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Abstract

It is widely recognised that poverty is a multidimensional phenomenon involving not

only income, but also other aspects such as education or health. In this multidimensional

setting, analysing the dependence between dimensions becomes an important issue, since a

high degree of dependence could exacerbate poverty. In this paper, we propose measuring

the multivariate dependence between the dimensions of poverty in Europe using copula-

based methods. This approach focuses on the positions of individuals across dimensions,

allowing for other types of dependence beyond linear correlation. In particular, we analyse

how orthant dependence between the dimensions of the AROPE rate has evolved in the

EU-28 countries between 2008 and 2014 by applying non-parametric estimates of multi-

variate copula-based generalisations of Spearman’s rank correlation coefficient. We find a

general increase in the dependence between dimensions, regardless of the coefficient used.
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Moreover, countries with higher AROPE rates also tend to experiment more dependence

between its dimensions.
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1 Introduction

There is a widespread agreement that poverty is a multidimensional phenomenon involving not

only low incomes, but also deprivations in other dimensions such as education, health or labour;

see, for instance, Sen (1985, 1987). Because of that, attention has been increasingly focused

on multidimensional approaches to the analysis of poverty, to the point where the European

Union (EU), for example, has adopted a multidimensional poverty and social exclusion index

as a tool to monitor and implement effective poverty-reduction policies in the framework of

the Europe 2020 Strategy. The index at hand, namely the AROPE (At Risk Of Poverty or

social Exclusion) rate, is based on three measures: relative income poverty, material deprivation

and work intensity. Also, the United Nation Development Program (UNDP) adopted, in 2010,

the Multidimensional Poverty Index (MPI), which is based on the Alkire and Foster (2011)

proposal. This index also considers three dimensions: education, health and standard of living.

Based on these indices (or any other multivariate indicator), several authors examined the

incidence and intensity of multidimensional poverty in developed and non-developed countries;

see, for instance, the contributions of Nolan and Whelan (2011), Whelan et al. (2014), Alkire

and Apablaza (2016), White (2017) and Atkinson et al. (2017), in the European context.

However, many of the multidimensional poverty indices, especially some of the most widely

used, such as the AROPE rate and the MPI, are not sufficiently sensitive to the possible

interrelation between the dimensions of poverty. Therefore, they could miss an important
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part of the picture; see Duclos and Tiberti (2016). In this context, several authors argue

that incorporating those relationships can be relevant, since higher dependence means higher

concentration of deprivations and this could make overall poverty worse; see, for instance,

Atkinson and Bourguignon (1982), Bourguignon and Chakravarty (2003), Duclos et al. (2006),

Seth (2013) and Ferreira and Lugo (2013). In spite of its relevance, the problem of measuring

the dependence between dimensions of poverty has been scarcely addressed in the literature

and this is the scope of this paper. Noticeably, as we face a problem of studying dependence

in a multivariate context, special care is required, since the step from two dimensions to three

(or more) dimensions is not so obvious. Actually, as Durante et al. (2014) show, some bivariate

dependence properties are not preserved in higher dimensions.

In this framework, we propose complementing the analysis based on poverty indices by mea-

suring the multivariate dependence among poverty dimensions using copula-based methods.

The copula approach focuses on the positions of the individuals across dimensions, rather than

on the specific values that those dimensions attain for such individuals. This approach has

several advantages. First, it enables the decomposition of the joint distribution function of all

dimensions into its univariate marginals and the dependence structure, which is captured by

the copula. Nevertheless, as Genest and Nešlehová (2007) point out, the copula alone does

not characterize the dependence in the discrete case. Second, copulas allow building scaled-

free measures of dependence that capture other types of dependence beyond linear correlation.

Actually, the well-known Spearman’s rho and other related measures of bivariate association

can be expressed in terms of copulas. Third, the copula approach facilitates the construction

of multivariate generalisations of bivariate association coefficients, although the generalisation

is not unique in some cases (see Section 2). Furthermore, dominance tests are also possible to

establish copula-based orderings of dependence; see Decancq (2012) and the references therein.

This would allow to rank pairs of multivariate distributions and perform full comparisons be-

tween two societies. However, as Decancq (2014) points out, this ordering could be ‘indecisive’
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in many cases, meaning that the societies cannot be ranked with respect to the dependence

between the poverty dimensions considered. To overcome this drawback, one may prefer using

copula-based dependence measures that can rank the distributions being compared. This is the

approach we adopt in this paper.

Applications of copula-based methods in welfare economics in a bivariate setting date back to

Dardanoni and Lambert (2001), Quinn (2007) and Bø et al. (2012); see also the recent contribu-

tion of Aaberge et al. (2018). In a multidimensional framework, the first contribution employing

copula-based methods in welfare economics is Decancq (2014). He analysed the temporal evolu-

tion of well-being in Russia by means of a multivariate Kendall’s tau and a multivariate version

of Spearman’s rho applied to the dimensions included in the Human Development Index (HDI).

Pérez and Prieto (2015) extended Decancq’s results by considering other multivariate versions

of Spearman’s rho to study how the dependence between the dimensions of the AROPE rate has

evolved in Spain over the period 2009-2013. Also, Pérez and Prieto-Alaiz (2016a) analysed the

multivariate dependence between the dimensions of the HDI using data from 187 countries and

three copula-based measures of multivariate association: Spearman’s footrule, Gini’s gamma

and Spearman’s rho.

The contribution of this paper is twofold. First, we consider multivariate extensions of Spear-

man’s rho proposed by Nelsen (1996, 2002), which allow to capture some types of dependence

which are essential in poverty analysis, namely those based on orthant dependence. Particularly

useful is the coefficient based on lower orthant dependence, as it could measure the propensity

of being simultaneously low-ranked in all dimensions of poverty. We also consider the general-

izations of these coefficients to possibly non-continuous multivariate distributions proposed by

Quessy (2009) and Mesfioui and Quessy (2010). Second, we apply these coefficients to perform

cross-country and temporal comparisons of the multivariate dependence between the dimen-

sions of the AROPE rate in the EU-28 countries over the period 2008-2014. As far as we know,

this is the first time that these copula-based measures are applied in the European context.
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The data we use comes from the EU-Statistics on Income and Living Conditions (EU-SILC)

survey, which is the EU reference source for comparative statistics on income distribution and

social inclusion at the European level. Our analysis complements the information on the inci-

dence of multidimensional poverty, given by the AROPE rate, with information on the degree

of multivariate dependence between its dimensions. In particular, we find that, in most EU

countries, there has been an increase in the dependence between poverty dimensions over the

period analysed. Noticeably, the highest increase corresponds to Spain, one of the countries

most severely hit by the last economic crisis. Moreover, over all the years considered, the max-

imal dependence is generally found in the lower part of the joint distribution. These results

imply that small values of income, no-material deprivation and work intensity tend to occur

together, and this is more likely in 2014 than in 2008. We also detect strong dependence in

the upper orthant of the joint distribution, suggesting that, after the crisis, most EU countries

have become more polarised. Finally, we find that countries with higher AROPE rates also

tend to experiment more dependence between its dimensions.

The rest of the paper is organised as follows. Section 2 summarises the basic properties of cop-

ulas and describes orthant dependence concepts. It also introduces copula-based multivariate

versions of Spearman’s rho coefficient and discusses how to estimate them non-parametrically

using the empirical copula. New properties of the estimators considered are also included.

Section 3 illustrates the use of these tools to measure how the dependence between the three

indicators of the AROPE rate has evolved in the EU-28 countries over the period 2008-2014.

Section 4 concludes the paper with a summary of the main results.
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2 Methodology

2.1 Copulas and orthant dependence

Copulas are joint distribution functions whose one-dimensional margins are uniform on I =[0, 1].

More precisely, a d−dimensional copula C is a multivariate distribution function C : Id → I

defined for every u = (u1, . . . , ud) ∈ Id as C(u) = p(U ≤ u) = p(U1 ≤ u1, . . . , Ud ≤ ud),

where Ui is U(0, 1), for i = 1, ..., d.1 The importance of copulas in statistics relies on the Sklar’s

theorem (Sklar, 1959). This theorem establishes that, if X = (X1, ..., Xd) is a d−dimensional

random vector with joint distribution function F (x) = F (x1, ..., xd) = p(X1 ≤ x1, ..., Xd ≤ xd)

and univariate marginal distribution functions Fi(xi) = p(Xi ≤ xi), for i = 1, ..., d, then there

exists a copula C such that, for all x = (x1, . . . , xd) ∈ Rd, F can be represented as

F (x) = C(F1(x1), ..., Fd(xd)). (1)

Hence, copulas are functions that join or “couple” multivariate distribution functions to their

one-dimensional marginal distribution functions. If the margins F1, ..., Fd are all continuous,

the copula C in (1) is unique; otherwise C is uniquely determined on RanF1 × ... × RanFd.

Conversely, if C is a d−copula and F1, ..., Fd are univariate distribution functions, the function

F defined in (1) is a joint distribution function with margins F1, ..., Fd. Throughout this section,

we generally assume that F1, ..., Fd are all continuous, although some issues arising when dealing

with possibly non-continuous variables will be duly pointed out.

In a multidimensional poverty setting, the random vector X represents the relevant d dimensions

of poverty for a population and the transformed variables Ui = Fi(Xi), with i = 1, . . . , d, attach

to each individual in the population its relative position in all dimensions. For instance, an

individual with position vector (1, . . . , 1) will be top-ranked in all dimensions. Each random

1An equivalent definition of a multivariate copula can be found in Nelsen (2006, p. 45)
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variable Ui is U(0, 1) and the joint distribution of the vector U = (U1, ..., Ud) is the copula C

defined above. Therefore, for a given real vector u ∈ Id, the value C(u) represents the proportion

of individuals in the population with positions outranked by u. For instance, C(0.25, ..., 0.25)

will represent the probability that a randomly selected individual is simultaneously in the 1st

quartile (“low ranked”) in all dimensions, i.e., in our setting, it will be the probability that

he/she is simultaneously “poor” in all dimensions.

