that

0 < ηβ̃ ≤ δρ, so that ηβ̃ ≤ α. In addition, as said in the proof of Theorem

4.3, η β̃(σ̃(t, ω, θ)) ≤ r(t, ω, η β̃(ω, θ)) for all t ≥ 0 and (ω, θ) ∈ Ω×P. In these
conditions, Theorem 3.6 of [34] and its proof ensure that the map γ(ω, θ) :=
limt→∞ r(t, σ̃(−t, ω, θ), ηβ(σ̃(−t, ω, θ))) defines a new equilibrium above 0. We can

repeat all the procedure before performed with β̃ in order to conclude that γ is

continuous. But Theorem 3.8 of [38] ensures that β̃ is the only strictly positive

continuous equilibrium. That is, γ = β̃. Consequently,

β(ω, θ) = lim
n→∞

r(ntρ, σ̃(−ntρ, ω, θ), ηβ(σ̃(−ntρ, ω, θ)))

≤ lim
n→∞

r(ntρ, σ̃(−ntρ, ω, θ), α(σ̃(−ntρ, ω, θ))) = α(ω, θ) ,

which completes the proof in this case.

Let us now consider the general case. We already know that α and β̃ agree
over each σ̃-minimal subset M ⊂ Ω×P. We fix (ω, θ) ∈ Ω×P, take a minimal
subset M contained in its alpha limit set for σ̃, choose a point (ω̄, θ̄) in M, take
a sequence (sn) ↓ −∞ such that (ω̄, θ̄) = limn→∞ σ̃(sn, ω, θ), and assume without
restriction that sn = mntρ − µn with −mn ∈ N and µn ∈ [0, tρ) and that there
exists µ̃ := limn→∞ µn ∈ [0, tρ]. The continuity of σ̃ allows us to ensure that

limn→∞ σ̃(mntρ, ω, θ) = σ̃(µ̃, ω̄, θ̄) =: (ω̃, θ̃) ∈ M. In particular, α(ω̃, θ̃) = β̃(ω̃, θ̃),
Now we fix ε > 0; take δ(ε) satisfying (4.9); assume without restriction that the
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sequences (α(σ̃(mntρ, ω, θ))) and (β̃(σ̃(mntρ, ω, θ))) converge; use the inequalities

0 = β̃(ω̃, θ̃)− α(ω̃, θ̃) ≥ lim
n→∞

(β̃(σ̃(mntρ, ω, θ))− α(σ̃(mntρ, ω, θ)) ≥ 0

in order to find n∗ such that

0 ≤ β̃(σ̃(mn∗tρ, ω, θ))− α(σ̃(mn∗tρ, ω, θ)) ≤ δ(ε) ;

and combine Theorem 4.3(ii), (5.3) and (4.9) to deduce that

0 ≤ β̃(ω, θ)− α(ω, θ) = r(−mn∗tρ, σ̃(mn∗tρ, ω, θ), β̃(σ̃(mn∗tρ, ω, θ)))

− r(−mn∗tρ, σ̃(mn∗tρ, ω, θ), α(σ̃(mn∗tρ, ω, θ))) ≤ ε .
This completes the proof of the equality also in the general case.

(ii) Let us take (ω, θ, r0) ∈ Ω×P × (0,∞). Recall that there exists t0 such that
r(t, ω, θ, r0) ≥ δρ > 0 for all (ω, θ) ∈ Ω×P and all t ≥ t0: see (5.2). We look for a
σ̃-minimal setM⊆ Ω×P contained in the omega limit set of (ω, θ), and a sequence

(tn) ↑ ∞ such that there exists limn→∞(σ̃(tn, ω, θ), r(tn, ω, θ, r0)) =: (ω̃, θ̃, r̃) ∈
M×R+. In particular, r̃ ≥ δρ > 0. We fix ε > 0 and take δ(ε) satisfying (4.9). The

convergence to β̃ in the minimal case explained in the previous step allows us to take

s̃ > 0 with |r(s̃, ω̃, θ̃, r̃)− β̃(σ̃(s̃, ω̃, θ̃))| ≤ δ(ε)/3. And we also look for tm such that

|r(tm + s̃, ω, θ, r0)− r(s̃, ω̃, θ̃, r̃)| ≤ δ(ε)/3 and |β̃(σ̃(s̃+ tm, ω, θ))− β̃(σ̃(s̃, ω̃, θ̃))| ≤
δ(ε)/3. These inequalities and (4.9) ensure that |r(t, ω, θ, r0)− β̃(σ̃(t, ω, θ))| ≤ ε for
all t ≥ s̃+ tm, which proves (ii).

(iii) This last assertion is an immediate consequence of (ii) and Theorem 4.2. �

C. The case ΣA = {0}. In this case the family (4.3) does not admit expo-
nential dichotomy, so that at least one of its systems admits a nontrivial bounded
solution. We begin by considering the simplest situation (which is also the least
interesting for the purposes of this paper): when all the solutions are bounded, the
attractor A is homeomorphic to a solid cylinder with continuous boundary. This is
proved in Theorem 5.6. Before formulating it, we explain some properties used in
its proof and also in Section 6.

Definition 5.3. A continuous function e : Ω → R admits a continuous primi-
tive if there exists a continuous function he : Ω → R such that he(ω·t) − he(ω) =∫ t

0
e(ω·s) ds for all ω ∈ Ω and t ∈ R.

Remark 5.4. If e admits a continuous primitive, then sup(t,ω)∈R×Ω

∣∣∣∫ t0 e(ω·s) ds∣∣∣ <
∞, and Birkhoff’s ergodic theorem ensures that

∫
Ω
e(ω) dmΩ = 0. It is well-known

that if (Ω, σ,R) is minimal (as in our case) then e admits a continuous primi-

tive if and only if there exists ω0 ∈ Ω with supt≥0

∣∣∣∫ t0 e(ω0·s) ds
∣∣∣ < ∞ or with

supt≤0

∣∣∣∫ t0 e(ω0·s) ds
∣∣∣ <∞: see e.g. Proposition A.1 in [28].

Now we rewrite the matrix A =
[
a b
c d

]
of the families (4.3) and (4.2) as

A(ω) = e(ω) I2 + Ã(ω) for e(ω) := (1/2) trA(ω) , (5.4)

so that Ã(ω) =
[
ã b
c −ã

]
. We consider the family of linear systems with zero trace

y′ = Ã(ω·t) y (5.5)

for ω ∈ Ω. The notation established in Section 3 will be used.
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Remarks 5.5. Recall that we assume ΣA = {0}. Let e be given by (5.4).
1. The flows (Ω×S, σ̂,R) and (Ω×P, σ̃,R) induced by (5.5) agree with those

induced by the initial linear family y′ = A(ω·t) y: they are defined by (2.7) and
(2.8), since the function f appearing in the angular equations (2.3) and (3.2) is the
same (which is due to a− d = 2ã).

2. Recall that rl(t, ω, θ, 1) is the solution of the linear equation (2.5)(ω,θ) with
rl(0, ω, θ, 1) = 1, and let r̃l(t, ω, θ, 1) be the solution with r̃l(0, ω, θ, 1) = 1 of the
r-equation for (5.5), namely

r′ = r
(
g(ω·t, θ̃(t, ω, θ))− e(ω·t)

)
= r

(
−1

2

∂f

∂θ
(ω·t, θ̃(t, ω, θ))

)
.

