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Abstract. Modern sensorization, communication and computational technolo-
gies provide collecting and storing huge amounts of raw data from large cyber-
physical systems. These data should serve as the basis to take better decisions at 
all levels (from the design to operation and management). Nevertheless, raw data 
needs to be transformed in useful information, usually in the form of prediction 
models. Machine learning plays thus a key role in this task. The process industry 
is not alien to this digital transformation, although large processing plants present 
particularities that differentiate them from other systems. These differences, if 
neglected, can make machine learning for general purpose fail in extracting the 
right information from data, leading thus to unreliable process models. As such 
models are the basis on which the ideas towards the cognitive plant rely, this issue 
is of key importance for a successful full digitalization of the process industry. 
Here we discuss these aspects, as well as the more suitable machine-learning ap-
proaches, through our experience in an industrial case study. 

Keywords: machine learning, data conditioning, process modeling, data recon-
ciliation, constrained regression, grey-box models. 

1 Introduction  

In the digital era, the impressing amount of data that can be stored as well as the speed 
at which they can be stored are expected to significantly impact the decision-making 
procedures at all levels of a factory: from the process design, through the operation and 
maintenance, to production scheduling and supply chain. Coordinating actions at all 
levels is the work towards reaching the full digitalized, cognitive and, ultimately, au-
tonomous plant. However, in the process industries (those that process bulk materials 
or resources to transform them into products), these expected advances will not came 
alone by just collecting huge amounts of data and presenting them in a nice view: data 
treatment and analytics is necessary to ensure the data quality. Moreover models for 

                                                           
∗ This research received funding from the EU Horizon 2020 research and innovation programme under 
Grant No. 723575 (CoPro), and by the Spanish MICINN with FEDER funds (PGC2018-099312-B-C31). 



2 

reliable predictions need to be build upon such data, in order to be later used in ad-
vanced control, optimization and planning routines [1]. 
Once data quality is ensured, models are to be build, and the current trends from the 
big-data revolution seem to impose the wide set of machine-learning (ML) techniques 
in any sector. However, as we will illustrate, the direct application of an ML approach 
to a modelling problem in the process industry needs to be evaluated carefully. 
In this particular sector, production takes place in a set of complex (and expensive) 
process units, linking flows of materials and energy at a large scale. Nonetheless, the 
process industry is not characterized by a scarce knowledge on the involved processes: 
researchers on Process Systems Engineering (PSE) [2] have been developing physical 
models (e.g., distillation columns) for design, simulation and decision-support solutions 
for years. Although these models have limitations for its use in real-time applications 
(computational complexity and/or fitness to actual plants), it is not sensible to throw 
out all this deep knowledge and replace it by deep-learning machines [3]. Hence, one 
of the key challenges of ML to successfully penetrate in the process industry is devel-
oping methods and tools that are able to naturally embed the existent physical 
knowledge on the underlying processes. 
Researchers in PSE have already taken some steps forward in this path: a) developing 
grey-box models (combination of first-principles laws and regression equations) which 
get a high matching level with the actual plant [4]; b) proposing methodologies for 
robust data analysis/reconciliation [5]; and c) presenting approaches/tools for data-
driven modeling that are tailored to the features of the process industry [6], [7]. 
In the following sections, we discuss the above-mentioned issues with ML through an 
industrial case study that consists of building a prediction model for the fouling accu-
mulation in the heat exchangers of a multiple-effect evaporation plant. We also test the 
recently proposed methodologies and software on this case, trying to give the reader a 
clearer vision on the potential advantages as well as the existing limitations. 