Any copula C satisfies the Fréchet-Hoeffding bounds inequality

W (u) ≤ C(u) ≤M(u),

for every u ∈ Id, where W (u) = max(u1 + · · ·+ud− d+ 1, 0) and M(u) = min(u1, . . . , ud). M

is always a copula and represents maximal dependence, i.e. the case when each of the random

variables X1, ..., Xd is almost surely a strictly increasing function of any of the others (the

outcomes in all dimensions are ordered in the same way). W is only a copula if d = 2, in which

case it represents perfect negative dependence. Another important copula is the independent

copula, defined as Π(u) = u1 × · · · × ud, which accounts for the case where the variables

X1, . . . , Xd are independent.

Finally, if U = (U1, ..., Ud) is a random vector of variables U(0, 1) whose joint distribution

function is the copula C, the survival function C : Id → I is defined as:

C(u) = p(U > u) = p(U1 > u1, . . . , Ud > ud).

In our setting, for instance, C(0.75, ..., 0.75) will represent the probability that a randomly

selected individual is simultaneously in the 4th quartile (“top ranked”) in all dimensions, i.e.,

the probability that he/she is simultaneously “rich” in all dimensions. In general, C is not a

copula. Moreover, if U1, ..., Ud are independent random variables, then its survival function is

Π(u) = (1− u1)× · · · × (1− ud). For a comprehensive review of copulas, see Nelsen (2006).
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In this paper, we use copulas to study measures of multivariate association derived from multi-

variate dependence concepts. The notions of dependence in the multivariate case can be defined

in different ways. The one we handle in this paper is orthant dependence and it is defined as

follows (Nelsen, 2006):

• X is positively lower orthant dependent (PLOD) if C(u) ≥ Π(u), for each u ∈ Id, that

is, if the probability that the variables X1, ..., Xd are simultaneously small is at least as

great as it would be were they independent.

• X is positively upper orthant dependent (PUOD) if C(u) ≥ Π(u), for each u ∈ Id, that

is, if the probability that the variables X1, ..., Xd are simultaneously large is at least as

great as it would be were they independent.

• X is positively orthant dependent (POD) if both inequalities hold.

The corresponding negative concepts (NLOD, NUOD and NOD) are defined by reversing the

sense of the inequalities above. For d = 2, PLOD and PUOD are the same and reduce to

POD. Obviously, the same reduction occurs with the analogous negative concepts. For poverty

analysis, lower orthant dependece will be the more relevant concept.

In this framework, the differences [C(u)−Π(u)] and [C(u)−Π(u)] can be regarded as measures

of “local” lower and upper orthant dependence, respectively; see Nelsen (1996). Accordingly,

the copula-based measures of multivariate association to be introduced in next Section are

based on these differences.

2.2 Copula-based multivariate extentions of Spearman’s rho

One of the best-known measures of association between two random variables X1 and X2 is

Spearman’s rank correlation coefficient, also known as Spearman’s rho (ρS). This measure,
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which is the correlation coefficient of the transformed random variables F1(X1) and F2(X2),

can be expressed in terms of their copula C as follows (Nelsen, 1991):

ρS = 12

∫
I2
C(u1, u2)du1du2 − 3 = 12

∫
I2
u1u2dC(u1, u2)− 3. (2)

When we move to a multivariate setting, several extensions of Spearman’s rho can be found

in the literature. The first copula-based generalisation of bivariate Spearman’s rho, due to

Wolff (1980) and Nelsen (1996), is a multivariate extension of the left-hand side expression in

equation (2) and is defined as:

ρ−d =
2d(d+ 1)

2d − (d+ 1)

∫
Id

[C(u)− Π(u)]dΠ(u) =
(d+ 1)

2d − (d+ 1)

[
2d
∫
Id
C(u)dΠ(u)− 1

]
. (3)

Following Nelsen (1996), ρ−d can be regarded as a multivariate measure of average lower orthant

dependence. In fact, ρ−d assesses, to some extent, the similarity between our multivariate data

X (represented by its copula C) and the situation of independence (represented by copula Π)

in the lower orthant.

In a similar fashion, Nelsen (1996) defined a second generalisation of Spearman’s rho, derived

from average upper orthant dependence. This measure, which is a multivariate extension of

the right-hand side expression in equation (2), is given by:

ρ+d =
2d(d+ 1)

2d − (d+ 1)

∫
Id

[C(u)− Π(u)]dΠ(u) =
(d+ 1)

2d − (d+ 1)

[
2d
∫
Id

Π(u)dC(u)− 1

]
. (4)

From this expression, ρ+d could be thought of as the normalised average difference between C –

representing the behaviour of our data in the upper orthant – and Π – representing independence

in such orthant.

The third copula-based multivariate version of Spearman’s rho, due to Nelsen (2002), is the
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average of the two generalizations described above, namely:

ρd =
ρ−d + ρ+d

2
=

(d+ 1)

2d − (d+ 1)

[
2d−1

(∫
Id
C(u)dΠ(u) +

∫
Id

Π(u)dC(u)

)
− 1

]
. (5)

This coefficient ρd is further discussed in Dolati and Úbeda-Flores (2006) as an example of

Average Orthant Dependence (AOD) measure of multivariate concordance. See also Taylor

(2007).

When the distribution of X is radially symmetric, it follows that ρ−d = ρ+d = ρd. Moreover, if

X is PLOD (NLOD) then ρ−d ≥ 0 (ρ−d ≤ 0); if X is PUOD (NUOD) then ρ+d ≥ 0 (ρ+d ≤ 0);

and if X is POD (NOD) then ρd ≥ 0 (ρd ≤ 0). Furthermore, when the copula of X is the

upper bound M , the three measures defined above attain their maximum value, 1, and they

all become zero when the components of X are independent (C = Π). A lower bound for the

three of them is [2d − (d+ 1)!]/{d![2d − (d+ 1)]}; see Nelsen (1996).

Noticeably, for d = 2, the three coefficients above, ρ−2 , ρ+2 and ρ2, reduce to bivariate Spearman’s

rho defined in (2). Furthermore, in the trivariate case (d = 3), ρ3 becomes the average of the

three pairwise Spearman’s rho coefficients, that is:

ρ3 =
ρ−3 + ρ+3

2
=
ρ12 + ρ13 + ρ23

3
, (6)

where ρik denotes the pairwise Spearman’s rho coefficient for the bivariate random variable

(Xi, Xk), with 1 ≤ i < k ≤ 3; see Nelsen (1996). Moreover, in the trivariate case, Nelsen

and Úbeda-Flores (2012) and Garćıa et al. (2013) develop other copula-based coefficients of

dependence that include, as particular cases, ρ−3 and ρ+3 ; see Appendix 2.

The advantage of ρ−d and ρ+d is that they are capable of revealing some forms of dependence that

ρd fails to detect. See, for instance, Example 1 in Nelsen and Úbeda-Flores (2012) where ρ3 = 0,

presumably indicating no dependence, whereas ρ+3 and ρ−3 are different from 0, indicating some

degree of upper and lower average orthant dependence, respectively. See also Example 2 in
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Nelsen (1996).

The dependence measures described so far are developed for continuous variables. However,

when ties can occur with non null probability, many of the desirable properties of these measures

may fail to hold. As Genest and Nešlehová (2007) point out, the use of copulas when the

marginals are non-continuous is subject to caution, because some of the properties do not

carry over from the continuous to the non-continuous case, due to the lack of uniqueness of

Sklar’s representation (1). In turn, copula-based concordance measures such as Spearman’s rho

are margin-dependent. In this context, Quessy (2009) and Mesfioui and Quessy (2010) have

proposed tie-corrected versions of the multivariate Spearman’s coefficients in (3)-(4) and (5),

respectively. These coefficients are suitable for non-continuous variables and can be written

(Genest et al., 2013) as follows:

ρ−zd =
(d+ 1)

2d − (d+ 1)

[
2dE

(
d∏
i=1

(1− F̃i(Xi))

)
− 1

]
, (7)

ρ+z
d =

(d+ 1)

2d − (d+ 1)

[
2dE

(
d∏
i=1

F̃i(Xi)

)
− 1

]
, (8)

ρzd =
ρ−zd + ρ+z

d

2
, (9)

where, for all i ∈ {1, ..., d} and x ∈ R,

F̃i(x) =
1

2
{Pr(Xi < x) + Pr(Xi ≤ x)}.

If all the components of X are continuous, one would have F̃i = Fi for all i and the coefficients

in (7)-(9) will reduce to those in (3)-(5). Moreover, the former inherit some of the properties of

the latter. For instance, they all become 0 in the case of multivariate independence and attain

their maximum value under the copula M, although their values are smaller than 1 under perfect

association when the probability of ties is positive for one or more of the variables; see Quessy

(2009).
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2.3 Non-parametric estimation

In practice, the copula C is unknown and the coefficients described in Section 2.2 must be

estimated from the data. Therefore, empirical versions of these coefficients are required. Let

X1, ...,Xn be a sample of n serially independent random vectors from the d-dimensional contin-

uous vector X with associated copula C, where Xj = (X1j, ..., Xdj) for j = 1, ..., n. The copula

C can be estimated non-parametrically by the empirical copula C̃n defined as:

C̃n(u) =
1

n

n∑
j=1

d∏
i=1

1{Ũij≤ui}, for u = (u1, ..., ud) ∈ Id, (10)

where 1A denotes the indicator function on a set A and Ũij are the transformed data to [0, 1]

by scaling ranks, i.e.

Ũij = Rij/n, (11)

where Rij denotes the rank of Xij among {Xi1, ..., Xin}, with i = 1, ..., d and j = 1, ..., n.

