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Modelling Income Distribution Using the Log Student’s t Distribution: 
New Evidence for European Union Countries 

Abstract 

Income distribution remains a crucial topic in economic analysis, among other reasons, 
due to the increase in inequality in recent years, as one of the effects of the Great 
Recession. In this context, proposing parametric models that represent the full 
distribution through a small number of parameters arouses great interest as an 
instrument for economic analysis. This paper studies the ability of log Student’s t 
distribution to model the size distribution of income due to its potential to reproduce the 
effect of a mode around low-incomes as well as its precision in capturing the degree of 
kurtosis of empirical distributions. These characteristics make the log-t an ideal analysis 
tool, for instance, for exploring the effects of anti-poverty policies. The model has been 
fitted to income data for the EU25 and for several years. The conclusion is that the log 
Student’s t distribution offers the best fit in the vast majority of cases. 

Keywords: Log Student’s t distribution, parametric modelling, income distribution, EU 
countries 
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1. Introduction 

The personal distribution of income and wealth has been the subject of numerous recent 
studies, such as those of Piketty (2014, 2018) or Atkinson (2017), which, since the start 
of the Great Recession, have placed distributive aspects at the centre of the economic 
debate within the different international institutions (OECD, 2015). Indeed, in many 
countries, economic crisis has led to the increase of inequalities and polarisation, which 
raises the need to review the approaches of economic policies behind this situation and 
to seek new proposals of measures that will alleviate these effects (OECD, 2013). 
 
One of the most used tools for the study of personal distribution of income and 
inequality has been the parametric modelling of the empirical distribution. This tool 
allows for the characterisation of the distribution using a scarce number of parameters, 
with the possibility of completely reconstructing the distribution of the variable of 
interest from limited information that is easy to manage. 
 
The choice of a certain functional form, in general, is determined by the specific 
characteristics of the phenomenon to be analysed. In principle, any family of cumulative 
distribution functions could be used to model the personal distribution of income, so it 
seems necessary to restrict this large set to a subset of functions that satisfy certain 
properties. These properties may be based on standard characteristics of the observed 
income distribution (for example, the positive asymmetry or the heaviness of its right 
tail), desirable mathematical characteristics (for example, that it is twice differentiable), 
or economic properties (for example, that it is generated as a result of an underlying 
economic model). 
 
This technique also offers certain advantages over the alternative use of non-parametric 
methods such as kernel estimates. One advantage is the possibility of providing 
theoretical justifications for the generation of the distribution and gauging its suitability 
to correct the usual problems derived from a lack of information in distribution tail 
surveys, which occur due to the under-declaration of high incomes and difficulties in 
accessing very low income and salary recipients (Pinkovsky and Sala-i-Martin, 2009). 
Parametric modelling is also used in numerous studies as a tool for general equilibrium 
microsimulation models (Boccanfuso, Richard and Savard, 2013), where the final result 
of the distribution is considered as a situation of equilibrium of the performance of 
economic agents (Clementi and Gallegati, 2016). In others works, it is used as a tool for 
measuring poverty or inequality (Pinkovsky and Sala-i-Martin, 2009; Vinh et al., 2010 
and Chotikapanich et al., 2014). 
 
In any case, among the proposed models of statistical distributions, some deficiencies 
are observed regarding the modelling of certain income intervals. Such is the case of 
negative or zero incomes, which, in situations of economic crisis, are more abundant in 
the distribution, due to indebtedness and the higher number of individuals who do not 
receive income after exhausting the subsidies for situations of long-term unemployment. 
 
Thus, in this paper we try to answer the following questions: what is the best model to 
fit the empirical income distributions currently observed in different countries? and, 
additionally, which model is more capable of reproducing bimodal empirical 
distributions with an accumulation of incomes around zero? The question is relevant 
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given that this model will be a fundamental tool for analysing policies that are dedicated 
to reducing inequality and poverty, especially related to the lower tail of the 
distribution. 
 
In an effort to answer this question, this article studies and proposes the log Student’s t 
distribution (log t distribution)1 that contemplates this type of situation while enabling 
an acceptable modelling of other parts of the distribution, such as the upper tail, with a 
reduced number of parameters (three). This paper seeks to study in depth the theoretical 
and empirical properties that underlie this model and its applicability to income data 
based on its good fits and its advantages for economic interpretation. It also represents 
the existence of zero incomes. 
 
To check the suitability of the log t distribution, EU Statistics on Income and Living 
Conditions (EU-SILC) data will be used for 25 European countries for the years 2006, 
2011, and 2016, corresponding to different phases of the economic cycle before, during, 
and after the Great Recession, respectively. 
 
The results obtained, using different goodness of fit measures, allow us to conclude 
definitively that the log t distribution produces the best fits compared to the most widely 
used models in the economic literature, especially in the first three quartiles of the 
distribution. This implies that such a distribution should be considered as a useful model 
to model the effects of policies aimed at improving the income distribution of countries. 
 
The paper is structured as follows. There is a review of the economic literature on 
parametric modelling, followed by a discussion of the formal development of the log t 
model. The data used in the study is described and then the results are presented. The 
paper ends with a section that synthesises the main conclusions of the article. 
 
 
 

2. Literature Review 

Since Pareto (1896) presented the first law of personal income distribution, a large 
number of alternative probability density functions have been proposed as models of 
income distribution. Gibrat (1931) provided a theoretical basis (the proportional effect 
law) to obtain a lognormal distribution; this model was also studied by Aitchison and 
Brown (1957) and was the most widely used until Thurow (1970), and Salem and 
Mount (1974), proposed, respectively, the beta and gamma distribution as models of the 
distribution of income. 
 
