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Abstract. We consider inequalities between sums of monomials that hold for all p-Newton
sequences. This continues recent work in which inequalities between sums of two, two-term
monomials were combinatorially characterized (via the indices involved). Our focus is on
the case of sums of three, two-term monomials, but this is very much more complicated. We
develop and use a theory of exponential polynomial inequalities to give a sufficient condition
for general monomial sum inequalities, and use the sufficient condition in two ways. The
sufficient condition is necessary in the case of sums of two monomials but is not known if it
is for sums of more. A complete description of the desired inequalities is given for Newton
sequences of less than 5 terms.
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1. INTRODUCTION
An ordered (not necessarily numerically) sequence
C: Cp,C1,C2,...,Cp
of real numbers is called a Newton sequence if

2
Ci—1Ci+1 < ¢

Partially supported by MTM2015-365764-C-1-P (MINECO-FEDER), MTM2010-19281-
C03-01 and NSF grant #DMS-0751964.

793



for 1 < i < n—1. Each of these inequalities is called a Newton inequality, cf. [4]. See
[2], [3], [1] for general background on Newton sequences, how they arise, the rela-
tionship to matrices and prior results. A Newton sequence is called p-Newton if each
of the ¢;’s is positive. For these sequences, Newton inequalities can be generalized as

Ci—kCjtk < CiCj

for 0 <i<j<nand0< k< min{i,n —j}, see [2], Lemma 9. In fact, for p < ¢
and r < s nonnegative integers with p + ¢ = r + s we have

(1.1) Cres < Cpcqg &1 <p<g<s.

A positive sequence is p-Newton if and only if its sequence of ratios of consecutive
terms ¢;41/¢; is nonincreasing.
For any p-Newton sequence

Co,C1y-..,Cp
and any r > 1, we may re-write the c’s as

c; = r®,

1=0,...,n, to obtain the Newton exponent sequence (NES)
(1.2) L0, X1y, Tp.

Clearly, we have a NES if and only if

(1.3) Ti—1 + Tip1 < 224,

1=1,...,n—1.

By a monomial in a p-Newton sequence, we mean an expression of the form

aop a1

=it e

o
The length of ¢® is the number ag + a1 + ... + a,, and the weight of ¢ is the sum
of the indices weighted by their exponents in the monomial. In [3], all inequalities
between pairs of monomials that hold for all p-Newton sequences were characterized.
Here we continue recent work [1] on inequalities between sums of simple monomials
(all exponents are nonnegative integers) in p-Newton sequences. Even in the most
elemental cases, there are inequalities in which term-wise domination of monomials

does not occur.
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We may write the h-th summand (of a sum of simple monomials) as
(1'4) M) = CiniCing - - - Cipg,,

in which repeated subscripts are allowed and, of course, some may not appear. Our

sum of monomials may then be written as

(1.5) @™ = Z )

which is fully described by m index lists, the subscripts appearing in each monomial.
We are interested in inequalities between two such monomial sums, i.e., when we
have

(1.6) @™ L chm

for all p-Newton sequences c. In [1], we characterized the case m = 2 and kj, = 2,
h = 1,2 in a combinatorial way. This is the case 22 versus 22, i.e., 2 monomials with
length 2 on each side. The case 222 versus 222 (m = 3, length 2 in each monomial)
is discussed here, but it proves dramatically more complicated. We are able to give
a complete account of all inequalities for p-Newton sequences of fewer than 5 terms,
and we have summarized them in a characterization theorem in Section 4.

We also develop a theory of inequalities between n-term exponential polynomials
(Section 2). By considering the exponents of a p-Newton sequence, relative to a pos-
itive base 7, we are able to use this in Section 3 to give a general sufficient condition
for monomial sum inequalities in p-Newton sequences. This is used to verify some
monomial sum inequalities, and to show, by example, in Section 5, that for longer
p-Newton sequences (more than 4 terms) there are monomial sum inequalities in
the 222 versus 222 case that are rather different in character from the 4-term ones.
Finally, we include an Addendum completing the proof of Lemma 19 given in [1].

For reference, we re-write (1.6) in extended form

1.7 Cj11Ciig +-Cjyy. + .ot cCi Ci ... C
I vlm
( J11 %712 J1l Im1~Jm2 Imi

> Ci11Cirp -+ - Ciyg, + G Cigo “Chto
We may assume, for convenience, without loss of generality, that

(18) ill e < Z.'mkm;
j <

I, -
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Since the all 1’s sequence is p-Newton, the right hand side must have as many
monomials as the left hand side, and it is natural to assume the extreme case of the
same number. Several observations have been made [3], [1] about where the larger
and smaller indices can occur: the highest index is on the smaller side, the lowest
index is on the larger side, ...

2. EXPONENTIAL POLYNOMIAL INEQUALITIES

An ezponential polynomial is a function from R, to R of the form
P P2 4P
in which r > 0 is a variable and ps,...,p, are given real exponents. If
P P2 P T ot e
for all 7 > 1, we say that the real n-list p r-dominates the real n-list ¢ and write

D Z2rq.

The notion “>,” does not depend upon how the p’s and ¢’s are ordered, but we
usually write them in descending order. The list p is said to weakly majorize the

list ¢ if
k

k
> vl >} dli

i=1
for k = 1,...,n, in which p[i] (¢[i]) denotes the i-th largest of the p’s (¢’s), in case
they were not already in descending order. We write p >,, ¢. In case there is equality
for k = n, the list p is said to majorize the list ¢, written p > gq.

We raise the question of exactly when p >, ¢. In general, this seems subtle, but
it is useful to us in understanding inequalities between monomial sums on p-Newton
sequences. In [1], it was noted that:

Theorem 2.1. Forn =2, p >, q if and only if p weakly majorizes q.

However, it was also noted that >, in a greater variety of ways for larger n.

Example 2.2. The polynomial
fr)y =710 406 495 9 g8 _pd
satisfies f(r) > 0 for r > 1, as
fr)y= (=130 +2r2 +2r +1).
But, as 10+ 6 < 9+ 8, (10,6,5) does not weakly majorize (9,8,4).
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Here, we record what we know about r-domination (for exponential polynomials).

Lemma 2.3. Let p and q be real n-lists. If

n n
PREDI
i=1 i=1

for all integers k > 0, then p >, q.

Proof. Using the Maclaurin series for e*, we find that

- - > logkr
Z’f'xizzexilogrzz k' (l’lf-f—'f'l'ﬁ)
i=1 i=1

k=0

for r > 1. Because logr > 0 for r > 1, we get

oo

log r 1og r &
i Y+ ... +ph) =) o +.taq)
k=0 k=0
for all » > 1, from which the result follows. O

It is not clear how many k’s are needed to verify the hypothesis of Lemma 2.3.

Example 2.4. Observe that p’f +...+ pfl > q{“ + ...+ q,’i for 0 < k < n does
not imply that p¥ +...+pF > ¢f +...+¢* for all integers k > 0. A counterexample
is p=(10,7.7,3.5) and ¢ = (9.99,7.755,1). In fact, > pF > > ¢¥ for 0 < k < 5, but
Irf <y dl

We can now see that majorization is sufficient for r-domination. As seen in Ex-
ample 2.2, it is not necessary for n > 3.

Theorem 2.5. For real n-sequences p and q, if p =, q, then p >, q.