2 Description of the case study and motivation 

The case study is an evaporation plant in a cellulose fiber production factory, whose 
objective is to continuously remove certain amount of water from an acid liquid inlet 
(spinbath hereinafter) that comes from spinning machines, the place where cellulose 
pulp is recovered into fibers of desired properties.  
The plant layout, simplified in Fig. 1, makes use of several heat exchangers in serial 
connection to heat the spinbath up to a temperature suitable to start the evaporation by 
pressure drop. This pressure drop is first created in the evaporation chambers by in-
duced vacuum, and later by further condensation in an attached surface condenser, cre-
ating thus a multiple-effect evaporation. The efficiency of these type of plants (live-
steam consumption per amount of evaporated water) is determined by: 1) the perfor-
mance of the cooling system and 2) the fouling state in the heat exchangers (due to 
deposition of organic residues present in the spinbath) [8]. Therefore, representative, 
but of limited complexity, models of these systems are needed to predict online the 
impact that the operation will have on the plant performance over time. 
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Fig. 1. Schema of the evaporation plant with attached surface condenser as cooling system. 

For such a task, a set of experiments were performed running the plant and the cooling 
system in different operating conditions (setting different values for the main control 
variables: spinbath flow, temperature set point, cooling water flow). Moreover, in order 
to get information on the fouling degradation in the exchangers over time, an extensive 
dataset corresponding to several months of operation (including stops for cleaning) has 
been also recovered from the collected plant historian. 
In this way, the modeler may be tempted to directly try to find regression models which 
relate the live-steam consumption with the input variables through raw measurements. 
This involves some risks and limitations, as we will see later on.  

3 Data conditioning and variable estimation 

Everybody in the machine learning and data-analytics research community claims that 
ensuring the quality of data is essential to extract sensible information: process meas-
urements need to be coherent and reliable. In industrial practice, however, it is not com-
mon to go beyond the standard filters to exclude faulty instrumentation (out of range 
sensors, communication loss, etc.) and to average data with the aim of mitigating the 
effect of noise to account for steady state in large-scale systems. 
A systematic method to detect and assign the quality of process data can be proposed 
from the Spanish AENOR-UNE norm 500540 [9], used to analyze data in meteorolog-
ical stations. This method is based on several progressive levels of tests where each 
datum is associated to the highest quality level being passed, see Fig. 2. Note that the 
more restrictive tests (thus, the ones ensuring higher confidence data) are model based.  

 

Fig. 2. Data quality validation levels. 
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Each level depicted in Fig. 2 corresponds to the following quality tests: 

• Level 0: Communications. Check whether the data is recorded or not at an ex-
pected sampling time (problems in the sensor or in the communication system). 

• Level 1: Limits. Check that the datum is within instrument span and/or physical 
range. E.g., the maximum values expected of the flowmeters will be determined by 
a simple analysis of the flow capacity limit of the pipes. 

• Level 2: Trends. Take into account the time changes of the data in consecutive 
sampling times. E.g., the level in a big tank cannot change faster than several cen-
timeters by minute. 

• Level 3: Data reconciliation. With a basic first-principle model of the plant, apply 
methods of (dynamic) data reconciliation (DR) and gross-error detection [5]. This 
provides a reliable set of measurements as well as estimations of unmeasured vari-
ables and parameters that are coherent with the process physics. E.g., mass balances 
need to be fulfilled in each time instant. 

• Level 4: Time series & correlations. Take into account the time series of the col-
lected values for each variable [10]. E.g., a time-series model can be derived by 
analyzing the historical data of the flows in a pipe, relating them with valves, and 
the model output is later used to compare and to validate the newly recorded data. 

Fuzzy logic and set theory can be used to develop filters for the three first levels, based 
on comparison rules which are able to remove inconsistent data [11]. Different strate-
gies and rules can be used, such as range and speed of change of the measurements, etc. 
Nevertheless, what really makes the difference in the authors’ opinion are the model-
based levels, because they include process knowledge in the data processing. Of course, 
these involve higher engineering effort for implementation, as relatively complex mod-
els of the plant/process (either first principles or time series) need to be previously build.  
After these quality tests, resource and key efficiency indicators can be defined upon 
reliable sets of measurements to monitor the plant efficiency in real time [12]. 

Instrumentation issues and DR in the evaporation plant. 