The results of goodness of fits were improved with the use of three-parameter models 
that were consolidated with the studies on the generalised gamma (Kloek and van Dijk 
1978), the Singh-Maddala distribution (Singh and Maddala, 1976), and the Dagum type 
I distribution (Dagum 1977). 
 
In the 1980s, models with more than three parameters were used, including the 
generalised beta distribution of first and second type. McDonald (1984) introduced two 
distributions of four parameters that nest most of the models of two and three 

                                                 
1 The log t distribution has been shown to be appropriate for application to empirical income distributions 
(Bartels, 1977; Kloeck and Van Dijk, 1977, 1978; Pena et al., 1998), 
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parameters as special cases or limit distributions; their adequacy and validity has been 
demonstrated in recent studies (Prieto and García, 2009, García, Prieto and Simón, 
2014).2 
 
Subsequently, five-parameter models were proposed. Thus, McDonald and Xu (1995) 
introduced a generalised beta distribution with five parameters, and Reed and Wu 
(2008) introduced a generalised Double Pareto-lognormal distribution. Following the 
line of studies on distributions with a large number of parameters and the use of 
mixtures, Domma and Condino (2013) proposed the Beta-Dagum distribution. 
 
In recent years, in addition to the proposals and applications of statistical models with a 
large number of parameters, studies on parametric distributions have been focusing on 
different topics: the modelling of specific parts of the distribution (Jenkins, 2017), 
comparisons of models (Oluyede et al., 2014, Tahir and Cordeiro, 2016), proposals for 
mixtures of distributions (Chotikapanich and Griffiths, 2008; Graf and Nedyalkova, 
2017) or applications and theoretical developments of parametric models to obtain 
measures of poverty and inequality (Chotikapanich et al., 2013, Graf and Nedyalkova, 
2014, Sarabia and Jordá, 2014, Sarabia et al., 2017), among other topics. 
 
Among the recent contributions to the modelling of income distribution, the 
contributions to the econophysics literature by Dragulescu and Yakovenko (2001), Silva 
and Yakovenko (2004), and Yakovenko (2007) stand out. These authors decompose the 
distribution of income into labour and property incomes and provide empirical evidence 
that the bottom of the distribution of income is exponential, while the top is Pareto. 
 
A recent line of research, also based on physics, refers to the probabilistic distributions 
generated from the agent-based models from which interesting studies on poverty 
measures have been developed (Clementi, et al., 2006, Chattopadhyay and Mallick, 
2007; Chattopadhyay et al., 2010 and Chattopadhyay et al., 2017). In this framework, 
the authors start from a conception of the economy as a physical system where a 
multitude of heterogeneous agents interact. As a result of their aggregate behaviour, 
some models of income distribution can be generated, such as the κ-generalized models. 
 
This work is based on the development and use of a three-parameter model, the log t 
distribution which, in addition to its good theoretical properties, has a microeconomic 
foundation and produces good fits in empirical income distributions throughout time 
and space.  
 
3. The Log Student’s t Model 
 
3.1 Motivation  

It is desirable that the functional form of any model that adequately represents personal 
income distribution has a certain microeconomic foundation that connects it with the 
generation and distribution of income processes. 

                                                 
2 Comparisons between the models can be found in Kleiber (1996), Bordley et al., (1996), and 
Bandourian et al. (2003). 
 



5 

In this sense, the lognormal distribution is shown as a plausible model to justify the 
probabilistic distribution of personal incomes as the result of a process of growth 
produced by the accumulation of many small relative changes over time. These changes 
become additives on a logarithmic scale and, using the central limit theorem, can be 
approximated as a normal distribution (Gibrat, 1931). However, the lognormal 
distribution presents a poor fit in the right tail of the income distributions. As an 
alternative to positive model incomes, a mixture of the lognormal distribution with a 
Pareto distribution has been suggested. These two distributions are supported by 
economic laws that justify their use. In addition, the literature clearly identifies that the 
Pareto fits the right tail well (although not the left one), and that the lognormal fits the 
left tail adequately (although not the right one). 

However, in the empirical distributions, the existence of an accumulation of null, and 
even negative, incomes that the aforementioned mixture would not adequately 
reproduce is often observed. The log t distribution, with only three parameters, is an 
alternative to approximate the behaviour empirically observed in the tails and the degree 
of kurtosis of income distributions, based on the same process for the generation and 
distribution of incomes underlying the lognormal model, but modifying it partially 
according to the following reasoning: 
 
Let a variable, Y, distributed according to a lognormal distribution with parameters, 

 log   and   , then: 

 

where Z is a standard normal distribution. 

On the other hand, a random variable Y is said to have a log t distribution with 

parameters  and  if  . So, when the variable Y is 

distributed according to a log t of parameters α, β, and η, then: 

 

where Z is a standard normal distribution and D is a 2
 distribution, both independent. 

As can be deduced from the above expressions, in the process of income assignment of 
a distribution  we can initially identify the same process that is made in a 

distribution : the logarithm of income will be distributed following 

a normal distribution. Recall that the normal distribution emerges after applying the 
central limit theorem to the sum of many small relative changes over time. However, the 

log t corrects the initial normal variable with , the square root of the chi-squared 

random variable. When η is the integer,  could be interpreted as the Mahalanobis 
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distance of a Gaussian random (η×1) vector to the centroid. The components of this 
Gaussian random vector are the different factors that control the individual 
heterogeneity, such as cognitive abilities, socio-economic background, or personality 
traits. Therefore, the parameter  would be the dimension of the factorial space of 

relevant determining factors of personal income distribution. 