Statistical inference for ρ−d and ρ+d based on the empirical copula is discussed in Schmid and

Schmidt (2007) and Schmid et al. (2010). In particular, these authors propose estimating

nonparametrically the coefficients ρ−d and ρ+d by replacing the copula C in (3) and (4), respec-

tively, with the empirical copula in (10). However, Pérez and Prieto-Alaiz (2016b) show that

the resultant statistics are not proper estimators of their population counterparts, since they

can take values out of the parameter space. The modifications proposed by Blumentritt and

Schmid (2014) and Bedo and Ong (2014) have still some drawbacks, as they fail to achieve

the maximum value 1 for maximal dependence and take a narrower range of values than they

should. To overcome these problems, Pérez and Prieto-Alaiz (2016b) propose alternative feasi-

ble nonparametric estimators of ρ−d and ρ+d , based on the results in Joe (1990), which are given
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by the following expressions, respectively:

ρ̂−d =

1

n

n∑
j=1

d∏
i=1

Ũ ij −
(
n+1
2n

)d
1

n

n∑
j=1

(
j
n

)d − (n+1
2n

)d , (12)

ρ̂+d =

1

n

n∑
j=1

d∏
i=1

Ũij −
(
n+1
2n

)d
1

n

n∑
j=1

(
j
n

)d − (n+1
2n

)d , (13)

where Ũ ij = Rij/n and Rij = n + 1 − Rij. By construction, both ρ̂−d and ρ̂+d achieve their

maximum value 1 for maximal dependence and they become 0 in the case of independence.

Moreover, these estimators share the same asymptotic normal distribution as those in Schmid

and Schmidt (2007). Nonetheless, the asymptotic variances cannot be explicitly evaluated for

the majority of known copulas (not even for d = 2) but, as shown in Schmid and Schmidt

(2007), they can consistently be estimated by nonparametric bootstrap methods. Therefore,

in the empirical application (Section 3), bootstrap methods will be applied to estimate their

standards errors and perform statistical inference.

To estimate the coefficient ρd in (5), we propose the following plug-in estimator

ρ̂d =
ρ̂−d + ρ̂+d

2
, (14)

where ρ̂−d and ρ̂+d are the estimators in (12) and (13), respectively. Noticeably, this estimator

coincides with the estimator of ρd proposed by Dolati and Úbeda-Flores (2006) in the framework

of AOD measures of multivariate concordance; see Proposition 1 in Appendix 1.

For the bidimensional case (d = 2), all the estimators above, namely ρ̂−2 , ρ̂
+
2 and ρ̂2, coincide

with the well-known sample version of bivariate Spearman’s rho. In the trivariate case (d = 3),
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the estimators ρ̂+3 and ρ̂−3 reduce to:

ρ̂+3 =
8

n(n− 1)(n+ 1)2

n∑
j=1

R1jR2jR3j −
n+ 1

n− 1
, (15)

ρ̂−3 =
8

n(n− 1)(n+ 1)2

n∑
j=1

R1jR2jR3j −
n+ 1

n− 1
. (16)

Moreover, it can be shown (see Proposition 2 in Appendix 1) that property (6) continues to

hold for the corresponding empirical coefficients, that is

ρ̂3 =
ρ̂−3 + ρ̂+3

2
=
ρ̂12 + ρ̂13 + ρ̂23

3
, (17)

where ρ̂ik denotes the bivariate sample Spearman’s rho for the pair (Xi, Xk), with 1 ≤ i < k ≤ 3.

Hence, in the trivariate case, the sample version of the coefficient ρ3 can be easily computed as

the average of their corresponding pairwise sample coefficients.

In order to estimate the tie-corrected generalizations of multivariate Spearman’s rho coefficients

in (7)-(9), Genest et al. (2013) propose the following rank-based estimators:

ρ̂−zd =
(d+ 1)

2d − (d+ 1)

[
2d

1

n

n∑
j=1

d∏
i=1

(
2n+ 1

2n
− R̃ij

n

)
− 1

]
, (18)

ρ̂+z
d =

(d+ 1)

2d − (d+ 1)

[
2d

1

n

n∑
j=1

d∏
i=1

(
R̃ij

n
− 1

2n

)
− 1

]
, (19)

ρ̂zd =
ρ̂−zd + ρ̂+z

d

2
, (20)

where R̃ij is the mid-rank of Xij among {Xi1, ..., Xin}, with i = 1, ..., d and j = 1, ..., n.

Genest et al. (2013) show that these estimators are asymptotically normally distributed and

provide expressions of their limiting variances, thereby correcting errors in the asymptotic

variance formulas derived in Quessy (2009) for ρ̂−zd and ρ̂+z
d and Mesfioui and Quessy (2010)

for ρ̂zd . Nevertheless, the asymptotic variances are complex and hence, in practice, they will be
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estimated by bootstrap methods.

3 Empirical application

As we said in the Introduction, multidimensional poverty depends not only on the proportion

of individuals deprived in each dimension but also on the degree of interdependence between

dimensions, since higher dependence means higher concentration of deprivations and this could

make overall poverty worse. In this context, we propose complementing the information given by

traditional multidimensional poverty indices with measures of multivariate dependence between

poverty dimensions. In particular, we apply the copula-based coefficients described in Section

2 to measure the evolution of the dependence between the dimensions of poverty in the EU-28

countries over the period 2008-2014.

3.1 Data and variables

The data we use comes from the EU-SILC survey, which is the key reference for data on income

and living conditions in the EU. In particular, we use the cross-sectional surveys of all years of

the period 2008-2014.

The dimensions of poverty we consider are those included in the AROPE rate, namely income,

material needs and work intensity. The selection of these dimensions is based on the relevance

of the AROPE rate in the European context, as it is the headline indicator to monitor and

implement effective poverty-reduction policies in the framework of the Europe 2020 Strategy.

In fact, one of the Europe 2020 headline targets established by the European Commission is to

reduce, by 20 million, the number of people at risk of poverty and social exclusion.2

2Despite the importance of the AROPE rate from the public policy perspective, the choice of the dimensions
involved in its calculation is not exempt of criticism; see, for instance, the discussion in Nolan and Whelan
(2011, ch.11).
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The three measures characterising the three dimensions of the AROPE rate are defined as

follows. The measure of income is the equivalised disposable income, which is calculated as

the total income of the household, after taxes and other deductions, divided by the equivalised

household size.3 The work intensity of a household is the ratio of the total number of months

that all working-age household members have worked during the income reference year and the

total number of months they could have theoretically worked during the same period.4 Material

deprivation is originally defined as the enforced lack in a number of essential items, namely:

1) the capacity of facing unexpected expenses; 2) one-week annual holiday away from home;

3) a meal involving meat, chicken or fish every second day; 4) an adequately warm dwelling;

5) a washing machine; 6) a colour television; 7) a telephone; 8) a car; 9) the capacity to pay

their rent, mortgage or utility bills. For ease of interpretation we transform this variable into a

variable that indicates the number of no-deprivations out of the nine possible, so that the new

variable takes the following values: 0 (having all the 9 possible deprivations), 1 (having eight

out of the nine aforementioned deprivations), . . . , 9 (having no deprivations). Thus, high values

of the three variables considered (equivalised disposable income, work intensity, and number

of no-deprivations) convey lower chance to be poor, while low values of each variable convey

higher chance to be poor.

The unit of analysis is the household. We only work with subsamples of households for which

we have complete information for all the three variables. In particular, in these subsamples,

households composed only of children, of students aged 18-24 and/or people aged 60 or more

are excluded, due to their missing values in the work intensity variable.5 In these subsamples,

the sample sizes range from 2270 households (Cyprus, 2009) to 14773 households (Italy, 2008).

3The equivalised household size is defined according to the modified OECD scale, which gives a weight of
1 to the first adult, 0.5 to other household members aged 14 or over and 0.3 to household members aged less
than 14.

4Eurostat considers that a working-age person is a person aged 18-59 years, excluding also the students aged
18-24 years.

5The representation of each country in the whole cross-country sample does not change when going from the
full sample to the restricted one.
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As we explained in Section 2, copula-based methods requires ranking the households in each

dimension. In doing so, ties could arise in one or multiple variables. In our case, for example,

the work intensity and material deprivation variables are of non-continuous nature, thus leading

to a considerable number of ties. The problem of having ties in a copula-based framework was

already mentioned in Section 2, where it was remarked that, in the presence of ties, the copula

in (1) is no longer unique. Therefore, the values of the copula-based multivariate extensions of

Spearman’s rho can vary widely even based on the same joint distribution. Different alternatives

to deal with ties can be found in the literature; see, for example, Quessy (2009), Mesfioui and

Quessy (2010), Genest et al. (2013) and Decancq (2014). In this paper, we focus on two of

these alternatives in order to analyse how robust our results are to the method used. On one

hand, we compute the tie-corrected estimators of the multivariate extensions of Spearman’s

rho defined in (18)-(20), as proposed by Genest et al. (2013). On the other hand, following

Decancq (2014) we break the ties using additional information from other secondary variables so

that we eventually get, for each variable, unique ranks, {1, 2, . . . , n}, and hence the coefficients

defined in (12)-(14) can be directly applied to these ranks; see below. We are aware that it is

unclear the effect of using additional secondary variables on the concordance properties of the

original variables. In spite of that, we will see later that both approaches lead to very similar

conclusions regarding the evolution of the dependence between poverty dimensions in Europe.

To start with, we will explain in detail how we use additional information to break the ties.