Proof. Without loss of generality, we may assume that p and q are n-lists written
in descending order. Fix r > 1 and define g: R™ — R by g(z) = ™ + ... + r®».
Because g is differentiable, by the Mean value theorem there exists a A € (0,1) such
that

9(p) —9(q) = Dg((1 — N)p+ Ag)(p — q)

n

(%) = 10g7"z7“i(pi — i),

i=1
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where r; = r(1=MPi+A¢  Using the fact that logr > 0, 7; > 1341 > 0 for all i, p =4, ¢,

and p and ¢ are in descending order,

n—1

(¥) = logr (z; ri(pi — i) + Tn(pn — qn))
>logr<j§§ - +Zrn ¢ )

logrz i — Tn)(Di — Qi)
n—2
210g7“ (Z( —7“” _Qz +Z rn l_rn z_pz)>

i=1

=logr Z —rn—1)(Pi — @)

1
>...2logr Z(m —712)(pi — )

i=1

= (log7)(r1 —72)(p1 — q1) 2 0.

But r > 1 was arbitrary, and the result follows.

O

In spite of Example 2.2, we can characterize >, when n = 3, and the character-
ization is just majorization when n = 3 and p; + p2 + ps = @1 + g2 + g3, if we ask

that the inequality hold for r > 0.
Lemma 2.6. Let p,q € R? and define f: R, — R by
f(?”) =Pl P2 L pP3 _ 1 _ 92 _ 03

Then the following statements are equivalent:

(B) pr+p5+ps = qF+¢5 +q4 for all integersn > 1 or pY +pY +p5 > ¢ +3 +4¥',

where N = min{n € N: p} + p +p% # ¢ + ¢& + ¢4 }.

(B') f™(1) = 0 for all integers n > 1 or fN)(1) > 0, where N = min{n € N:

FM (1) # 03}

Proof. Let n € N. An easy computation shows that

n—1
H(a:—i)za:"—i—agn)lx Lp o 4ay
i=0
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for some constants agn). Therefore, £(™)(1) has the form

() FO) =3 a"Wl +ph+vh - - —d}), V=1
j=1

If p7 4+ pb + p3 = q} + ¢& + ¢} for all n, then it is clear from (x) that f(")(1) = 0
for all n. Now, assume that f(™) (1) = 0 for all n. When n = 1, this means that
p1+p2 +p3 = q1 + g2 + g3. Suppose we know that pt + p3 + py = ¢’ + ¢35 + g3 for
1 <n < k. Then from (x), 0 = fFE+HD (1) = phTt 4 phtl y phtl _ghtl _ gl _ g+l
By induction, p} + py + p§ = ¢' + ¢4 + g5 for all n.

If p7 + P + p% # ¢7 + 4§ + ¢ for some n, let N = min{n € N: p} +pJ + p§ #
qt + g% + ¢%} and suppose that pY¥ + pd + pd > ¢V + ¢’ + ¢)Y. From (%) and the
definition of N, we find that 0 < pY + p}’ +p} — ¢V — ¢l — ¢’ = F™)(1) and that
f™(1) =0for n < N,ie. N =min{n € N: f(™(1) £ 0} and f™)(1) > 0. On the
other hand, if f( (1) # 0 for some n, let N = min{n € N: f("(1) # 0} and suppose
that f(N)(1) > 0. If N = 1, then p; +p2+p3 > q1+q2+¢3 and we are done. Otherwise,
a finite induction argument shows that f(™ (1) = p} + p + pi — ¢} — g5 — ¢§ for
n < N. Therefore, pl¥ +pY +p% > ¢V +¢l +¢5 and N = min{n € N: p?+p2+ph #
@ +a5 + a5} 0

Now we can give our characterization for general real 3-sequences.

Theorem 2.7. Suppose that p1 > ps > p3 and q1 > g2 > q3 are real 3-sequences
satisfying p1 + p2 + p3 = ¢1 + q2 + q3. Then p >, q if and only if

(A) p1 > ¢ and
(B) pP+ph+p% = qP+q5+q% for all integersn > 1 or pl¥ +pd +p5 > ¢V + ¢V +¢¥',
where N = min{n € N: p{' +p5 +p5 # qi' + ¢35 + 45}

Proof. To prove the theorem, we will show that f(r) > 0 for all » > 1 if and
only if (A) and (B’) hold, where f and (B’) are as in Lemma 2.6.

(=) If p1 < qu, then f(r) < 0 eventually. On the other hand, if f(")(1) # 0 for
some n and f(N)(1) < 0, where N = min{n € N: f(™(1) # 0}, then f < 0 on
(1,1 +¢) for some € > 0.

(<) If f(®)(1) = 0 for all n, then since f is analytic, f = 0 in a neighborhood
of 1. Recall that a nonzero analytic function on an open connected set has isolated
zeroes. Hence, f = 0.

So, suppose that f(™) (1) # 0 for some n, and let N = min{n € N: f((1) # 0}.
Then f™V)(1) > 0, and f > 0 on (1,1 + ¢) for some £ > 0. In particular, we have
q % p-
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If p3 < g3, then p; +p2 > 1 + ¢2 and p > ¢, which is sufficient by Theorem 2.5.
If ps > g3, then p1 + p2 < q1 + g2, p2 < q2, and therefore

P1>q1 = q2 > p2 = Pp3 > ¢s3.

Note that p; # ¢1 since ¢ # p. The function f has 3 sign changes, so Descartes’ rule
of signs, see [5], implies that f has 1 or 3 positive roots (counted with multiplicity).
There are 3 roots, z; = z2 = 1 and z3. If z3 > 1, then (i) f > 0 on (1,1 + ¢) implies
that f > 0 on (1, z23), (ii) since z3 is a simple root, f < 0 on (z3,z3 + n) for some
n > 0, and (iii) because f is continuous and f > 0 eventually, f has another root
z4 > z3. This is a contradiction. Since f > 0 on (1,1 + ¢) and has no roots greater
than 1, f(r) > 0 for all r > 1. O

Note that in Example 2.2 we have p >, ¢, condition (A) from the previous theorem
is clear, and condition (B) from the previous theorem is satisfied for N = 3.

n
Since the derivative of rP* + ... 4 rPn with respect to r at r = 11is > p;, p 2, ¢
n n i—1
implies that > p; > > ¢;. Also, p >, ¢ implies that p; > g, because of large r
i=1 i=1
(and p2 > g2 if p1 = ¢1, etc). If we now ask that

,rpl + ,rm + rm > 7“(h + TQ2 + ,rqa

for all » > 0, there is a nice answer. Effectively, the interval r € (0, 1) negates the
p’s and ¢’s.

Theorem 2.8. If p and q are real 3-sequences, then
,rpl + ,rpz + ’I“p3 > qu + qu + ,rlZ3

for all r > 0 if and only if p > q.

Proof. Without loss of generality, we may assume that p and q are n-lists written
in descending order.

(=) Let f be the function of Lemma 2.6. Then certainly f(r) > 0 for all r > 1,
so it is necessary that p1 > ¢ and p1 + p2 +p3s —q1 — g2 — g3 = f'(1) > 0 (since
f(1) =0). Let f:RT = R, f(s) = s P 4572 5P — 570 — g7 _ 578 50
that f(s) = f(1/s). Hence, f(s) > 0 for all s > 1, and as above, it is necessary
that —ps > —¢s (since we now have —p3 > —po > —p; and —q3 > —q2 > —q1) and
—p3 — P2 —P1 = —q1 — G2 — q3. Together, these imply that p > ¢.

(<) From Theorem 2.5, f(r) > 0 for all » > 1. It is an easy fact that p > ¢ if
and only if —p > —¢, so f(s) > 0 for all s > 1. But this immediately implies that
f(r) 20 for all 0 < r < 1. Hence, f(r) > 0 for all > 0. O
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It is not difficult to extend the proof of sufficiency to see that p > ¢ for real

n-sequences implies that
Tpl _|_7,,p2 _}_.”_’_r;ﬂn 27,,(]1 +Tq2 _‘_.”_‘_rq”

for all » > 0. But, the converse is not true for n > 4.

Example 2.9. Let p be 7,4,4,1 and let ¢ be 6,6,2,2. Then r7 + 2r* + 7 >
276 + 272 for all r > 0, but p does not majorize q.