This correction procedure, using a measure of the heterogeneity of individuals ( ), 

generates a log t distribution that reproduces, quite well, three basic characteristics that 
are observed in a repetitive way in empirical income distributions: the heaviness of its 
right tail, a non-insignificant accumulation of individuals around zero and a high degree 
of kurtosis. This effect is shown in the following figure that presents the PP-plots (with 
respect to the normal distribution) of the log t distribution of parameters α = 0.4, β = 
20000, and η = 2, and the corresponding lognormal distribution that the log t modifies. 
 

Figure 1. Lognormal and Log t PP-plots (α = 0.4, β = 20000 and η = 2) 

 

 

Additionally,  as McDonald and Butler (1987) suggest, the log t distribution admits a 
mixture interpretation that allows a theoretical justification as a representation of 
income arising from a heterogeneous population. In fact, Hogg and Klugman (1983) 
show that the log t can be obtained as a compound lognormal distribution whose scale 
parameter follows an inverse gamma. 

Finally, there are additional reasons that advise the in-depth study of this log t 
distribution from a purely instrumental perspective. When asymmetric variables (such 
as income, wages, or expenses) are considered as an endogenous variable in a general 
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linear econometric model with normal errors, it is usually transformed by calculating its 
logarithms. This, implicitly, assumes that their distributions are lognormal, even though 
their tails are not adequately represented. In this or similar situations, some authors 
propose adapting these models considering non-normal errors; and some of them 
specifically considering Student’s t errors (Zeckhauser & Thompson, 1970; Zellner, 
1976; Burbano & Melo, 2015). When Student’s t errors are considered, the distribution 
of the endogenous variable becomes a log t.  

 
3.2. The model  

 
The well-known Student’s t distribution (or simply t distribution), , is a symmetric 

distribution commonly used to model variables with tails heavier than those found in the 
normal distribution. It depends on one parameter, the degrees of freedom ( ), which 
controls the dispersion and the kurtosis of the distribution (Johnson et al., 1995). 
 
Similar to the way the lognormal comes from the normal distribution, a derived model 
from the t distribution is the log Student’s t distribution (or simply log t distribution). 
Thus, a random variable Y is said to have a log t distribution with parameters 

 and  if  . The dispersion of  depends on  and 

 is the median of the distribution and  denotes the degrees of freedom. In 

the case where =1, we have the log-Cauchy distribution, and when  , the log t 

distribution tends to the lognormal distribution. Hence, when  decreases, the tails 
become heavier. The log t distribution could also be considered as a limiting case of the 
Generalized Beta of the second kind (McDonald, 1984 and Cummins et al., 1990). 
 
The corresponding density function is given by: 

 
 

where is the density probability function of a t distribution with  degrees of freedom 

and B (.) is the beta function. The cumulative distribution function (cdf) cannot be 
expressed as a closed form, although it could be obtained using the cdf of the t 
distribution with  degrees of freedom, that is, 

.  (4) 

Similarly, the quantiles could also be obtained by means of t distribution quantiles: 

  (5) 
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for  and where  and  are, respectively, the quantile of order p of the 

log t distribution and the quantile of order p of t distribution with  degrees of freedom. 

From the latter expression, it can be directly derived that  is the median of the log t 
distribution.   
 
It is highly interesting to note that the log t distribution could accumulate an important 
probability around zero, since   0y

f(y) . Furthermore, if , the log t 

has a peak (local maximum) at .  
 
The existence of a mode when y tends to zero, regardless of whether the distribution 
presents another within its range, is a specific advantage of this distribution compared to 
the most widely used and best models for fitting empirical income distributions3. In the 
section on parameter estimation and goodness of fit measures, we compare the log t 
distribution to the Singh-Maddala, the κ-generalized model, the Dagum type I, the 
lognormal distribution and the generalized beta of the second kind (GB2), which only 
present a unique mode, either at zero or inside its range (see, among others, Boccafuso 
et al, 2013, Bandourian et al., 2002, Callealta et al., 1997, Clementi and Gallegati, 2016 
and Clementi et al., 2006). 

On the other hand, the bimodal log t has an antimode at . 
 
It is worth noting that the parameters  and  control the probability around zero. This 
follows very simply from considering (2) at the antimode; that is, 
 

. (6) 

 
This probability tends to zero when  and tends to 0.5 when  and 

. Therefore, by conveniently modifying the parameters α and η, this probability 

can take values between 0 and ½. 
 
As noted, the distribution is bimodal only for certain values of the parameters α and η. 
Thus, if α  , the density probability function is decreasing, and thus the 

distribution is unimodal. 
 
When attempting to find a mathematical expression for the moments with respect to the 
origin ( ), we have obtained the following compact form making use of the 

Student’s t distribution: 
                                                 
3 This behaviour is not exclusive to this model. The Champernowne model can reproduce a similar 
performance for some parameter combinations. Other models, such as Dagum type II, need to incorporate 
an additional mixture parameter to specifically represent a mode at zero. 
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 , (7) 

where (.) is the moment generating function of a t distribution. As (.) is not 

defined, the log t distribution does not have moments for any value of r (see Kleiber, and 
Kotz, 2003). This expression leads to the conclusion that the integrals do not converge and, 
consequently, the moments do not exist; the log t distribution has no moments, but when  
tends to infinity and log t tends to the lognormal, it surprisingly has all moments. 
 