It is very easy to check that rl(t, ω, θ, 1) = r̃l(t, ω, θ, 1) exp
(∫ t

0
e(ω·s) ds

)
and that

r̃l(t, ω, θ, 1) = exp
(∫ t

0
(−1/2)(∂f/∂θ)(σ̃(s, ω, θ)) ds

)
.

3. Since ΣA = {0}, Theorem 2.8 ensures that limt→∞(1/t) ln detU(t, ω) =
0 for all ω ∈ Ω, and this, relation (2.9) and Birkhoff’s ergodic theorem yield∫

Ω
e(ω) dmΩ = 0. This property, the previous remark and Birkhoff’s ergodic the-

orem yield limt→∞(1/t) ln rl(t, ω, θ, 1) = limt→∞(1/t) ln r̃l(t, ω, θ, 1); and this and
Theorem 2.8 ensure that the Sacker and Sell spectrum of (5.5) is also {0}.

4. According to (2.9),

detU(t, ω0) = exp

(∫ t

0

trA(ω0·s) ds
)

= exp

(∫ t

0

2e(ω0·s) ds
)
. (5.6)

Assume that all the solutions of (4.3) are bounded. Then (5.6) combined with
Theorem A.2 of [28] ensures that e has a continuous primitive, which together with
Remark 5.5.2 ensures that all the solutions of (5.5) are also bounded.

Theorem 5.6. Suppose that ΣA = {0} and that all the solutions of all the lin-

ear systems (4.3) are bounded. Then the map β̃ : Ω×P → R+ of Theorem 4.3 is
continuous and strictly positive.

Proof. Proposition 4.4 ensures that β̃(ω, θ) > 0 for all (ω, θ) ∈ Ω×P. Let us as-
sume for the moment being that the flow (Ω×P, σ̃,R) is minimal. Then, since
all the solutions of the family of equations r′ = r g(σ̃(t, ω, θ)) are bounded, there
exists a continuous function h : Ω×P → (0,∞) such that (d/dt)h(σ̃(t, ω, θ)) =
h(ω, θ) g(σ̃(t, ω, θ)): see e.g. Proposition A.1 in [28]. Let us call hη := η h for
η ≥ 0. We look for η > η0 such that hη(ω, θ) ≤ ρ for all (ω, θ) ∈ Ω×P, where
ρ is the constant in (4.1). Then (d/dt)hη(σ̃(t, ω, θ)) = hη(ω, θ)

(
g(σ̃(t, ω, θ)) −

kρ(hη(σ̃(t, ω, θ)))
)
, so that hη determines a copy of the base for (Ω×P×R+, τ̃ ,R)

which is strongly above 0. In addition, this flow is monotone and concave: see Re-

mark 4.1. In these conditions, Theorem 3.8(v) of [38] ensures that β̃ is continuous.

We will now check that, in the minimal case, β̃ = hη0 , where η0 is determined

by supω,θ∈Ω×P hη0(ω, θ) = ρ. We already know that hη0 ≤ β̃. Let us choose
η > 0 and check that β < hη, from where the assertion follows. For this η,
(d/dt)hη(σ̃(t, ω, θ)) ≥ hη(ω, θ)

(
g(σ̃(t, ω, θ)) − kρ(hη(σ̃(t, ω, θ)))

)
, and the inequal-

ity is strict at least at a point (ω, θ) ∈ Ω×P. Now we combine Propositions 4.4
and 4.3 and Theorem 3.6 of [34] in order to deduce that there exists a δ > 0 and
an equilibrium γ ≤ hη − δ such that any point (ω, θ, r) with γ(ω, θ) < r < hη(ω, θ)
does not belong to any copy of the base. A new application of Theorem 3.8(v) of
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[38] ensures that β < hη, as asserted. It follows easily from β̃ = hη0 that

sup
t∈R

β̃(σ̃(t, ω, θ)) = ρ for all (ω, θ) ∈ Ω×P if Ω×P is σ̃-minimal . (5.7)

Let us now suppose that Ω×P is not σ̃-minimal. Then the assumed bound-
edness of the solutions of the linear family ensures that Ω×P is the union of an
uncountable family of σ̃-minimal sets, each one of them being an m-cover of Ω
for a common m ≥ 1. This is proved in the proof of Theorem 3.1 of [39], since

according to Remark 5.5.4 all the solutions of (5.5) are bounded. Note that β̃ is
continuous over each minimal set. We define α(ω, θ) := supt∈R rl(t, ω, θ, 1) and de-
duce from Theorem 4.3(ii), the decomposition of Ω×P into minimal sets and (5.7)

that α(ω, θ) = (1/β̃(ω, θ)) supt∈R β̃(σ̃(t, ω, θ)) = ρ/β̃(ω, θ). Consequently, α is also

continuous over each minimal set, and the global continuity of β̃ will be guaranteed
once we have checked that α is continuous on Ω×P.

Note now that

|α(ω, θ1)− α(ω, θ2)| =
∣∣∣∣ sup
t∈R

∣∣U(t, ω)
[

sin θ1
cos θ1

]∣∣− sup
t∈R

∣∣U(t, ω)
[

sin θ2
cos θ2

]∣∣ ∣∣∣∣
≤ sup

t∈R

∣∣U(t, ω)
( [

sin θ1
cos θ1

]
−
[

sin θ2
cos θ2

])∣∣ ≤ c ∣∣[ sin θ1
cos θ1

]
−
[

sin θ2
cos θ2

]∣∣ ≤ c̃ distP(θ1, θ2)

for all ω ∈ Ω and θ1, θ2 ∈ P, where c := sup(t,ω)∈R×Ω |U(t, ω)| <∞. (As usual, |U |
represents the Euclidean matrix operator norm.) Let us take a sequence ((ωn, θn))
in Ω×P with limit (ω0, θ0). Let M0 be the minimal set containing (ω0, θ0). Then
there exists a sequence (ωn, ϕn) in M0 with limit (ω0, θ0). This assertion can be
proved combining the continuity of the map ω 7→ M0

ω in the Hausdorff topology of
the set of compact subsets of P (see e.g. Theorem 3.3 of [36]) with the fact thatM0

ω

always contains m elements. In particular, limn→∞ distP(θn, ϕn) = 0. The previous
bound ensures that limn→∞ |α(ωn, ϕn) − α(ωn, θn)| = 0, and the continuity of α
on M0 yields limn→∞ |α(ω0, θ0) − α(ωn, ϕn)| = 0. Hence, limn→∞ |α(ω0, θ0) −
α(ωn, θn)| = 0, which completes the proof. �

Apart from the situation described in Theorem 5.6, the casuistic for ΣA = {0} is
large. One of the less trivial cases involves the occurrence of Li-Yorke chaos, which
occurs under some additional conditions. We will explain this assertion, main goal
of the paper, in Section 6.

5.1. A simple quasiperiodic example. With the aim of clarifying the ideas, we
will apply the previous results to the nonautonomous system

y′ =

[
ε cos t+ sin(

√
2t)

− cos t− sin(
√

2t) ε

]
y − k0.5(|y|) y , (5.8)

showing the analogies with

y′ =

[
ε 1
−1 ε

]
y − k0.5(|y|) y . (5.9)

This second system provides a classical pattern of (autonomous) Hopf bifurcation.
Some simple figures will contribute to the explanation.

Let us begin with (5.9). Its solutions define a flow on R2, which can be under-
stood as a disjoint union of orbits: the projections of the graphics of the solutions.
For ε < 0 all the orbits tend (always as t increases) to the origin 0 ∈ R2. There-
fore, this point constitutes the global attractor. For ε > 0 there appears another
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“special” orbit: the circle of radius 0.5 +
√
ε centered at the origin. It corresponds

to the periodic solutions of the system, and has the property that it attracts any
other orbit excepting the fixed point provided by the origin. Therefore the global
attractor is the closed disk, and its border is the attractor for the flow restricted to
the invariant set R2 − {0}. Figure 1 shows this behaviour.