When retrieving sensor data from the historian, we already had to face the first issues: 
many of the collected flow measurements were either “upper bounded” by the instru-
ment range (span-related issue) or they were showing higher values than the actual 
flow, see Fig. 3. In particular, this last problem was not caused by a biased instrument, 
but because of the improper location of the instrument itself: there was a bypass valve 
in the pipe after the flowmeter, so a (non-constant) undetermined part of the spinbath 
was sent to another equipment. Hence, the actual flow was usually lower. 
Realizing of such wrong values and the explanation took us a significant amount of 
time and several failed modeling attempts. However, most of these data passed the tests 
of range-based filters. Here we highlight the importance of the model-based tests, as 
suitable DR of these wrong measurements with mass-balance equations plus the rest of 
plant measurements provided the corrected values depicted in blue in Fig. 3.  
Moreover, back to the end goal of predicting the fouling in the evaporation plant, we 
already encounter an additional issue: the long-term loss of efficiency observed only in 
one output (increase of live-steam consumption) is masked with the cooling system 
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performance and the plant operation conditions (spinbath flow). Hence, the fouling ef-
fect is hardly identifiable by a direct ML approach with the available measurements. 

 

a) Wrong measurement due to wrong sensor placement. 

 

b) Actual values exceeding the instrument range. 

Fig. 3. Flow-measurement issues. Orange line: sensor values. Blue line: actual values. 

To overcome this issue, we also recalled dynamic DR [5], including the energy balances 
in the plant model, to estimate the lumped heat-transfer coefficient 𝑈𝐴(𝑡) in the ex-
changers over the time [7]. Machine-learning techniques can be now applied to “dis-
cover” models upon these coherent estimations, also called virtual measurements in the 
soft-sensors related literature. Details provided below. 

4 Prediction models and constrained regression 
 
Once reliable values for all process variables (states 𝑥, outputs 𝑦 and inputs 𝑢) are 
available, including coherent estimates of time-varying parameters and/or process un-
known inputs 𝑧, any ML approach (e.g., artificial neural networks [4], canonical partial 
least squares [13], support vector machines [14], etc.) can be, in principle, good candi-
date to build plant surrogate models in the form 

 𝑦 = 𝑓(𝛼; 𝑥, 𝑢, 𝑧), 𝛼 ∈ ℝ regression parameters, (1) 

or submodels (equations being part of a larger model) relating some variables 𝑧∗ ∈ 𝑧 
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 𝑧∗ = 𝑔(𝛽; 𝑥, 𝑢, 𝑧), 𝛽 ∈ ℝ regression parameters. (2) 

At this point, there is a fundamental question to discuss: Even having reliable datasets 
for regression, are “standard” ML approaches enough to guarantee black-box models 
whose response is coherent with the process physics?  
Thinking on it, the answer to that question is in general NO, and the reason is given 
next. If you outlook the training methods by the usual ML tools, you will find that most 
of them rely exclusively on data, and that the performance of the black-box model to 
train is basically defined by the fitness to such data (plus suitable regularization to avoid 
overfitting, of course). In this way, although the data is coherent with the process phys-
ics (passing the tests in Section 3) and the model achieves a perfect fit to such data, 
there is no guarantee that its response (even with regularized smooth models) takes 
values that violate basic physical principles at input values not contained in the training 
dataset. Indeed, a model can show good statistics (R2, RMSE, etc.) in validation da-
tasets, but it may still “predict” negative flows out of the training region (extrapolation 
issues) or a non-monotonic response between consecutive inputs (interpolation issues). 
As the end purpose of surrogate or grey-box models is to be used for decision support 
in (economic) control and optimization routines (hence, mainly for interpolation and 
extrapolation), the data-driven parts must be in coherence with the process physics [6], 
[15]. Therefore, some properties on the model response, such as bounds on the outputs 
and/or in their derivatives (monotony, curvature, convexity, etc.) would like to be en-
sured, not only in the regression data but in the entire expected region of operation. 
Thus, ML in the PSE framework needs to be extended to include additional constraints 
on the model, constraints which ideally need to be enforced on infinitely many points 
belonging to the (usually local) plant operating region. Here is where the concept of 
constrained regression plays a key role. 
 