Firstly, when a tie occurs in work intensity, households are ranked according to two secondary

ranking variables measuring the intensity in both education and health of the household. The

intensity of education is the sum of the highest ISCED (International Standard Classification of

Education) level attained by all members of the household that are not currently in education

divided by the highest possible value of this sum. The health intensity indicator is constructed

in a similar way as the sum of the values of the self-assessed health indicator of all members of

the household divided by the highest possible value of this sum. The choice of these secondary
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variables is not arbitrary. Both the relationships between educational and labour market out-

comes and between health and labor market attainments are well documented in the literature;

see, for example, Nickell (1979), Mincer (1991), Wolbers (2000), Farber (2004) and Riddell

and Song (2011), regarding the former and Chirikos (1993), Ettner et al. (1997), Currie and

Madrian (1999), Pelkowski and Berger (2004) and Garćıa Gómez and López Nicolás (2006),

regarding the latter. As secondary ranking variable for material deprivation, we use the burden

of the housing cost. An overburden of the housing cost can be seen as an indicator of financial

stress (Whelan and Mâıtre, 2012; Deidda, 2015) and as an indicator of vulnerability (Brandolini

et al., 2010). We use both a dummy variable taking the value 1 if the housing cost is a burden

for the household and the value of the housing cost itself. Thus, households for which the

housing cost is a burden are assigned worse positions than those for which it is not. If a tie

still exists for those households for which the housing cost is a burden they are ranked using

the value of the housing cost. That is, the higher is the housing cost the worse is the position

of the household. Both in the case of work intensity and material deprivation, if ties still exist

after ranking households according to the secondary variables, the ties are broken at random.

Thus, after this procedure, households are eventually assigned unique ranks, {1, 2, . . . , n}, for

each variable and the estimators ρ̂−d , ρ̂+d and ρ̂d in (12)-(14) can be computed using these ranks.

3.2 A primer look at the transformed data

In this section we show some examples of multivariate association in our data. To illustrate

cross-country comparisons, Figure 1 represents the unique ranks described above, rescaled to

[0, 1] as defined in (11), for the three dimensions of the AROPE rate in Bulgaria and Romania

in 2008. As we can see, the points are not uniformly distributed over the unit cube, indicating

departure from independence. Actually, in both countries we observe a positive association,

as the points tend to concentrate around the main diagonal of the cube, that is, the three

variables tend to be jointly large or small together. Moreover, both plots are denser around
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the vertexes (0, 0, 0) and (1, 1, 1), but in Bulgaria the concentration is higher around the

former than around the latter, suggesting that dependence in the lower orthant is higher than

in the upper orthant. The contrary occurs in Romania, where there is a higher concentration

of observations around the vertex (1, 1, 1), suggesting that upper orthant dependence is higher

than lower orthant dependence. As a matter of fact, these patterns are properly captured by

the coefficients ρ̂−3 and ρ̂+3 , which in the case of Bulgaria will fulfil the condition ρ̂−3 > ρ̂+3 , while

they will behave the other way round in Romania.

< Insert Figure 1 here >

To illustrate temporal comparisons, Figure 2 displays two scatter plots representing the scaled

ranks for Spain in 2008 and 2014. As we can see, there has been an increase in the multivariate

dependence between dimensions of the AROPE rate in Spain over this period, as the concen-

tration of the observations around the main diagonal is higher in 2014 than in 2008. Moreover,

in both years, the concentration of points in the lower orthant seems to be higher than in the

upper orthant. Hence, we would expect ρ̂−3 > ρ̂+3 , being both coefficients higher in 2014 than

in 2008.

< Insert Figure 2 here >

To complement this graphical analysis, we have split the unit cube [0, 1]3 in 64 boxes of the

same size and we have computed (see Table 1) the observed relative frequencies in the four

boxes along the main diagonal for the same countries and time periods represented in Figures

1 and 2. The four boxes are denoted as {u ≤ 0.25, 0.25 < u ≤ 0.5, 0.5 < u ≤ 0.75, u > 0.75},

where u ≤ 0.25 denotes the component-wise inequality, i.e. ui ≤ 0.25 for i = 1, 2, 3, and so this

first box records the share of households being simultaneously in the 1st quartile (low-ranked)

in all dimensions. The other three boxes are defined similarly.

< Insert Table 1 here >
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If the three variables were independent, the proportion of points in each box would be the same

and equal to 1.56%. However, in all the examples in Table 1, there is a larger proportion of

points concentrated around the main diagonal implying departure from independence. Further-

more, in all cases, the frequencies are higher in the extreme boxes, suggesting positive orthant

dependence, in agreement with the patterns displayed in Figures 1 and 2.

3.3 Estimation results

In this section, we analyse the evolution of the multivariate dependence between poverty di-

mensions in the EU-28 countries over the period 2008-2014 using both the non-parametric

estimators in (12)-(14) applied to the unique ranks as explained in Section 3.1, and the tie-

corrected estimators in (18)-(20). As we pointed out in Section 2.3, the asymptotic variances

of these estimators are complex. Therefore, we rely on a nonparametric bootstrap method to

compute the bootstrap standard errors as the sample standard deviation of 1000 bootstrapped

point estimates of the coefficients.

Figure 3 displays, for the EU-28 countries and over the whole period analysed, the evolution of

the values of ρ̂−3 (in Panel A) and ρ̂+3 (in Panel B) together with the 95% standard confidence

intervals using the bootstrap standard errors.6 Figure 4 displays similar results for the tie-

corrected estimators ρ̂−z3 (in Panel A) and ρ̂+z
3 (in Panel B).

< Insert Figure 3 here >

< Insert Figure 4 here >

Several conclusions emerge from these figures. First, the patterns of the evolution of dependence

over the period analysed are very similar whether we use the continuous (Figure 3) or tie-

corrected (Figure 4) versions of the coefficients, although the former seem to have slightly

6We have also computed the 95% bootstrap percentile confidence intervals obtaining very similar results not
displayed here to save space. The results are available upon request.
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larger values than the latter. Second, all the coefficients are always positive, indicating a positive

multivariate association between poverty dimensions both in the lower and in the upper orthant.

This means that low (high) values of income tend to occur with low (high) values of the other

two poverty dimensions. Third, Figure 3 shows that, regardless of the year and the country, the

value of ρ̂−3 (Panel A) is greater than that of ρ̂+3 (Panel B), except for the case of Romania, and

the same result holds for the tie-corrected versions of the coefficients (Figure 4). This means that

average lower orthant dependence tends to be higher than average upper orthant dependence,

that is, the probability of being simultaneously low-ranked in all poverty dimensions tends to be

higher than the probability of being simultaneously high-ranked in all dimensions. Fourth, there

are different cross-country profiles in the evolution of multivariate dependence. For instance,

in Spain there is a clear increasing trend in the multivariate dependence between dimensions

of poverty in both the lower and the upper orthant over the period analysed. An increasing

trend is also found in other countries such as Cyprus, Denmark, Italy or The Netherlands.

However, no decreasing trend shows up in any country. On the other hand, in some countries

such as Greece and the UK, there is not a clear trend, but the dependence in 2014 is clearly

higher than in 2008, since the corresponding confidence intervals do not overlap. However, in

countries like Austria, Germany or Sweden, there is a considerable overlap in the confidence

intervals for these two years and thus we cannot give meaningful conclusions on the variation

of the dependence coefficients.

To get a better insight regarding the change in multivariate dependence between 2008 and 2014,

Table 2 reports point estimates (with standard errors) for these two years and for ρ̂−3 , ρ̂+3 and

ρ̂3. In columns 3, 6 and 9, we also display the results of a two-independent sample t-test with

unequal variances, calculated using bootstrap standard errors. In particular, we perform a one-

sided test to determine if the increases or decreases in the value of the coefficients between 2008

and 2014 are statistically significant. The corresponding p-value (in parentheses) is computed

assuming asymptotic normality of the t-statistic. Table 3 displays the same results for ρ̂−z3 ,
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ρ̂+z
3 and ρ̂z3 . Interestingly, in most EU-28, we find a significant increase in all the coefficients

over the period analysed. Thus, we can say that there has been a general increase in the

multivariate orthant dependence between dimensions of poverty in the EU over the period

2008-2014. Moreover, this increase is found both in the lower and in the upper orthant, which

means that, over the period analysed, there has been a general increase in both the probability

of being simultaneously low-ranked and the probability of being simultaneously high-ranked in

all dimensions of poverty. Noticeably, the highest increase in both the lower and upper orthant

dependence is found in Spain, one of the countries most hardly hit by the economic crisis.

Another country severely affected by the crisis, namely Greece, also experienced a substantial

increase in these two types of dependence.

< Insert Table 2 here >

< Insert Table 3 here >

To complement the analysis of three-dimensional dependence, we have also analysed all possible

pairwise relationships between the dimensions of the AROPE rate. The results are displayed

in Tables 4 and 5. The first feature that is worth pointing out is that the bivariate coefficients

share many of the properties of the trivariate coefficients. In particular, in all the countries and

for both years, all of them are positive and, in most of the countries, they are larger in 2014 than

in 2008, with the differences being statistically significant at 5% in most cases. Additionally,

these tables reveal that, in general, the dependence tends to be higher between income and the

other two dimensions than between work intensity and no-material deprivation.

< Insert Table 4 here >

< Insert Table 5 here >
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Finally, as we said in the Introduction, quantifying the dependence between the dimensions of

the AROPE rate provides a useful complement to the information given by this indicator. In

this context, we wonder whether those countries with higher AROPE rates are also countries

with high levels of dependence between its dimensions. To address this issue, Panel A of

Figure 5 depicts two scatter plots showing the relationship between the AROPE rate and

the coefficient ρ̂−3 for the EU-28 countries in the years 2008 and 2014.7 Panel B of the same

figure displays the same results for the coefficient ρ̂−z3 . In all graphs, the horizontal and vertical

reference lines represent the corresponding values for the whole EU-28. We focus on ρ̂−3 and ρ̂−z3

because they measure lower orthant dependence, which is the key point in poverty analysis.

The main features from these figures are the following: a) there is a positive relationship

between the AROPE rate and lower orthant dependence, that is, countries with high incidence

of multidimensional poverty tend to experience also a high degree of multivariate dependence

between its dimensions in the lower orthant; b) those countries with either very low or very high

values of both ρ̂−3 and ρ̂−z3 in 2008 have converged, over the period analysed, to the situation of

the majority of the EU-28 countries; c) in the EU-28 as a whole (see the reference lines), there

has been an increase in the AROPE rate accompanied with an increase in the multivariate

dependence between its dimensions.