Figure 1. Orbits on R2, autonomous case (5.9). Left: ε = −0.15.
Right: ε = 0.5.

Let us go now with the nonautonomous example, for which the unperturbed lin-
ear system (that corresponding to ε = 0) is given by the quasiperiodic matrix-valued

function A0(t) =
[

0 cos t+sin(
√

2t)

− cos t−sin(
√

2t) 0

]
. The hull construction described in

the Introduction provides the hull T2 (the two-dimensional torus T2), a Kronecker
flow on it, and the family of systems

y′ =

[
ε f(θ1 + t, θ2 +

√
2t)

−f(θ1 + t, θ2 +
√

2t) ε

]
y − k0.5(|y|) y

for (θ1, θ2) ∈ T2, where f(θ1, θ2) := cos(θ1) + sin(θ2).
Since the base flow is minimal, we can determine the Sacker and Sell spec-

trum of the linear family by considering just the initial system (which is given by
(θ1, θ2) = (0, 0)). Assume that ε = 0. It is easy to check that all the solutions of
the corresponding linear system are bounded, which ensures that the Sacker and
Sell spectrum is {0}. And from here it follows easily that the the Sacker and Sell
spectrum of the system corresponding to ε is {ε}. Therefore, if ε < 0, we are in the
situation described by Theorem 5.1, and the global attractor is given by T2 × {0}.
And, if ε > 0, the situation fits in that of Theorem 5.2, and hence the global attrac-
tor is homeomorphic to a solid cylinder around T2. Well, in this case it is indeed
a cylinder: T2 × {y ∈ R2 | |y| ≤ 0.5 +

√
ε}, as one can see by writting the system

in polar coordinates. We have depicted in Figure 2 the projections of the graphics
of some solutions for ε < 0 and ε > 0. Now they are not orbits of a flow, but
the analogies with the autonomous case are clear. For ε < 0 all the projections
approach the origin, which is the section of the global attractor corresponding to
(θ1, θ2) = (0, 0). And, for ε > 0, there appears an “invariant” circle, and the pro-
jection of the graphic of any non zero solution approaches to part of this circle.

There is an important difference among the autonomous case and the quasiperi-
odic one that we have chosen: the rotation number is 1 for the first and 0 for the
second. But this fact causes no change in the analysis of the structure of the global
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Figure 2. Graphic projections, quasiperiodic case (5.8). Left:
ε = −0.15. Right: ε = 0.5.

attractor: Figure 3, similar to Figure 2, depicts the projections of the graphics of
the solutions of

y′ =

[
ε 0.5 + cos t+ sin(

√
2t)

−0.5− cos t− sin(
√

2t) ε

]
y − k0.5(|y|) y , (5.10)

for which the rotation number is 0.5.

Figure 3. Graphic projections, quasiperiodic case with positive
rotation (5.10). Left: ε = −0.15. Right: ε = 0.5.

Note finally that, for ε = 0, in the autonomous case (5.9), the global attractor
is the disk of radius 0.5, so that there is a strong discontinuity with the situation
for ε < 0; but also with the situation for ε > 0, since now the border of the disk
is no longer the attractor outside the origin: there is a periodic orbit of radius r
for any r ∈ (0, 0.5). Naturally, this is due to the fact that k0.5 vanishes identically
on [0, 0.5]. And, for the nonautonomous cases (5.8) and (5.10), the situation is
similar: according to Theorem 5.6 and to the expression of the systems in polar
coordinates, we know that in both cases the global attractor is given for ε = 0
by the solid cylinder T2 × {y ∈ R2 | |y| ≤ 0.5}. Therefore, it is again completely
different from that corresponding to ε < 0; and also to that appearing for ε > 0 in
the sense that now the attractor is composed by infinitely many compact invariant
sets: the cylinders T2 × {y ∈ R2 | |y| ≤ r} for any r ∈ [0, 0.5]. This is the “lack of
continuity even in the simplest situation” that we referred to in the Introduction.
Figure 4 shows the projections of the graphics of some solutions of (5.9), (5.8) and
(5.10) for ε = 0.



28 C. NÚÑEZ AND R. OBAYA

Figure 4. Graphic projections at the bifurcation point ε = 0,
case of bounded orbits. Left: autonomous case (5.9). Center:
quasiperiodic case with null rotation (5.8) Right: quasiperiodic
case with positive rotation (5.10).

6. Occurrence of Li-Yorke chaos in the case of Sacker and Sell
spectrum {0}

We continue working with the family (4.2) under the conditions described at the
beginning of Section 4, and with the flows (Ω×S, σ̂,R), (Ω×P, σ̃,R) and (Ω×R2, τR,R)
respectively defined by (2.7), (2.8) and (4.4). We will assume in all this section that
ΣA = {0}. In addition, we will also assume from the beginning that at least one
of the systems of the family (4.3) has an unbounded solution: the alternative has
already been analyzed in Theorem 5.6. In other words, the set Ω+ defined by (4.10)
is not the whole Ω. And we will add one more condition:

Hypotheses 6.1. The Sacker and Sell spectrum of the linear family (4.3) is ΣA =
{0}, and the set Ω+ defined by (4.10) satisfies Ω+ 6= Ω and mΩ(Ω+) = 1.

We will make some remarks on these hypotheses at the end of this section. For
now, note that Ω+ 6= Ω ensures that Ω+ is a set of the first Baire category (see
Proposition 4.6); and recall that mΩ(Ω+) = 1 is equivalent to say that the attractor
A or the flow (Ω×R2, τR,R) (see Theorem 4.2) has positive measure in Ω×R2 (see
Proposition 4.7 and Remark 4.8). Our main results, Theorem 6.8 and Corollary
6.9, substitute Ω+ 6= Ω by a stronger condition in order to guarantee that the flow
(Ω×R2, τR,R) is Li-Yorke chaotic; or, more precisely, that its restriction to the
attractor A is Li-Yorke chaotic in a quite strong sense.

To prepare the way, we need some new concepts and related properties. The
concept of continuous primitive is explained in Definition 5.3.

Definition 6.2. We call R(Ω) to the set of continuous functions e : Ω → R
with

∫
Ω
e(ω) dmΩ = 0 which do not admit a continuous primitive and such that

supt≤0

∫ t
0
e(ω·s) ds <∞ for mΩ-a.e. ω ∈ Ω.

The next two results are basically proved in [22], [28] and [11]. We include many
details of the proofs for the reader’s convenience.

Proposition 6.3. Let e : Ω → R be a continuous function with
∫

Ω
e(ω) dmΩ = 0.

Then supt≤0

∫ t
0
e(ω·s) ds <∞ for mΩ-a.e. ω ∈ Ω if and only if supt≥0

∫ t
0
e(ω·s) ds <

∞ for mΩ-almost every ω ∈ Ω.