3. NEWTON SEQUENCES AND SUFFICIENT CONDITIONS
FOR MONOMIAL SUM INEQUALITIES

Note that if a monomial sum inequality (1.7) holds for all p-Newton sequences,
then it is also an inequality on nonnegative Newton sequences lying in the closure
of p-Newton sequences. We note that a p-Newton sequence is necessarily unimodal:
it is either (weakly) increasing, (weakly) decreasing or (weakly) increasing and then
decreasing. The exponents can become (arbitrarily) negative, but once they become
negative, they stay negative and become more negative. When increasing, the se-
quence increases at most geometrically and, when decreasing, it decreases at least

geometrically.

Lemma 3.1. If ¢j,,¢jy, -+ - Cjyy, o 4 Ci Cjna -+ - Cliry 2 Cini Cigs -+ - Cigyy, +oooF
Cipp1 Cips + - Ciny,,. » With indices satisfying (1.8), holds for all p-Newton sequences,
then:

1. the largest (smallest) weight monomial is on the larger side of the inequality;

2. if we order the summands of the inequality by largest indices on each side,

that is,

Tk <2k, < oo <imk,, and  Juy < Jo, <o < Jmils

the highest index of the t-th terms is on the lower side, for t = 1,...,m, le.

Jtie < Utk s
3. if we order the summands of the inequality by smallest indices on each side,

that is,
11 <i21 < ... <im1 and  Ji11 < J21 <. < i,
the lowest index of the t-th terms is on the lower side, for t = 1,...,m, ie.
i1 < Jei;
4. increasing (or decreasing) all indices by 1 in an inequality results in an inequal-
ity.
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Proof. 1. It is clear evaluating the inequality at the p-Newton sequence 1,r,
r2,r3,... making r big enough.
2. Note that sequences of the form 1,...,1,0,...,0 are in the closure of p-Newton

sequences, so they verify the inequality: the sequence of p-Newton sequences

{1...1iii...}w
UM M2 M3 =1
converges to 1,...,1,0,...,0. These sequences, the ones formed with 1’s and 0’s,
with the switch in the appropriate place show the statement.

3. Index complementation (see remark below) and Statement 2. from this lemma
prove it.

4. This is true because a section of a p-Newton sequence is a p-Newton sequence.
O

Remark 3.2. By index complementation we mean replacing ¢; by ¢,—; for i =
0,1,...,n. Index complementation of a p-Newton sequence results in a p-Newton
sequence, though the normalization ¢y = 1 is lost (see comments before Lemma 11
in [1]).

Next, if the standard necessary conditions are met we note that if all monomials
on the lower side of a proposed inequality are equal, then it is an inequality.

m
Theorem 3.3. If i1 < min{ji1,...,Jm1}, max{jio, ..., jma}t < iz, and > (jr1 +
k=1
jk2) = m(i1 + i2), then the inequality

Cj11Cjra T T Ciyi G 2 MCj, Ci,
holds for all p-Newton sequences.

Proof. By majorization of indices [3] we have

m_m
Cj11C512Ch21 Cjaz « - + Ciirn1 Clima = Ci1 Ciy -

Now the inequality follows from the fact that the arithmetic mean is at least the
geometric mean. O

The above fact can make some monomial sum p-Newton inequalities obvious when
no other method does.

Using the NES, we may re-write a proposed monomial sum inequality (1.7) for
Newton sequences as an exponential polynomial inequality

l 1 k k
(3.1) thlzl Tite 4 ...+ 7«2/21 Tite > rztil Tive 4 .4 rzf,gl Timt
in which we view r > 1 as a variable.
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For the monomial sum inequality (1.7) to be valid for all p-Newton sequences,
(3.1) must be a valid exponential polynomial inequality for every NES.

Using the fact (Theorem 2.1) that weak majorization for the exponents is neces-
sary and sufficient for >, for the 2-term exponential polynomials, the main result
of [1] may be re-cast and generalized in terms of majorization of Newton exponent
sequences. Though this is not as combinatorially attractive as the statement of the
result given in [1], it does point the way to a general sufficient condition for monomial
sum inequalities, via Newton exponent sequences (1.2).

Lemma 3.4. If cg,...,c, is a p-Newton sequence with NES =z, ..., z,, then
(32) Cj11Cjrz -+ - - Cinyy T+ Cja1 Ciay - - “ Cja, 2 Ciyy Ciyg - - Ciygy + Ciyy Cigy - - - Ciap,
if and only if

{lel T Xy, .+ Ljriy s Ljor tT Ty, +.. F szlz}
s {x’in + Ty +.F Liygey » Ligy T Tiyy + o F Liggy }

Corollary 3.5. The monomial sum inequality (3.2) holds for all p-Newton se-

quences if and only if

{lel T Xy, o+ Ljriy s Ljor Tt Ty, +... szlz}
s {xiu + Tigp + ot Liyge > Ligy Tt Ligy + .0+ xiQkQ}

for all NES’s.

The above is an alternative to Theorem 21 of [1] in case k1 = ko =1; =l = 2.

Since weak majorization of exponents is not necessary for exponential polynomial
inequalities of more than 2 terms, we do not know if the analog to Corollary 3.5
holds for more complicated monomial sum inequalities. However, sufficiency does
hold and provides a useful tool, as we will see later.

Lemma 3.6. The monomial sum inequality (1.7) holds for a p-Newton sequence

€0, C1, - -+ Cn, Wwith NES xg,x1,..., 2, if
15 Im k1 km
{E let?"'7§ xj7rtt}>w{§ xiuv"'aE xi'rnt}'
t=1 t=1 t=1 t=1
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The above permits us to give our general result.

Theorem 3.7. The monomial sum inequality (1.7) holds for all p-Newton se-
quences if

11 lm k1 km
{E let?"'ﬂE xj7rtt}>w{§ xiua"'aE ximt}
t=1 t=1 t=1 t=1
for all NES’s.

We do not yet know if there are valid monomial sum inequalities for which there
is no weak majorization condition, as in the theorem, for some NES.
We note that, since

rglog”/logrz =r{ forry,re > 1,
the particular r, chosen to get a NES, is immaterial for whether or not the majoriza-
tion condition holds.

Example 3.8. The inequality coci 4+ cocr + coca = coea + coea + coce does not
follow from the 22 case, but it follows from Theorem 3.3 and can also be demonstrated
by majorization. Let us see {zo+z1,x0+x1,2x2} > {To+ 2, 2o+ 22, z0+22}. The
total sum condition is verified: zog+ 21+ xo+z1 + 222 > 3x0+ 322 & 221 > 20 + T2,
see (1.3). For the other two conditions, let us distinguish two cases:

> xg + x1 = 2x9. We have 1 > x5 because

xo + T1 2209 = x9 = 202 — X1

=
= 221 2 32192 — 1 & 11 = Xo.
=

211 To + o

The two term condition holds: 2xg + 2x1 > 2x9 + 222 < 1 = 9.
The one term condition holds: xy + 1 > 2 + 9 < x1 > T9.
> 2z > 29 + 1. We have 1 > zg and x5 > 2o because
To + T
200 > x0+ X1 = T9g > —— 3x0 + o1

2 :>2$1>T<:>$1>J)0,
2x1 2 10 + T2

2x9 > x0 + 11

= 219 > 219 & T > Xp.
xr1 > g

The two term condition holds: 2xo + x¢ + 21 = 2z + 222 < 1 = 2.
The one term condition holds: 2x5 > xg + 22 < 12 = 9.
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4. THE 222 VERSUS 222 INEQUALITIES FOR n < 3

When the length of the Newton sequences, the number of factors in each monomial
and the number of monomials is limited, there is a finite number of monomial sums
and a finite number of possible inequalities. As we did in the case 22, we have
enumerated all the 222 possibilities for n < 3 and checked each of them. (This was
a crucial step on the way to a theorem in the 22 case.) Many were easily ruled out
(870 with total weight less or equal to 9), by a simple choice of Newton sequence,
and many were verified as consequences of the 22 case (or in another easy way).
This left, perhaps, 20-odd cases that required some work. Of course, some were
ruled out by a rather thin set of Newton sequences. But, all were resolved. Here
we present the table of valid inequalities. Since index complementation preserves
a valid inequality, we need and do only present the ones of total weight less or equal
to 9, in order to economize on space. The ones that are easily verified from the prior
case are presented in regular type-face, while the remainder are in bold face. Typical
explanations are given for several of these after the table.