< Insert Figure 5 here >

4 Conclusions

This paper proposes to measure the dependence between dimensions of poverty using copula-

based multivariate generalisations of Spearman’s rho. Two of these coefficients, namely ρ−d for

continuous data and ρ−zd for possibly non-continuous data, turn out to be essential in poverty

analysis as they enable to measure the dependence between the poverty dimensions in the

7The AROPE rate is calculated here as the proportion of households in our sample that are poor in at least
one of the three dimensions considered.
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lower orthant of the joint distribution. Hence, they capture the propensity of a household to

be simultaneously low-ranked in all dimensions.

Our empirical application provides a more comprehensive picture on how multidimensional

poverty has evolved in the EU-28 countries over the period 2008-2014, by complementing the

information about the incidence of poverty with measures of the multivariate dependence be-

tween its dimensions. In particular, we use multivariate generalisations of Spearman’s rho to

assess multivariate dependence and we consider, as variables characterising poverty, those in-

cluded in the AROPE rate: income, material needs and work intensity. The nature of the

last two variables entails the presence of ties when ranking the households according to such

variables. To address this problem, we adopt two different approaches, namely the use of esti-

mators for the continuous case after breaking the ties using additional information and the use

of tie-corrected estimators for possibly discontinuous data. Interestingly, the results obtained

keep robust to the approach used.

Our first conclusion is that, for all the EU-28 countries and all the years considered, there is a

positive multivariate association between poverty dimensions, regardless of the coefficient used.

Moreover, this dependence has noticeably increased in Europe between 2008 and 2014 and for

most of the countries this increase is statistically significant and it is especially remarkable in

those countries most hardly hit by the economic crisis like Spain and Greece. Another important

conclusion is that, in the vast majority of European countries, the maximal dependence is found

in the lower orthant. Therefore, small values of the three poverty dimensions tend to occur

together and this simultaneous concentration of small values of income, no-material deprivations

and work intensity is more likely to occur in 2014 than in 2008. Finally, we detect a positive

relationship between the incidence of multidimensional poverty, measured by the AROPE rate,

and the dependence between its dimensions. This means that countries with a high poverty

incidence tend to experiment also a higher degree of dependence between the dimensions of

poverty.
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Pérez, A. and M. Prieto-Alaiz, “Measuring the Dependence among Dimensions of Welfare: a

Study Based on Spearman’s footrule and Gin’s gamma,” International Journal of Uncer-

tainty, Fuzziness and Knowledge-Based Systems, 24, 87–105, 2016a.

, “A Note on Nonparametric Estimation of Copula-based Multivariate Extensions of

Spearman’s rho,” Statistics & Probability Letters, 112, 41–50, 2016b.

Quessy, J.-F., “Tests of Multivariate Independence for Ordinal Data,” Communications in

Statistics - Theory and Methods, 38, 3510–3531, 2009.

Quinn, C., “The Health-Economic Applications of Copulas: Methods in Applied Econometric

Research,” HEDG Working Papers 07/22, 2007.

Riddell, W. C. and X. Song, “The Impact of Education on Unemployment Incidence and

Re-employment Success: Evidence from the U.S. Labour Market,” Labour Economics, 18,

453–463, 2011.

Schmid, F. and R. Schmidt, “Multivariate Extensions of Spearman’s rho and Related Statis-

tics,” Statistics & Probability Letters, 77, 407–416, 2007.

Schmid, F., Schmidt, R., Blumentritt, T., Gaißer, S. and M. Ruppert, “Copula-based Measures

of Multivariate Association,” in Jaworski, P., Durante, F., Härdle, W. K. and T. Rychlik,
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Whelan, C. T., Nolan, B. and B. Mâıtre, “Multidimensional Poverty Measurement in Europe:

an Application of the Adjusted Headcount Approach,” Journal of European Social Policy,

24, 83–197, 2014.

White, R. (ed.), Measuring Multidimensional Poverty and Deprivation: Incidence and Deter-

minants in Developed Countries. Palgrave Macmillan, Cham, 2017.

Wolbers, M. H. J., “The Effects of Level of Education on Mobility between Employment and

Unemployment in the Netherlands,” European Sociological Review, 16, 185–200, 2000.

Wolff, E. F., “N-dimensional Measures of Dependence,” Stochastica, 4, 175–188, 1980.

31



Table 1. Share of households in the main diagonal of the unit cube [0,1]3

u ≤ 0.25 0.25 < u ≤ 0.5 0.5 < u ≤ 0.75 u > 0.75 Total
Bulgaria (2008) 11.06% 3.43% 3.30% 7.28% 25.07%
Romania (2008) 5.80% 2.34% 2.57% 9.10% 19.81%
Spain (2008) 7.23% 2.28% 2.35% 3.29% 15.15%
Spain (2014) 8.14% 2.77% 2.32% 5.27% 18.5%
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Table 2. Coefficients of trivariate dependence between the dimensions of the
AROPE rate

ρ̂−3 ρ̂+3 ρ̂3
2008 2014 t-test 2008 2014 t-test 2008 2014 t-test

Austria
0.373 0.412 2.458 0.338 0.372 2.262 0.355 0.392 2.442

(0.011) (0.011) (0.007) (0.011) (0.010) (0.012) (0.011) (0.010) (0.007)

Belgium
0.501 0.558 4.221 0.436 0.484 3.549 0.468 0.521 4.012

(0.010) (0.010) (0.000) (0.009) (0.010) (0.000) (0.009) (0.009) (0.000)

Bulgaria
0.572 0.553 -1.167 0.528 0.529 0.046 0.550 0.541 -0.575

(0.011) (0.011) (0.122) (0.012) (0.011) (0.482) (0.011) (0.011) (0.283)

Cyprus
0.383 0.446 3.535 0.379 0.437 3.326 0.381 0.441 3.559

(0.014) (0.011) (0.000) (0.013) (0.011) (0.000) (0.013) (0.011) (0.000)

Czech Republic
0.394 0.421 2.097 0.370 0.383 1.065 0.382 0.402 1.653

(0.008) (0.010) (0.018) (0.008) (0.009) (0.143) (0.007) (0.009) (0.049)

Germany
0.437 0.447 0.928 0.397 0.401 0.397 0.417 0.424 0.692

(0.008) (0.008) (0.177) (0.007) (0.008) (0.346) (0.007) (0.007) (0.245)

Denmark
0.276 0.374 5.911 0.229 0.325 6.381 0.252 0.349 6.340

(0.012) (0.012) (0.000) (0.010) (0.011) (0.000) (0.011) (0.011) (0.000)

Estonia
0.425 0.441 0.966 0.392 0.410 1.175 0.408 0.425 1.105

(0.012) (0.011) (0.167) (0.011) (0.010) (0.120) (0.011) (0.010) (0.134)

Greece
0.412 0.520 8.573 0.404 0.508 8.134 0.408 0.514 8.646

(0.010) (0.008) (0.000) (0.010) (0.008) (0.000) (0.009) (0.008) (0.000)

Spain
0.342 0.499 15.792 0.314 0.465 15.909 0.328 0.482 16.372

(0.007) (0.007) (0.000) (0.007) (0.007) (0.000) (0.007) (0.007) (0.000)

Finland
0.378 0.410 2.769 0.330 0.353 2.144 0.354 0.381 2.557

(0.008) (0.008) (0.003) (0.008) (0.008) (0.016) (0.007) (0.008) (0.005)

France
0.412 0.441 2.596 0.373 0.395 2.014 0.393 0.418 2.387

(0.008) (0.008) (0.005) (0.008) (0.008) (0.022) (0.008) (0.008) (0.008)

Croatia
NA 0.502 NA NA 0.497 NA NA 0.500 NA
NA (0.011) NA NA (0.011) NA NA (0.011) NA

Hungary
0.449 0.525 6.980 0.434 0.509 6.429 0.442 0.517 6.966

(0.008) (0.007) (0.000) (0.009) (0.008) (0.000) (0.008) (0.007) (0.000)

Ireland
0.546 0.562 1.144 0.491 0.545 3.748 0.519 0.554 2.579

(0.010) (0.009) (0.126) (0.011) (0.010) (0.000) (0.010) (0.009) (0.005)

Italy
0.384 0.443 7.168 0.355 0.407 6.621 0.369 0.425 7.136

(0.006) (0.006) (0.000) (0.005) (0.006) (0.000) (0.006) (0.006) (0.000)

Lithuania
0.444 0.506 3.821 0.402 0.483 5.239 0.423 0.494 4.673

(0.012) (0.011) (0.000) (0.011) (0.011) (0.000) (0.011) (0.011) (0.000)

Luxembourg
0.382 0.377 -0.277 0.339 0.329 -0.525 0.360 0.353 -0.414

(0.013) (0.013) (0.391) (0.013) (0.013) (0.300) (0.012) (0.012) (0.339)

Latvia
0.475 0.477 0.102 0.445 0.460 0.976 0.460 0.469 0.552

(0.012) (0.011) (0.459) (0.011) (0.010) (0.165) (0.011) (0.010) (0.290)

Malta
0.491 0.481 -0.590 0.486 0.453 -1.874 0.488 0.467 -1.268

(0.013) (0.012) (0.277) (0.013) (0.012) (0.030) (0.013) (0.011) (0.102)

Netherlands
0.272 0.387 9.497 0.232 0.331 8.949 0.252 0.359 9.575

(0.009) (0.008) (0.000) (0.008) (0.008) (0.000) (0.008) (0.008) (0.000)

Poland
0.438 0.472 3.868 0.434 0.454 2.082 0.436 0.463 3.067

(0.006) (0.007) (0.000) (0.006) (0.007) (0.019) (0.006) (0.006) (0.001)

Portugal
0.426 0.486 3.830 0.417 0.469 3.237 0.421 0.477 3.652

(0.012) (0.010) (0.000) (0.013) (0.010) (0.001) (0.012) (0.009) (0.000)

Romania
0.439 0.419 -1.481 0.478 0.448 -2.246 0.458 0.433 -1.931

(0.009) (0.010) (0.069) (0.009) (0.010) (0.012) (0.009) (0.009) (0.027)