Proof. Let us assume that supt≤0

∫ t
0
e(ω·s) ds < ∞ for all ω in a set Ω0 with

mΩ(Ω0) = 1, which is clearly σ-invariant. Property
∫

Ω
e(ω) dmΩ = 0 combined
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with the classical recurrence result of [48] and with Fubini’s theorem provides a
σ-invariant set Ωr with mΩ(Ωr) = 1 such that for all ω ∈ Ωr there exists (ln) ↓ −∞
with limn→∞

∫ 0

ln
e(ω·s) ds = 0. Let us define Ωe = Ω0∩ Ωr, take ω0 ∈ Ωe, and

check that supt≥0

∫ t
0
e(ω0·s) ds <∞. We reason by contradiction assuming the ex-

istence of a sequence (tn) ↑ ∞ with limn→∞
∫ tn

0
e(ω0·s) ds = ∞. Since ω0·tn ∈ Ωr

for all n ∈ N, we can find ln < 0 such that 1/n >
∣∣ ∫ 0

ln−tn e(ω0·(tn + s)) ds
∣∣ =∣∣ ∫ tn

ln
e(ω0·s) ds

∣∣. But then limn→∞
∫ 0

ln
e(ω0·s) ds = − limn→∞

∫ tn
0
e(ω0·s) ds =

−∞, which in turn ensures that supt≤0

∫ t
0
e(ω0·s) ds = ∞. This is the sought-for

contradiction. The proof of the converse assertion is analogous. �

Proposition 6.4. Let e : Ω → R be a continuous function with
∫

Ω
e(ω) dm0 = 0.

The following assertions are equivalent:

(1) e ∈ R(Ω).
(2) There exists a σ-invariant set Ωe ⊆ Ω with mΩ(Ωe) = 1 such that, if

ω ∈ Ωe, then supt∈R
∫ t

0
e(ω·s) ds < ∞, inft≤0

∫ t
0
e(ω·s) ds = −∞, and

inft≥0

∫ t
0
e(ω·s) ds = −∞.

(3) There exist a measurable function he : Ω → (−∞, 0] and a σ-invariant set
Ωe ⊆ Ω with mΩ(Ωe) = 1 such that, if ω ∈ Ωe, then he(ω·t) − he(ω) =∫ t

0
e(ω·s) ds for all t ∈ R, supt∈R he(ω·t) < ∞, inft≤0 he(ω·t) = −∞, and

inft≥0 he(ω·t) = −∞.

In addition, in this case, for every ω in a residual subset of Ω there exist four
sequences (tin) with (tin) ↑ ∞ for i = 1, 3 and (tin) ↓ −∞ for i = 2, 4 such that

lim
n→∞

∫ tin

0

e(ω·s) ds = −∞ for i = 1, 2 and lim
n→∞

∫ tin

0

e(ω·s) ds =∞ for i = 3, 4 .

Proof. We begin by assuming that e ∈ R(Ω). Then Proposition 6.3 ensures that

supt∈R
∫ t

0
e(ω·s) ds < ∞ for all ω in a set of full measure Ωe, which is clearly σ-

invariant. Hence inft≤0

∫ t
0
e(ω·s) ds = inft≥0

∫ t
0
e(ω·s) ds = −∞ for all ω ∈ Ωe, since

otherwise e would admit a continuous primitive: see Remark 5.4. This completes
the proof of (1)⇒(2). The converse implication is almost obvious: see the first
assertion in Remark 5.4.

Let us now assume that (2) holds, define h(ω) := − supt∈R
∫ t

0
e(ω·s) ds for all

ω ∈ Ω, and note that −∞ ≤ h(ω) ≤ 0 for all ω ∈ Ω and −∞ < h(ω) ≤ 0 for all

ω ∈ Ωe. It is not hard to check that h(ω·t)− h(ω) =
∫ t

0
e(ω·s) ds. We modify h is

order to take the value 0 on Ω−Ωe and obtain the function he of (3). Conversely,
it is obvious that (3) implies (2).

A detailed proof of the last assertion can be found in Theorem A.2 of [28]. �

The relation between the linear families (4.3) and (5.5), determined by (5.4) and
explained in Remarks 5.5, will be fundamental in what follows. Let us show the
effect of Hypotheses 6.1 on the function e of (5.4).

Proposition 6.5. Suppose that Hypotheses 6.1 hold. Then, the map e = (1/2) trA
belongs to the set R(Ω) of Definition 6.2.

Proof. As explained in Remark 5.5.3, Hypotheses 6.1 ensure that
∫

Ω
e(ω) dmΩ = 0.

Let us fix ω0 ∈ Ω+. Proposition 4.4 ensures that all the solutions of the linear

system (4.3)ω0
are bounded on R−. This and (5.6) yield supt≤0

∫ t
0
e(ω0·s) ds <∞.
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Consequently, either e : Ω→ R admits a continuous primitive, or it belongs toR(Ω).
We will check that inft≤0 detU(t, ω0) = 0, which together with (5.6) ensures that

inft≤0

∫ t
0
e(ω0·s) ds = −∞. This precludes the existence of a continuous primitive

(see Remark 5.4), so that e ∈ R(Ω).
We assume that inft≤0 detU(t, ω0) > 0. Then sups≤0 |U(s, ω0)−1| < ∞. Hence,

supt≤0,s≤0 |U(t, ω0·s)| = supt≤0,s≤0 |U(t+ s, ω0)U(s, ω0)−1| <∞. Therefore, since
{ω0·s | s ≤ 0} is dense in Ω, supt≤0,ω∈Ω |U(t, ω)| < ∞. This means that all the

solutions of all the systems (4.3) are bounded on R− and hence that Ω+ = Ω (see
once more Proposition 4.4). But this contradicts one of the Hypotheses 6.1. �

Out next purpose is to show that Hypotheses 6.1 impose on the family (5.5) one
of the conditions of Theorem 3.4, part of whose proof will be fundamental later.

Theorem 6.6. Suppose that Hypotheses 6.1 holds. Then the flow (Ω×P, σ̃,R)
admits an invariant measure which is equivalent to mΩ×lP.

Proof. Let f be defined by (3.3). According to Remark 5.5.1 and Proposition 2.2
of [39], it is enough to look for a function p : Ω×P → R in L1(Ω×P,mΩ×lP) with
p(ω, θ) > 0 for (mΩ×lP)-a.a. (ω, θ) and such that, for all (ω, θ) ∈ Ω×P and l ∈ R,

p(σ̃(l, ω, θ)) = p(ω, θ) exp
(
−
∫ l

0

∂f

∂θ
(σ̃(s, ω, θ)) ds

)
: (6.1)

if so, p is the density function of a σ̃-invariant measure. Let us define

pt(ω, θ) :=
1

t

∫ 0

−t

(
exp

∫ s

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
ds and p(ω, θ) := lim inf

t→∞
pt(ω, θ)

for (ω, θ) ∈ Ω×P. Our goal is to proof that p satisfies the three mentioned conditions.
We will do it in three steps.

Step 1. We will check that p ∈ L1(Ω×P,mΩ×lP). More precisely, that∫
C
pt(ω, θ) d(mΩ×lP) =

1

t

∫ 0

−t
(mΩ×lP)(σ̃s(C)) ds (6.2)

for any measurable set C ⊆ Ω×P and t ≥ 0. This yields
∫

Ω×P pt(ω, θ) d(mΩ×lP) = 1,
and then, as a consequence of Fatou’s lemma, we obtain

0 ≤
∫

Ω×P
p(ω, θ) d(mΩ×lP) ≤ lim inf

t→∞

∫
Ω×P

pt(ω, θ) d(mΩ×lP) = 1 ,

so that p ∈ L1(Ω×P). Let us take a measurable set C ⊆ Ω×P. The definition of pt,
Fubini’s theorem, and the equality χC (ω, θ) = χ

σ̃l(C)
(σ̃(l, ω, θ)) for all l ∈ R yield∫

Ω×P
pt(ω, θ)χC (ω, θ) d(mΩ×lP)

=
1

t

∫ 0

−t

∫
Ω

∫
P

(
exp

∫ s

0

∂f

∂θ
(σ̃(l, ω, θ)) dl

)
χ
σ̃s(C)

(σ̃(s, ω, θ)) dlP dmΩ ds .