Given

(41) Cj1r Cjiz Tt Cjay Cjiag + Cjgy Clgy 2 Ciyy Ciyy F Cigy Cigy + Cigy Cigy
we may assume, for convenience, without loss of generality, that

(4.2) i1

For short, in the table an inequality like (4.1) will be written as

J11J12 + Jeije2 + Ja1J32 = t11%12 + fo1t22 + i31432.

The next table lists all the inequalities for n < 3 in increasing order with respect to
their weights. The inequalities of weight 9 that are not self complementary, produce
a new inequality of the same weight which is marked on the table as |i°, meaning
that the inequality comes from the above one by applying “index complementation”.

Proofs of the inequalities given in bold in the table:
(1) 00+ 114+ 12 > 01 + 02 + 02: (coco + c1c1) + c1ca = coc1 + (cocr + c1c2) =
coc1 + coca + cpea.
(2) 00+ 11422 > 014+ 02 + 03: (coco + c1¢1) + cac2 = cocr + (cocr + caca) >
CcoC1 + CoC2 + CpC3.
(3) 004+ 11422 > 01402+ 12: (co —c1)? + (co — c2)? + (c1 — ¢2)? = 0.
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weight = 2
00+ 00+ 11 > 00 + 00 + 02
00+ 00+ 11 > 00+ 01 + 01
weight = 3
00+ 00+ 12 > 00 4 00 + 03
00+ 01+ 11 > 00 4 01 + 02
00+01+11>01+01+01
weight = 4
00+ 00+ 22 > 00+ 00 + 13
00+ 00 + 22 > 00 + 02 + 02
00+ 01+ 12 > 00+ 01 + 03
00+ 01+ 12 > 00+ 02 + 02
00+ 11 4+ 02 > 00 4 02 + 02
00+ 11+ 02 > 01 401 + 02
00+ 11411 > 00 4 02 + 02
00+ 11411 > 00+ 11+ 02
00+ 11+ 11 > 01401+ 02
00+ 11411 >01+401+11
01401411 >01+01+02
weight = 5
00+ 01422 > 00401+ 13
00+ 01+22 > 00+ 02+ 03
00+ 01 4+ 22 > 01 4+ 02 + 02
00+ 02+ 12 > 00+ 02+ 03
00+ 11403 > 00+ 02+ 03
00411403 >014+01+403
00+ 11+ 12 > 00+ 02 + 03
00+ 11+ 12 > 00+ 02 + 12
00+ 11412 > 00+ 11403
00+ 11+ 12 >01+01+03
00+ 11412 > 01401412
00+11+12 > 01 + 02+ 02
014+01+12>014+01+03
01401412 > 01402+ 02
01+ 11402 > 01+ 02+ 02
01+ 11+11 > 01402+ 02
01+114+11>01+4+11+402
weight = 6
00400+ 33 > 004 03 + 03
00+ 01+23 > 00+ 03+ 03
00+ 02+ 13 > 00+ 03 + 03
00+ 02+ 22 > 00+ 02+ 13
00+ 02+ 22 > 00+ 03+ 03
00+ 02 + 22 > 02 4 02 + 02
00+ 11413 > 00402+ 13
00+ 11413 > 00+ 03 + 03
00+11+13>01+4+01+13
00+ 11422 > 00402+ 13
00+ 11 4+ 22 > 00 4 02 + 22
00+ 11422 > 00+ 03+ 03
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weight = 6
00+11+422>00+11+13
00+ 11422 > 00+ 12+ 03
00411422 > 00+ 12+ 12
00+11+422>01+01+13
00+ 11422 > 01+ 01 +22
00 411+ 22 > 01 + 02 + 03
00411 +222>01402+12
00+ 11422 > 02+ 02+ 02
00+ 11422 > 11+ 02+ 02
00412403 > 00+ 03 + 03
00+ 12412 > 00+ 03 + 03
00+ 12412 > 00+ 12+ 03
00412+ 12 > 02 + 02 + 02
014+01+422>01+01+13
01+01+222>01+02+03
01 4 01 + 22 > 02 + 02 + 02
01+02+12>01+02+03
01+02+12 > 02+ 02+ 02
01+11403 >01+02+03
01+11+12>01+02+03
01+11+12>01+02+12
014+11+412>01+11+03
01+11+12 > 02+ 02+ 02
014+11+412>11+02+02
11+ 02+ 02 > 02 4+ 02 4 02
11+11+402 > 02+ 02+ 02
11+114+02 > 11402402
11+11+411 > 02+ 02 4 02
11+11+11 > 11402402
11+114+11 > 11411402

weight = 7
00+ 01433 >01+03+03
00+ 11423 > 00+ 02 423
00411423 >00+03+13
00+11+423 >01+01+23
00 + 11 + 23 > 01 + 03 + 03
00+12+13 > 00+ 03 +13
00+12+422 > 00+ 03+ 13
00412422 >00+ 12+ 13
00+ 12422 > 00+ 22+ 03
00+12+422 > 02+ 02403
00412422 > 02+ 02+ 12
00422403 >00+03+13
00 +22403 > 02+ 02+ 03
01 +01423>01+03+03
01402413 >01+03+03
01+02+222>01+02+13
01+02+422>01+03+03
01+02+22>02+02+03

weight = 7
01+11+13>01402+13
01+11+413 > 01403+ 03
01+11+4+22>014+02+13
01+11+22 > 01402+ 22
01+ 11422 >01+03+03
01+11+22>01+4+11+13
01+11+22>01+12+03
01+11+4+22>014+12+12
01+11+22>02402+03
01+11+222>02+02+12
01+4+11+422>11+4+02+03
01+12+403 > 01403+ 03
01+12+403 > 02402+ 03
01+12+12>01+03+03
01+12+4+12>01+ 12403
01+12+412 > 02402403
01+12+4+12 > 02402+ 12
02+02+12 > 02402+ 03
11402+ 03 > 02 + 02 + 03
114+02+12 > 02+ 02 4 03
114+02+12 > 02402 4 12
11402+12 > 11+ 02+ 03
11411+ 03 > 02+ 02 4+ 03
114+11+03 > 11+ 02+ 03
11+11+12 > 02+ 02+ 03
114+11+12 > 02+ 02 + 12
114+11+12 > 11+ 02+ 03
114+11+12>11+024 12
114+11+12>11+11+403

weight = 8
00+ 02+ 33 > 024 03 + 03
00+ 11433 > 00+ 02 + 33
00+11+4+33>00+ 13+ 13
00+ 11433 > 01401+ 33
00+11+33>01+03+ 13
00+ 11+ 33 > 02+ 03+ 03
00+11+33>11403+03
00412423 > 00403 + 23
00+ 12423 > 00+ 13+ 13
00 +12 +23 > 02+ 03 + 03
00+22+13>00+ 13+ 13
00+22+13 >02+402+13
00 + 22 +13 > 02 + 03 + 03
00+22+4+22>00+ 13+ 13
00422422 >00+22+13
00+22+22>02402+ 13
00+ 22422 > 02402 + 22
00 + 22 + 22 > 02 + 03 + 03
01+02+23 > 02403403
01+11+23 > 01402+ 23



(4) 00412+ 12 > 02 + 02 + 02: It follows from Theorem 3.3.