4.1 Constrained regression. 

Assume that a dataset of 𝑁 samples over time for some outputs 𝑦 (or, equivalently, 
estimations of those 𝑧∗ in (2)) and some inputs (𝑥, 𝑢, 𝑧) is available. Then, a candidate 
model for regression 𝑓(⋅) is sought such that a 𝑝-measure of the error (e.g., 𝐿ଵ-regular-
ized or least squares) w.r.t. the data is minimized over a set of constraints 𝑐(⋅): 

 
min

ఈ
∑ ฮ𝑦[௧] − 𝑓൫𝛼; 𝑥[௧], 𝑢[௧], 𝑧[௧]൯ฮே

௧ୀଵ 

s. t. : 𝑐(𝛼; 𝑥, 𝑢, 𝑧) ≤ 0 ∀ 𝑥 ∈ 𝒳, 𝑢 ∈ 𝒰, 𝑧 ∈ 𝒵
         𝛼 ∈ 𝒜

  (3) 

Note that the additional constraints 𝑐(⋅) specifying some desired features on the model 
response is locally enforced in a compact region Ω ≔ 𝒳 ∪ 𝒰 ∪ 𝒵 of the input-space 
variables. These constraints may range from the more simple bounds on 𝑦 ensuring, for 
instance, non-negativity, to the more complex bounds on the model n-degree deriva-
tives (slope, curvature, convexity, etc.). Defined this way, (3) is a semi-infinite con-
strained nonlinear optimization problem, but it can be computationally tractable under 
some assumptions [16]. Next, we briefly present two approaches and software available 
to handle (3), jointly with a discussion on their advantages and limitations.  



7 

Global mixed-integer approach to symbolic regression. 
 
In this approach, the functional form of the candidate regression model is assumed to 
be unknown a priori. Instead, the algorithm seeks to construct it from a set of predefined 
basis functions ℬ, e.g., ℬ ≔ {1, 𝑥, 𝑥ଶ, 1/𝑥, log(𝑥) , 𝑒ఛ௫}. Once this set is specified, the 
lowest complexity function 𝑓(⋅) that accurately fits the data is found from the selection 
of the more suitable basis in ℬ via mixed-integer programming (MIP). The idea is to 
split the resolution of (3) in two stages: first, solving a data-driven constrained regres-
sion (i.e., 𝑐(⋅) is only checked on the points in the dataset) and, subsequently, testing 
the fulfillment of constraints 𝑐(⋅) by solving a maximum-violation problem with the 
model already fixed from stage 1. Hence, if a point on the input space is found to violate 
𝑐(⋅) with the initially proposed model, such point is virtually added to the inputs dataset 
and the procedure repeats until no violation of the constraints is found in stage 2 [6]. 
If the basis functions are chosen such that they are affine in decision variables1, typi-
cally the coefficients of a linear combination on them, then the problem to solve in stage 
1 is computationally tractable (MIQP or MILP depending on the chosen norm for the 
regression error, i.e., 𝑝 = 1 or 𝑝 = 2). For example, for input variables 𝑥, (3) becomes: 

 

min
ఈ,ఎ

∑ ൬𝑦[௧] − 𝛼 + 𝛼ଵ𝑥[௧] + 𝛼ଶ𝑥[௧]
ଶ +

ఈయ

௫[]
+ 𝛼ସ log൫𝑥[௧]൯ + 𝛼ହ𝑒௫[]൨൰

ଶ
ே
௧ୀଵ

s. t. : −𝛼 − 𝛼ଵ𝑥[௧] − 𝛼ଶ𝑥[௧]
ଶ −

ఈయ

௫[]
− 𝛼ସ log൫𝑥[௧]൯ − 𝛼ହ𝑒௫[] ≤ 0  𝑡 = 1, … , 𝑁

         𝐚𝐢𝜂 ≤ 𝛼 ≤ 𝐚𝐢𝜂   𝑖 = 0, … ,5; 𝛼 ∈ ℝ

         𝜂 + 𝜂ଵ + 𝜂ଶ + 𝜂ଷ + 𝜂ସ + 𝜂ହ = 𝑇;  𝜂 ∈ {0,1}

  (4) 