Sweden
0.357 0.375 1.166 0.315 0.316 0.066 0.336 0.345 0.660

(0.010) (0.012) (0.122) (0.009) (0.011) (0.474) (0.009) (0.011) (0.255)

Slovenia
0.410 0.463 4.922 0.395 0.437 4.019 0.402 0.450 4.664

(0.008) (0.008) (0.000) (0.007) (0.007) (0.000) (0.007) (0.007) (0.000)

Slovak Republic
0.408 0.451 2.802 0.387 0.412 1.745 0.397 0.432 2.368

(0.011) (0.011) (0.003) (0.011) (0.010) (0.040) (0.010) (0.010) (0.009)

United Kingdom
0.423 0.522 8.377 0.377 0.482 8.835 0.400 0.502 8.914

(0.009) (0.007) (0.000) (0.009) (0.008) (0.000) (0.009) (0.007) (0.000)
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.
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Table 3. Tie-corrected coefficients of trivariate dependence between the
dimensions of the AROPE rate
ρ̂−z3 ρ̂+z

3 ρ̂z3
2008 2014 t-test 2008 2014 t-test 2008 2014 t-test

Austria
0.346 0.374 1.836 0.302 0.325 1.750 0.324 0.349 1.842

(0.011) (0.010) (0.033) (0.010) (0.009) (0.040) (0.010) (0.009) (0.033)

Belgium
0.484 0.535 3.899 0.408 0.458 4.022 0.446 0.497 4.049

(0.010) (0.009) (0.000) (0.009) (0.009) (0.000) (0.009) (0.009) (0.000)

Bulgaria
0.545 0.518 -1.688 0.488 0.474 -0.927 0.517 0.496 -1.355

(0.011) (0.011) (0.046) (0.011) (0.011) (0.177) (0.011) (0.011) (0.088)

Cyprus
0.368 0.434 3.766 0.360 0.418 3.550 0.364 0.426 3.781

(0.014) (0.011) (0.000) (0.012) (0.011) (0.000) (0.013) (0.010) (0.000)

Czech Republic
0.355 0.374 1.547 0.321 0.321 -0.029 0.338 0.347 0.841

(0.008) (0.009) (0.061) (0.007) (0.008) (0.488) (0.007) (0.008) (0.200)

Germany
0.426 0.424 -0.185 0.373 0.367 -0.681 0.399 0.395 -0.427

(0.007) (0.008) (0.427) (0.006) (0.007) (0.248) (0.007) (0.007) (0.335)

Denmark
0.243 0.337 6.143 0.198 0.285 7.132 0.220 0.311 6.735

(0.011) (0.011) (0.000) (0.008) (0.009) (0.000) (0.009) (0.010) (0.000)

Estonia
0.398 0.419 1.307 0.346 0.373 1.938 0.372 0.396 1.647

(0.012) (0.011) (0.096) (0.010) (0.010) (0.026) (0.011) (0.010) (0.050)

Greece
0.392 0.510 9.514 0.379 0.496 9.755 0.386 0.503 9.946

(0.010) (0.008) (0.000) (0.009) (0.008) (0.000) (0.009) (0.008) (0.000)

Spain
0.357 0.508 15.976 0.331 0.472 16.020 0.344 0.490 16.454

(0.007) (0.006) (0.000) (0.006) (0.006) (0.000) (0.006) (0.006) (0.000)

Finland
0.357 0.384 2.468 0.305 0.322 1.807 0.331 0.353 2.221

(0.008) (0.008) (0.007) (0.006) (0.006) (0.035) (0.007) (0.007) (0.013)

France
0.372 0.395 2.085 0.322 0.338 1.674 0.347 0.367 1.941

(0.008) (0.008) (0.019) (0.007) (0.007) (0.047) (0.007) (0.007) (0.026)

Croatia
NA 0.499 NA NA 0.479 NA NA 0.500 NA
NA (0.010) NA NA (0.010) NA NA (0.010) NA

Hungary
0.420 0.485 5.931 0.388 0.447 5.387 0.404 0.466 5.855

(0.008) (0.007) (0.000) (0.008) (0.007) (0.000) (0.008) (0.007) (0.000)

Ireland
0.538 0.549 0.824 0.477 0.525 3.456 0.508 0.537 2.222

(0.010) (0.009) (0.205) (0.010) (0.009) (0.000) (0.010) (0.009) (0.013)

Italy
0.389 0.439 6.261 0.355 0.399 6.057 0.372 0.419 6.349

(0.005) (0.006) (0.000) (0.005) (0.005) (0.000) (0.005) (0.005) (0.000)

Lithuania
0.408 0.481 4.519 0.355 0.437 5.769 0.381 0.459 5.254

(0.011) (0.011) (0.000) (0.010) (0.010) (0.000) (0.010) (0.011) (0.000)

Luxembourg
0.341 0.335 -0.399 0.305 0.296 -0.612 0.323 0.315 -0.507

(0.012) (0.012) (0.345) (0.010) (0.010) (0.270) (0.011) (0.011) (0.306)

Latvia
0.433 0.458 1.606 0.382 0.421 2.731 0.407 0.439 2.204

(0.012) (0.011) (0.054) (0.010) (0.010) (0.003) (0.011) (0.010) (0.014)

Malta
0.485 0.470 -0.858 0.464 0.430 -2.069 0.474 0.450 -1.491

(0.013) (0.012) (0.195) (0.012) (0.011) (0.019) (0.012) (0.011) (0.068)

Netherlands
0.269 0.341 9.085 0.230 0.314 9.353 0.250 0.343 9.415

(0.008) (0.008) (0.000) (0.006) (0.007) (0.000) (0.007) (0.007) (0.000)

Poland
0.413 0.451 4.237 0.394 0.419 2.902 0.404 0.435 3.697

(0.006) (0.007) (0.000) (0.006) (0.006) (0.002) (0.006) (0.006) (0.000)

Portugal
0.392 0.458 4.343 0.358 0.424 4.471 0.375 0.441 4.548

(0.012) (0.010) (0.000) (0.012) (0.009) (0.000) (0.011) (0.009) (0.000)

Romania
0.379 0.361 -1.436 0.397 0.367 -2.432 0.388 0.364 -1.978

(0.009) (0.009) (0.075) (0.008) (0.009) (0.008) (0.008) (0.009) (0.024)

Sweden
0.305 0.332 1.927 0.259 0.274 1.351 0.282 0.303 1.708

(0.009) (0.011) (0.027) (0.007) (0.009) (0.088) (0.008) (0.009) (0.044)

Slovenia
0.352 0.427 7.051 0.316 0.380 6.853 0.334 0.404 7.196

(0.008) (0.007) (0.000) (0.007) (0.007) (0.000) (0.007) (0.007) (0.000)

Slovak Republic
0.364 0.405 2.655 0.327 0.355 2.133 0.346 0.380 2.482

(0.011) (0.011) (0.004) (0.009) (0.009) (0.016) (0.010) (0.010) (0.007)

United Kingdom
0.401 0.495 8.122 0.346 0.444 9.378 0.373 0.469 8.955

(0.009) (0.007) (0.000) (0.008) (0.007) (0.000) (0.008) (0.007) (0.000)
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.
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Table 4. Coefficients of pairwise dependence between the dimensions of the
AROPE rate

ρ̂income,work ρ̂income,no−deprivation ρ̂work,no−deprivation
2008 2014 t-test 2008 2014 t-test 2008 2014 t-test

Austria
0.429 0.467 1.990 0.388 0.419 1.571 0.249 0.289 1.906

(0.014) (0.013) (0.023) (0.014) (0.014) (0.058) (0.015) (0.014) (0.028)

Belgium
0.570 0.618 3.127 0.506 0.568 3.877 0.329 0.378 2.492

(0.011) (0.010) (0.001) (0.011) (0.011) (0.000) (0.014) (0.014) (0.006)

Bulgaria
0.571 0.552 -0.975 0.643 0.568 -4.237 0.435 0.502 3.180

(0.014) (0.014) (0.165) (0.012) (0.013) (0.000) (0.015) (0.014) (0.001)

Cyprus
0.465 0.489 1.052 0.469 0.513 2.164 0.209 0.322 4.412

(0.018) (0.014) (0.146) (0.016) (0.013) (0.015) (0.020) (0.017) (0.000)

Czech Republic
0.431 0.459 1.776 0.427 0.439 0.789 0.290 0.307 1.077

(0.010) (0.012) (0.038) (0.010) (0.012) (0.215) (0.010) (0.013) (0.141)

Germany
0.487 0.468 -1.502 0.467 0.504 2.948 0.297 0.301 0.297

(0.009) (0.009) (0.067) (0.009) (0.009) (0.002) (0.010) (0.011) (0.383)

Denmark
0.327 0.427 4.838 0.284 0.397 5.501 0.145 0.224 3.607

(0.015) (0.014) (0.000) (0.014) (0.015) (0.000) (0.015) (0.016) (0.000)

Estonia
0.471 0.493 1.124 0.439 0.411 -1.379 0.315 0.372 2.700

(0.014) (0.013) (0.131) (0.015) (0.014) (0.084) (0.016) (0.014) (0.003)

Greece
0.462 0.538 4.708 0.505 0.647 10.481 0.257 0.358 5.390

(0.013) (0.010) (0.000) (0.011) (0.008) (0.000) (0.014) (0.013) (0.000)

Spain
0.510 0.560 4.314 0.294 0.503 16.637 0.179 0.382 15.018

(0.008) (0.008) (0.000) (0.010) (0.008) (0.000) (0.010) (0.009) (0.000)

Finland
0.459 0.506 3.535 0.386 0.378 -0.602 0.217 0.260 2.730

(0.010) (0.009) (0.000) (0.010) (0.010) (0.274) (0.011) (0.011) (0.003)

France
0.403 0.419 1.122 0.498 0.515 1.330 0.277 0.320 2.858

(0.011) (0.010) (0.131) (0.009) (0.009) (0.092) (0.011) (0.010) (0.002)