(5) 01401+ 22 > 02 + 02 + 02: It follows from Theorem 3.3.

(6) 00 + 11423 > 014+ 03 + 03: (coco + c1¢1) + cac3 = cocr + (cocr + cac3) >
coC1 + cocs + cpcs.

(7) 01 + 11422 > 02+ 02 + 12: o1 + (c1c1 + cac2) = (coe1 + c1c2) + c1ea =
coCo + coCo + Cc1Co.

(8) 004+ 11433 =01+03+13: (co —c1)? + (co — c3)? + (c1 — ¢3)? = 0.

(9) 00+ 12+23 > 02+ 034 03: ¢; > \/coc2 = c + cico + cacg — coca — 2cpc3 =
2+ V/CoC2 c2 — cocz + (c2 — 2¢p)c3 . Now we distinguish two cases:
> ca = 2¢o. Then \/c3 > \/2¢o > /co and 0(2)4—\/@02 —cpca + (ca — 2¢q)es =

&+ \/eoea (/2 — /<o) + (c2 — 2¢0)es = 0.

> cg < 2¢p. Note that c% > ci103 = 4 /CoCac3 = 3 < cay/ca/co. Therefore

VoWV

0(2) + v/coca ca — coca + (c2 — 2¢0)cs

C2,/C
> 0(2) + +/CoC2 Co — CoCo + (02 — 200) i/\é_o_z
_ Ve + ve) (Ve — e (co + Veola + ¢a) 0

Ve

(10) 00 +22 4+ 13 > 02 4+ 03 + 03: (coco + c2c2) + c1c3 = coca + (coc2 + crc3) >
coCo + cocs + cpcs.

(11) 00 +22 4+ 22 > 02 4+ 03 + 03: (coco + c2c2) + cac2 = coca + (coca + caca) >
coCo + cocs + cpcs.

(12) 01 + 12+ 13 > 02 + 03 + 03: (coc1 + c1¢2) + c1cs = coca + (coca + c1c3) =
coCo + cocs + cpcs.

(13) 00+ 12433 > 02+ 03 + 13: It can happen (remember p-Newton sequences are
unimodal):
> = coand ca = ez 2+ ciea + ¢ — coea — coes — ez = (co — ¢3)? +

(c1 —¢o)(c2 —c3) = 0.

> ¢y = co and ¢co < c3, or ¢ < ¢g:

2+ ciea + ¢ — coca — cocz — crez = (c1 — ¢p)? + (ca — 1) + (c3 — c2)?

+ 2(01 — CO)(CQ — 01) + 2(02 — 01)(03 — 02) + (C1 — Co)(03 — Cg) > 0.

(14) 00+ 13423 >

(15) 00422+ 23 >

(16) 01+12+23 >
unimodal):

3 4+ 03 + 03: It follows from Theorem 3.3.
3 4+ 03 + 03: It follows from Theorem 3.3.
02+ 03+ 13: It can happen (remember p-Newton sequences are

0
0
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weight = 8
014+11+23>01403+13
01+11+23 >02+ 03+ 03
01+11+232>11+403+03
014+12+13>014+03+13
01+12+13>02+402+ 13
01+12+13 > 02+ 03 + 03
01+12+22>01403+13
01412422 >01+22+03
014+12+22>01+12+13
01+12+4+22>02+402+ 13
01412422 > 02402+ 22
01412422 > 02403+ 03
01412422 >02+ 12403
01+22+403>01+03+13
01+22+403 > 02+ 03+ 03
02402413 > 02403+ 03
02+02+22>02+402+ 13
02+02+22 > 02403403
02+ 12403 > 02+ 03 + 03
02+ 12+12 > 02403+ 03
02+4+12+12 > 02+ 12403
11402+13 > 02+ 02+ 13
11 +02+13 > 02+ 03 + 03
11+02+13 > 11403 + 03
11+02+22>02+4+02+13
11402 +22 > 02+ 02 + 22
11+ 02+ 22 > 024 03 + 03
11+02+22>02+12403
11402+22>11+02+ 13
11+02+22 >02+ 12412
11402+22 > 11+ 03+ 03
114+03+03 > 02 4 03 + 03
114+11+132>02402+13
11+ 11+13 > 02403 + 03
11+11+13>114+02+13
114+11+13 > 11+ 03+ 03
11+114+22>02+4+02+13
11411 +22 > 02+ 02 + 22
11+ 11+22 > 02+ 03 + 03
11+11+22>02+12403
114+11+22>114+02+ 13
11+11422 > 11402+ 22
114+11+22>02+ 124 12
11+114+22>11+12403
114+11+22>11403+03
114+11+22>11+11+4+13
11+11422>114124+12
11 +12+03 > 024 03 + 03
114+12+03 > 02412403
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weight = 8 weight = 9
114+12403>11+03+03 02+12+22> 02403+ 13
11+12412>02+03 +03 11+ 12+ 13 > 02+ 03 + 13
11+124122>02+12+03 02+ 12+ 22 > 02 + 22+ 03
11+12412>02+12412 114+ 12+ 13 > 11 4+ 03+ 13
11+124+122>11+03+03  02+12+22 > 02+ 12+ 13
114+12412>11+124+03 11 +12+13 > 02+ 12+ 13

weight = 9 02+124222> 03 +03403
00 4+ 03 + 33 > 034 03+ 03 11 + 12+ 13 > 03 + 03 + 03
00+12+33>00+03+33 02+12+22>12+03+03
00+12+33 >02+03+13 11+ 12+ 13 > 12+ 03 + 03
00+12+33>034+03+03 02+22+403>02+03+13
00 +12+33>12+ 03403 J°11 + 03+ 13 > 02+ 03 + 13
00+13+23>03+03+03 02+ 22+032>03+03+03

F€01 402+ 33 > 03 + 03+ 03 ['°11 + 03 + 13 > 03 + 03 + 03

00422423 >004 13423

F€01411+33>01+02+33

11412422 >02+034+13
11412+ 22 > 02+ 22403

00 4 22 + 23 > 02+ 02 4+ 23 [°11 + 12+ 22 > 11+ 03 + 13

F01411+33>01+13+13
00 422 +23 > 03 403 4 03

114+12+22 > 02+ 12413
11412422 > 02+ 12422

101+ 11433>03+03+03 /€11 4+12+22>11+12+13

014+03+4+23>034+034+03
01+12+4+23 > 01403+ 23
01+12+423>201+13+13
F01+124+23>02+02+23
01+12+23>02+03+13
01+12+4+23>03+03+03
01+12+423>12403+03

11412+ 22 > 03 + 03403
114+12+22 > 12+ 03403
11412 +22 > 12+ 12403
11412422 > 12+ 12412
11412 +22 > 11+ 22403
11+22+03 > 02403413
11422403 > 02+ 22403

01 +13 +13 > 03 + 03 + 03 [°11 +22 4 03 > 11 + 03 + 13

1102 + 02 + 23 > 03 + 03 + 03
01+22+13>01+13+13
F€11 402 +23 > 02+ 02 + 23
01+22413>02+03+13
Je11 402423 > 02+ 03 + 13
01+22+13 > 03 + 03 + 03
111 4 02 + 23 > 03 + 03 + 03
01422422 > 01+ 13+ 13
JO11 411423 > 02+ 02 +23
01422422 > 01 +22+13
JC11 4+ 11+ 23 > 11+ 02 + 23
01+422422>02+03+13
Je11 + 11423 > 02 + 03 + 13
01422422302+ 22403
Je11 + 11423 > 11 + 03 + 13
01422422 > 03+ 03+ 03
Je11 + 11423 > 03 + 03 + 03