In this way, the basis functions are active when the corresponding binary variable 𝜂 =
 1 and inactive otherwise. Model complexity is specified by a parameter 𝑇 that is in-
creased until a goodness-of-fit measure worsens, such as the corrected Akaike Infor-
mation Criterion [17]. Afterwards, in step 2 an adaptive sampling methodology based 
on derivative-free global optimization techniques is used to identify points where the 
model is inaccurate and/or does not fulfill constraints. For the above example: 

 
max

௫
 𝛼 + 𝛼ଵ𝑥 + 𝛼ଶ𝑥ଶ +

ఈయ

௫
+ 𝛼ସ log(𝑥) + 𝛼ହ𝑒௫

s. t. : 𝑥 ∈ 𝒳
  (5) 

Note importantly that this problem is in general nonlinear and nonconvex. 
This procedure is what the software ALAMO implements [18]. Although this approach 
involves iterations between MIP and NLP problems to global optimality (time consum-
ing), the software BARON [19] reaches acceptable computing times in many situations. 

Sum-Of-Squares (SOS) constrained regression. 
 
An alternative approach is casting problem (3) as a polynomial SOS optimization one 
[20] under mild assumptions. Of course, the main limitation of this approach is that the 

                                                           
1 Note that this is a strong limitation for the selection of some nonlinear basis functions in practice, like 𝑒ఛ௫ 
where its time constant 𝜏 needs to be fixed a priori, i.e., cannot be identified by the fitting algorithm. 
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candidate models 𝑓(⋅) need to be polynomial in their arguments, i.e., the “potential set 
of basis functions” would be formed only by monomials in the input variables up to a 
predefined degree 𝑑. Nonetheless, paying this price worth it, because the resulting (sin-
gle) optimization problem is convex, and the extra constraints on the model response 
and/or in its derivatives are naturally enforced (either globally, or locally in a region Ω 
defined by polynomial boundaries) with full guarantee of satisfaction, no matter how 
many samples are to be fitted or which region was covered by the experiments. In this 
way, high-order polynomial regressors can be used with guarantees of well-behaved 
resulting function approximators, compared to most options in prior literature. 
For instance, a SOS version of the above (4)-(5) could be: 

 

min
ఈ,ఉ,థ

 ∑ 𝜙௧
ே
௧ୀଵ

s. t. : ቈ
𝜙௧ 𝛼 + 𝛼ଵ𝑥[௧] + 𝛼ଶ𝑥[௧]

ଶ + 𝛼ଷ𝑥[௧]
ଷ + 𝛼ସ𝑥[௧]

ସ

(∗) 1
 ≽ 0   𝑡 = 1, … , 𝑁; 𝜙௧ ∈ ℝ

         𝛼 + 𝛼ଵ𝑥 + 𝛼ଶ𝑥ଶ + 𝛼ଷ𝑥ଷ + 𝛼ସ𝑥ସ − 𝑠(𝛽; 𝑥) ⋅ (5ଶ − 𝑥ଶ) is SOS ∀ 𝑥 ∈ ℝ

         𝐚𝐢 ≤ 𝛼 ≤ 𝐚𝐢  𝑖 = 0, … ,5; 𝛼 ∈ ℝ

         𝑠(𝛽; 𝑥) ≔ 𝛽 + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ, 𝛽 ∈ ℝ, is SOS ∀ 𝑥 ∈ ℝ

  (6) 

Here, well-known Schur complement and Positivstellensatz (see [7] for details) have 
been used to cast the quadratic objective function (with extra decision variables 𝜙) and 
the local enforcement of the constraint in a region Ω ≔ {𝑥: |𝑥| ≤ 5} (with extra deci-
sion variables 𝛽), respectively. Note that the highest degree of the polynomial SOS 
multipliers 𝑠(⋅) is chosen such that deg൫𝑠(𝛽; 𝑥) ⋅ (5ଶ − 𝑥ଶ)൯ ≥ 𝑑. 
In this case, although no automatic selection of the suitable monomials among a poten-
tial set is done via MIP, note that standard regularization on the model coefficients 𝛼 
can be trivially included in the objective function, for instance with a metaparameter Γ 
that progressively weights the coefficients corresponding to high-degree monomials. 
 