(6.3)

It is easy to deduce from (d/dt) θ̃(t, ω, θ) = f(σ̃(t, ω, θ)) = f((ω·t, θ̃(t, ω, θ)) and

θ̃(0, ω, θ) = θ that (d/dθ) θ̃(s, ω, θ) = exp
(∫ s

0
(∂f/∂θ) (σ̃(l, ω, θ)) dl

)
. In turn, this

implies that∫
P

exp
(∫ s

0

∂f

∂θ
(σ̃(l, ω, θ)) dl

)
χ
σ̃s(C)

(σ̃(s, ω, θ)) dlP =

∫
P
χ
σ̃s(C)

(ω·s, θ) dlP .
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The σ-invariance of m ensures that∫
Ω

∫
P
χ
σ̃s(C)

(ω·s, θ) dlP dmΩ =

∫
Ω

∫
P
χ
σ̃s(C)

(ω, θ) dlP dmΩ = (mΩ×lP)(σ̃s(C)) ,

and this equality and (6.3) show (6.2). The first step is complete.

Step 2. We will now check that p(ω, θ) > 0 for (mΩ× lP)-almost all (ω, θ) ∈
Ω×P. We use the notation established in Remark 5.5.2 and the information that
it provides in order to write

pt(ω, θ) =
1

t

∫ 0

−t

1

r̃ 2
l (s, ω, θ, 1)

ds =
1

t

∫ 0

−t

1

r2
l (s, ω, θ, 1)

exp
(

2

∫ s

0

e(ω·r) dr
)
ds .

We write exp
(
2
∫ s

0
e(ω·r) dr

)
= He(ω·s)/He(ω), for He(ω) = exp (2he(ω)), where

he is the map provided by Propositions 6.5 and 6.4. Note that He(ω) ∈ (0, 1].
Birkhoff’s ergodic theorem ensures that the set of points ω0 of Ω+ for which there

exists limt→∞(1/t)
∫ 0

−tHe(ω0·s) ds =
∫

Ω
He(ω) dmΩ has measure 1. We fix ω0 in

this set and θ0 ∈ P. Then there exists c(ω0,θ0) ≥ 1 such that r2
l (t, ω0, θ0, 1) ≤ c(ω0,θ0)

for all t ≤ 0: see Proposition 4.4. Altogether, we have

pt(ω0, θ0) ≥ 1

c(ω0,θ0)He(ω0)

1

t

∫ 0

−t
He(ω0·s) ds ,

so that

p(ω0, θ0) ≥ 1

c(ω0,θ0)He(ω0)

∫
Ω

He(ω) dmΩ > 0 .

Step 3. We will finally check that p satisfies (6.1). First, we will check that

pt(σ̃(l, ω, θ)) · exp
(∫ l

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
=
t− l
t

pt−l(ω, θ) +
1

t

∫ l

0

exp
(∫ s

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
ds

(6.4)

for 0 < l < t. We call I to the left-hand term in the previous expression. Then,

I : =
1

t

∫ 0

−t
exp

(∫ s

0

∂f

∂θ
(σ̃(l + r, ω, θ)) dr

)
ds · exp

(∫ l

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
=

1

t

∫ 0

−t
exp

(∫ s+l

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
ds

=
t− l
t− l

1

t

∫ l

−t+l
exp

(∫ s

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
ds

=
t− l
t

pt−l(ω, θ) +
1

t

∫ l

0

exp
(∫ s

0

∂f

∂θ
(σ̃(r, ω, θ)) dr

)
ds .

We take lim inf in (6.4) in order to get (6.1) for l > 0. From here we deduce that

p(σ̃(−l, ω, θ)) = p(ω, θ) exp
(∫ l

0

∂f

∂θ
(σ̃(s− l, ω, θ)) ds

)
= p(ω, θ) exp

(
−
∫ −l

0

∂f

∂θ
(σ̃(s, ω, θ)) ds

)
if l > 0, which completes the proof of (6.1), and hence that of the theorem. �
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Some more preliminary work is required before formulating and proving the main

result. Recall that the attractor B̃ for (Ω×P × R, τ̃ ,R) can be written in terms

of the map β̃ as B̃ =
⋃

(ω,θ)∈Ω×P
(
{(ω, θ)} × [0, β̃(ω, θ)]

)
: see Theorem 4.3(i). And

recall that ρ ∈ (0, 1] is the constant appearing in (4.1). We define

(Ω×P)+
l := {(ω, θ) ∈ Ω×P | 0 < sup

t∈R
β̃(σ̃(t, ω, θ)) ≤ ρ} ⊆ (Ω×P)+,

Ω∗ := {ω ∈ Ω | lP(((Ω×P)+
l )ω) = 1} , (6.5)

B̃l := closureΩ×P×[0,ρ]{(ω, θ, r) ∈ B̃ | (ω, θ) ∈ (Ω×P)+
l } ,

Al :=
{(
ω,
[
r sin θ
r cos θ

] )
| (ω, p(θ), r) ∈ B̃l

}
.

Note that B̃l and Al are compact subsets of the global attractors B̃ (for the flow
(Ω×P×R+, τ̃ ,R)) and A (for (Ω× R2, τR,R)) described in Theorems 4.2 and 4.3.

Proposition 6.7. Suppose that Hypotheses 6.1 hold. Then,

(i) the set (Ω×P)+
l is σ̃-invariant and (mΩ×lP)((Ω×P)+

l ) = 1.
(ii) Let Ω∗ and Ω+ be defined by (6.5) and (4.10). Then Ω∗ is σ-invariant,

mΩ(Ω∗) = 1, and Ω∗ ⊆ Ω+.

(iii) For every ω ∈ Ω∗ there exists rω > 0 such that (ω, θ, r) ∈ B̃l for all ω ∈ Ω∗,
θ ∈ P and r ∈ [0, rω]. In particular, the section (Al)ω ⊂ R2 contains the
closed disk centered at the origin and with radius rω > 0 for all ω ∈ Ω∗.

(iv) B̃l is τ̃ -invariant, Al is τR-invariant, and the restrictions of the flows to
these sets are given by the family of linear systems (4.3).

Proof. The set (Ω×P)+
l is composed by σ̃-orbits, so that it is σ̃-invariant. Let µ̃

be the σ̃-invariant measure on Ω×P provided by Theorem 6.6, which we assume
to be normalized. In the case that µ̃ is ergodic, we can repeat the arguments of
Theorem 35 of [11] in order to check that µ̃((Ω×P)+

l ) = 1 (see also Theorem 5.8 of
[12]). The theorem of decomposition into ergodic components (see Theorem 6.4 or
Corollary 6.5 of [32]) ensures that this property also holds in the general case. The
last assertion (i) is an immediate consequence of the first one and the equivalence
of the measures µ̃ and mΩ×lP.