02 + 03 + 13 > 03 + 03 + 03

02412+ 13 > 02+ 03 + 13

02+ 12+ 13 > 12 + 03 + 03

02+ 12413 > 03+ 03 + 03

11 +22+03 > 03403403
11+22+03 > 12+ 03+ 03
11422403 > 12+ 12403
12+03+03 > 03+ 03+ 03
12+12+03 > 03+ 03 + 03
12+12+03 > 12403403
12412+ 12 > 03 + 03 4 03
12+12+12 > 12+ 03 403
12412 +12 > 12 + 12403



> co>c1 and c3 > ¢, or co < ¢1 and c3 < ¢g: Note that cica > coces, then

€oC1 + €12 + a3 — CpC2 — CpC3 — €1C3 = CoC1 + C2C3 — CoC2 — C1C3

= (CQ — Cl)(63 — CQ) 2 0.
> cg < c1 and ¢3 = ¢g: Because c3 < ¢o we have

CpC1 + C1C2 + C2C3 — CoC2 — CpC3 — C1C3

=c1(ca —¢3) + cales — o) + co(cr — ¢3) = 0.
> co =1 and ¢3 < cp: Because ¢1 > ¢p and ¢? > coca we have

2
coc1 + c1¢2 + cac3 — Ccpca — CpC3 — C1C3 = CpC1 + C1C2 + C2C3 — €] — CoC3 — C1C3

=ci(co—c3) +ci(ea —er) + ez(ea — o) = 0.

(17) 01+ 13+ 13 > 03 + 03+ 03: It follows from Theorem 3.3.
(18) 01 +22+ 13 > 03 4+ 03 + 03: (coc1 + cac2) + c1c3 = coes + (cpca + crc3) >
cocs + cocs + cgez or Theorem 3.3.
(19) 01 +22+22 > 03 + 03 + 03: (coc1 + caca) + caca = cocs + (coca + caca) =
coc3 + cocs + cgeg or Theorem 3.3.
We now recall the combinatorial description of the inequalities in the 22 case for
comparison. Given an inequality ¢;,, ¢j,, +Cjs, Cjos = Ciy1 Ciyy +Cig, Cigy, WE IAY assume

(4.3) 111 < 12, 21 < i22, 12 < 122,
< < <

Let w;, = i11 41412, Wi, = 421 +i22, wj, = ji1+Jji12 and wj, = jo1 + Jo2 be the weights
of the monomials. If {wj,,wj, } # {wi,,ws, }, then (see [1], Theorem 17)

J12,J22 < d12,722 and  ji1, J21 > 411, 021-
We call this condition DB, for “double between-ness”.

Theorem 4.1 ([1], Theorem 21). The inequality c;j,, cj,, + Cjy1Cjaa = Ciyy Cirp +
Cigy Cisy, With indices satisfying (4.3), holds for all p-Newton sequences if and only if
the following conditions are satisfied:

1. the weights {wj, ,w;, } majorize the weights {w;, ,w;, } and

2. either a) term-wise domination (majorization of indices) holds for a matching

of left hand monomials with right-hand monomials (in case the weight pairs are
equal) or b) DB holds (in case the weight pairs are different).
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It is possible to summarize the valid inequalities for n < 3 in the 222 case in
a characterizing theorem, though it appears relatively complicated. To do this we
need some terminology.

Consider the ordered pair (Cj,C;), where
Cj = Cj11Cjrz T Cjiay Cjag T Ciizy Ciias and C; = Ciy1 Ciyp T Cigy Cigy T Cigy Cigy

with all indices between 0 and 3. We say that c,c, is between c,cs if min{p, ¢} >
min{r, s} and max{p, ¢} < max{r,s}. Then, C; is n1-ng-n3 between C; if for some
M1, i, 1Cin,o 18 between at least ny terms of C;; for some ma # mi, ¢j,.,Cj,.,»
is between at least ns terms of C;; and for the remaining index ms, cj,..,Cj,,.. 18
between at least n3 terms of C;.

The following two criteria will be used in the statement of our theorem. We will

say that (C;,C;) satisfies Criterion 1 if one of the following holds:
1. If 4y Jrnn # 3 for all m, n, then

(m,n): imn =k} ifk=0,2,

{(m,n): jmn =k}
(m,n): imn =k} ifk=1.

{(m,n): jmn =k}

(myn): imn =k} ifk=13,
(m,n): bpmn =k} if k=2

3. If {0,3} C {émmn,Jmn}, then

{H(m,n): Jnn = B} < [{(m,n): i = B} i = 0,3,
{(m,m): jonn = K} > {(m,n): ian = K} i = 1,2.

We will say that (C;,C;) satisfies Criterion 2 if one of the following holds:

1. If neither C; nor C; has repeated terms, then C; is 2-2-3 between C;.

2. If only one of C; and C; has a repeated term, then C; is 2-3-3 between C;.

3. If C; and C; each have a repeated term, then C; is 3-3-3 between C;.

We may classify an ordered pair (C;,C;) by the weights wj, , w;, as follows. Below,

brackets [ | denote a multiset.

1. Class 1 will consist of those (C;,C;) with [w;, ]3_; = [wi,]3_,.

2. Class 2 will consist of those (C;,C;) where [w;,]?_, N [w;,]3_, contains exactly
one element, say w. We may further subdivide this class by examining those
terms in (C;,C;) which have weight w. Even though C; and C; have only the
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(a)
(b)

()

weight w in common, it may happen that other terms of C; and C; have this
weight. For example, let C; = 2 + ¢ + ciea and C; = coep + coca + coca.
Here w = 2 and it is the only weight in common, yet C; has two terms with
weight 2. But because we only allow 0 < 0, jmn < 3, there are at most two
monomials ¢,cq with any particular weight. Therefore, given (C;,C;) in Class 2
with common weight w, we have the following possibilities:

C; and C; each has exactly one term with weight w.

One and only one of C; and C; has at least two terms with weight w, and all of
these terms are identical.

One and only one of C; and C; has at least two terms with weight w, but these
terms are not all the same.

In the third case, we note that C; and C; necessarily share a term with weight w,

(¢)
(d)

3.

which will be called “the common-weight term” of C; and C;. Otherwise, they
each have a unique term (up to repetition) with the common weight w, and
we may speak of “the common-weight term” of Cj, i.e., the term of C; with
weight w, and that of C; without ambiguity.

Class 2 (a) will consist of those (C;,C;) where the common-weight term of C;
and that of C; are the same.

Class 2 (b) will consist of those (C;,C;) not in 2 (a) such that C; dominates C;
by secondary term-wise domination, i.e., if ¢;, ., ¢;,., is the common-weight term
of C; and ¢;,, ¢;,, is that of C;, we have

Cim1 Cima Z Cipy Cipss E Cir1Ciika > E Cig1 Cigo
k#m k#n

on all p-Newton sequences.

Class 2 (c) will consist of those (C;,C;) not in 2 (a) and not in 2 (b) where the
common-weight term of C; dominates that of C;.

Class 2 (d) will consist of those (C;,C;) not in 2 (a) where the common-weight
term of C; dominates that of C;.

Class 3 will consist of those (C;,C;) with [w;,]3_, N [wi ]3_, = 0.

Theorem 4.2. Let

Cj = Cj11Cjrz T Cjiay Cjag T Cjizy Ciiay and C;= Ciy1 Ciry T Cigy Cigy T Cigy Cigy

with all indices between 0 and 3 and satisfying (4.2). Then C; > C; for all p-Newton
sequences if and only if

(1)

(wjlijzasz) - (wi1vwi27wi3);
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2) if
3) if (C;,C;) is in Class 2 (a) or 2 (b), C; secondary term-wise dominates C;;
4) if (C;,C;) is in Class 2 (c) or 3, it meets criteria 1 and 2; and

)

5) (C;,C;) is not in Class 2 (d).