Croatia
NA 0.638 NA NA 0.496 NA NA 0.366 NA
NA (0.011) NA NA (0.014) NA NA (0.015) NA

Hungary
0.514 0.559 3.357 0.474 0.578 7.602 0.337 0.414 4.931

(0.010) (0.009) (0.000) (0.011) (0.009) (0.000) (0.012) (0.010) (0.000)

Ireland
0.610 0.663 3.348 0.528 0.529 0.079 0.418 0.468 2.520

(0.012) (0.010) (0.000) (0.013) (0.013) (0.468) (0.015) (0.013) (0.006)

Italy
0.505 0.506 0.159 0.356 0.432 7.524 0.248 0.337 7.862

(0.007) (0.007) (0.437) (0.007) (0.007) (0.000) (0.008) (0.008) (0.000)

Lithuania
0.530 0.578 2.602 0.404 0.490 4.116 0.335 0.415 3.660

(0.014) (0.013) (0.005) (0.015) (0.014) (0.000) (0.016) (0.015) (0.000)

Luxembourg
0.448 0.454 0.254 0.490 0.460 -1.449 0.144 0.146 0.096

(0.016) (0.016) (0.400) (0.014) (0.015) (0.074) (0.019) (0.019) (0.462)

Latvia
0.524 0.571 2.564 0.494 0.487 -0.365 0.364 0.348 -0.729

(0.014) (0.012) (0.005) (0.013) (0.012) (0.358) (0.015) (0.015) (0.233)

Malta
0.651 0.646 -0.302 0.475 0.429 -2.021 0.340 0.326 -0.537

(0.013) (0.011) (0.381) (0.017) (0.015) (0.022) (0.019) (0.017) (0.296)

Netherlands
0.374 0.478 7.154 0.283 0.371 5.747 0.099 0.227 7.888

(0.011) (0.010) (0.000) (0.011) (0.011) (0.000) (0.011) (0.011) (0.000)

Poland
0.449 0.527 7.085 0.494 0.490 -0.346 0.365 0.372 0.537

(0.007) (0.008) (0.000) (0.007) (0.008) (0.365) (0.009) (0.009) (0.295)

Portugal
0.478 0.546 3.514 0.497 0.521 1.233 0.289 0.365 3.446

(0.015) (0.012) (0.000) (0.015) (0.012) (0.109) (0.018) (0.013) (0.000)

Romania
0.518 0.498 -1.231 0.515 0.459 -3.392 0.342 0.343 0.079

(0.011) (0.012) (0.109) (0.011) (0.012) (0.000) (0.013) (0.014) (0.468)

Sweden
0.402 0.444 2.244 0.361 0.356 -0.268 0.245 0.237 -0.426

(0.012) (0.014) (0.012) (0.012) (0.015) (0.394) (0.013) (0.015) (0.335)

Slovenia
0.495 0.559 5.004 0.410 0.449 2.749 0.302 0.342 2.738

(0.009) (0.009) (0.000) (0.010) (0.010) (0.003) (0.010) (0.011) (0.003)

Slovak Republic
0.420 0.498 4.130 0.451 0.443 -0.461 0.320 0.354 1.694

(0.013) (0.013) (0.000) (0.013) (0.013) (0.322) (0.014) (0.014) (0.045)

United Kingdom
0.506 0.571 4.720 0.420 0.529 7.390 0.274 0.405 7.782

(0.010) (0.009) (0.000) (0.011) (0.009) (0.000) (0.013) (0.011) (0.000)
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.
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Table 5. Tie-corrected coefficients of pairwise dependence between the
dimensions of the AROPE rate

ρ̂zincome,work ρ̂zincome,no−deprivation ρ̂zwork,no−deprivation
2008 2014 t-test 2008 2014 t-test 2008 2014 t-test

Austria
0.382 0.426 2.282 0.386 0.394 0.473 0.205 0.229 1.296

(0.014) (0.013) (0.011) (0.012) (0.011) (0.318) (0.014) (0.013) (0.097)

Belgium
0.528 0.576 3.014 0.486 0.539 3.848 0.323 0.374 2.927

(0.012) (0.011) (0.001) (0.010) (0.010) (0.000) (0.012) (0.012) (0.002)

Bulgaria
0.510 0.474 -1.836 0.656 0.585 -4.191 0.383 0.428 2.135

(0.014) (0.014) (0.033) (0.012) (0.012) (0.000) (0.015) (0.014) (0.016)

Cyprus
0.381 0.424 1.839 0.520 0.554 1.847 0.191 0.300 4.490

(0.018) (0.015) (0.033) (0.014) (0.012) (0.032) (0.019) (0.016) (0.000)

Czech Republic
0.347 0.356 0.538 0.449 0.467 1.313 0.218 0.219 0.067

(0.010) (0.012) (0.295) (0.009) (0.011) (0.095) (0.009) (0.011) (0.473)

Germany
0.446 0.420 -1.974 0.499 0.515 1.523 0.252 0.250 -0.186

(0.009) (0.009) (0.024) (0.007) (0.008) (0.064) (0.010) (0.010) (0.426)

Denmark
0.245 0.352 5.448 0.272 0.376 6.338 0.144 0.205 3.524

(0.014) (0.014) (0.000) (0.011) (0.012) (0.000) (0.012) (0.013) (0.000)

Estonia
0.396 0.424 1.435 0.458 0.444 -0.774 0.261 0.320 2.958

(0.014) (0.013) (0.076) (0.013) (0.012) (0.220) (0.015) (0.013) (0.002)

Greece
0.374 0.494 7.325 0.556 0.673 9.682 0.227 0.343 6.524

(0.013) (0.010) (0.000) (0.010) (0.007) (0.000) (0.013) (0.012) (0.000)

Spain
0.444 0.518 6.188 0.377 0.550 16.084 0.210 0.402 15.733

(0.009) (0.008) (0.000) (0.008) (0.007) (0.000) (0.009) (0.008) (0.000)

Finland
0.390 0.440 3.738 0.392 0.377 -1.277 0.211 0.240 2.244

(0.009) (0.009) (0.000) (0.008) (0.008) (0.101) (0.009) (0.009) (0.012)

France
0.342 0.352 0.665 0.475 0.485 0.831 0.223 0.263 2.866

(0.011) (0.010) (0.253) (0.008) (0.008) (0.203) (0.010) (0.010) (0.002)

Croatia
NA 0.595 NA NA 0.525 NA NA 0.347 NA
NA (0.011) NA NA (0.013) NA NA (0.015) NA

Hungary
0.439 0.468 2.160 0.489 0.592 7.887 0.285 0.339 3.489

(0.010) (0.009) (0.015) (0.010) (0.008) (0.000) (0.011) (0.010) (0.000)

Ireland
0.574 0.640 4.055 0.533 0.521 -0.661 0.417 0.449 1.747

(0.013) (0.010) (0.000) (0.011) (0.012) (0.254) (0.013) (0.013) (0.040)

Italy
0.456 0.462 0.599 0.422 0.484 7.058 0.238 0.310 6.942

(0.007) (0.007) (0.275) (0.006) (0.006) (0.000) (0.007) (0.008) (0.000)

Lithuania
0.423 0.498 3.931 0.435 0.515 4.145 0.285 0.365 3.823

(0.014) (0.013) (0.000) (0.014) (0.013) (0.000) (0.015) (0.015) (0.000)

Luxembourg
0.348 0.364 0.724 0.468 0.412 -3.246 0.154 0.170 0.803

(0.016) (0.016) (0.234) (0.012) (0.012) (0.001) (0.014) (0.015) (0.211)

Latvia
0.425 0.500 3.964 0.518 0.519 0.033 0.278 0.299 1.033

(0.014) (0.012) (0.000) (0.012) (0.012) (0.487) (0.015) (0.014) (0.151)

Malta
0.612 0.582 -1.705 0.493 0.458 -1.626 0.318 0.309 -0.359

(0.013) (0.012) (0.044) (0.016) (0.014) (0.052) (0.018) (0.016) (0.360)

Netherlands
0.355 0.464 7.408 0.281 0.344 5.543 0.112 0.220 8.217

(0.011) (0.010) (0.000) (0.008) (0.008) (0.000) (0.009) (0.009) (0.000)

Poland
0.385 0.451 5.868 0.514 0.525 1.053 0.312 0.329 1.393

(0.008) (0.008) (0.000) (0.007) (0.008) (0.146) (0.008) (0.009) (0.082)

Portugal
0.374 0.455 4.125 0.523 0.549 1.519 0.229 0.319 4.334

(0.016) (0.012) (0.000) (0.014) (0.011) (0.064) (0.016) (0.013) (0.000)

Romania
0.377 0.350 -1.675 0.553 0.497 -3.575 0.234 0.246 0.650

(0.011) (0.012) (0.047) (0.010) (0.012) (0.000) (0.012) (0.013) (0.258)

Sweden
0.350 0.383 1.870 0.307 0.316 0.637 0.189 0.210 1.303

(0.012) (0.014) (0.031) (0.010) (0.011) (0.262) (0.011) (0.012) (0.096)

Slovenia
0.369 0.463 7.173 0.420 0.465 3.561 0.213 0.282 4.985

(0.010) (0.009) (0.000) (0.009) (0.009) (0.000) (0.010) (0.010) (0.000)

Slovak Republic
0.337 0.429 4.949 0.454 0.441 -0.702 0.246 0.270 1.314

(0.013) (0.013) (0.000) (0.013) (0.013) (0.241) (0.013) (0.014) (0.094)

United Kingdom
0.456 0.517 4.417 0.411 0.519 8.394 0.253 0.372 7.726

(0.011) (0.009) (0.000) (0.010) (0.009) (0.000) (0.011) (0.010) (0.000)
Note: Standard errors for the coefficients and p-values for the one-side t-test are displayed in parentheses.
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Figure 1: Scatter plots of scaled ranks for Bulgaria (2008) and Romania (2008)
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Figure 2: Scatter plots of scaled ranks for Spain (2008 and 2014)
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Panel A: lower orthant dependence

Panel B: upper orthant dependence

Figure 3: Evolution of ρ̂−3 (Panel A) and ρ̂+3 (Panel B) and their bootstrap standard 95%
confidence intervals for EU-28 over the period 2008-2014.
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Panel A: lower orthant dependence

Panel B: upper orthant dependence

Figure 4: Evolution of ρ̂−z3 (Panel A) and ρ̂+z
3 (Panel B) and their bootstrap standard 95%

confidence intervals for EU-28 over the period 2008-2014
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Panel A

Panel B

Figure 5: Relationship between AROPE rate and ρ̂−3 (Panel A) and between AROPE rate and
ρ̂−z3 (Panel B) for EU-28 and years 2008 (left) and 2014 (right).
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Appendix 1

Proposition 1. The plug-in estimator of ρd defined in (14) in Section 2.3, namely

ρ̂d =
ρ̂−d + ρ̂+d

2
, (A1)

where ρ̂−d and ρ̂+d are the estimators in (12) and (13), respectively, coincides with the estima-

tor of ρd proposed by Dolati and Úbeda-Flores (2006) in the framework of AOD measures of

multivariate concordance.