The σ-invariance of Ω∗ follows from the fact that σ̃(t, ω) gives a C1 transforma-
tion of P for each fixed (t, ω), and the property mΩ(Ω∗) = 1 follows from (i) and Fu-

bini’s theorem. Let us define C := {(ω, θ, r) ∈ B̃ | (ω, θ) ∈ (Ω×P)+
l }. We fix ω ∈ Ω∗

and choose θ1 such that (ω, θ1) and (ω, θ2) are in (Ω×P)+
l for θ2 = θ1+π/2. It follows

from the definition of (Ω×P)+
l and Theorem 4.3(ii) that supt∈R r(t, ω, θi, β̃(ω, θi)) ≤

ρ for i = 1, 2, so that r(t, ω, θi, β̃(ω, θi)) = rl(t, ω, θi, β̃(ω, θi)). Let us set rω :=

(1/
√

2) inf(β̃(ω, θ1), β̃(ω, θ2)) > 0 and take any θ ∈ S. Let us write
[

sin θ
cos θ

]
=

c1
[

sin θ1
cos θ1

]
+ c2

[
sin θ2
cos θ2

]
, so that c21 + c22 = 1. Since rω ≤ ρ/

√
2 < ρ, for t close to 0,

r(t, ω, θ, rω) = rl(t, ω, θ, rω) = rω
∣∣yl(t, ω, [ sin θ

cos θ

])∣∣
= rω

∣∣∣yl(t, ω, c1 [ sin θ1
cos θ1

]
+ c2

[
sin θ2
cos θ2

])∣∣∣
≤ rω

(
|c1|

β̃(ω, θ1)
r(t, ω, θ1, β̃(ω, θ1)) +

|c2|
β̃(ω, θ2)

r(t, ω, θ2, β̃(ω, θ2))

)

≤ |c1|+ |c2|√
2

ρ ≤ ρ .
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An easy contradiction argument shows that supt∈R r(t, ω, θ, rω) ≤ ρ. This ensures

that ω ∈ Ω+, so that (ii) holds. It also ensures that (ω, θ, rω) ∈ B̃ for all θ ∈ P. In
particular, (ω, θ, r) ∈ C for all θ ∈ P such that (ω, θ) ∈ (Ω×P)+

l and all r ∈ [0, rω].

Since ω ∈ Ω∗, lP(((Ω×P)+
l )ω) = 1, so that ((Ω×P)+

l )ω is dense in P. Therefore

(ω, θ, r) ∈ B̃l for all θ ∈ P and all r ∈ [0, rω], which is the first assertion in (iii).
The second one follows immediately from the first one and Theorem 4.3.

The σ̃-invariance of (Ω×P)+
l and the τ̃ -invariance of B̃ ensure that the set C is

τ̃ -invariant, which in turn guarantees the invariance of the sets B̃l and Al. And the

last assertion in (iv) follows from r(t, ω, θ, t) ≤ ρ for all (ω, θ, r) ∈ B̃l. �

In order to formulate our main result, we define

Ω0 := {ω ∈ Ω | β̃(ω, θ) = 0 for all θ ∈ P} ⊆ Ω− Ω+. (6.6)

It is obvious that if Ω0 is nonempty then the condition Ω+ 6= Ω, included in Hy-
potheses 6.1, holds. But the converse property cannot be guaranteed: see Remark
4.5.1. So, the conditions we have assumed so far do not guarantee that Ω0 is
nonempty. However this stronger requirement will be imposed in the formulation
of our main result. At the end of the section we will show that these hypothe-
ses are fulfilled in some situations which are easy to describe. For now, we recall
once again that the condition (mΩ×lR2)(A) > 0 is equivalent to mΩ(Ω+) = 1: see
Proposition 4.7 and Remark 4.8. All this means that Hypotheses 6.1 are included
in those of the next results.

Theorem 6.8. Suppose that ΣA = {0}, that (mΩ× lR2
)(A) > 0, and that the

set Ω0 given by (6.6) is nonempty. Then there exists a σ-invariant set Ω0 ⊆ Ω
with mΩ(Ω0) = 1 such that lR2((Al)ω) > 0 for all ω ∈ Ω0, and such that any two

different points
(
ω,
[
r1 sin θ1
r1 cos θ1

])
,
(
ω,
[
r2 sin θ2
r2 cos θ2

])
of Al form a Li-Yorke pair for the

flow τR whenever ω ∈ Ω0.

Proof. Let
[
ri sin θi
ri cos θi

]
for i = 1, 2 be two different points of (Al)ω, and let us call

θ̄i = p(θi) ∈ P. Note that ri ≤ β̃(ω, θ̄i). We take ω̃0 ∈ Ω0 and look for (tn) ↑ ∞
with ω̃0 = limn→∞ ω·tn and such that there exist θ̄0

i := limn→∞ θ̃(tn, ω, θ̄i) for
i = 1, 2. Then

0 ≤ lim sup
n→∞

rl(tn, ω, θi, ri) = lim sup
n→∞

r(tn, ω, θi, ri) = lim sup
n→∞

r(tn, ω, θ̄i, ri)

≤ lim sup
n→∞

r(tn, ω, θ̄i, β̃(ω, θ̄i)) = lim sup
n→∞

β̃(σ̃(tn, ω, θ̄i)) ≤ β̃(ω̃0, θ̄
0
i ) = 0

for i = 1, 2. Here we have used Proposition 6.7(iv), (4.7), the monotonicity of the

flow τ̃ , Theorem 4.3(ii), the semicontinuity of β̃ also ensured by Theorem 4.3, and
the definition of Ω0. Consequently,

lim inf
t→∞

distR2

(
y
(
t, ω,

[
r1 sin θ1
r1 cos θ1

])
,y
(
t, ω,

[
r2 sin θ2
r2 cos θ2

]))
= 0 .

The goal is hence to find a σ-invariant set Ω0 with mΩ(Ω0) = 1 such that two
conditions hold for all ω ∈ Ω0: lR2((Al)ω) > 0, and

lim sup
t→∞

distR2

(
y
(
t, ω,

[
r1 sin θ1
r1 cos θ1

])
,y
(
t, ω,

[
r2 sin θ2
r2 cos θ2

]))
> 0

whenever
[
r1 sin θ1
r1 cos θ1

]
and

[
r2 sin θ2
r2 cos θ2

]
belong to (Al)ω. Note that the first condition

will be guaranteed by Proposition 6.7(iii) if we take (as we will do) Ω0 contained in
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the set Ω∗ given by (6.5), which satisfies Ω∗ ⊆ Ω+ and mΩ(Ω∗) = 1; and that the
second condition is equivalent to

lim sup
t→∞

distR2

(
yl
(
t, ω,

[
r1 sin θ1
r1 cos θ1

])
,yl
(
t, ω,

[
r2 sin θ2
r2 cos θ2

]))
> 0 (6.7)

whenever
[
r1 sin θ1
r1 cos θ1

]
and

[
r2 sin θ2
r2 cos θ2

]
belong to (Al)ω, as Proposition 6.7(iv) ensures.

Recall that our hypotheses guarantee that mΩ(Ω+) = 1 and Ω+ 6= Ω. Hence the
map e = (1/2) trA satisfies the assertions of Propositions 6.5 and 6.4. In addition,

the Saker and Sell spectrum of the family of systems (5.5) given by Ã = A− e I2 is
{0} (see Remark 5.5.3). Hence we can distinguish two cases: either all the solutions
of all the systems (5.5) are bounded, or the family is in the weakly elliptic case.