(C;,C;) is in Class 1, there is term-wise domination;

(
(
(
(

The proof of the theorem is the inventory given in the table. The theorem may
be interpreted beyond n = 3, but, unfortunately, it does not remain valid. Item (2)
is no longer necessary, as shown by Example 5.4. However, (2) does remain valid in
some situations, which we explore.

5. THE EQUAL WEIGHTS CASE

In the case 22 versus 22 we must always have weight majorization, and, in the
extreme case of equal weights, term-wise domination is necessary and sufficient for
an inequality. According to the table, this remains the case for 222 versus 222 when
n < 3. The weight majorization is general for 222. What about the case of equal
weights for longer Newton sequences (or more general monomial sums); is it a general
principle that term-wise domination is necessary and sufficient? Under a wide variety
of situations, the answer is yes, but, unfortunately, not in general, even for the 222
case. Here we give the variety of affirmative situations and then use Theorem 3.7
to verify a counterexample that may be smallest. A number of other examples may
also be verified.

Theorem 5.1. If Cj11Cjrz T Cja1 Cjag T Cjz1 Clsa 2 Ciyy Ciyg T Cigy Cigy + Cigy Cigys with
indices satisfying (4.2), holds for all p-Newton sequences and w;, = wj;, = w for
k =1,2,3, then term-wise domination holds.

Proof. Without loss of generality, we can assume that 715 < i92 < 732 and
j12 < joo < j32. By Lemma 3.1 we have jro < igxo for all k. But under the
assumption of equal weights we get

Tkl < Jr1 S Jr2 S k2
for all k, or equivalently c¢;,, ¢, = ¢i, ¢, for all k (see (1.1)). O

Theorem 5.2. If Cjr1Cjra T Cja1 Clan T Cjz1 Clsa 2 Ciyy Ciyy T+ Cigy Cigy + Cigy Cigy with
indices satisfying (4.2), holds for all p-Newton sequences and {w;, }i_, = {wj, }3_;
takes exactly two different values w < w’, then there is term-wise domination.
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Proof. Without loss of generality, we can assume that i;5 < do2 < 432 and
j12 < joo < j32. By Lemma 3.1 we have jio < igo for all k.

Note that term-wise domination holds in c¢;,, ¢j,, + Cjoy Cjon + Cjsy Cjgn = Ciy1 Ciyo +
Cigy Ciny + Cigy Cisy, With the considered sequence of weights, if and only if term-wise
domination holds for two terms (see (1.1)).

Suppose first that the weight w’ is attained twice, i.e.,
{wi1 y Wi wi3} = {wjl » Wiz wj3} = {wa w,a w,}'

We will prove the result matching a j monomial with an ¢ monomial of equal weight
and the biggest j-index less than or equal to biggest i-index. In this situation (1.1)
guarantees that the j monomial beats the ¢ monomial. It can happen:

> w = wj;, = w;. In this case w’ = wj, = w;, for k = 2,3 and the same argument
as in the previous theorem proves term-wise domination.
_ _ . _ _ . _ . .
> w = wj, = w;,. The matchings w = w;, = w;, and W' = w;, = w;, give term-wise

domination:

2

WEwp =W | @Y S
Cj11Cjra Z Cigy Cigy

J12 <122

and

2

oo < G Cijz1 Cisz > Cigy Cigy -
J32 X 132

w' = wj, = wi, } (1.1
> w = wj;, = w;;. The matchings w = w;, = w;, and W' = w;, = w;, give the result.
> w = wj, = w;. The matchings v’ = wj;, = w;, and W' = wj, = w;, give the

result.
> w = wj;, = w;,. The matchings w = w;, = w;, and w' = w;, = w;, give the result.
> w = wj;, = W;,. The matchings w = w;, = w;, and W' = w;, = w;, give the result.
> w = wj, = w;,. The matchings v’ = wj;, = w;, and v = wj, = w;, give the
result.
> w = wj, = w;,. The matchings v’ = wj;, = w;, and v’ = wj, = w;, give the
result.
> w = wj, = Wi;. The matchings w = wj, = w;, and W’ = w;, = w;, give the result.
If the weight w is the one attained twice, the result follows by index complementation.
O

Theorem 5.3. If Cj11Cjrz T Cjar Cjag T Cjz1 Clsa 2 Ciyy Ciyg T Cigy Cigy + Cigy Cigss with
indices satisfying (4.2), holds for all p-Newton sequences and

wj, <wj, <wj, and w;, =wj;, forallk,

813



and at least one of
111 < J2
i31 < Jo1 < 21

is not true, then there is term-wise domination.

Proof. We will show that if there is no term-wise domination, then there is
a NES such that the exponential version of (4.1) is not true for some r > 1. It is
clear that term-wise domination holds if and only if ix1 < ji1 < Jre < ixo for all k.
If j11 < i11 < i12 < j12, then consider the sequence

—1 if 1 < dqo,
—i1g — C(i —i12) if i > dq9,

where C' > 1 is a constant to be determined. Then g = m}?i{ {Zje, + Tjn} <
3
max{—j11 —i12 — C, Wy, sz} o = 1@?2(3{%%1 + xlkz} = max{ Wiy Tiyy +

Tinys Tigy + Tigy } = —w;,. For sufficiently large C, 8 < —wj, < —w;; < a. In-
dex complementation handles j3; < ig1 < i32 < js2. So, suppose we have

t11 < J11 < Ji2 < f12,
Jo1 < 21 < t22 < Joo2,

131 < J31 < J32 < 32.

If i1 < Jo2, Uuse

—i if ¢
xTr; =
-M—-C@G—-M) ifti>M,
where C' > 1 will be determined and M = joo — 1. Then 8 = max {zj, +

<k<3
T } S max{—wj,, —jo1r — M — C, —wj, } = —wj;, < max{—w;,, —Wi,, Tiy, + Tiz, } =
max, {4, + i\, } = o, and when C is large, max{—jo1 — M — C, —wj, } = —wj, <

—w;, < max{—wi,, Tiy, + Tiz |-
If i35 < joo use the sequence

) if 4
xTr; =
M—C@i—MM ifi> M,
where C' > 1 and M = joos — 1. Then 8 = nax {xjkl + xj,, } < max{wj,,jo1 +
(1 - C)Ma sz} = Wys < max{xm + xhgawwawis} = I?}?i( {xim + xikz} = a. Be-
cause M > 0 for large C, max{w;,,jo1 + (1 — C)M} = wj, < w;, < max{z;, +

Liqg Wiy }
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If j1o > i9o consider the sequence

i if i < oo,
—igg — C(i —ig2) if i > ig9,

where C' > 1. Then f = 112}3?3{%“ + T, b < max{—jn — 2 — C,—ja1 —

iz — C, _wj3}7 a = lrgk?’é(:s{xikl + xim} = max{xiu T Ty — Wiy, Tigy T+ xisz}' For
XV

large enough C, we have § < —w;, < —w;, < a.
Finally, if j32 > 422 consider

i if i < g,
Ti = . .. . AP .
199 — C(Z — 222)122 if 4 > 122,

where C' > 1 is a constant that can be arbitrarily large. Then 8 = lrggicg{xjm +

xjw} < max{wjl ,j21+i22—C, j31+i22—C}, o= 121]?2(3{1.%1 +xik2} = max{xi11+xi127
Wiy, Tig, + Tig, . For large C, f < wj;, < w;, < o Index complementation handles
the cases i31 > j21,%11 > Jo1,%21 > J31,%21 > J11- U

We speculate that if w;, < wj, < wj,, w;, = wj, for all k, 411 < jo1 < 421 <
Jin < Ji2 < dg2 < Jaz <12, and i31 < j21 < d21 < J31 < Js2 < d22 < Jao < i32, then
(4.1) is true for all p-Newton sequences if and only if (w;, , w;,,w;,) is an arithmetic
progression.