This theoretical limitation is important, but it can be overcome from an applied 
perspective. From a practical point of view, when a value of some moments needs to be 
estimated for a finite population (the income mean or the variance), the corresponding 
truncated distribution at a realistic high income level can be used. 4  
 
Conversely, the non-existence of moments supposes that they cannot be used for statistical 
inference of the distributional parameters, while alternative measures can (such as e.g. 
quantiles). 

3.3 Income elasticity of the cumulative distribution function 

One of the properties of empirical income distributions pointed out by Dagum (1977) is 
that the income elasticity  of the cdf F, is a decreasing and bounded function of F. 

In fact, the Dagum models are derived from this observed regularity of income. For the log 
t distribution, we have obtained the income elasticity of cdf and we have verified that: 
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.    (8) 

Thus, the log t distribution does not follow the Dagum requirement regarding income 
elasticity throughout the whole of the domain of the function. However, the income 
elasticity of the F decreases for incomes greater or around the income median; even for the 
incomes lower than the median if  or  are high enough.5 

 

                                                 
4 To show the sensibility of moments to the truncation threshold, a graphical analysis of the effect on the 
average income of truncations in different high probability quantiles was conducted. In this analysis, we 
used different ranges of values of the parameters estimated for the income distributions of the countries of 
the EU considered in this paper. In this analysis it is verified that the truncations begin to be critical in 
some cases (small η and large α) if they are performed in quantiles of orders higher than 99.9%. In general, 
truncating around 99.5% seems to be a prudent decision. The different simulations and results of this 
sensitivity analysis are available to the reader upon request. 
5 This can be observed in Figure A.1, which shows the income elasticity of cdf for different parameter 
combinations. The former shows the sensitivity of elasticity when β changes, and the second and third when 
 and  vary, respectively. The chosen values for the parameters are similar to those found in the empirical 
application. 
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3.4 Income elasticity of the survival function 

It is unanimously accepted that the weak law of Pareto (Mandelbrot, 1960) characterises 
the behaviour of the upper tail of income distributions. This law establishes that the income 
elasticity of the survival function,  tends to a negative constant as income 

becomes larger. In the case of the log t distribution, the income elasticity of the survival 
function converges to zero as income becomes larger, as shown in the following 
expression: 
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                                   

 (9) 

However, for the log t distribution, this convergence is too slow. In fact, as shown in 
Figure A.2 (which shows the sensitivity of the elasticity of the survival function to β,  , 
and η), this elasticity remains negative and rather stable for very high values of income in 
the range of values observed for the Pareto exponent in empirical studies (Atkinson et al., 
2011).  

 

4. The Interpretation of the Parameters of the Log Student t Distribution 
 

As indicated in the previous section, the log Student model has three parameters: α, β, 
and η. Parameter β is its median. Parameters α and η jointly control the probability close 
to zero as well as the shape and inequality of the distribution; in fact, increases of α 
imply an increase in inequality, while increases in parameter η, on the contrary, cause a 
decrease. 

In order to interpret the parameters and their effects in greater depth, we have plotted 
different density functions and their corresponding Lorenz curves for habitual 
combinations of the parameter values, according to the distributions fitted in the section 
discussing parameter estimation and goodness of fit measures.  

Thus, Figure 2 shows that, as parameter β grows, the entire distribution moves to the 
right, increasing the income levels. Inequality does not change, which can be seen in the 
Lorenz curves that remain unchanged when variations of the parameter occur. 
Therefore, an increase in parameter β, while the other parameters remain constant, 
produces a higher level of welfare based on an increase in the median and average 
income. 
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Figure 2. Effects of Parameter β on the Density Function (for α=0.4; η=3) 
 

 
 

Parameter  is the shape parameter par excellence enabling the distribution to show an 
interior relative mode within it range (for low values of the parameter), or being unimodal 
at zero (when the parameter takes high values). As parameter  grows, individuals move 
from the centre of the distribution to their two tails, increasing the degree of inequality as 
demonstrated in the simulations of density functions and Lorenz curves in Figures 3 and 4, 
respectively. In turn, incomes decrease in the lower classes and increase in the upper 
classes. 

Together with parameter , parameter  allows representation of a probability close to 
zero, which grows when  grows and  tends to zero. Similarly, this probability can be 
made as small as desired when both parameters vary in the opposite direction ( tends to 
zero and  increases). The effect of the variations of  suggests that the parameter will be 
a good indicator of distribution inequality, a fact that is confirmed in the empirical results 
of this work, where a high correlation is observed between the estimates of parameter α 
and the values of the Gini index for the different income distributions of countries in the 
three years considered. 

Figure 3. Effects of Parameter α on the Density Function (for β=20000; η=3) 
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Figure 4. Effects of Parameter α on the Lorenz Curve (for β=20000; η=3) 
 

 

 

Parameter , like parameter  but in the opposite direction, allows the shape to be changed 
from a unimodal to a bimodal distribution. When  grows, individuals move from the two 
tails towards the centre of the distribution, thus decreasing inequality (Figures 5 and 6). 
This effect, however, is more moderate than that caused by the other shape parameter (), 
since the sensitivity of the shape of the distribution to the parameter variations is much 
smaller, requiring larger relative variations of the parameter to produce significant effects 
in the distribution. 