4.2 Application to the case study. 

Recall from Section 2 that the aim is to get data-driven prediction models of limited 
complexity for the cooling system performance and the fouling in the exchangers.  

Modeling the cooling power provided by the surface condenser. 
 
The actual cooling power can be computed from the data collected by the temperature 
sensors at the water inlet (𝑇୧୬) and outlet (𝑇୭୳୲) of the SC, and by the flowmeter meas-
uring the volumetric water flow (𝐹୵) send through the SC, as follows:  

 𝐶୮୭୵ =
ସ.ଵ଼

ଷ
𝐹୵ ⋅ (𝑇୭୳୲ − 𝑇୧୬) (7) 

Thus, what is missing to fully predict the cooling power is a model that relates the outlet 
temperature 𝑇୭୳୲ with the water flow 𝐹୵ and the inlet temperature 𝑇୧୬. To model that, a 
polynomial candidate function up to degree 3 in 𝐹୵ was proposed to experimentally fit 
the recorded temperature difference Δ𝑇 ≔ 𝑇୭୳୲ − 𝑇୧୬ [21]: 
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 Δ𝑇 = 𝛼 + 𝛼ଵ𝐹୵ + 𝛼ଶ𝐹୵
ଶ + 𝛼ଷ𝐹୵

ଷ (8) 

The fitting of (8) to the experimental data was done first by standard LS unconstrained 
regression, obtaining the resulting blue curves depicted in Fig. 4. As it can be seen, 
when computing the cooling power with the obtained model, it shows a behavior inco-
herent with the physics at high flows (remarked region in the dashed box), i.e. the cool-
ing power cannot decrease with higher flows. However, the model fitted the measured 
outlet temperature (𝑇୧୬ was nearly constant during the experiments) quite well, with a 
monotonic response in fact, but this didn’t avoid the wrong response in 𝐶୮୭୵. 

 
 Fig. 4. Fitting of the cooling power developed by the SC with different water flows. 

Then, SOS constrained regression was recalled in a second attempt, adding the con-
straint2 d𝐶୮୭୵ d𝐹୵⁄ > 0 to enforce the known physical knowledge on the response. 
Now, the obtained model (red curves in Fig. 4) behaves as expected, without showing 
any significant fitting degradation w.r.t the obtained by standard LS. 

Modeling the heat transmission in the exchangers. 
 
The goal here is to build up a model to predict both the influence of the spinbath flow 
𝐹ୗ and the operation time since last cleaning task 𝑡୭୮ (fouling effect) in the lumped 
heat-transfer coefficient 𝑈𝐴. Here we make use of the 𝑈𝐴 estimations provided by DR, 
already mentioned in Section 3 (omitted for brevity, see [7]). 
The first issue arose when selecting sets for training and validation: although the rec-
orded dataset looked huge (plant historian of 7-months length at 5-min. sampling time), 

                                                           
2 Note that derivatives of polynomials are also polynomials that can be directly checked for SOS. 
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the plant was usually running at high flows. Therefore, a significant amount of infor-
mation of the convection and fouling behaviors at medium/low flows was missing. 
In order to palliate this issue, few experiments were executed on purpose when possible 
(normally one is not allowed to “play” with an industrial plant in continuous produc-
tion). Consequently, as often happens in the process industry, we ended up doing “big-
data stuff” with subsets of 22 samples for training plus 20 for validation, depicted in 
the figures below. This is nearly all the information available in the region of operation. 
With this material, if no additional information about the process physics is included in 
the fitting problem, standard ML techniques fail in obtaining reliable black-box models 
in the regions where there is a lack of data to fit. See for instance problems of overfitting 
with standard LS in Fig. 5a, and problems of abrupt-falling responses (even going neg-
ative) where data is missing in Fig. 5b, despite using regularization techniques. 
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a) Least Squares                                           b) LS with regularization 