Another speculation is that w;, < wj, < wj,, ws, = wj, for all k, i1 < jor <
i21 < J11 < Ji2 <i22 < J22 < d12, and 31 < jo1 < d21 < J31 < J32 < iz < J22 i3
is sufficient for (4.1) to hold for all p-Newton sequences.

However, the problem examined in this section is quite different from that in [1],
although the two are related. Even when {w;, }3_;, = {w;, }3_,, (4.1) may hold
for all p-Newton sequences without term-wise domination as the following example
shows.

Example 5.4. We show that
cg + cieq4 + cg > cocq + coc3 + cic5

for all p-Newton sequences c: ¢y, cq,...,c5. Note that we have equal weights: 4, 5,
6 on the two sides, but that we do not have term-wise domination, as cjcs does not
beat any term on the right. However, ¢3 > cocq and ¢3 > cics for all p-Newton
sequences.

We apply Theorem 3.7 to the NES, by showing that {2x,21 + 24,223} >4
{zo + x4, 22 + 3,21 + x5}.
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First, we make some observations about the sequence x.

(i) Note that xx_1 + zr+1 < 2z if and only if zp41 — z < x — xx—1. Hence, we
get the chain of inequalities: x1 —x¢ > T2 —x1 > T3 — 2 > ..., which elucidates
the structure of x. We see that once x decreases, it continues decreasing, i.e. if
Th = Thet, then 2 = Tpp1 2 T > ...

(ii) s + 2; > xi—k + Tj4, whenever ¢ < j and k > 0. This is equivalent to
Ty — Ti—kp = Tjpk — 25 for ¢ < j and k > 0, which follows easily from the
previous observation.

We have six cases to consider. First, note that

2x9 + (1 + 4) + 223 = (xo + 24) + (x2 + 23) + (21 + x5)

< X2 + T3 2 xo + X5,

and the latter inequality follows from (ii) above.
1. Suppose zg + x4 > x2 + x3 > 21 + 5. Then we have

T1+x3 2T+ Ty =2 T2+ T3 =>T1 = T2

=
= T1 2> T2 2 T3 2Ty 2 Ts.
Therefore,

2w 2 w1 + a3 2> w1 + x4 = (1 — 20) + (2o + T4)

>
> (332 — J)l) =+ (1‘2 + 333) = (21‘2 — J)l) + x3 > 2x3.

Hence, 2x5 > o1 + x4 > 2x3. From (ii), we have 2xo > x¢ + 24 and z1 + 22 >
ro + x3. Since

229 + (1 + 24) = (0 + 24) + (2 + 23) & @1 + 22 > X0 + T3,
we find that (2z2, 21 + x4, 223) >4 (o + T4, 22 + x3, 21 + T5).
2. Suppose xg + x4 = x1 + x5 = x2 + x3. Note that the inequalities derived

above depend only on the fact that xg + x4 > x2 + z3, so we still have 2z >
r1 + x4 = 2x3. Now,

29 + (z1 + 24) = (o + 24) + (z1 + 25) © 222 = T + 5.
But, 229 > 29 + x4 > x9 + x5 since x1 > ... > x4 > x5. Hence,

(2252,%1 + (E4,2£L'3) ~w (IEO + Ty, T2 + x3,T1 + IE5).
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3. Suppose that zo + x3 > g + x4 = 1 + T5.

(a) If zo > w3, then 2z9 > 225 and a2 > x3 > x4 > x5. We also get
2z9 2 11 + 23 2 T1 + 4.

Therefore, either 2zo > x1 + x4 > 2x3 or 2x2 > 2x3 > x1 + 4. In any event,
2x9 > xo + x3; furthermore,

2x9 + (1 + 24)
2x9 + 213

(o +23) + (T + 24) & x1 + T2
({EQ +£L‘3)+ (:L'o+$4) = T2 + I3

= To + 3,
=

\VARA\Y,

To + X4.

Either way, (2z2, 21 + x4, 223) > (To + T4, T2 + 3,21 + X5).
(b) If 25 < x3, then 229 < 223 and x¢ < x1 < x2 < x3. Therefore,

23 2 20+ x4 = 1 + T4,

and either 2x3 > z1 + x4 > 229 or 2x3 > 2x3 > x1 + x4. In both cases,

2x3 > xo9 + x3; also,

2s + (x1 +24) = (2 + 23) + (X0 + 24) & @1 + 23

> Z To + Xa,
2x3 + 29 = (2 + x3) + (o + T4) © T2 + T3 = To + T4

Hence, (2z9,21 + x4,2x3) > (To + 24,22 + x3, 21 + T5).

4. Suppose that z3 + 23 > 21 + 25 = 20 + x4. Let y = (yo,y1,...,ys5) be the
sequence with y, = x5_j so that yx_1 + yr+1 < 2y, for all k. Our hypothesis
then gives ys+y2 = ya+yo = ys+y1; from (3) we know that (2y2, y1+y4, 2y3) >w
(Yo +Ya,y2 +y3, y1 + ¥s), Le. (2xs, x4 + x1,222) > (25 + 21, T3 + 22, 24 + T0).

The remaining two cases, r1 + &5 = Tg + T4 = T2 + 3 and x1 + T5 = T2 + T3 >

To + T4, can be argued as in 4.

ADDENDUM

In prior paper [1], in the case of inequalities between one sum of two two-factor
monomials and another (22), a principle is given as a lemma (Lemma 19), in which
increasing by 1 the higher index in each term preserves valid inequalities. (It is
equivalent to decreasing the lower index in each term by 1.) The principle, stated
there only for the indicated 22 versus 22 case, is valid, but the proof is not complete,
and it contains an inadvertent misstatement (“more” should be “less”). For the
record, we give here a complete, properly stated proof. The statement of the lemma,
the notation and references, as well as the comment about spreading indices, are
exactly the same.
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Proof (of Lemma 19 in [1]). In the case of term-wise domination, the statement
is trivially correct, monomial by monomial. So, we may assume that there is no term-
wise domination, in which case we know that there must be double between-ness in
the hypothesized valid inequality by Theorem 17 (display (13)) of [1].

Now,

Cjiz+1 Cjaa+1

) t Cja1 Cjay -
J12 J22
Cjga+1

Cj11Cjia+1 T Cjz1 Cjaa+1 = Cjy; Ciiry

> (Cj11cj12 + Cj2lcj22) )
J22
> R ) R ) Cj22+1
2 (Ciyy Cigy + Cigy Ciz) i
J22

Cjaa+1 Cjaa+1

- + Ciyy Cigy

Cjan Cjan
Ciia+1 Cizo+1
- Tt Cigg Ciny -
112 122

Ciy1 Cino

WV

Ciy1 Cira = Ciyq Cira+1 T Cigy Cigg41-
The first inequality holds because the ratios of consecutive elements of a p-Newton
sequence form a nonincreasing sequence. The second is simply the substitution of
a valid inequality. And the third holds because of double between-ness and the
nonincreasing ratios property of p-Newton sequences.

The other claim, about decreeasing the smaller index in each term by 1, follows
by complementation of indices. ([

We note that Lemma 19 also follows from the characterization, Theorem 21. How-
ever, Lemma 19 is used (significantly) in the proof of sufficiency of double between-
ness. Fortunately, only the necessity of double between-ness is used in the above
proof (and that was proven as Theorem 17 of [1]), so that the overall integrity of the
logic is intact.

We also note that we conjecture the principle of Lemma 19 (increasing the largest
(decreasing the smallest) index in each term of a valid inequality by 1 to get a valid
inequality) for general inequalities [1]. We have proven some other cases, but, so far,
only when something more about the structure of the inequality is known. This is
a very attractive and worthy conjecture.

Finally, we take this opportunity to note a typo in line 5 of the proof of Theorem 21
of [1]. “completation”, which appears, should be “complementation”.
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