 

Figure 5. Effects of Parameter  on the Density Function (for α=0.4; β=20000) 
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Figure 6. Effects of Parameter  on the Lorenz Curve (for α=0.4; β=20000) 
 

 

Unlike parameter , parameters  and  are not individually specialised in the 
explanation of separate effects. Their joint variation determines their effects on the 
distribution.  

 
5. Parameter estimation and goodness of fit measures 

Once an adequate statistical model has been selected to fit the empirical distribution, the 
next step is to estimate the vector of unknown parameters. A wide variety of estimators 
may be obtained; therefore, it is necessary to establish criteria to choose between them. 
Given that the finite properties of the estimators of the income distribution parameters 
are hardly known (since they are non-linear functions of the sample), we will focus on 
estimation procedures that provide estimators that are asymptotically efficient (see Rao 
1973, p. 351 and Ghosh, 1994, p.4). Among these types of estimators are those obtained 
by the maximum likelihood method, which is used in this study. Therefore, the 
maximum likelihood principle has been applied to the individual income data weighted 
by the weights of the sample design and the size of each household, according to the 
data from the EU-SILC samples. To obtain the maximum likelihood estimates, we use 
the algorithms implemented in the mle and mlexp Stata commands (StataCorp, 2017).6 

For comparisons between models, different goodness-of-fit criteria have been used. In 
this work, we have used the Kolmogorov-Smirnov, Anderson-Darling statistics and the 
sum of squared residuals (SSR)7. These statistics focus on different aspects of the 
distribution, and therefore provide complementary approaches to the global goodness of 

                                                 
6 The parameters of the models have been estimated using a modified Newton-Raphson procedure (nr) 
and the Broyden-Fletcher-Goldfarb-Shanno (bfgs) algorithms, implemented in the mle and mlexp Stata 
commands (see StataCorp, 2017). To estimate the lognormal, Dagum, Singh-Maddala, and GB2 
distributions we used Stata packages lognfit (Jenkins, 2007), dagumfit (Jenkins, 1999), smfit (Jenkins, 
1999), and gb2lfit (Jenkins, 2014), which use the algorithms mentioned above. The combination of both 
algorithms allowed us to obtain the estimations in some countries for the κ-generalized distribution. 
7 A broader study has been conducted on the goodness of fit of the different models considering 
additional goodness of fit measures such as the log-likelihood values, the Akaike information criterion 
(AIC), and the Bayesian information criterion (BIC). The results of the above-mentioned statistics give 
results that conclusively favour the log-t as much as those presented in this paper. An appendix with these 
results is available to the interested reader upon request. 
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fit. Thus, the Anderson-Darling statistic (Anderson and Darling, 1954) weighs the 
deviations existing in the tails, while the Kolmogorov-Smirnov statistic focuses on the 
maximum distance between the cumulative distribution function of the model and the 
empirical one. 

Goodness-of-fit statistics will be used only as descriptive measures; to perform a 
hypothesis test, a fully specified distribution function is required, as the parameters 
cannot be substituted by maximum likelihood estimates (obtained with the same 
sample) without altering the asymptotic distributions of the statistics. Therefore, in the 
case where the null hypothesis is simple, both the finite and the asymptotic distribution 
of the statistics are known and tabulated (see, for example, Stephens, 1986). However, 
in a case where the null hypothesis is composite, the distribution of the contrast 
statistics is, in general, unknown.8 

To analyse the goodness of fit in the different percentiles of the income distributions, 
the probability plots (PP-plots) will also be constructed and presented, enabling the 
detection of deviations of a specific distribution from the observed income data. This 
plot will be approximately linear if the theoretical income distribution is the correct 
model. To complement this graphical information and in order to analyse the behaviour 
of each model for different parts of the distribution, the values of the measures of 
goodness of fit have also been calculated for different income ranges. In particular, we 
have calculated the sum of squares of the residuals separately for all quarters from the 
empirical distributions. 
 

5. Data 

In this article we consider the distributions of 25 European countries in three time 
periods – 2006, 2011, and 2016 – during different phases of the economic cycle – 
before the Great Recession, during the Great Recession, and in the subsequent recovery. 
These years were selected to try to validate the results in different situations, given the 
relationship of personal income with the macroeconomic variables that reflect the 
periods of growth and recession (Jenkins et al., 2012; Smeeding, 2012). 

The income data are obtained from the EU-SILC and enable, wherever possible, 
comparisons using homogeneous income concepts obtained from surveys that follow a 
similar methodology. The countries analysed are those for which the empirical 
distributions are available in the three years selected. 

The concept of ‘income’ is the disposable income of a household, which is determined 
by the sum of all monetary income received from any source by each member of the 
household (including labour income, capital income, and social benefits) and all other 
income, from which taxes and social contributions are deducted. 

In order to reflect differences in the size and composition of households, this total 
income is divided by the number of ‘equivalent adults’ using the OECD-modified 
equivalence scale, which assigns a weight of 1.0 to the first adult in the household, a 
weight of 0.5 to the other members of the household over 14 years of age, and a weight 
                                                 
8 Stephens (1986) indicates that this distribution depends on the distribution assumed under the null 
hypothesis, the estimated parameters, the estimation method and the sample size. Therefore, as Stephens 
(1986) and Gibbons and Chakrabarty (1992) warn, the critical values obtained considering that the null 
hypothesis is simple, can lead to false conclusions. 
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of 0.3 to members under 14 years of age. The resulting income is the equivalent 
disposable income, which is attributed to each member of the household. 