Fig. 5. Fitting of the heat-transmission coefficient by standard ML methods. 

  
         a) Model by ALAMO                                         b) Model by polynomial SOS 

Fig. 6. Fitting of the heat-transmission coefficient by constrained regression. 

On the contrary, constrained regression in Section 4.1 fixed these modeling issues. We 
tested the “ALAMO approach” with a large set of basis functions including monomials 
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up to degree 4, rational powers, square roots, logarithms and exponentials. We also set 
up the additional constraint 𝑓൫𝛼; 𝐹ୗ, 𝑡୭୮൯ > 200 in the local-input region Ω. Thus, 
choosing the Akaike’s criterion to avoid overfitting, we got the model (Fig. 6a): 

 𝑈𝐴 = 2.27𝐹ୗ − 0.9095𝑡୭୮ + 84.978 log(𝐹ୗ) − 42.525ඥ𝑡୭୮
య   (9) 

Going by the way of SOS constrained regression, proposing a candidate polynomial 
model with highest degree 𝑑 = 4 and setting (local) bounds on its partial derivatives 

 0 <
ୢ൫ఈ;ிా,௧౦൯

ୢிా
< 𝜆 ,   − 𝜆୲ <

ୢ൫ఈ;ிా,௧౦൯

ୢிా
< 0,   ∀ 𝐹ୗ, 𝑡୭୮ ∈ Ω (10) 

to enforce a smooth and physically-coherent response, the model of Fig. 6b is got [7]: 

𝑈𝐴 = 7.06eି଼𝐹ୗ
ସ + 2.95eି𝐹ୗ

ଷ 𝑡୭୮ + 1.63eି𝐹ୗ
ଶ 𝑡୭୮

ଶ − 2.42eି𝐹ୗ𝑡୭୮
ଷ + 1eିସ𝑡୭୮

ସ  −

       2eିସ𝐹ୗ
ଷ − 1.585eିଷ𝐹ୗ

ଶ 𝑡୭୮  + 5.1eିହ𝐹ୗ𝑡୭୮
ଶ − 0.0138𝑡୭୮

ଷ + 0.089𝐹ୗ
ଶ +

                       0.232𝐹ୗ𝑡୭୮ + 0.627𝑡୭୮
ଶ − 10.87𝐹ୗ − 22.78𝑡୭୮ + 1000 (11) 

Note that the model (11) got by SOS constrained regression keeps the desired physical 
features without incurring in significant fitness deterioration w.r.t. “the best” obtained 
by unconstrained LS regression with regularization, see the table below. 

Table 1. Absolute LS error accumulated by the presented models. 

Method Training Error Validation Error Total Deterioration 

LS 14.452 15.226 29.719 7.17% 
LS regularized 13.448 14.282 27.730 - 
ALAMO 18.061 18.402 36.463 31.5% 
SOS CR 14.751 13.362 28.113 1.38% 

 

5 Final remarks 
 
In this paper, we have discussed how essential is incorporating process knowledge be-
yond sampled data in order to really extract sensible information, which can be later 
use for decision support. For this task, model-based tests to detect (and improve) the 
data quality (robust DR methods in particular) as well as constrained-regression ap-
proaches proven to be quite effective in our case study. 
Constrained regression is especially relevant/useful when few samples are available, or 
when there are lots of samples but containing nearly the same information about the 
process. It is also worth to remark that incoherent model responses could be detected 
(and corrected ad-hoc perhaps) in two or three-dimensional models, but this would be 
impossible in larger multidimensional systems. 
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