Case 1. We begin by assuming that all the solutions of all the systems (5.5) are
bounded, hypothesis which we will use twice later. Remark 5.5.2 ensures that

rl(t, ω, θi, ri) = ri r̃l(t, ω, θi, 1) exp

(∫ t

0

e(ω·s) ds
)

= ri r̃l(t, ω, θi, 1)
exp(he(ω·t))
exp(he(ω))

for i = 1, 2 if ω ∈ Ω∗ ⊆ Ω+, where he is given by Propositions 6.5 and 6.4.
Lusin’s theorem provides a compact set K ⊂ Ω with mΩ(K) > 0 such that he
is continuous on K, and Birkhoff’s ergodic theorem ensures that the σ-invariant
set Ω0 ⊆ Ω∗ of points ω for which there exists (sn) ↑ ∞ with ω·sn ∈ K for
all n ≥ 0 satisfies mΩ(Ω0) = 1. We take ω ∈ Ω0 and two different points[
ri sin θi
ri cos θi

]
of (Al)ω. We also take (sn) ↑ ∞ with ω·sn ∈ K such that there exist

(ω0, θ
0
i ) := limn→∞(ω·sn, θ̂(sn, ω, θi)). All the solutions of all the systems (5.5) are

also bounded away from zero: the determinant of the fundamental matrix solution
of (5.5) is 1 (see (2.9)), so that its inverse is also globally bounded. Hence the two
sequences (r̃l(sn, ω, θi, 1)) are contained in an interval [κ1, κ2] ⊂ (0,∞). So, there
is no restriction in assuming that there exist r̄i := limn→∞ r̃l(sn, ω, θi, 1) > 0, and
there also exist r∗i := limn→∞ rl(sn, ω, θi, ri) = ri r̄i exp(he(ω0))/ exp(he(ω)) with
r∗i 6= 0 if ri 6= 0.

The assumed boundedness also ensures that the flow (Ω× S, σ̂,R) (see Re-
mark 5.5.1) is distal (see e.g. the proof of Theorem 3.1 of [39]). Consequently,

limn→∞ distS
(
θ̂(sn, ω, θ1), θ̂(s2, ω, θ2)

)
> 0 if θ1 6= θ2, so that (6.7) holds in this

case. If, on the contrary, θ1 = θ2, we have r1 6= r2 and r̄1 = r̄2, which ensures that
r∗1 6= r∗2 and hence that (6.7) also holds.

Case 2. Now we assume that the family (5.5) is weakly elliptic. This fact
and Theorem 6.6 ensure that all the hypotheses of Theorem 3.4 hold. As at the
beginning of step 2 in its proof, we choose a σ̂-minimal setM⊆ Ω×S and consider

the flow (M×S, ϑ̂M,R). We also fix a σ̂-ergodic measure mM concentrated onM.
Let K ⊆ M be the compact set with mM(K) > 1/2 described in Remark 3.5. It
follows from Proposition 6.7(i) that C0 := (K×S1)∩{(ω, θ1, θ) ∈M×S | (ω, p(θ)) ∈
(Ω×P)+

l } satisfies (mM× lS)(C0) = mM(K) > 1/2. Let us define β̂∗ : M× S →
[0, ρ], (ω, θ1, θ) 7→ β̃(ω, p(θ)). Lusin’s theorem provides a compact set C1 ⊆ C0

with (mM×lS)(C1) > 1/2 such that the restriction of β̂∗ to C1 is continuous. The

definitions of (Ω×P)+
l and β̃ ensure that β̂∗(ω, θ

1, θ) = β̃(ω, p(θ)) ∈ (0, ρ] for all

(ω, θ1, θ) ∈ C1, and hence that β∗ := inf(ω,θ1,θ)∈C1 β̂∗(ω, θ
1, θ) ∈ (0, ρ]. In addition,

the set M1 := {(ω, θ1) ∈ M| lS(C1
(ω,θ1)) > 1/2} satisfies mM(M1) > 0, since

(mM×lS)(C1) > 1/2. It is clear thatM1 ⊆ K. It is also clear that, if (ω, θ1) ∈M1,
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we can find θ1 ∈ S such that the points (ω, θ1, θ1) and (ω, θ1, θ2) belong to C1 for

θ2 = θ1 + π/2. As in the proof of Proposition 6.7(iii), we check that β̂∗(ω, θ
1, θ) ≥

β∗/
√

2 for all θ ∈ S1. That is,

β̃(ω, θ) ≥ β∗/
√

2 for all θ ∈ P if there exists θ1∈ S with (ω, θ1) ∈M1 . (6.8)

It follows form Birkhoff’s ergodic theorem that the σ̂-invariant set M2 of points
(ω, θ1) ∈ M for which there exists a sequence (tn) ↑ ∞ with σ̂(tn, ω, θ

1) ∈ M1 for
all n ≥ 0 satisfies mM(M2) > 0. Since mM is σ̂-ergodic, mM(M1) = 1.

Now we define Ω0 as the projection of M1 on Ω intersected with the set Ω∗

defined by (6.5), so that Ω0 is σ-invariant, mΩ(Ω0) = 1, and lR2((Al)ω) > 0 for all
ω ∈ Ω0. We fix ω ∈ Ω0, look for θ1 ∈ S with (ω, θ1) ∈ M2, and take θ1, θ2 ∈ S
and r1, r2 ≥ 0 such that

(
ω,
[
r1 sin θ1
r1 cos θ1

])
and

(
ω,
[
r2 sin θ2
r2 cos θ2

])
are two different points

of Al. Our goal is to prove (6.7).
We fix a sequence of positive numbers (tn) ↑ ∞ with σ̂(tn, ω, θ

1) ∈ M1 for all
n ≥ 0. Since M1 ⊆ K, using the notation established in Remark 3.5 we have

distS(θ̂M(tn, ω, θ
1, θ1), θ̂M(tn, ω, θ

1, θ2)) ≥ d(η1, η2) ,

where η1 and η2 are determined by (ω, θ1, θi) ∈ Sηi for i = 1, 2, and d(η1, η2) :=

inf(ω,θ1)∈K distP(ϕη1(ω, θ1), ϕη2(ω, θ1)). Here θ̂M is the fiber component of the

skew-product flow (M× S, ϑ̂M,R), which agrees with that of (Ω×S, σ̂,R). Hence,

distS(θ̂(tn, ω, θ1), θ̂(tn, ω, θ2)) ≥ d(η1, η2) . (6.9)

On the other hand, rl(tn, ω, p(θi), ri) = (ri/β̃(ω, p(θi)) rl(tn, ω, p(θi), β̃(ω, p(θi)) and

rl(tn, ω, p(θi), β̃(ω, p(θi)) ≥ r(tn, ω, p(θi), β̃(ω, p(θi)) (since g ≥ g − kρ and tn > 0).
Therefore, Theorem 4.3(ii) and (6.8) yield

lim sup
n→∞

rl(tn, ω, θi, ri) ≥
ri

β̃(ω, p(θi))
lim sup
n→∞

β̃(σ̃(tn, ω, p(θi))) ≥
ri β
∗

√
2 β̃(ω, p(θi))

> 0

if ri 6= 0. Since r1 and r2 cannot be simultaneously 0, there is no restriction in
assuming that

r∞1 := lim sup
n→∞

rl(tn, ω, θi, r1) > 0 .