The reference period of income is the previous year for all countries except the United 
Kingdom, whose reference period is the year of the survey, and Ireland, which conducts 
the survey continuously and collected data on income during the twelve months prior to 
the interview. 

Table 1 shows the sample sizes, the median incomes, and the Gini index for each of the 
empirical income distributions obtained from the EU-SILC samples of the 25 countries 
considered in the waves of 2006, 2011, and 2016. Throughout the period of study, 
generalised increases in the median income can be observed between the different years, 
with the exception of the United Kingdom between 2006 and 2011, and Greece, Spain 
and Cyprus between 2011 and 2016. Between 2006 and 2016, Greece was the only 
economy that experienced a fall in nominal median income. Regarding the evolution of 
inequality, measured using the Gini index, different behaviour is observed between the 
countries. Thus, between 2006 and 2016, inequality grew in 13 countries and decreased 
in 12. Between 2006 and 2011, and between 2011 and 2016, 12 and 13 countries, 
respectively, experienced growth in the Gini index. 

Table 1. Sample Sizes, Median Income and Gini Coefficient 

2006 2011 2016 

N Median Gini N Median Gini N Median Gini 

Austria 14883 17852.36 0.2533 13933 21462.56 0.2744 13049 23694.33 0.2694

Belgium 14329 17194.07 0.2724 14300 20007.89 0.2627 13773 22295.14 0.2603

Cyprus 11069 14532.30 0.2876 11443 16990.35 0.2917 11236 14020.00 0.3208

Czech R. 17830 4796.77 0.2530 20629 7451.35 0.2524 18964 7837.97 0.2503

Germany 31777 15616.67 0.2604 28644 19042.67 0.2896 26699 21358.00 0.2906

Denmark 14676 22662.79 0.2299 13151 26944.41 0.2656 13846 28664.87 0.2712

Estonia 15811 3637.91 0.3284 13426 5597.89 0.3192 15193 8644.68 0.3239

Greece 15190 9850.00 0.3368 15067 10984.78 0.3352 44094 7500.00 0.3375

Spain 34515 11433.50 0.3082 34756 13929.46 0.3404 36380 13680.87 0.3413

Finland 28039 18225.24 0.2579 23018 21826.19 0.2582 25983 23650.00 0.2540

France 24940 16186.88 0.2718 27071 20201.00 0.3083 26647 21710.00 0.2915

Hungary 19902 3847.19 0.3272 29474 4493.14 0.2693 18809 4767.76 0.2790

Ireland 14634 19679.36 0.3192 11005 19726.18 0.2980 13186 22407.48 0.2942

Italy 54512 14520.00 0.3164 47841 15970.50 0.3246 48316 16247.00 0.3221

Lithuania 12134 2532.12 0.3473 12492 3856.86 0.3301 10905 5644.92 0.3645

Luxembourg 10242 29480.38 0.2752 14891 32538.00 0.2725 10159 33818.27 0.3070

Latvia 10986 2533.76 0.3860 15891 4195.11 0.3506 13864 6364.63 0.3418

Netherlands 23096 17259.58 0.2555 25461 20309.64 0.2585 29559 22733.21 0.2651

Norway 14724 27784.92 0.2778 11730 36395.96 0.2291 16900 39572.88 0.2474

Poland 45122 3111.40 0.3319 36720 5025.36 0.3106 32609 5883.58 0.2966

Portugal 12071 7310.71 0.3767 14662 8409.51 0.3424 26565 8782.30 0.3389

Sweden 17149 17730.13 0.2308 16665 22506.42 0.2440 14072 25164.16 0.2735

Slovenia 31276 9318.38 0.2373 28747 11990.57 0.2383 25637 12320.00 0.2432

Slovakia 15147 3313.28 0.2801 15335 6305.94 0.2567 16507 6950.93 0.2403

United K. 23365 19307.05 0.3201 18670 17135.64 0.3304 22205 21150.00 0.3075
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6. Results 

As previously mentioned, for comparative purposes, six models have been fitted: the 
log t distribution, the lognormal distribution, the Dagum distribution, the Singh-
Maddala distribution, the κ-generalized distribution, and the generalized beta of the 
second kind distribution (GB2). 

After carrying out the estimation processes of the parameters, we obtained the values of 
statistics of goodness of fit for each fitted distribution presented in tables A.1, A.2, and 
A.3 of the annex. These results are summarised in Table 2, which identifies the 
distributions that provide the best fits according to the Kolmogorov-Smirnov (K-S), the 
Anderson-Darling (A-D), and the sum of squared residuals statistics (SSR). From this 
synthesis of results, it is observed that the log t distribution is the distribution that best 
fits the empirical distributions of European countries in the three years of the survey 
(86.7% of the 225 comparisons). 

Indeed, in 2006, this distribution achieved the best fit in 20 countries, according to the 
Kolomogorov-Smirnov values, i.e. 22 countries according to the Anderson-Darling 
statistic, and in 20 countries according to the SSR statistic. In 2011, the log t 
distribution provides the best fit in 22 countries according to the Kolomogorov-Smirnov 
statistic, i.e. 21 countries according to the Anderson-Darling statistic, and in 22 
countries according to the SSR statistic. In 2016, the results are similar since the log t 
distribution presents the best fit in 23 of the 25 countries according to the 
Kolomogorov-Smirnov statistic, in 22 countries according to the Anderson Darling 
statistic, and in 23 countries according to the SSR statistic. 