Proof. The estimator of ρd proposed by Dolati and Úbeda-Flores (2006), that will be denoted

as ρ̂DUFd , is as follows (see Example 5.1 in that paper):

ρ̂DUFd =

1

n

n∑
j=1

[
C ′(

R1j

n+1
, · · · , Rdj

n+1
) + C

′
(
R1j

n+1
, · · · , Rdj

n+1
)
]
− ad,n

bd,n − ad,n
, (A2)

where

C ′(
R1j

n+ 1
, · · · , Rdj

n+ 1
) =

d∏
i=1

Rij

n+ 1
, C
′
(
R1j

n+ 1
, · · · , Rdj

n+ 1
) =

d∏
i=1

(1− Rij

n+ 1
), (A3)

and

ad,n =
1

2d−1
, bd,n =

1

n

n∑
j=1

(
j

n+ 1
)d +

1

n

n∑
j=1

(1− j

n+ 1
)d. (A4)

Putting back (A3) and (A4) in (A2), the following expression comes up:

ρ̂DUFd =

1

n

1

(n+ 1)d

n∑
j=1

[
d∏
i=1

Rij +
d∏
i=1

(n+ 1−Rij)

]
− 1

2d−1

1

n

1

(n+ 1)d

[
n∑
j=1

jd +
n∑
j=1

(n+ 1− j)d
]
− 1

2d−1

. (A5)

Now, multiplying both the numerator and the denominator of (A5) by (n+ 1)d and taking into
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account that
n∑
j=1

jd =
n∑
j=1

(n+ 1− j)d, we have:

ρ̂DUFd =

1

n

n∑
j=1

(
d∏
i=1

Rij +
d∏
i=1

Rij

)
− (n+ 1)d

2d−1

2

n

n∑
j=1

jd − (n+ 1)d

2d−1

, (A6)

where Rij = n+1−Rij. On the other hand, replacing ρ̂−d and ρ̂+d in (A1) by their expressions in

(12) and (13), respectively, the expression in (A6) comes up. Hence, it turns out that ρ̂d = ρ̂DUFd

and the result is proven.

Proposition 2. In the trivariate case (d = 3), the plug-in estimator of ρ3 defined in (14) can

be computed as the average of their corresponding pairwise sample coefficients, that is,

ρ̂3 =
ρ̂12 + ρ̂13 + ρ̂23

3
, (A7)

where ρ̂ik denotes the bivariate sample Spearman’s rho for the pair (Xi, Xk), with 1 ≤ i < k ≤ 3.

Proof. First, from equations (14)-(16), we obtain the following expression for ρ̂3:

ρ̂3 =
ρ̂−3 + ρ̂+3

2
=

1

2

[
8

n(n− 1)(n+ 1)2

n∑
j=1

(R1jR2jR3j +R1jR2jR3j)− 2
n+ 1

n− 1

]
. (A8)

Now, taking into account that Rij = n+ 1−Rij, we have

R1jR2jR3j = (n+ 1)3 − (n+ 1)2
3∑
i=1

Rij + (n+ 1)(R1jR2j +R1jR3j +R2jR3j)−R1jR2jR3j,

and so the sumation in (A8) becomes

n∑
j=1

(R1jR2jR3j+R1jR2jR3j) = n(n+1)3−(n+1)2
3∑
i=1

n∑
j=1

Rij+(n+1)
n∑
j=1

(R1jR2j+R1jR3j+R2jR3j).
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Now, since
n∑
j=1

Rij = 1 + 2 + ...+ n = n(n+1)
2

, the expression above becomes

n∑
j=1

(R1jR2jR3j +R1jR2jR3j) = −1

2
n(n+ 1)3 + (n+ 1)

n∑
j=1

(R1jR2j +R1jR3j +R2jR3j). (A9)

Putting back (A9) in (A8), it turns out that

ρ̂3 =
4

n(n2 − 1)

(
n∑
j=1

R1jR2j +
n∑
j=1

R1jR3j +
n∑
j=1

R2jR3j

)
− 3(n+ 1)

(n− 1)
. (A10)

On the other hand, the average of the pairwise sample Spearman’s coefficients is

ρ̂12 + ρ̂13 + ρ̂23
3

=
1

3

[
12

n(n2 − 1)

(
n∑
j=1

R1jR2j +
n∑
j=1

R1jR3j +
n∑
j=1

R2jR3j

)
− 9(n+ 1)

n− 1

]
=

=
4

n(n2 − 1)

(
n∑
j=1

R1jR2j +
n∑
j=1

R1jR3j +
n∑
j=1

R2jR3j

)
− 3(n+ 1)

(n− 1)
.

Hence, comparing this last equation with (A10), the result in (A7) comes up.

44



Appendix 2

This appendix includes a further discussion on other copula-based generalizations of Spearman’s

rho for the three-dimensional continuous case, developed by Nelsen and Úbeda-Flores (2012)

and Garćıa et al. (2013), that include, as particular cases, the coefficients ρ−3 and ρ+3 defined in

Section 2. We also include a concise discussion on the empirical results based on the estimated

values of these new coefficients. To our knowledge, there are no tie-corrected versions of these

coefficients for possibly non-continous data.

The coefficients of directional trivariate dependence, proposed by Nelsen and Úbeda-Flores

(2012), allow to identify dependence undetected by ρ−3 , ρ
+
3 and ρ3, when these take values

near zero, and are defined as follows. Let α = (α1, α2, α3), with αi ∈ {−1, 1}, denote the

eight directions corresponding to the eight corners of the cube I3 in which we could measure

dependence in trivariate distributions. For each direction α, a directional ρ-coefficient is defined

as:

ρα3 =
α1α2ρ12 + α1α3ρ13 + α2α3ρ23

3
+ α1α2α3

ρ+3 − ρ−3
2

. (A11)

Noticeably, ρ
(1,1,1)
3 = ρ+3 and ρ

(−1,−1,−1)
3 = ρ−3 . Roughly speaking, these directional coefficients

try to capture how far from independence our data are around any “corner” of the cube I3.

For instance, the coefficient ρ
(−1,−1,1)
3 will capture the propensity of the observations to be

concentrated around the vertex (0, 0, 1) in the unit cube I3, i.e. the propensity that small values

of X1 and X2 tend to occur with large values of X3, whereas the coefficient ρ
(−1,−1,−1)
3 = ρ−3 will

capture the propensity of the ranked observations to be concentrated around the corner (0, 0, 0)

of the unit cube I3, i.e. the propensity of being simultaneously low-ranked in all dimensions.

The largest of the eight directional ρ-coefficients defined in (A11), denoted as ρmax3 , was intro-

duced by Garćıa et al. (2013) as an index of maximal dependence. This index can be alter-

natively calculated using the three pairwise Spearman’s rho coefficients and the three common
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3-dimensional versions of Spearman’s rho, as follows:

ρmax
3 =

2

3
max{ρ12, ρ13, ρ23, 3ρ3} −min{ρ+3 , ρ−3 }. (A12)

It is worth noting that 0 ≤ ρmax
3 ≤ 1. Actually, ρmax

3 attains its maximum value, 1, when

C = M and it becomes 0 when C = Π. Moreover, if ρ12, ρ13 and ρ23 are all positive, then ρmax
3

is equal to either ρ−3 or ρ+3 ; for a discussion on other properties of ρmax
3 , see Garćıa et al. (2013).

Regarding statistical inference, Garćıa et al. (2013) construct plug-in estimators for the coeffi-

cients ρα3 and ρmax
3 by replacing in (A11) and (A12), respectively, the bivariate and trivariate

Spearman’s coefficients by their empirical counterparts in equations (15)-(17). The resulting

estimators are asymptotically normally distributed. As expected, the estimators ρ̂+3 and ρ̂−3 in

(15)-(16) come up as particular cases of the estimated directional coefficient ρ̂α3 for α = (1, 1, 1)

and α = (−1,−1,−1), respectively.

To illustrate the application of these coefficients, the maximal dependence coefficient, ρ̂max
3 , has

been computed for the EU-28 countries and for the two years 2008 and 2014. Since all the

bivariate coefficients are positive (see Tables 4 and 5), the maximum of the eight coefficients

of directional dependence, ρ̂max
3 , should be equal to either ρ̂+3 or ρ̂−3 . Noticeably, in our case,

ρ̂max
3 = ρ̂−3 in both years and in all countries (except in Romania, where ρ̂max

3 = ρ̂+3 ), indicating

that the positions of the households in the three dimensions of poverty tend to be aligned around

the corner (0, 0, 0). In terms of poverty analysis, this fact is particularly relevant because this

means that, in all countries (except in Romania), there is a general strong tendency of the

three poverty dimensions (income, no-material deprivation and work intensity) to take low

values together, so that households tend to be simultaneously low ranked in all dimensions and

this could make overall poverty worse.
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