Suppose now that θ1 6= θ2. Then η1 6= η2, so that d(η1, η2) > 0 and (6.9) yields

distS(θ̂(tn, ω, θ1), θ̂(tn, ω, θ2)) > 0. Hence (6.7) holds unless limn→∞ r(tn, ω, θi, ri) =
0 for i = 1, 2, which is not the case. Hence the condition (6.7) holds in this case.
If, on the contrary, θ1 = θ2, then r1 6= r2 and

lim sup
n→∞

distR2

(
yl
(
tn, ω,

[
r1 sin θ1
r1 cos θ1

])
,yl
(
tn, ω,

[
r2 sin θ1
r2 cos θ1

]))
= lim sup

n→∞
|rl(tn, ω, θ1, r1)− rl(tn, ω, θ1, r2)| = |r∞1 − (r2/r1)r∞1 | > 0 ,

so that (6.7) also holds in this case. The proof is complete.
�

The information provided by Proposition 6.7, Theorem 6.8 and Proposition 4.6
leads us to:

Corollary 6.9. Suppose that ΣA = {0}, that (mΩ× lR2)(A) > 0, and that the
set Ω0 given by (6.6) is nonempty. Then the restricted flow (A, τR,R) is Li-Yorke
fiber-chaotic in measure. And, in addition, there exists a σ-invariant residual set
of points of Ω for which the section Aω is given by {0}.
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Let us now analyse the hypotheses we have worked with in this section. All its
results require Hypotheses 6.1. In particular, according to Proposition 6.5, the map
e = (1/2) trA must belong to the set R(Ω) of Definition 6.2. How restrictive is this
condition? The set R(Ω) is a subset of the set of continuous functions with mean
value zero which admit a measurable primitive, which is known to be (at least in
the case of minimal almost periodic base flow) of the first Baire category: this is
proved by Johnson in [20], and it is expected to be true in more general settings.
Therefore R(Ω) is not a “large” set, at least from a topological point of view. As a
matter of fact, R(Ω) is empty in the autonomous and periodic cases. However it is
nonempty for more complex nonautonomous cases: there are well known examples
of functions e ∈ R(Ω). For instance, Johnson shows in [22] that this is the case for
an example based in a previous one constructed by Anosov in [5]. The main ideas
of the description of this example in [22] are used by Ortega and Tarallo in [40] in
order to optimize the construction of functions with these characteristics. In both
cases, (Ω, σ,R) is a minimal quasi periodic but not periodic flow. And recently
Campos et al. [10] have shown the existence of elements of R(Ω) whenever the
base flow is nonperiodic, uniquely ergodic and minimal.

The condition e ∈ R(Ω) does not suffice to guarantee Hypothesis 6.1, or the
more restrictive conditions of Theorem 6.8 and Corollary 6.9. However,

Proposition 6.10. Suppose that e ∈ R(Ω), that Ã : Ω → M2×2(R) is continuous

and with tr Ã = 0, and that all the solutions of all the systems y′ = Ã(ω·t) y are
bounded. Let kρ : R+ → R+ be given by (4.1). Then the family of systems

y′ =
(
Ã(ω·t) + e(ω·t) I2

)
y − kρ(|y|) y (6.10)

satisfies the hypotheses of Theorem 6.8 and Corollary 6.9.

Proof. Let us call A := Ã + e I2. With the notation established in Remark 5.5.2,

rl(t, ω, θ, 1) = r̃l(t, ω, θ, 1) exp
(∫ t

0
e(ω·s) ds

)
. This relation and Proposition 6.4 have

two consequences. The first one is that the solutions of the systems y′ = A(ω·t) y
are bounded for all ω in a σ-invariant set of full measure. In particular, ΣA = {0}
(see Theorem 2.8) and mΩ(Ω+) = 1 (see Proposition 4.4), so that (mΩ×lR2)(A) > 0
(see Proposition 4.7 and Remark 4.8). The second consequence is that all the
nonzero solutions of the systems y′ = A(ω·t) y are unbounded on (−∞, 0] for ω
in a residual subset of Ω. (Here we are using that the functions r̃l(t, ω, θ, 1) are
bounded away from 0: see e.g. case 1 in the proof of Theorem 6.8.) This property
and Proposition 4.4 ensure that the set Ω0 given by (6.6) contains a residual set. �

Remark 6.11. The hypotheses of Theorem 6.8 and Corollary 6.9 are also fulfilled

by some families of systems of the form (6.10) with e ∈ R(Ω) and y′ = Ã(ω·t) y in
the weakly elliptic case (see Definition 3.1). For instance, we take e ∈ R(Ω) and

Ã =
[
e/2 0
0 −e/2

]
, call A := e I2 + Ã, and note that

U(t, ω) =

[
exp(

∫ t
0
(3e(ω·s)/2) ds) 0

0 exp(
∫ t

0
(e(ω·s)/2) ds)

]
is the fundamental matrix solution of y′ = A(ω·t) y. It follows from Theorem 2.8
that ΣA = {0}. In addition, the solutions of the systems corresponding to the
set Ωe given by Proposition 6.4 are bounded, so that mΩ(Ω+) = 1; and all the
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nonzero solutions of the systems corresponding to a residual subset of Ω, also given
by Proposition 6.4, are unbounded, so that the set Ω0 is nonempty.

We conclude by recalling that the carried-on analysis gives rise to examples fitting
in what we called nonautonomous Hopf bifurcation pattern with zero spectrum in
the Introduction. To construct one of these examples it is enough to take a family of
systems of the form (6.10) satisfying the hypotheses of Theorem 6.8 and Corollary
6.9 (as those provided by Proposition 6.10 and Remark 6.11), and to consider the
one-parametric family of families of ODEs

y′ =
(
Ã(ω·t) + (e(ω·t) + ε) I2

)
y − kρ(|y|) y

for ω ∈ Ω and ε ∈ R. The Sacker and Sell spectrum of the associated linear family
given by ε is {ε}. Hence, if ε < 0, the global attractor A is Ω× {0}; and if ε > 0,
then A contains a set Ω×{y ∈ R2 | |y| ≤ β} for a β > 0 and, as a matter of fact, it
is homeomorphic to this set. These assertions follow from the discussion carried-on
in Section 5. Finally, the situation at the bifurcation point ε = 0 is that described
in Theorem 6.8 and Corollary 6.9, with the occurrence of Li-Yorke chaos.
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[6] K. Bjerklöv, R. Johnson, Minimal subsets of projective flows, Discrete Contin. Dynam.

Systems, Ser. B 9 (3-4) (2008), 493–516.

[7] F. Blanchard, E. Glasner, S. Kolyada, A. Maass, On Li-Yorke pairs, J. Reine Angew Math.
547 (2002), 51-68.

[8] B. Braaksma, H. Broer, On a quasi-periodic Hopf bifurcation, Ann. Inst. H. Poincare Anal.

Non Lineaire 4 (1987), 115–168.
[9] B. Braaksma, H. Broer, G. Huitema, Toward a quasi-periodic bifurcation theory, Memoirs

Amer. Math. Soc. 83 (1990), 83–167.

[10] J. Campos, R. Obaya, M. Tarallo, Measurable unbounded primitive on minimal set. Appli-
cation to nonautonomous chaotic dynamics. Work in progress.

[11] T. Caraballo, J. Langa, R. Obaya, Pullback, forwards and chaotic dynamics in 1-D non-
autonomous linear-dissipative equations, Nonlinearity 30 (1) (2017), 274–299.

[12] T. Caraballo, J. Langa, R. Obaya, A.M. Sanz, Global and cocycle attractors for non-

autonomous reaction-diffusion equations. The case of null upper Lyapunov exponent, J.
Differential Equations 265 (2018), 3914–3951.

[13] A. Carvalho, J. Langa, J. Robinson, Attractors for Infinite-dimensional Non-autonomous

Dynamical Systems, Appl. Math. Sci. 182, Springer, 2013.
[14] R. Fabbri, R. Johnson, F. Mantellini, A nonautonomous saddle-node bifurcation pattern,

Stoch. Dyn. 4 (3) (2004), 335–350.
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Departamento de Matemática Aplicada, Universidad de Valladolid, Paseo del Cauce

59, 47011 Valladolid, Spain
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