Table 2. Best Fits According to the Goodness-of-Fit Statistics: Kolmogorov-Smirnov 
(K-S), Anderson-Darling (A-D) and the Sum of Squared Residual (SSR)  

     2006   2011 2016   

  K-S A-D SSR Average 
range K-S A-D SSR Average 

Range K-S A-D SSR Average 
range Total %

Lognormal 0 0 0 6.0 0 0 0 6.0 1 0 0 5.9 1 0.4

Dagum 1 0 0 4.2 0 0 1 4.2 0 0 0 4.4 2 0.9

Singh-Maddala 3 0 3 3.3 1 1 0 3.3 0 0 0 3.6 8 3.6

log t 20 22 20 1.5 22 21 22 1.5 23 22 23 1.2 195 86.7

κ-generalized 0 0 0 2.9 1 1 0 2.9 1 1 1 2.7 5 2.2

GB2 1 3 2 3.1 1 2 2 3.1 0 2 1 3.1 14 6.2

 
 

If the focus is on cases in which the goodness-of-fit measures indicate that the log t 
distribution presents worse fits, the first finding is that they represent a percentage of 
13.3% (30 of the 225 comparisons). Among these cases, Slovenia is consistently the 
case in which the other models perform better than the log t distribution, which only 
provides the best fit according to one statistic. Portugal, Cyprus, and the Czech 
Republic also present worse fits using the log t in several cases. The remaining cases 
where the log t distribution is not the best model are isolated and refer to distributions in 
which the other models present better fits according to only one or two statistics. After 
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the log t distribution, the GB2 distribution is better in fourteen cases, the Singh-Maddala 
distribution is better in eight cases, the κ-generalized distribution is better in five cases, 
the Dagum distribution in two cases, and the lognormal distribution in one case. If the 
average ranges in the different rankings of distributions, derived from goodness-of-fit 
statistics, are considered, the best adjustments, after log t distribution are, in this order, 
given by the κ-generalized distribution, the generalized beta of the second kind, the 
Singh-Maddala model, the Dagum distribution, and the lognormal, which is only the 
best model in one of the comparisons made. 

In the comparisons in which the log t distribution presents the best fits (86,7%% of the 
cases), a clear superiority is also detected over the other models in terms of the 
difference between the values obtained for the goodness-of-fit statistics. Therefore, 
according to these three statistics we can confirm that of the distributions studied, the 
log t distribution clearly produces the best fits thanks to – among other factors – its 
flexibility to reproduce the lower tail of distribution, where zero and negative incomes 
are located, along with the kurtosis of income data. 

The good performance of the log t for the different percentiles of the distribution can be 
observed in the probability plots (PP-plots) presented in the annex (Figures A.3, A.4, 
and A.5). The figures clearly show how the behaviour of this distribution is the best in 
the vast majority of cases, as indicated by the different goodness of fit measures. In 
particular, it is clear that the Dagum, the κ-generalized, and the Singh-Maddala 
distributions are not able to adequately fit the lower tail and, in general, the first two 
quartiles of the distribution, while the log t distribution can adapt to the lowest and 
middle incomes. The lognormal performs worst of all, both in the first quartile and in 
the middle and highest incomes. 

In order to further the appropriateness of the fits in the different parts of income 
distributions, goodness-of-fit statistics have also been calculated separately for each 
quartile. The SSR statistic, which can be obtained for the different income intervals, has 
been used. A summary of the results of the comparisons for each of the quartiles 
(Tables A.4–A.10), according to the goodness-of-fit statistics, is presented in Table 3. 
These results show that the log t distribution clearly produces the best fits in the first 
three quarters of the distribution, which is to be expected, given the good properties of 
the log t distribution to model low incomes and the kurtosis of the distribution. 
However, it should also be noted that, even though it does not satisfy the weak Pareto 
law, the slow convergence of the income elasticity of the survival function leads to the 
log t distribution presenting an acceptable fit in the upper quartile, similar to other 
distributions that satisfy the weak Pareto law. As a result, in the fourth quartile of the 
empirical income distributions, the log t presents the best fits in 9.3% of the 
comparisons, which is surpassed only by the Dagum distribution, which evidences 
better fits in nine cases (12% of the total) and by the GB2 distribution (with four 
parameters), which is the best model for the fourth quartile. Lognormal, Singh Maddala 
and κ-generalized distributions perform worse in the fourth quartile. 
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Table 3. Best Fits According to the Goodness-of-Fit Statistics Sum of Squared 
Residuals for the Distribution Quartiles  

  2006 
  

2011 
 

2016  

Quartiles 1 2 3 4 1 2 3 4 1 2 3 4 

Lognormal 0 0 0 0 0 0 0 0 0 0 1 0 

Dagum 0 1 0 4 0 0 1 4 0 0 0 1 

Singh-Maddala 1 2 3 2 0 2 0 2 0 1 0 1 

log t 21 20 17 5 23 19 12 0 23 21 17 2 

κ-generalized 0 1 0 1 1 0 0 1 1 1 2 3 

GB2 3 1 5 13 1 4 12 18 1 2 4 18 

 

For illustrative purposes, Figure 7 shows the histograms and the density functions of the 
three models that provide the three best fits to the income distributions of France in 
2006, 2011, and 2016. In the three years considered, an excellent behaviour of the log t 
distribution is observed to describe income distribution, with particular precision in the 
lower tail. It also highlights its ability to reproduce the behaviour of incomes around the 
mode and the kurtosis of empirical income distributions. As in many other countries, the 
other distributions overestimate the number of recipients with low incomes, which 
causes underestimates of the average income. 

 

Figure 7. Histograms and Density Functions. France (2006, 2011, and 2016) 
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The parameter estimates of the log t distributions and their corresponding standard 
errors, for all countries and years, are presented in Table A.11. As indicated, the 
parameters of the log t can be interpreted as economic indicators of income level and 
distribution inequality. In Figure 8, which presents the box plots of the parameter 
estimates in 2006, 2011, and 2016, the increase in the nominal levels of income can be 
observed through the evolution of parameter β, which is the median of income 
distributions. The slight growth of β estimates only occurs in nominal terms. On the 
other hand, the box plots also show an increase in the dispersion of the β estimates, 
which indicates a growth in disparities between countries. 

The estimates of parameter α, whose increases produced an increase in inequality, show 
a growth in mean and median in 2011, and a fall in 2016, returning to the levels of 
2006. The estimates of the α parameter show similar variations to those experienced by 
the values of the Gini index (Table 1) obtained for the different countries analysed. The 
median of the estimates of parameter η remain stable in 2011 and decrease in 2016.  

Figure 8. Box Plots of Estimates of Parameters α, β, and η (2006, 2011, and 2016) 

 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

7. Conclusions 

This paper analyses the relevance of the log Student’s t model to fit and describe 
income distributions in terms of their economic foundation, their theoretical properties, 
and the results obtained for a wide group of countries in the European Union in three 
time periods – 2006, 2011 and 2016 – during different phases of the economic cycle. 
Considering all of these aspects jointly makes it possible to conclude that log t 
distribution is an appropriate model for income distributions and therefore a useful tool 
for analysing the effect of income redistribution policy measures; in particular, those 
that focus on the left tail of distribution, related to poverty eradication, as well as others 
that focus on the middle classes. 

α β 

η 
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With regard to its properties, the model’s bimodal nature constitutes a clear advantage 
over other models, allowing the possibility of modelling incomes very close to zero or 
zero thanks to its mode at the origin. The existence of these incomes is a confirmed fact 
that is exacerbated in periods of crisis and in certain types of countries. A very 
important feature of log t distribution is its capacity to capture the mode and the kurtosis 
of the empirical income distributions, an advantage that is not highlighted in the studies 
on modelling the personal distribution of income, which are usually devoted to the 
study of the distribution tails. 

An economic justification for the use of the log t model is also provided in this paper. 
Thus, the log t model arises from the process of income generation derived from a 
lognormal distribution that is corrected using a measure of the heterogeneity of 
individuals, which control the cognitive abilities, socio-economic background, or 
personality traits, among others individual factors. In addition, its parameters may be 
interpreted clearly, highlighting the capacity of parameter α as an indicator of inequality 
that, in practice, presents a high correlation with the Gini index. 

In order to obtain the moments of the log t distribution, we have provided a compact 
form that makes use of the Student’s t distribution. From these expressions, it has been 
verified that the integrals do not converge and, consequently, that the moments do not 
exist. Therefore, the log t distribution has no moments, but at the limit when →∞ it 
has them all. This theoretical limitation can be overcome because the distribution can 
always be truncated using a realistic high value of income. Nonetheless, the non-
existence of moments supposes that they cannot be used for statistical inference of the 
distributional parameters, although alternative measures based on quantiles could be 
used. 

By analysing the elasticity of the survival function, it may be observed that the 
distribution does not obey the weak Pareto law, although the convergence of the 
elasticity of the survival function is very slow and a strictly negative value can be 
established for this elasticity, which is fairly stable for the highest incomes. The slow 
convergence of the Pareto exponent and its stabilisation in the values observed in 
practice causes the log t distribution to produce acceptable adjustments in the fourth 
quarter of the empirical income distributions; even better than some of the models that 
comply with the weak Pareto law. In any case, it should be noted that the performance 
of GB2 is better in the fourth quartile, although this distribution has one more 
parameter. 

The comparative results obtained for the countries of the European Union clearly show 
the superiority of the log t model over the other four models, in particular, in 86.7% of 
the cases analysed. This is true regardless of the goodness-of-fit statistics used. In 
addition, the PP-plots obtained demonstrate the ability of the log t distribution to 
reproduce the lower tail and the kurtosis of the distributions, unlike the other 
distributions with which it is compared. The good fits are stable over time and also for 
the different countries, showing few cases in which, the log t distribution is not superior 
to the other models. 

From this study, different practical implications are derived. The first one is the 
applicability of the log t distribution for the study of the left tail of the distribution and the 
kurtosis of income distributions. In relation to these advantages, the log t distribution will 
also be an appropriate model for the study of poverty measures and the simulation of the 
effects of economic policy measures directed at individuals in the left tail, as well as 
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income intervals with a greater number of individuals, close to the income modes. Future 
research lines are also opened, such as the application of the log t distribution to 
developing countries, where numerous individuals have incomes close to zero, by 
performing comparative international analysis using harmonised information that is 
currently available in certain regional contexts. Finally, it would be interesting to 
examine the performance of mixtures that combines the log t distribution, for the first three 
quarters of distribution, and the Pareto distribution for the highest incomes. 
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